1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 4 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 5 */ 6 7 #include <linux/bug.h> 8 #include <linux/cpu_pm.h> 9 #include <linux/entry-kvm.h> 10 #include <linux/errno.h> 11 #include <linux/err.h> 12 #include <linux/kvm_host.h> 13 #include <linux/list.h> 14 #include <linux/module.h> 15 #include <linux/vmalloc.h> 16 #include <linux/fs.h> 17 #include <linux/mman.h> 18 #include <linux/sched.h> 19 #include <linux/kvm.h> 20 #include <linux/kvm_irqfd.h> 21 #include <linux/irqbypass.h> 22 #include <linux/sched/stat.h> 23 #include <linux/psci.h> 24 #include <trace/events/kvm.h> 25 26 #define CREATE_TRACE_POINTS 27 #include "trace_arm.h" 28 29 #include <linux/uaccess.h> 30 #include <asm/ptrace.h> 31 #include <asm/mman.h> 32 #include <asm/tlbflush.h> 33 #include <asm/cacheflush.h> 34 #include <asm/cpufeature.h> 35 #include <asm/virt.h> 36 #include <asm/kvm_arm.h> 37 #include <asm/kvm_asm.h> 38 #include <asm/kvm_emulate.h> 39 #include <asm/kvm_mmu.h> 40 #include <asm/kvm_nested.h> 41 #include <asm/kvm_pkvm.h> 42 #include <asm/kvm_ptrauth.h> 43 #include <asm/sections.h> 44 45 #include <kvm/arm_hypercalls.h> 46 #include <kvm/arm_pmu.h> 47 #include <kvm/arm_psci.h> 48 49 #include "sys_regs.h" 50 51 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT; 52 53 enum kvm_wfx_trap_policy { 54 KVM_WFX_NOTRAP_SINGLE_TASK, /* Default option */ 55 KVM_WFX_NOTRAP, 56 KVM_WFX_TRAP, 57 }; 58 59 static enum kvm_wfx_trap_policy kvm_wfi_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK; 60 static enum kvm_wfx_trap_policy kvm_wfe_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK; 61 62 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector); 63 64 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_base); 65 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params); 66 67 DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt); 68 69 static bool vgic_present, kvm_arm_initialised; 70 71 static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized); 72 73 bool is_kvm_arm_initialised(void) 74 { 75 return kvm_arm_initialised; 76 } 77 78 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 79 { 80 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 81 } 82 83 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 84 struct kvm_enable_cap *cap) 85 { 86 int r = -EINVAL; 87 88 if (cap->flags) 89 return -EINVAL; 90 91 if (kvm_vm_is_protected(kvm) && !kvm_pvm_ext_allowed(cap->cap)) 92 return -EINVAL; 93 94 switch (cap->cap) { 95 case KVM_CAP_ARM_NISV_TO_USER: 96 r = 0; 97 set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER, 98 &kvm->arch.flags); 99 break; 100 case KVM_CAP_ARM_MTE: 101 mutex_lock(&kvm->lock); 102 if (system_supports_mte() && !kvm->created_vcpus) { 103 r = 0; 104 set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags); 105 } 106 mutex_unlock(&kvm->lock); 107 break; 108 case KVM_CAP_ARM_SYSTEM_SUSPEND: 109 r = 0; 110 set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags); 111 break; 112 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE: 113 mutex_lock(&kvm->slots_lock); 114 /* 115 * To keep things simple, allow changing the chunk 116 * size only when no memory slots have been created. 117 */ 118 if (kvm_are_all_memslots_empty(kvm)) { 119 u64 new_cap = cap->args[0]; 120 121 if (!new_cap || kvm_is_block_size_supported(new_cap)) { 122 r = 0; 123 kvm->arch.mmu.split_page_chunk_size = new_cap; 124 } 125 } 126 mutex_unlock(&kvm->slots_lock); 127 break; 128 default: 129 break; 130 } 131 132 return r; 133 } 134 135 static int kvm_arm_default_max_vcpus(void) 136 { 137 return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS; 138 } 139 140 /** 141 * kvm_arch_init_vm - initializes a VM data structure 142 * @kvm: pointer to the KVM struct 143 * @type: kvm device type 144 */ 145 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 146 { 147 int ret; 148 149 mutex_init(&kvm->arch.config_lock); 150 151 #ifdef CONFIG_LOCKDEP 152 /* Clue in lockdep that the config_lock must be taken inside kvm->lock */ 153 mutex_lock(&kvm->lock); 154 mutex_lock(&kvm->arch.config_lock); 155 mutex_unlock(&kvm->arch.config_lock); 156 mutex_unlock(&kvm->lock); 157 #endif 158 159 kvm_init_nested(kvm); 160 161 ret = kvm_share_hyp(kvm, kvm + 1); 162 if (ret) 163 return ret; 164 165 ret = pkvm_init_host_vm(kvm); 166 if (ret) 167 goto err_unshare_kvm; 168 169 if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) { 170 ret = -ENOMEM; 171 goto err_unshare_kvm; 172 } 173 cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask); 174 175 ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type); 176 if (ret) 177 goto err_free_cpumask; 178 179 kvm_vgic_early_init(kvm); 180 181 kvm_timer_init_vm(kvm); 182 183 /* The maximum number of VCPUs is limited by the host's GIC model */ 184 kvm->max_vcpus = kvm_arm_default_max_vcpus(); 185 186 kvm_arm_init_hypercalls(kvm); 187 188 bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES); 189 190 return 0; 191 192 err_free_cpumask: 193 free_cpumask_var(kvm->arch.supported_cpus); 194 err_unshare_kvm: 195 kvm_unshare_hyp(kvm, kvm + 1); 196 return ret; 197 } 198 199 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 