xref: /linux/arch/arm64/kvm/guest.c (revision 165f2d2858013253042809df082b8df7e34e86d7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/guest.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #include <linux/bits.h>
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/nospec.h>
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/stddef.h>
18 #include <linux/string.h>
19 #include <linux/vmalloc.h>
20 #include <linux/fs.h>
21 #include <kvm/arm_psci.h>
22 #include <asm/cputype.h>
23 #include <linux/uaccess.h>
24 #include <asm/fpsimd.h>
25 #include <asm/kvm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_coproc.h>
28 #include <asm/sigcontext.h>
29 
30 #include "trace.h"
31 
32 #define VM_STAT(x) { #x, offsetof(struct kvm, stat.x), KVM_STAT_VM }
33 #define VCPU_STAT(x) { #x, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU }
34 
35 struct kvm_stats_debugfs_item debugfs_entries[] = {
36 	VCPU_STAT(halt_successful_poll),
37 	VCPU_STAT(halt_attempted_poll),
38 	VCPU_STAT(halt_poll_invalid),
39 	VCPU_STAT(halt_wakeup),
40 	VCPU_STAT(hvc_exit_stat),
41 	VCPU_STAT(wfe_exit_stat),
42 	VCPU_STAT(wfi_exit_stat),
43 	VCPU_STAT(mmio_exit_user),
44 	VCPU_STAT(mmio_exit_kernel),
45 	VCPU_STAT(exits),
46 	{ NULL }
47 };
48 
49 static bool core_reg_offset_is_vreg(u64 off)
50 {
51 	return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
52 		off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
53 }
54 
55 static u64 core_reg_offset_from_id(u64 id)
56 {
57 	return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
58 }
59 
60 static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
61 {
62 	int size;
63 
64 	switch (off) {
65 	case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
66 	     KVM_REG_ARM_CORE_REG(regs.regs[30]):
67 	case KVM_REG_ARM_CORE_REG(regs.sp):
68 	case KVM_REG_ARM_CORE_REG(regs.pc):
69 	case KVM_REG_ARM_CORE_REG(regs.pstate):
70 	case KVM_REG_ARM_CORE_REG(sp_el1):
71 	case KVM_REG_ARM_CORE_REG(elr_el1):
72 	case KVM_REG_ARM_CORE_REG(spsr[0]) ...
73 	     KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
74 		size = sizeof(__u64);
75 		break;
76 
77 	case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
78 	     KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
79 		size = sizeof(__uint128_t);
80 		break;
81 
82 	case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
83 	case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
84 		size = sizeof(__u32);
85 		break;
86 
87 	default:
88 		return -EINVAL;
89 	}
90 
91 	if (!IS_ALIGNED(off, size / sizeof(__u32)))
92 		return -EINVAL;
93 
94 	/*
95 	 * The KVM_REG_ARM64_SVE regs must be used instead of
96 	 * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
97 	 * SVE-enabled vcpus:
98 	 */
99 	if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
100 		return -EINVAL;
101 
102 	return size;
103 }
104 
105 static int validate_core_offset(const struct kvm_vcpu *vcpu,
106 				const struct kvm_one_reg *reg)
107 {
108 	u64 off = core_reg_offset_from_id(reg->id);
109 	int size = core_reg_size_from_offset(vcpu, off);
110 
111 	if (size < 0)
112 		return -EINVAL;
113 
114 	if (KVM_REG_SIZE(reg->id) != size)
115 		return -EINVAL;
116 
117 	return 0;
118 }
119 
120 static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
121 {
122 	/*
123 	 * Because the kvm_regs structure is a mix of 32, 64 and
124 	 * 128bit fields, we index it as if it was a 32bit
125 	 * array. Hence below, nr_regs is the number of entries, and
126 	 * off the index in the "array".
