xref: /linux/arch/arm64/kvm/fpsimd.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch/arm64/kvm/fpsimd.c: Guest/host FPSIMD context coordination helpers
4  *
5  * Copyright 2018 Arm Limited
6  * Author: Dave Martin <Dave.Martin@arm.com>
7  */
8 #include <linux/irqflags.h>
9 #include <linux/sched.h>
10 #include <linux/kvm_host.h>
11 #include <asm/fpsimd.h>
12 #include <asm/kvm_asm.h>
13 #include <asm/kvm_hyp.h>
14 #include <asm/kvm_mmu.h>
15 #include <asm/sysreg.h>
16 
17 /*
18  * Called on entry to KVM_RUN unless this vcpu previously ran at least
19  * once and the most recent prior KVM_RUN for this vcpu was called from
20  * the same task as current (highly likely).
21  *
22  * This is guaranteed to execute before kvm_arch_vcpu_load_fp(vcpu),
23  * such that on entering hyp the relevant parts of current are already
24  * mapped.
25  */
26 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu)
27 {
28 	struct user_fpsimd_state *fpsimd = &current->thread.uw.fpsimd_state;
29 	int ret;
30 
31 	/* pKVM has its own tracking of the host fpsimd state. */
32 	if (is_protected_kvm_enabled())
33 		return 0;
34 
35 	/* Make sure the host task fpsimd state is visible to hyp: */
36 	ret = kvm_share_hyp(fpsimd, fpsimd + 1);
37 	if (ret)
38 		return ret;
39 
40 	return 0;
41 }
42 
43 /*
44  * Prepare vcpu for saving the host's FPSIMD state and loading the guest's.
45  * The actual loading is done by the FPSIMD access trap taken to hyp.
46  *
47  * Here, we just set the correct metadata to indicate that the FPSIMD
48  * state in the cpu regs (if any) belongs to current on the host.
49  */
50 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu)
51 {
52 	BUG_ON(!current->mm);
53 
54 	if (!system_supports_fpsimd())
55 		return;
56 
57 	fpsimd_kvm_prepare();
58 
59 	/*
60 	 * We will check TIF_FOREIGN_FPSTATE just before entering the
61 	 * guest in kvm_arch_vcpu_ctxflush_fp() and override this to
62 	 * FP_STATE_FREE if the flag set.
63 	 */
64 	*host_data_ptr(fp_owner) = FP_STATE_HOST_OWNED;
65 	*host_data_ptr(fpsimd_state) = kern_hyp_va(&current->thread.uw.fpsimd_state);
66 
67 	vcpu_clear_flag(vcpu, HOST_SVE_ENABLED);
68 	if (read_sysreg(cpacr_el1) & CPACR_EL1_ZEN_EL0EN)
69 		vcpu_set_flag(vcpu, HOST_SVE_ENABLED);
70 
71 	if (system_supports_sme()) {
72 		vcpu_clear_flag(vcpu, HOST_SME_ENABLED);
73 		if (read_sysreg(cpacr_el1) & CPACR_EL1_SMEN_EL0EN)
74 			vcpu_set_flag(vcpu, HOST_SME_ENABLED);
75 
76 		/*
77 		 * If PSTATE.SM is enabled then save any pending FP
78 		 * state and disable PSTATE.SM. If we leave PSTATE.SM
79 		 * enabled and the guest does not enable SME via
80 		 * CPACR_EL1.SMEN then operations that should be valid
81 		 * may generate SME traps from EL1 to EL1 which we
82 		 * can't intercept and which would confuse the guest.
83 		 *
84 		 * Do the same for PSTATE.ZA in the case where there
85 		 * is state in the registers which has not already
86 		 * been saved, this is very unlikely to happen.
87 		 */
88 		if (read_sysreg_s(SYS_SVCR) & (SVCR_SM_MASK | SVCR_ZA_MASK)) {
89 			*host_data_ptr(fp_owner) = FP_STATE_FREE;
90 			fpsimd_save_and_flush_cpu_state();
91 		}
92 	}
93 }
94 
95 /*
96  * Called just before entering the guest once we are no longer preemptible
97  * and interrupts are disabled. If we have managed to run anything using
98  * FP while we were preemptible (such as off the back of an interrupt),
99  * then neither the host nor the guest own the FP hardware (and it was the
100  * responsibility of the code that used FP to save the existing state).
101  */
102 void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu)
103 {
104 	if (test_thread_flag(TIF_FOREIGN_FPSTATE))
105 		*host_data_ptr(fp_owner) = FP_STATE_FREE;
106 }
107 
108 /*
109  * Called just after exiting the guest. If the guest FPSIMD state
110  * was loaded, update the host's context tracking data mark the CPU
111  * FPSIMD regs as dirty and belonging to vcpu so that they will be
112  * written back if the kernel clobbers them due to kernel-mode NEON
113  * before re-entry into the guest.