200 { 201 return VM_FAULT_SIGBUS; 202 } 203 204 void kvm_arch_create_vm_debugfs(struct kvm *kvm) 205 { 206 kvm_sys_regs_create_debugfs(kvm); 207 kvm_s2_ptdump_create_debugfs(kvm); 208 } 209 210 static void kvm_destroy_mpidr_data(struct kvm *kvm) 211 { 212 struct kvm_mpidr_data *data; 213 214 mutex_lock(&kvm->arch.config_lock); 215 216 data = rcu_dereference_protected(kvm->arch.mpidr_data, 217 lockdep_is_held(&kvm->arch.config_lock)); 218 if (data) { 219 rcu_assign_pointer(kvm->arch.mpidr_data, NULL); 220 synchronize_rcu(); 221 kfree(data); 222 } 223 224 mutex_unlock(&kvm->arch.config_lock); 225 } 226 227 /** 228 * kvm_arch_destroy_vm - destroy the VM data structure 229 * @kvm: pointer to the KVM struct 230 */ 231 void kvm_arch_destroy_vm(struct kvm *kvm) 232 { 233 bitmap_free(kvm->arch.pmu_filter); 234 free_cpumask_var(kvm->arch.supported_cpus); 235 236 kvm_vgic_destroy(kvm); 237 238 if (is_protected_kvm_enabled()) 239 pkvm_destroy_hyp_vm(kvm); 240 241 kvm_destroy_mpidr_data(kvm); 242 243 kfree(kvm->arch.sysreg_masks); 244 kvm_destroy_vcpus(kvm); 245 246 kvm_unshare_hyp(kvm, kvm + 1); 247 248 kvm_arm_teardown_hypercalls(kvm); 249 } 250 251 static bool kvm_has_full_ptr_auth(void) 252 { 253 bool apa, gpa, api, gpi, apa3, gpa3; 254 u64 isar1, isar2, val; 255 256 /* 257 * Check that: 258 * 259 * - both Address and Generic auth are implemented for a given 260 * algorithm (Q5, IMPDEF or Q3) 261 * - only a single algorithm is implemented. 262 */ 263 if (!system_has_full_ptr_auth()) 264 return false; 265 266 isar1 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1); 267 isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1); 268 269 apa = !!FIELD_GET(ID_AA64ISAR1_EL1_APA_MASK, isar1); 270 val = FIELD_GET(ID_AA64ISAR1_EL1_GPA_MASK, isar1); 271 gpa = (val == ID_AA64ISAR1_EL1_GPA_IMP); 272 273 api = !!FIELD_GET(ID_AA64ISAR1_EL1_API_MASK, isar1); 274 val = FIELD_GET(ID_AA64ISAR1_EL1_GPI_MASK, isar1); 275 gpi = (val == ID_AA64ISAR1_EL1_GPI_IMP); 276 277 apa3 = !!FIELD_GET(ID_AA64ISAR2_EL1_APA3_MASK, isar2); 278 val = FIELD_GET(ID_AA64ISAR2_EL1_GPA3_MASK, isar2); 279 gpa3 = (val == ID_AA64ISAR2_EL1_GPA3_IMP); 280 281 return (apa == gpa && api == gpi && apa3 == gpa3 && 282 (apa + api + apa3) == 1); 283 } 284 285 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 286 { 287 int r; 288 289 if (kvm && kvm_vm_is_protected(kvm) && !kvm_pvm_ext_allowed(ext)) 290 return 0; 291 292 switch (ext) { 293 case KVM_CAP_IRQCHIP: 294 r = vgic_present; 295 break; 296 case KVM_CAP_IOEVENTFD: 297 case KVM_CAP_USER_MEMORY: 298 case KVM_CAP_SYNC_MMU: 299 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 300 case KVM_CAP_ONE_REG: 301 case KVM_CAP_ARM_PSCI: 302 case KVM_CAP_ARM_PSCI_0_2: 303 case KVM_CAP_READONLY_MEM: 304 case KVM_CAP_MP_STATE: 305 case KVM_CAP_IMMEDIATE_EXIT: 306 case KVM_CAP_VCPU_EVENTS: 307 case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2: 308 case KVM_CAP_ARM_NISV_TO_USER: 309 case KVM_CAP_ARM_INJECT_EXT_DABT: 310 case KVM_CAP_SET_GUEST_DEBUG: 311 case KVM_CAP_VCPU_ATTRIBUTES: 312 case KVM_CAP_PTP_KVM: 313 case KVM_CAP_ARM_SYSTEM_SUSPEND: 314 case KVM_CAP_IRQFD_RESAMPLE: 315 case KVM_CAP_COUNTER_OFFSET: 316 r = 1; 317 break; 318 case KVM_CAP_SET_GUEST_DEBUG2: 319 return KVM_GUESTDBG_VALID_MASK; 320 case KVM_CAP_ARM_SET_DEVICE_ADDR: 321 r = 1; 322 break; 323 case KVM_CAP_NR_VCPUS: 324 /* 325 * ARM64 treats KVM_CAP_NR_CPUS differently from all other 326 * architectures, as it does not always bound it to 327 * KVM_CAP_MAX_VCPUS. It should not matter much because 328 * this is just an advisory value. 329 */ 330 r = min_t(unsigned int, num_online_cpus(), 331 kvm_arm_default_max_vcpus()); 332 break; 333 case KVM_CAP_MAX_VCPUS: 334 case KVM_CAP_MAX_VCPU_ID: 335 if (kvm) 336 r = kvm->max_vcpus; 337 else 338 r = kvm_arm_default_max_vcpus(); 339 break; 340 case KVM_CAP_MSI_DEVID: 341 if (!kvm) 342 r = -EINVAL; 343 else 344 r = kvm->arch.vgic.msis_require_devid; 345 break; 346 case KVM_CAP_ARM_USER_IRQ: 347 /* 348 * 1: EL1_VTIMER, EL1_PTIMER, and PMU. 349 * (bump this number if adding more devices) 350 */ 351 r = 1; 352 break; 353 case KVM_CAP_ARM_MTE: 354 r = system_supports_mte(); 355 break; 356 case KVM_CAP_STEAL_TIME: 357 r = kvm_arm_pvtime_supported(); 358 break; 359 case KVM_CAP_ARM_EL1_32BIT: 360 r = cpus_have_final_cap(ARM64_HAS_32BIT_EL1); 361 break; 362 case KVM_CAP_GUEST_DEBUG_HW_BPS: 363 r = get_num_brps(); 364 break; 365 case KVM_CAP_GUEST_DEBUG_HW_WPS: 366 r = get_num_wrps(); 367 break; 368 case KVM_CAP_ARM_PMU_V3: 369 r = kvm_arm_support_pmu_v3(); 370 break; 371 case KVM_CAP_ARM_INJECT_SERROR_ESR: 372 r = cpus_have_final_cap(ARM64_HAS_RAS_EXTN); 373 break; 374 case KVM_CAP_ARM_VM_IPA_SIZE: 375 r = get_kvm_ipa_limit(); 376 break; 377 case KVM_CAP_ARM_SVE: 378 r = system_supports_sve(); 379 break; 380 case KVM_CAP_ARM_PTRAUTH_ADDRESS: 381 case KVM_CAP_ARM_PTRAUTH_GENERIC: 382 r = kvm_has_full_ptr_auth(); 383 break; 384 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE: 385 if (kvm) 386 r = kvm->arch.mmu.split_page_chunk_size; 387 else 388 r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT; 389 break; 390 case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES: 