127 	 */
128 	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
129 	struct kvm_regs *regs = vcpu_gp_regs(vcpu);
130 	int nr_regs = sizeof(*regs) / sizeof(__u32);
131 	u32 off;
132 
133 	/* Our ID is an index into the kvm_regs struct. */
134 	off = core_reg_offset_from_id(reg->id);
135 	if (off >= nr_regs ||
136 	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
137 		return -ENOENT;
138 
139 	if (validate_core_offset(vcpu, reg))
140 		return -EINVAL;
141 
142 	if (copy_to_user(uaddr, ((u32 *)regs) + off, KVM_REG_SIZE(reg->id)))
143 		return -EFAULT;
144 
145 	return 0;
146 }
147 
148 static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
149 {
150 	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
151 	struct kvm_regs *regs = vcpu_gp_regs(vcpu);
152 	int nr_regs = sizeof(*regs) / sizeof(__u32);
153 	__uint128_t tmp;
154 	void *valp = &tmp;
155 	u64 off;
156 	int err = 0;
157 
158 	/* Our ID is an index into the kvm_regs struct. */
159 	off = core_reg_offset_from_id(reg->id);
160 	if (off >= nr_regs ||
161 	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
162 		return -ENOENT;
163 
164 	if (validate_core_offset(vcpu, reg))
165 		return -EINVAL;
166 
167 	if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
168 		return -EINVAL;
169 
170 	if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
171 		err = -EFAULT;
172 		goto out;
173 	}
174 
175 	if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
176 		u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
177 		switch (mode) {
178 		case PSR_AA32_MODE_USR:
179 			if (!system_supports_32bit_el0())
180 				return -EINVAL;
181 			break;
182 		case PSR_AA32_MODE_FIQ:
183 		case PSR_AA32_MODE_IRQ:
184 		case PSR_AA32_MODE_SVC:
185 		case PSR_AA32_MODE_ABT:
186 		case PSR_AA32_MODE_UND:
187 			if (!vcpu_el1_is_32bit(vcpu))
188 				return -EINVAL;
189 			break;
190 		case PSR_MODE_EL0t:
191 		case PSR_MODE_EL1t:
192 		case PSR_MODE_EL1h:
193 			if (vcpu_el1_is_32bit(vcpu))
194 				return -EINVAL;
195 			break;
196 		default:
197 			err = -EINVAL;
198 			goto out;
199 		}
200 	}
201 
202 	memcpy((u32 *)regs + off, valp, KVM_REG_SIZE(reg->id));
203 
204 	if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) {
205 		int i;
206 
207 		for (i = 0; i < 16; i++)
208 			*vcpu_reg32(vcpu, i) = (u32)*vcpu_reg32(vcpu, i);
209 	}
210 out:
211 	return err;
212 }
213 
214 #define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
215 #define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
216 #define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
217 
218 static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
219 {
220 	unsigned int max_vq, vq;
221 	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
222 
223 	if (!vcpu_has_sve(vcpu))
224 		return -ENOENT;
225 
226 	if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
227 		return -EINVAL;
228 
229 	memset(vqs, 0, sizeof(vqs));
230 
231 	max_vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
232 	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
233 		if (sve_vq_available(vq))
234 			vqs[vq_word(vq)] |= vq_mask(vq);
235 
236 	if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
237 		return -EFAULT;
238 
239 	return 0;
240 }
241 
242 static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
243 {
244 	unsigned int max_vq, vq;
245 	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
246 
247 	if (!vcpu_has_sve(vcpu))
248 		return -ENOENT;
249 
250 	if (kvm_arm_vcpu_sve_finalized(vcpu))
251 		return -EPERM; /* too late! */
252 
253 	if (WARN_ON(vcpu->arch.sve_state))
254 		return -EINVAL;