114  */
115 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu)
116 {
117 	struct cpu_fp_state fp_state;
118 
119 	WARN_ON_ONCE(!irqs_disabled());
120 
121 	if (guest_owns_fp_regs()) {
122 		/*
123 		 * Currently we do not support SME guests so SVCR is
124 		 * always 0 and we just need a variable to point to.
125 		 */
126 		fp_state.st = &vcpu->arch.ctxt.fp_regs;
127 		fp_state.sve_state = vcpu->arch.sve_state;
128 		fp_state.sve_vl = vcpu->arch.sve_max_vl;
129 		fp_state.sme_state = NULL;
130 		fp_state.svcr = &vcpu->arch.svcr;
131 		fp_state.fpmr = &vcpu->arch.fpmr;
132 		fp_state.fp_type = &vcpu->arch.fp_type;
133 
134 		if (vcpu_has_sve(vcpu))
135 			fp_state.to_save = FP_STATE_SVE;
136 		else
137 			fp_state.to_save = FP_STATE_FPSIMD;
138 
139 		fpsimd_bind_state_to_cpu(&fp_state);
140 
141 		clear_thread_flag(TIF_FOREIGN_FPSTATE);
142 	}
143 }
144 
145 /*
146  * Write back the vcpu FPSIMD regs if they are dirty, and invalidate the
147  * cpu FPSIMD regs so that they can't be spuriously reused if this vcpu
148  * disappears and another task or vcpu appears that recycles the same
149  * struct fpsimd_state.
150  */
151 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu)
152 {
153 	unsigned long flags;
154 
155 	local_irq_save(flags);
156 
157 	/*
158 	 * If we have VHE then the Hyp code will reset CPACR_EL1 to
159 	 * the default value and we need to reenable SME.
160 	 */
161 	if (has_vhe() && system_supports_sme()) {
162 		/* Also restore EL0 state seen on entry */
163 		if (vcpu_get_flag(vcpu, HOST_SME_ENABLED))
164 			sysreg_clear_set(CPACR_EL1, 0,
165 					 CPACR_EL1_SMEN_EL0EN |
166 					 CPACR_EL1_SMEN_EL1EN);
167 		else
168 			sysreg_clear_set(CPACR_EL1,
169 					 CPACR_EL1_SMEN_EL0EN,
170 					 CPACR_EL1_SMEN_EL1EN);
171 		isb();
172 	}
173 
174 	if (guest_owns_fp_regs()) {
175 		if (vcpu_has_sve(vcpu)) {
176 			__vcpu_sys_reg(vcpu, ZCR_EL1) = read_sysreg_el1(SYS_ZCR);
177 
178 			/*
179 			 * Restore the VL that was saved when bound to the CPU,
180 			 * which is the maximum VL for the guest. Because the
181 			 * layout of the data when saving the sve state depends
182 			 * on the VL, we need to use a consistent (i.e., the
183 			 * maximum) VL.
184 			 * Note that this means that at guest exit ZCR_EL1 is
185 			 * not necessarily the same as on guest entry.
186 			 *
187 			 * Restoring the VL isn't needed in VHE mode since
188 			 * ZCR_EL2 (accessed via ZCR_EL1) would fulfill the same
189 			 * role when doing the save from EL2.
190 			 */
191 			if (!has_vhe())
192 				sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1,
193 						       SYS_ZCR_EL1);
194 		}
195 
196 		/*
197 		 * Flush (save and invalidate) the fpsimd/sve state so that if
198 		 * the host tries to use fpsimd/sve, it's not using stale data
199 		 * from the guest.
200 		 *
201 		 * Flushing the state sets the TIF_FOREIGN_FPSTATE bit for the
202 		 * context unconditionally, in both nVHE and VHE. This allows
203 		 * the kernel to restore the fpsimd/sve state, including ZCR_EL1
204 		 * when needed.
205 		 */
206 		fpsimd_save_and_flush_cpu_state();
207 	} else if (has_vhe() && system_supports_sve()) {
208 		/*
209 		 * The FPSIMD/SVE state in the CPU has not been touched, and we
210 		 * have SVE (and VHE): CPACR_EL1 (alias CPTR_EL2) has been
211 		 * reset by kvm_reset_cptr_el2() in the Hyp code, disabling SVE
212 		 * for EL0.  To avoid spurious traps, restore the trap state
213 		 * seen by kvm_arch_vcpu_load_fp():
214 		 */
215 		if (vcpu_get_flag(vcpu, HOST_SVE_ENABLED))
216 			sysreg_clear_set(CPACR_EL1, 0, CPACR_EL1_ZEN_EL0EN);
217 		else
218 			sysreg_clear_set(CPACR_EL1, CPACR_EL1_ZEN_EL0EN, 0);
219 	}
220 
221 	local_irq_restore(flags);
222 }
223