391 r = kvm_supported_block_sizes(); 392 break; 393 case KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES: 394 r = BIT(0); 395 break; 396 default: 397 r = 0; 398 } 399 400 return r; 401 } 402 403 long kvm_arch_dev_ioctl(struct file *filp, 404 unsigned int ioctl, unsigned long arg) 405 { 406 return -EINVAL; 407 } 408 409 struct kvm *kvm_arch_alloc_vm(void) 410 { 411 size_t sz = sizeof(struct kvm); 412 413 if (!has_vhe()) 414 return kzalloc(sz, GFP_KERNEL_ACCOUNT); 415 416 return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO); 417 } 418 419 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 420 { 421 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) 422 return -EBUSY; 423 424 if (id >= kvm->max_vcpus) 425 return -EINVAL; 426 427 return 0; 428 } 429 430 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 431 { 432 int err; 433 434 spin_lock_init(&vcpu->arch.mp_state_lock); 435 436 #ifdef CONFIG_LOCKDEP 437 /* Inform lockdep that the config_lock is acquired after vcpu->mutex */ 438 mutex_lock(&vcpu->mutex); 439 mutex_lock(&vcpu->kvm->arch.config_lock); 440 mutex_unlock(&vcpu->kvm->arch.config_lock); 441 mutex_unlock(&vcpu->mutex); 442 #endif 443 444 /* Force users to call KVM_ARM_VCPU_INIT */ 445 vcpu_clear_flag(vcpu, VCPU_INITIALIZED); 446 447 vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO; 448 449 /* Set up the timer */ 450 kvm_timer_vcpu_init(vcpu); 451 452 kvm_pmu_vcpu_init(vcpu); 453 454 kvm_arm_pvtime_vcpu_init(&vcpu->arch); 455 456 vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu; 457 458 /* 459 * This vCPU may have been created after mpidr_data was initialized. 460 * Throw out the pre-computed mappings if that is the case which forces 461 * KVM to fall back to iteratively searching the vCPUs. 462 */ 463 kvm_destroy_mpidr_data(vcpu->kvm); 464 465 err = kvm_vgic_vcpu_init(vcpu); 466 if (err) 467 return err; 468 469 return kvm_share_hyp(vcpu, vcpu + 1); 470 } 471 472 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 473 { 474 } 475 476 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 477 { 478 if (!is_protected_kvm_enabled()) 479 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); 480 else 481 free_hyp_memcache(&vcpu->arch.pkvm_memcache); 482 kvm_timer_vcpu_terminate(vcpu); 483 kvm_pmu_vcpu_destroy(vcpu); 484 kvm_vgic_vcpu_destroy(vcpu); 485 kvm_arm_vcpu_destroy(vcpu); 486 } 487 488 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 489 { 490 491 } 492 493 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 494 { 495 496 } 497 498 static void vcpu_set_pauth_traps(struct kvm_vcpu *vcpu) 499 { 500 if (vcpu_has_ptrauth(vcpu) && !is_protected_kvm_enabled()) { 501 /* 502 * Either we're running an L2 guest, and the API/APK bits come 503 * from L1's HCR_EL2, or API/APK are both set. 504 */ 505 if (unlikely(vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu))) { 506 u64 val; 507 508 val = __vcpu_sys_reg(vcpu, HCR_EL2); 509 val &= (HCR_API | HCR_APK); 510 vcpu->arch.hcr_el2 &= ~(HCR_API | HCR_APK); 511 vcpu->arch.hcr_el2 |= val; 512 } else { 513 vcpu->arch.hcr_el2 |= (HCR_API | HCR_APK); 514 } 515 516 /* 517 * Save the host keys if there is any chance for the guest 518 * to use pauth, as the entry code will reload the guest 519 * keys in that case. 520 */ 521 if (vcpu->arch.hcr_el2 & (HCR_API | HCR_APK)) { 522 struct kvm_cpu_context *ctxt; 523 524 ctxt = this_cpu_ptr_hyp_sym(kvm_hyp_ctxt); 525 ptrauth_save_keys(ctxt); 526 } 527 } 528 } 529 530 static bool kvm_vcpu_should_clear_twi(struct kvm_vcpu *vcpu) 531 { 532 if (unlikely(kvm_wfi_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK)) 533 return kvm_wfi_trap_policy == KVM_WFX_NOTRAP; 534 535 return single_task_running() && 536 (atomic_read(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count) || 537 vcpu->kvm->arch.vgic.nassgireq); 538 } 539 540 static bool kvm_vcpu_should_clear_twe(struct kvm_vcpu *vcpu) 541 { 542 if (unlikely(kvm_wfe_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK)) 543 return kvm_wfe_trap_policy == KVM_WFX_NOTRAP; 544 545 return single_task_running(); 546 } 547 548 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 549 { 550 struct kvm_s2_mmu *mmu; 551 int *last_ran; 552 553 if (is_protected_kvm_enabled()) 554 goto nommu; 555 556 if (vcpu_has_nv(vcpu)) 557 kvm_vcpu_load_hw_mmu(vcpu); 558 559 mmu = vcpu->arch.hw_mmu; 560 last_ran = this_cpu_ptr(mmu->last_vcpu_ran); 561 562 /* 563 * We guarantee that both TLBs and I-cache are private to each 564 * vcpu. If detecting that a vcpu from the same VM has 565 * previously run on the same physical CPU, call into the 566 * hypervisor code to nuke the relevant contexts. 567 * 568 * We might get preempted before the vCPU actually runs, but 569 * over-invalidation doesn't affect correctness. 