255 
256 	if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
257 		return -EFAULT;
258 
259 	max_vq = 0;
260 	for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
261 		if (vq_present(vqs, vq))
262 			max_vq = vq;
263 
264 	if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
265 		return -EINVAL;
266 
267 	/*
268 	 * Vector lengths supported by the host can't currently be
269 	 * hidden from the guest individually: instead we can only set a
270 	 * maxmium via ZCR_EL2.LEN.  So, make sure the available vector
271 	 * lengths match the set requested exactly up to the requested
272 	 * maximum:
273 	 */
274 	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
275 		if (vq_present(vqs, vq) != sve_vq_available(vq))
276 			return -EINVAL;
277 
278 	/* Can't run with no vector lengths at all: */
279 	if (max_vq < SVE_VQ_MIN)
280 		return -EINVAL;
281 
282 	/* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
283 	vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
284 
285 	return 0;
286 }
287 
288 #define SVE_REG_SLICE_SHIFT	0
289 #define SVE_REG_SLICE_BITS	5
290 #define SVE_REG_ID_SHIFT	(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
291 #define SVE_REG_ID_BITS		5
292 
293 #define SVE_REG_SLICE_MASK					\
294 	GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1,	\
295 		SVE_REG_SLICE_SHIFT)
296 #define SVE_REG_ID_MASK							\
297 	GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
298 
299 #define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
300 
301 #define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
302 #define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
303 
304 /*
305  * Number of register slices required to cover each whole SVE register.
306  * NOTE: Only the first slice every exists, for now.
307  * If you are tempted to modify this, you must also rework sve_reg_to_region()
308  * to match:
309  */
310 #define vcpu_sve_slices(vcpu) 1
311 
312 /* Bounds of a single SVE register slice within vcpu->arch.sve_state */
313 struct sve_state_reg_region {
314 	unsigned int koffset;	/* offset into sve_state in kernel memory */
315 	unsigned int klen;	/* length in kernel memory */
316 	unsigned int upad;	/* extra trailing padding in user memory */
317 };
318 
319 /*
320  * Validate SVE register ID and get sanitised bounds for user/kernel SVE
321  * register copy
322  */
323 static int sve_reg_to_region(struct sve_state_reg_region *region,
324 			     struct kvm_vcpu *vcpu,
325 			     const struct kvm_one_reg *reg)
326 {
327 	/* reg ID ranges for Z- registers */
328 	const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
329 	const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
330 						       SVE_NUM_SLICES - 1);
331 
332 	/* reg ID ranges for P- registers and FFR (which are contiguous) */
333 	const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
334 	const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
335 
336 	unsigned int vq;
337 	unsigned int reg_num;
338 
339 	unsigned int reqoffset, reqlen; /* User-requested offset and length */
340 	unsigned int maxlen; /* Maxmimum permitted length */
341 
342 	size_t sve_state_size;
343 
344 	const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
345 							SVE_NUM_SLICES - 1);
346 
347 	/* Verify that the P-regs and FFR really do have contiguous IDs: */
348 	BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
349 
350 	/* Verify that we match the UAPI header: */
351 	BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
352 
353 	reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
354 