570 */ 571 if (*last_ran != vcpu->vcpu_idx) { 572 kvm_call_hyp(__kvm_flush_cpu_context, mmu); 573 *last_ran = vcpu->vcpu_idx; 574 } 575 576 nommu: 577 vcpu->cpu = cpu; 578 579 kvm_vgic_load(vcpu); 580 kvm_timer_vcpu_load(vcpu); 581 kvm_vcpu_load_debug(vcpu); 582 if (has_vhe()) 583 kvm_vcpu_load_vhe(vcpu); 584 kvm_arch_vcpu_load_fp(vcpu); 585 kvm_vcpu_pmu_restore_guest(vcpu); 586 if (kvm_arm_is_pvtime_enabled(&vcpu->arch)) 587 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu); 588 589 if (kvm_vcpu_should_clear_twe(vcpu)) 590 vcpu->arch.hcr_el2 &= ~HCR_TWE; 591 else 592 vcpu->arch.hcr_el2 |= HCR_TWE; 593 594 if (kvm_vcpu_should_clear_twi(vcpu)) 595 vcpu->arch.hcr_el2 &= ~HCR_TWI; 596 else 597 vcpu->arch.hcr_el2 |= HCR_TWI; 598 599 vcpu_set_pauth_traps(vcpu); 600 601 if (is_protected_kvm_enabled()) { 602 kvm_call_hyp_nvhe(__pkvm_vcpu_load, 603 vcpu->kvm->arch.pkvm.handle, 604 vcpu->vcpu_idx, vcpu->arch.hcr_el2); 605 kvm_call_hyp(__vgic_v3_restore_vmcr_aprs, 606 &vcpu->arch.vgic_cpu.vgic_v3); 607 } 608 609 if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus)) 610 vcpu_set_on_unsupported_cpu(vcpu); 611 } 612 613 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 614 { 615 if (is_protected_kvm_enabled()) { 616 kvm_call_hyp(__vgic_v3_save_vmcr_aprs, 617 &vcpu->arch.vgic_cpu.vgic_v3); 618 kvm_call_hyp_nvhe(__pkvm_vcpu_put); 619 } 620 621 kvm_vcpu_put_debug(vcpu); 622 kvm_arch_vcpu_put_fp(vcpu); 623 if (has_vhe()) 624 kvm_vcpu_put_vhe(vcpu); 625 kvm_timer_vcpu_put(vcpu); 626 kvm_vgic_put(vcpu); 627 kvm_vcpu_pmu_restore_host(vcpu); 628 if (vcpu_has_nv(vcpu)) 629 kvm_vcpu_put_hw_mmu(vcpu); 630 kvm_arm_vmid_clear_active(); 631 632 vcpu_clear_on_unsupported_cpu(vcpu); 633 vcpu->cpu = -1; 634 } 635 636 static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu) 637 { 638 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED); 639 kvm_make_request(KVM_REQ_SLEEP, vcpu); 640 kvm_vcpu_kick(vcpu); 641 } 642 643 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu) 644 { 645 spin_lock(&vcpu->arch.mp_state_lock); 646 __kvm_arm_vcpu_power_off(vcpu); 647 spin_unlock(&vcpu->arch.mp_state_lock); 648 } 649 650 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu) 651 { 652 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED; 653 } 654 655 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu) 656 { 657 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED); 658 kvm_make_request(KVM_REQ_SUSPEND, vcpu); 659 kvm_vcpu_kick(vcpu); 660 } 661 662 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu) 663 { 664 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED; 665 } 666 667 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 668 struct kvm_mp_state *mp_state) 669 { 670 *mp_state = READ_ONCE(vcpu->arch.mp_state); 671 672 return 0; 673 } 674 675 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 676 struct kvm_mp_state *mp_state) 677 { 678 int ret = 0; 679 680 spin_lock(&vcpu->arch.mp_state_lock); 681 682 switch (mp_state->mp_state) { 683 case KVM_MP_STATE_RUNNABLE: 684 WRITE_ONCE(vcpu->arch.mp_state, *mp_state); 685 break; 686 case KVM_MP_STATE_STOPPED: 687 __kvm_arm_vcpu_power_off(vcpu); 688 break; 689 case KVM_MP_STATE_SUSPENDED: 690 kvm_arm_vcpu_suspend(vcpu); 691 break; 692 default: 693 ret = -EINVAL; 694 } 695 696 spin_unlock(&vcpu->arch.mp_state_lock); 697 698 return ret; 699 } 700 701 /** 702 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled 703 * @v: The VCPU pointer 704 * 705 * If the guest CPU is not waiting for interrupts or an interrupt line is 706 * asserted, the CPU is by definition runnable. 707 */ 708 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 709 { 710 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF); 711 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v)) 712 && !kvm_arm_vcpu_stopped(v) && !v->arch.pause); 713 } 714 715 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 716 { 717 return vcpu_mode_priv(vcpu); 718 } 719 720 #ifdef CONFIG_GUEST_PERF_EVENTS 721 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 722 { 723 return *vcpu_pc(vcpu); 724 } 725 #endif 726 727 static void kvm_init_mpidr_data(struct kvm *kvm) 728 { 729 struct kvm_mpidr_data *data = NULL; 730 unsigned long c, mask, nr_entries; 731 u64 aff_set = 0, aff_clr = ~0UL; 732 struct kvm_vcpu *vcpu; 733 734 mutex_lock(&kvm->arch.config_lock); 735 736 if (rcu_access_pointer(kvm->arch.mpidr_data) || 737 atomic_read(&kvm->online_vcpus) == 1) 738 goto out; 739 740 kvm_for_each_vcpu(c, vcpu, kvm) { 741 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu); 742 aff_set |= aff; 743 aff_clr &= aff; 744 } 745 746 /* 747 * A significant bit can be either 0 or 1, and will only appear in 748 * aff_set. Use aff_clr to weed out the useless stuff. 749 */ 750 mask = aff_set ^ aff_clr; 751 nr_entries = BIT_ULL(hweight_long(mask)); 752 753 /* 754 * Don't let userspace fool us. If we need more than a single page 755 * to describe the compressed MPIDR array, just fall back to the 756 * iterative method. Single vcpu VMs do not need this either. 757 */ 758 if (struct_size(data, cmpidr_to_idx, nr_entries) <= PAGE_SIZE) 759 data = kzalloc(struct_size(data, cmpidr_to_idx, nr_entries), 760 GFP_KERNEL_ACCOUNT); 761 762 if (!data) 763 goto out; 764 765 data->mpidr_mask = mask; 766 767 kvm_for_each_vcpu(c, vcpu, kvm) { 768 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu); 769 u16 index = kvm_mpidr_index(data, aff); 770 771 data->cmpidr_to_idx[index] = c; 772 } 773 774 rcu_assign_pointer(kvm->arch.mpidr_data, data); 775 out: 776 mutex_unlock(&kvm->arch.config_lock); 777 } 778 779 /* 780 * Handle both the initialisation that is being done when the vcpu is 781 * run for the first time, as well as the updates that must be 782 * performed each time we get a new thread dealing with this vcpu. 783 */ 784 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 785 { 786 struct kvm *kvm = vcpu->kvm; 787 int ret; 788 789 if (!kvm_vcpu_initialized(vcpu)) 790 return -ENOEXEC; 791 792 if (!kvm_arm_vcpu_is_finalized(vcpu)) 793 return -EPERM; 794 795 ret = kvm_arch_vcpu_run_map_fp(vcpu); 796 if (ret) 797 return ret; 798 799 if (likely(vcpu_has_run_once(vcpu))) 800 return 0; 801 802 kvm_init_mpidr_data(kvm); 803 804 if (likely(irqchip_in_kernel(kvm))) { 805 /* 806 * Map the VGIC hardware resources before running a vcpu the 807 * first time on this VM. 808 */ 809 ret = kvm_vgic_map_resources(kvm); 810 if (ret) 811 return ret; 812 } 813 814 ret = kvm_finalize_sys_regs(vcpu); 815 if (ret) 816 return ret; 817 818 /* 819 * This needs to happen after any restriction has been applied 820 * to the feature set. 821 */ 822 kvm_calculate_traps(vcpu); 823 824 ret = kvm_timer_enable(vcpu); 825 if (ret) 826 return ret; 827 828 ret = kvm_arm_pmu_v3_enable(vcpu); 829 if (ret) 830 return ret; 831 832 if (is_protected_kvm_enabled()) { 833 ret = pkvm_create_hyp_vm(kvm); 834 if (ret) 835 return ret; 836 } 837 838 mutex_lock(&kvm->arch.config_lock); 839 set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags); 840 mutex_unlock(&kvm->arch.config_lock); 841 842 return ret; 843 } 844 845 bool kvm_arch_intc_initialized(struct kvm *kvm) 846 { 847 return vgic_initialized(kvm); 848 } 849 850 void kvm_arm_halt_guest(struct kvm *kvm) 851 { 852 unsigned long i; 853 struct kvm_vcpu *vcpu; 854 855 kvm_for_each_vcpu(i, vcpu, kvm) 856 vcpu->arch.pause = true; 857 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP); 858 } 859 860 void kvm_arm_resume_guest(struct kvm *kvm) 861 { 862 unsigned long i; 863 struct kvm_vcpu *vcpu; 864 865 kvm_for_each_vcpu(i, vcpu, kvm) { 866 vcpu->arch.pause = false; 867 __kvm_vcpu_wake_up(vcpu); 868 } 869 } 870 871 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu) 872 { 873 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 874 875 rcuwait_wait_event(wait, 876 (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause), 877 TASK_INTERRUPTIBLE); 878 879 if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) { 880 /* Awaken to handle a signal, request we sleep again later. */ 881 kvm_make_request(KVM_REQ_SLEEP, vcpu); 882 } 883 884 /* 885 * Make sure we will observe a potential reset request if we've 886 * observed a change to the power state. Pairs with the smp_wmb() in 887 * kvm_psci_vcpu_on(). 888 */ 889 smp_rmb(); 890 } 891 892 /** 893 * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior 894 * @vcpu: The VCPU pointer 895 * 896 * Suspend execution of a vCPU until a valid wake event is detected, i.e. until 897 * the vCPU is runnable. The vCPU may or may not be scheduled out, depending 898 * on when a wake event arrives, e.g. there may already be a pending wake event. 899 */ 900 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu) 901 { 902 /* 903 * Sync back the state of the GIC CPU interface so that we have 904 * the latest PMR and group enables. This ensures that 905 * kvm_arch_vcpu_runnable has up-to-date data to decide whether 906 * we have pending interrupts, e.g. when determining if the 907 * vCPU should block. 908 * 909 * For the same reason, we want to tell GICv4 that we need 910 * doorbells to be signalled, should an interrupt become pending. 911 */ 912 preempt_disable(); 913 vcpu_set_flag(vcpu, IN_WFI); 914 kvm_vgic_put(vcpu); 915 preempt_enable(); 916 917 kvm_vcpu_halt(vcpu); 918 vcpu_clear_flag(vcpu, IN_WFIT); 919 920 preempt_disable(); 921 vcpu_clear_flag(vcpu, IN_WFI); 922 kvm_vgic_load(vcpu); 923 preempt_enable(); 924 } 925 926 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu) 927 { 928 if (!kvm_arm_vcpu_suspended(vcpu)) 929 return 1; 930 931 kvm_vcpu_wfi(vcpu); 932 933 /* 934 * The suspend state is sticky; we do not leave it until userspace 935 * explicitly marks the vCPU as runnable. Request that we suspend again 936 * later. 937 */ 938 kvm_make_request(KVM_REQ_SUSPEND, vcpu); 939 940 /* 941 * Check to make sure the vCPU is actually runnable. If so, exit to 942 * userspace informing it of the wakeup condition. 943 */ 944 if (kvm_arch_vcpu_runnable(vcpu)) { 945 memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event)); 946 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP; 947 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 948 return 0; 949 } 950 951 /* 952 * Otherwise, we were unblocked to process a different event, such as a 953 * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to 954 * process the event. 