355 	if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
356 		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
357 			return -ENOENT;
358 
359 		vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
360 
361 		reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
362 				SVE_SIG_REGS_OFFSET;
363 		reqlen = KVM_SVE_ZREG_SIZE;
364 		maxlen = SVE_SIG_ZREG_SIZE(vq);
365 	} else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
366 		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
367 			return -ENOENT;
368 
369 		vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
370 
371 		reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
372 				SVE_SIG_REGS_OFFSET;
373 		reqlen = KVM_SVE_PREG_SIZE;
374 		maxlen = SVE_SIG_PREG_SIZE(vq);
375 	} else {
376 		return -EINVAL;
377 	}
378 
379 	sve_state_size = vcpu_sve_state_size(vcpu);
380 	if (WARN_ON(!sve_state_size))
381 		return -EINVAL;
382 
383 	region->koffset = array_index_nospec(reqoffset, sve_state_size);
384 	region->klen = min(maxlen, reqlen);
385 	region->upad = reqlen - region->klen;
386 
387 	return 0;
388 }
389 
390 static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
391 {
392 	int ret;
393 	struct sve_state_reg_region region;
394 	char __user *uptr = (char __user *)reg->addr;
395 
396 	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
397 	if (reg->id == KVM_REG_ARM64_SVE_VLS)
398 		return get_sve_vls(vcpu, reg);
399 
400 	/* Try to interpret reg ID as an architectural SVE register... */
401 	ret = sve_reg_to_region(&region, vcpu, reg);
402 	if (ret)
403 		return ret;
404 
405 	if (!kvm_arm_vcpu_sve_finalized(vcpu))
406 		return -EPERM;
407 
408 	if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
409 			 region.klen) ||
410 	    clear_user(uptr + region.klen, region.upad))
411 		return -EFAULT;
412 
413 	return 0;
414 }
415 
416 static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
417 {
418 	int ret;
419 	struct sve_state_reg_region region;
420 	const char __user *uptr = (const char __user *)reg->addr;
421 
422 	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
423 	if (reg->id == KVM_REG_ARM64_SVE_VLS)
424 		return set_sve_vls(vcpu, reg);
425 
426 	/* Try to interpret reg ID as an architectural SVE register... */
427 	ret = sve_reg_to_region(&region, vcpu, reg);
428 	if (ret)
429 		return ret;
430 
431 	if (!kvm_arm_vcpu_sve_finalized(vcpu))
432 		return -EPERM;
433 
434 	if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
435 			   region.klen))
436 		return -EFAULT;
437 
438 	return 0;
439 }
440 
441 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
442 {
443 	return -EINVAL;
444 }
445 
446 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
447 {
448 	return -EINVAL;
449 }
450 
451 static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
452 				 u64 __user *uindices)
453 {
454 	unsigned int i;
455 	int n = 0;
456 
457 	for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
458 		u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
459 		int size = core_reg_size_from_offset(vcpu, i);
460 
461 		if (size < 0)
462 			continue;
463 
464 		switch (size) {
465 		case sizeof(__u32):
466 			reg |= KVM_REG_SIZE_U32;
467 			break;
468 
469 		case sizeof(__u64):
470 			reg |= KVM_REG_SIZE_U64;
471 			break;
472 
473 		case sizeof(__uint128_t):
474 			reg |= KVM_REG_SIZE_U128;
475 			break;
476 
477 		default:
478 			WARN_ON(1);
479 			continue;
480 		}
481 
482 		if (uindices) {
483 			if (put_user(reg, uindices))
484 				return -EFAULT;
485 			uindices++;
486 		}
487 
488 		n++;
489 	}
490 
491 	return n;
492 }
493 