955 */ 956 return 1; 957 } 958 959 /** 960 * check_vcpu_requests - check and handle pending vCPU requests 961 * @vcpu: the VCPU pointer 962 * 963 * Return: 1 if we should enter the guest 964 * 0 if we should exit to userspace 965 * < 0 if we should exit to userspace, where the return value indicates 966 * an error 967 */ 968 static int check_vcpu_requests(struct kvm_vcpu *vcpu) 969 { 970 if (kvm_request_pending(vcpu)) { 971 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) 972 return -EIO; 973 974 if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) 975 kvm_vcpu_sleep(vcpu); 976 977 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) 978 kvm_reset_vcpu(vcpu); 979 980 /* 981 * Clear IRQ_PENDING requests that were made to guarantee 982 * that a VCPU sees new virtual interrupts. 983 */ 984 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu); 985 986 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu)) 987 kvm_update_stolen_time(vcpu); 988 989 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) { 990 /* The distributor enable bits were changed */ 991 preempt_disable(); 992 vgic_v4_put(vcpu); 993 vgic_v4_load(vcpu); 994 preempt_enable(); 995 } 996 997 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu)) 998 kvm_vcpu_reload_pmu(vcpu); 999 1000 if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu)) 1001 kvm_vcpu_pmu_restore_guest(vcpu); 1002 1003 if (kvm_check_request(KVM_REQ_SUSPEND, vcpu)) 1004 return kvm_vcpu_suspend(vcpu); 1005 1006 if (kvm_dirty_ring_check_request(vcpu)) 1007 return 0; 1008 1009 check_nested_vcpu_requests(vcpu); 1010 } 1011 1012 return 1; 1013 } 1014 1015 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu) 1016 { 1017 if (likely(!vcpu_mode_is_32bit(vcpu))) 1018 return false; 1019 1020 if (vcpu_has_nv(vcpu)) 1021 return true; 1022 1023 return !kvm_supports_32bit_el0(); 1024 } 1025 1026 /** 1027 * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest 1028 * @vcpu: The VCPU pointer 1029 * @ret: Pointer to write optional return code 1030 * 1031 * Returns: true if the VCPU needs to return to a preemptible + interruptible 1032 * and skip guest entry. 1033 * 1034 * This function disambiguates between two different types of exits: exits to a 1035 * preemptible + interruptible kernel context and exits to userspace. For an 1036 * exit to userspace, this function will write the return code to ret and return 1037 * true. For an exit to preemptible + interruptible kernel context (i.e. check 1038 * for pending work and re-enter), return true without writing to ret. 1039 */ 1040 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret) 1041 { 1042 struct kvm_run *run = vcpu->run; 1043 1044 /* 1045 * If we're using a userspace irqchip, then check if we need 1046 * to tell a userspace irqchip about timer or PMU level 1047 * changes and if so, exit to userspace (the actual level 1048 * state gets updated in kvm_timer_update_run and 1049 * kvm_pmu_update_run below). 1050 */ 1051 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) { 1052 if (kvm_timer_should_notify_user(vcpu) || 1053 kvm_pmu_should_notify_user(vcpu)) { 1054 *ret = -EINTR; 1055 run->exit_reason = KVM_EXIT_INTR; 1056 return true; 1057 } 1058 } 1059 1060 if (unlikely(vcpu_on_unsupported_cpu(vcpu))) { 1061 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 1062 run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED; 1063 run->fail_entry.cpu = smp_processor_id(); 1064 *ret = 0; 1065 return true; 1066 } 1067 1068 return kvm_request_pending(vcpu) || 1069 xfer_to_guest_mode_work_pending(); 1070 } 1071 1072 /* 1073 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while 1074 * the vCPU is running. 1075 * 1076 * This must be noinstr as instrumentation may make use of RCU, and this is not 1077 * safe during the EQS. 1078 */ 1079 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu) 1080 { 1081 int ret; 1082 1083 guest_state_enter_irqoff(); 1084 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu); 1085 guest_state_exit_irqoff(); 1086 1087 return ret; 1088 } 1089 1090 /** 1091 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code 1092 * @vcpu: The VCPU pointer 1093 * 1094 * This function is called through the VCPU_RUN ioctl called from user space. It 1095 * will execute VM code in a loop until the time slice for the process is used 1096 * or some emulation is needed from user space in which case the function will 1097 * return with return value 0 and with the kvm_run structure filled in with the 1098 * required data for the requested emulation. 1099 */ 1100 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 1101 { 1102 struct kvm_run *run = vcpu->run; 1103 int ret; 1104 1105 if (run->exit_reason == KVM_EXIT_MMIO) { 1106 ret = kvm_handle_mmio_return(vcpu); 1107 if (ret <= 0) 1108 return ret; 1109 } 1110 1111 vcpu_load(vcpu); 1112 1113 if (!vcpu->wants_to_run) { 1114 ret = -EINTR; 1115 goto out; 1116 } 1117 1118 kvm_sigset_activate(vcpu); 1119 1120 ret = 1; 1121 run->exit_reason = KVM_EXIT_UNKNOWN; 1122 run->flags = 0; 1123 while (ret > 0) { 1124 /* 1125 * Check conditions before entering the guest 1126 */ 1127 ret = xfer_to_guest_mode_handle_work(vcpu); 1128 if (!ret) 1129 ret = 1; 1130 1131 if (ret > 0) 1132 ret = check_vcpu_requests(vcpu); 1133 1134 /* 1135 * Preparing the interrupts to be injected also 1136 * involves poking the GIC, which must be done in a 1137 * non-preemptible context. 