494 static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
495 {
496 	return copy_core_reg_indices(vcpu, NULL);
497 }
498 
499 /**
500  * ARM64 versions of the TIMER registers, always available on arm64
501  */
502 
503 #define NUM_TIMER_REGS 3
504 
505 static bool is_timer_reg(u64 index)
506 {
507 	switch (index) {
508 	case KVM_REG_ARM_TIMER_CTL:
509 	case KVM_REG_ARM_TIMER_CNT:
510 	case KVM_REG_ARM_TIMER_CVAL:
511 		return true;
512 	}
513 	return false;
514 }
515 
516 static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
517 {
518 	if (put_user(KVM_REG_ARM_TIMER_CTL, uindices))
519 		return -EFAULT;
520 	uindices++;
521 	if (put_user(KVM_REG_ARM_TIMER_CNT, uindices))
522 		return -EFAULT;
523 	uindices++;
524 	if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices))
525 		return -EFAULT;
526 
527 	return 0;
528 }
529 
530 static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
531 {
532 	void __user *uaddr = (void __user *)(long)reg->addr;
533 	u64 val;
534 	int ret;
535 
536 	ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
537 	if (ret != 0)
538 		return -EFAULT;
539 
540 	return kvm_arm_timer_set_reg(vcpu, reg->id, val);
541 }
542 
543 static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
544 {
545 	void __user *uaddr = (void __user *)(long)reg->addr;
546 	u64 val;
547 
548 	val = kvm_arm_timer_get_reg(vcpu, reg->id);
549 	return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
550 }
551 
552 static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
553 {
554 	const unsigned int slices = vcpu_sve_slices(vcpu);
555 
556 	if (!vcpu_has_sve(vcpu))
557 		return 0;
558 
559 	/* Policed by KVM_GET_REG_LIST: */
560 	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
561 
562 	return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
563 		+ 1; /* KVM_REG_ARM64_SVE_VLS */
564 }
565 
566 static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
567 				u64 __user *uindices)
568 {
569 	const unsigned int slices = vcpu_sve_slices(vcpu);
570 	u64 reg;
571 	unsigned int i, n;
572 	int num_regs = 0;
573 
574 	if (!vcpu_has_sve(vcpu))
575 		return 0;
576 
577 	/* Policed by KVM_GET_REG_LIST: */
578 	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
579 
580 	/*
581 	 * Enumerate this first, so that userspace can save/restore in
582 	 * the order reported by KVM_GET_REG_LIST:
583 	 */
584 	reg = KVM_REG_ARM64_SVE_VLS;
585 	if (put_user(reg, uindices++))
586 		return -EFAULT;
587 	++num_regs;
588 
589 	for (i = 0; i < slices; i++) {
590 		for (n = 0; n < SVE_NUM_ZREGS; n++) {
591 			reg = KVM_REG_ARM64_SVE_ZREG(n, i);
592 			if (put_user(reg, uindices++))
593 				return -EFAULT;
594 			num_regs++;
595 		}
596 
597 		for (n = 0; n < SVE_NUM_PREGS; n++) {
598 			reg = KVM_REG_ARM64_SVE_PREG(n, i);
599 			if (put_user(reg, uindices++))
600 				return -EFAULT;
601 			num_regs++;
602 		}
603 
604 		reg = KVM_REG_ARM64_SVE_FFR(i);
605 		if (put_user(reg, uindices++))
606 			return -EFAULT;
607 		num_regs++;
608 	}
609 
610 	return num_regs;
611 }
612 
613 /**
614  * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
615  *
616  * This is for all registers.
617  */
618 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
619 {
620 	unsigned long res = 0;
621 
622 	res += num_core_regs(vcpu);
623 	res += num_sve_regs(vcpu);
624 	res += kvm_arm_num_sys_reg_descs(vcpu);
625 	res += kvm_arm_get_fw_num_regs(vcpu);
626 	res += NUM_TIMER_REGS;
627 
628 	return res;
629 }
630 
631 /**
632  * kvm_arm_copy_reg_indices - get indices of all registers.
633  *
634  * We do core registers right here, then we append system regs.