1138 */ 1139 preempt_disable(); 1140 1141 /* 1142 * The VMID allocator only tracks active VMIDs per 1143 * physical CPU, and therefore the VMID allocated may not be 1144 * preserved on VMID roll-over if the task was preempted, 1145 * making a thread's VMID inactive. So we need to call 1146 * kvm_arm_vmid_update() in non-premptible context. 1147 */ 1148 if (kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid) && 1149 has_vhe()) 1150 __load_stage2(vcpu->arch.hw_mmu, 1151 vcpu->arch.hw_mmu->arch); 1152 1153 kvm_pmu_flush_hwstate(vcpu); 1154 1155 local_irq_disable(); 1156 1157 kvm_vgic_flush_hwstate(vcpu); 1158 1159 kvm_pmu_update_vcpu_events(vcpu); 1160 1161 /* 1162 * Ensure we set mode to IN_GUEST_MODE after we disable 1163 * interrupts and before the final VCPU requests check. 1164 * See the comment in kvm_vcpu_exiting_guest_mode() and 1165 * Documentation/virt/kvm/vcpu-requests.rst 1166 */ 1167 smp_store_mb(vcpu->mode, IN_GUEST_MODE); 1168 1169 if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) { 1170 vcpu->mode = OUTSIDE_GUEST_MODE; 1171 isb(); /* Ensure work in x_flush_hwstate is committed */ 1172 kvm_pmu_sync_hwstate(vcpu); 1173 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) 1174 kvm_timer_sync_user(vcpu); 1175 kvm_vgic_sync_hwstate(vcpu); 1176 local_irq_enable(); 1177 preempt_enable(); 1178 continue; 1179 } 1180 1181 kvm_arch_vcpu_ctxflush_fp(vcpu); 1182 1183 /************************************************************** 1184 * Enter the guest 1185 */ 1186 trace_kvm_entry(*vcpu_pc(vcpu)); 1187 guest_timing_enter_irqoff(); 1188 1189 ret = kvm_arm_vcpu_enter_exit(vcpu); 1190 1191 vcpu->mode = OUTSIDE_GUEST_MODE; 1192 vcpu->stat.exits++; 1193 /* 1194 * Back from guest 1195 *************************************************************/ 1196 1197 /* 1198 * We must sync the PMU state before the vgic state so 1199 * that the vgic can properly sample the updated state of the 1200 * interrupt line. 1201 */ 1202 kvm_pmu_sync_hwstate(vcpu); 1203 1204 /* 1205 * Sync the vgic state before syncing the timer state because 1206 * the timer code needs to know if the virtual timer 1207 * interrupts are active. 1208 */ 1209 kvm_vgic_sync_hwstate(vcpu); 1210 1211 /* 1212 * Sync the timer hardware state before enabling interrupts as 1213 * we don't want vtimer interrupts to race with syncing the 1214 * timer virtual interrupt state. 1215 */ 1216 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) 1217 kvm_timer_sync_user(vcpu); 1218 1219 if (is_hyp_ctxt(vcpu)) 1220 kvm_timer_sync_nested(vcpu); 1221 1222 kvm_arch_vcpu_ctxsync_fp(vcpu); 1223 1224 /* 1225 * We must ensure that any pending interrupts are taken before 1226 * we exit guest timing so that timer ticks are accounted as 1227 * guest time. Transiently unmask interrupts so that any 1228 * pending interrupts are taken. 1229 * 1230 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other 1231 * context synchronization event) is necessary to ensure that 1232 * pending interrupts are taken. 1233 */ 1234 if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) { 1235 local_irq_enable(); 1236 isb(); 1237 local_irq_disable(); 1238 } 1239 1240 guest_timing_exit_irqoff(); 1241 1242 local_irq_enable(); 1243 1244 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu)); 1245 1246 /* Exit types that need handling before we can be preempted */ 1247 handle_exit_early(vcpu, ret); 1248 1249 preempt_enable(); 1250 1251 /* 1252 * The ARMv8 architecture doesn't give the hypervisor 1253 * a mechanism to prevent a guest from dropping to AArch32 EL0 1254 * if implemented by the CPU. If we spot the guest in such 1255 * state and that we decided it wasn't supposed to do so (like 1256 * with the asymmetric AArch32 case), return to userspace with 1257 * a fatal error. 1258 */ 1259 if (vcpu_mode_is_bad_32bit(vcpu)) { 1260 /* 1261 * As we have caught the guest red-handed, decide that 1262 * it isn't fit for purpose anymore by making the vcpu 1263 * invalid. The VMM can try and fix it by issuing a 1264 * KVM_ARM_VCPU_INIT if it really wants to. 1265 */ 1266 vcpu_clear_flag(vcpu, VCPU_INITIALIZED); 1267 ret = ARM_EXCEPTION_IL; 1268 } 1269 1270 ret = handle_exit(vcpu, ret); 1271 } 1272 1273 /* Tell userspace about in-kernel device output levels */ 1274 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) { 1275 kvm_timer_update_run(vcpu); 1276 kvm_pmu_update_run(vcpu); 1277 } 1278 1279 kvm_sigset_deactivate(vcpu); 1280 1281 out: 1282 /* 1283 * In the unlikely event that we are returning to userspace 1284 * with pending exceptions or PC adjustment, commit these 1285 * adjustments in order to give userspace a consistent view of 1286 * the vcpu state. Note that this relies on __kvm_adjust_pc() 1287 * being preempt-safe on VHE. 1288 */ 1289 if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) || 1290 vcpu_get_flag(vcpu, INCREMENT_PC))) 1291 kvm_call_hyp(__kvm_adjust_pc, vcpu); 1292 1293 vcpu_put(vcpu); 1294 return ret; 1295 } 1296 1297 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level) 1298 { 1299 int bit_index; 1300 bool set; 1301 unsigned long *hcr; 1302 1303 if (number == KVM_ARM_IRQ_CPU_IRQ) 1304 bit_index = __ffs(HCR_VI); 1305 else /* KVM_ARM_IRQ_CPU_FIQ */ 1306 bit_index = __ffs(HCR_VF); 1307 1308 hcr = vcpu_hcr(vcpu); 1309 if (level) 1310 set = test_and_set_bit(bit_index, hcr); 1311 else 1312 set = test_and_clear_bit(bit_index, hcr); 1313 1314 /* 1315 * If we didn't change anything, no need to wake up or kick other CPUs 1316 */ 1317 if (set == level) 1318 return 0; 1319 1320 /* 1321 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and 1322 * trigger a world-switch round on the running physical CPU to set the 1323 * virtual IRQ/FIQ fields in the HCR appropriately. 