635  */
636 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
637 {
638 	int ret;
639 
640 	ret = copy_core_reg_indices(vcpu, uindices);
641 	if (ret < 0)
642 		return ret;
643 	uindices += ret;
644 
645 	ret = copy_sve_reg_indices(vcpu, uindices);
646 	if (ret < 0)
647 		return ret;
648 	uindices += ret;
649 
650 	ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
651 	if (ret < 0)
652 		return ret;
653 	uindices += kvm_arm_get_fw_num_regs(vcpu);
654 
655 	ret = copy_timer_indices(vcpu, uindices);
656 	if (ret < 0)
657 		return ret;
658 	uindices += NUM_TIMER_REGS;
659 
660 	return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
661 }
662 
663 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
664 {
665 	/* We currently use nothing arch-specific in upper 32 bits */
666 	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
667 		return -EINVAL;
668 
669 	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
670 	case KVM_REG_ARM_CORE:	return get_core_reg(vcpu, reg);
671 	case KVM_REG_ARM_FW:	return kvm_arm_get_fw_reg(vcpu, reg);
672 	case KVM_REG_ARM64_SVE:	return get_sve_reg(vcpu, reg);
673 	}
674 
675 	if (is_timer_reg(reg->id))
676 		return get_timer_reg(vcpu, reg);
677 
678 	return kvm_arm_sys_reg_get_reg(vcpu, reg);
679 }
680 
681 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
682 {
683 	/* We currently use nothing arch-specific in upper 32 bits */
684 	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
685 		return -EINVAL;
686 
687 	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
688 	case KVM_REG_ARM_CORE:	return set_core_reg(vcpu, reg);
689 	case KVM_REG_ARM_FW:	return kvm_arm_set_fw_reg(vcpu, reg);
690 	case KVM_REG_ARM64_SVE:	return set_sve_reg(vcpu, reg);
691 	}
692 
693 	if (is_timer_reg(reg->id))
694 		return set_timer_reg(vcpu, reg);
695 
696 	return kvm_arm_sys_reg_set_reg(vcpu, reg);
697 }
698 
699 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
700 				  struct kvm_sregs *sregs)
701 {
702 	return -EINVAL;
703 }
704 
705 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
706 				  struct kvm_sregs *sregs)
707 {
708 	return -EINVAL;
709 }
710 
711 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
712 			      struct kvm_vcpu_events *events)
713 {
714 	events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
715 	events->exception.serror_has_esr = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
716 
717 	if (events->exception.serror_pending && events->exception.serror_has_esr)
718 		events->exception.serror_esr = vcpu_get_vsesr(vcpu);
719 
720 	/*
721 	 * We never return a pending ext_dabt here because we deliver it to
722 	 * the virtual CPU directly when setting the event and it's no longer
723 	 * 'pending' at this point.
724 	 */
725 
726 	return 0;
727 }
728 
729 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
730 			      struct kvm_vcpu_events *events)
731 {
732 	bool serror_pending = events->exception.serror_pending;
733 	bool has_esr = events->exception.serror_has_esr;
734 	bool ext_dabt_pending = events->exception.ext_dabt_pending;
735 
736 	if (serror_pending && has_esr) {
737 		if (!cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
738 			return -EINVAL;
739 
740 		if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
741 			kvm_set_sei_esr(vcpu, events->exception.serror_esr);
742 		else
743 			return -EINVAL;
744 	} else if (serror_pending) {
745 		kvm_inject_vabt(vcpu);
746 	}
747 
748 	if (ext_dabt_pending)
749 		kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
750 
751 	return 0;
752 }
753 
754 int __attribute_const__ kvm_target_cpu(void)
755 {
756 	unsigned long implementor = read_cpuid_implementor();
757 	unsigned long part_number = read_cpuid_part_number();
758 
759 	switch (implementor) {
760 	case ARM_CPU_IMP_ARM:
761 		switch (part_number) {
762 		case ARM_CPU_PART_AEM_V8:
763 			return KVM_ARM_TARGET_AEM_V8;
764 		case ARM_CPU_PART_FOUNDATION:
765 			return KVM_ARM_TARGET_FOUNDATION_V8;
766 		case ARM_CPU_PART_CORTEX_A53:
767 			return KVM_ARM_TARGET_CORTEX_A53;
768 		case ARM_CPU_PART_CORTEX_A57:
769 			return KVM_ARM_TARGET_CORTEX_A57;
770 		}
771 		break;
772 	case ARM_CPU_IMP_APM:
773 		switch (part_number) {
774 		case APM_CPU_PART_POTENZA:
775 			return KVM_ARM_TARGET_XGENE_POTENZA;
776 		}
777 		break;
778 	}
779 
780 	/* Return a default generic target */
781 	return KVM_ARM_TARGET_GENERIC_V8;
782 }
783 
784 int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init)
785 {
786 	int target = kvm_target_cpu();
787 
788 	if (target < 0)
789 		return -ENODEV;
790 
791 	memset(init, 0, sizeof(*init));
792 
793 	/*
794 	 * For now, we don't return any features.
795 	 * In future, we might use features to return target
796 	 * specific features available for the preferred
797 	 * target type.
798 	 */
799 	init->target = (__u32)target;
800 
801 	return 0;
802 }
803 
804 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
805 {
806 	return -EINVAL;
807 }
808 
809 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
810 {
811 	return -EINVAL;
812 }
813 
814 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
815 				  struct kvm_translation *tr)
816 {
817 	return -EINVAL;
818 }
819 
820 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE |    \
821 			    KVM_GUESTDBG_USE_SW_BP | \
822 			    KVM_GUESTDBG_USE_HW | \
823 			    KVM_GUESTDBG_SINGLESTEP)
824 
825 /**
826  * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
827  * @kvm:	pointer to the KVM struct
828  * @kvm_guest_debug: the ioctl data buffer
829  *
830  * This sets up and enables the VM for guest debugging. Userspace
831  * passes in a control flag to enable different debug types and
832  * potentially other architecture specific information in the rest of
833  * the structure.
834  */
835 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
836 					struct kvm_guest_debug *dbg)
837 {
838 	int ret = 0;
839 
840 	trace_kvm_set_guest_debug(vcpu, dbg->control);
841 
842 	if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
843 		ret = -EINVAL;
844 		goto out;
845 	}
846 
847 	if (dbg->control & KVM_GUESTDBG_ENABLE) {
848 		vcpu->guest_debug = dbg->control;
849 
850 		/* Hardware assisted Break and Watch points */
851 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
852 			vcpu->arch.external_debug_state = dbg->arch;
853 		}
854 
855 	} else {
856 		/* If not enabled clear all flags */
857 		vcpu->guest_debug = 0;
858 	}
859 
860 out:
861 	return ret;
862 }
863 
864 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
865 			       struct kvm_device_attr *attr)
866 {
867 	int ret;
868 
869 	switch (attr->group) {
870 	case KVM_ARM_VCPU_PMU_V3_CTRL:
871 		ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
872 		break;
873 	case KVM_ARM_VCPU_TIMER_CTRL:
874 		ret = kvm_arm_timer_set_attr(vcpu, attr);
875 		break;
876 	case KVM_ARM_VCPU_PVTIME_CTRL:
877 		ret = kvm_arm_pvtime_set_attr(vcpu, attr);
878 		break;
879 	default:
880 		ret = -ENXIO;
881 		break;
882 	}
883 
884 	return ret;
885 }
886 
887 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
888 			       struct kvm_device_attr *attr)
889 {
890 	int ret;
891 
892 	switch (attr->group) {
893 	case KVM_ARM_VCPU_PMU_V3_CTRL:
894 		ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
895 		break;
896 	case KVM_ARM_VCPU_TIMER_CTRL:
897 		ret = kvm_arm_timer_get_attr(vcpu, attr);
898 		break;
899 	case KVM_ARM_VCPU_PVTIME_CTRL:
900 		ret = kvm_arm_pvtime_get_attr(vcpu, attr);
901 		break;
902 	default:
903 		ret = -ENXIO;
904 		break;
905 	}
906 
907 	return ret;
908 }
909 
910 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
911 			       struct kvm_device_attr *attr)
912 {
913 	int ret;
914 
915 	switch (attr->group) {
916 	case KVM_ARM_VCPU_PMU_V3_CTRL:
917 		ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
918 		break;
919 	case KVM_ARM_VCPU_TIMER_CTRL:
920 		ret = kvm_arm_timer_has_attr(vcpu, attr);
921 		break;
922 	case KVM_ARM_VCPU_PVTIME_CTRL:
923 		ret = kvm_arm_pvtime_has_attr(vcpu, attr);
924 		break;
925 	default:
926 		ret = -ENXIO;
927 		break;
928 	}
929 
930 	return ret;
931 }
932