1324 */ 1325 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); 1326 kvm_vcpu_kick(vcpu); 1327 1328 return 0; 1329 } 1330 1331 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1332 bool line_status) 1333 { 1334 u32 irq = irq_level->irq; 1335 unsigned int irq_type, vcpu_id, irq_num; 1336 struct kvm_vcpu *vcpu = NULL; 1337 bool level = irq_level->level; 1338 1339 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK; 1340 vcpu_id = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK; 1341 vcpu_id += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1); 1342 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK; 1343 1344 trace_kvm_irq_line(irq_type, vcpu_id, irq_num, irq_level->level); 1345 1346 switch (irq_type) { 1347 case KVM_ARM_IRQ_TYPE_CPU: 1348 if (irqchip_in_kernel(kvm)) 1349 return -ENXIO; 1350 1351 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); 1352 if (!vcpu) 1353 return -EINVAL; 1354 1355 if (irq_num > KVM_ARM_IRQ_CPU_FIQ) 1356 return -EINVAL; 1357 1358 return vcpu_interrupt_line(vcpu, irq_num, level); 1359 case KVM_ARM_IRQ_TYPE_PPI: 1360 if (!irqchip_in_kernel(kvm)) 1361 return -ENXIO; 1362 1363 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); 1364 if (!vcpu) 1365 return -EINVAL; 1366 1367 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS) 1368 return -EINVAL; 1369 1370 return kvm_vgic_inject_irq(kvm, vcpu, irq_num, level, NULL); 1371 case KVM_ARM_IRQ_TYPE_SPI: 1372 if (!irqchip_in_kernel(kvm)) 1373 return -ENXIO; 1374 1375 if (irq_num < VGIC_NR_PRIVATE_IRQS) 1376 return -EINVAL; 1377 1378 return kvm_vgic_inject_irq(kvm, NULL, irq_num, level, NULL); 1379 } 1380 1381 return -EINVAL; 1382 } 1383 1384 static unsigned long system_supported_vcpu_features(void) 1385 { 1386 unsigned long features = KVM_VCPU_VALID_FEATURES; 1387 1388 if (!cpus_have_final_cap(ARM64_HAS_32BIT_EL1)) 1389 clear_bit(KVM_ARM_VCPU_EL1_32BIT, &features); 1390 1391 if (!kvm_arm_support_pmu_v3()) 1392 clear_bit(KVM_ARM_VCPU_PMU_V3, &features); 1393 1394 if (!system_supports_sve()) 1395 clear_bit(KVM_ARM_VCPU_SVE, &features); 1396 1397 if (!kvm_has_full_ptr_auth()) { 1398 clear_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features); 1399 clear_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features); 1400 } 1401 1402 if (!cpus_have_final_cap(ARM64_HAS_NESTED_VIRT)) 1403 clear_bit(KVM_ARM_VCPU_HAS_EL2, &features); 1404 1405 return features; 1406 } 1407 1408 static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu, 1409 const struct kvm_vcpu_init *init) 1410 { 1411 unsigned long features = init->features[0]; 1412 int i; 1413 1414 if (features & ~KVM_VCPU_VALID_FEATURES) 1415 return -ENOENT; 1416 1417 for (i = 1; i < ARRAY_SIZE(init->features); i++) { 1418 if (init->features[i]) 1419 return -ENOENT; 1420 } 1421 1422 if (features & ~system_supported_vcpu_features()) 1423 return -EINVAL; 1424 1425 /* 1426 * For now make sure that both address/generic pointer authentication 1427 * features are requested by the userspace together. 1428 */ 1429 if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features) != 1430 test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features)) 1431 return -EINVAL; 1432 1433 if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features)) 1434 return 0; 1435 1436 /* MTE is incompatible with AArch32 */ 1437 if (kvm_has_mte(vcpu->kvm)) 1438 return -EINVAL; 1439 1440 /* NV is incompatible with AArch32 */ 1441 if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features)) 1442 return -EINVAL; 1443 1444 return 0; 1445 } 1446 1447 static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu, 1448 const struct kvm_vcpu_init *init) 1449 { 1450 unsigned long features = init->features[0]; 1451 1452 return !bitmap_equal(vcpu->kvm->arch.vcpu_features, &features, 1453 KVM_VCPU_MAX_FEATURES); 1454 } 1455 1456 static int kvm_setup_vcpu(struct kvm_vcpu *vcpu) 1457 { 1458 struct kvm *kvm = vcpu->kvm; 1459 int ret = 0; 1460 1461 /* 1462 * When the vCPU has a PMU, but no PMU is set for the guest 1463 * yet, set the default one. 1464 */ 1465 if (kvm_vcpu_has_pmu(vcpu) && !kvm->arch.arm_pmu) 1466 ret = kvm_arm_set_default_pmu(kvm); 1467 1468 /* Prepare for nested if required */ 1469 if (!ret && vcpu_has_nv(vcpu)) 1470 ret = kvm_vcpu_init_nested(vcpu); 1471 1472 return ret; 1473 } 1474 1475 static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu, 1476 const struct kvm_vcpu_init *init) 1477 { 1478 unsigned long features = init->features[0]; 1479 struct kvm *kvm = vcpu->kvm; 1480 int ret = -EINVAL; 1481 1482 mutex_lock(&kvm->arch.config_lock); 1483 1484 if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) && 1485 kvm_vcpu_init_changed(vcpu, init)) 1486 goto out_unlock; 1487 1488 bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES); 1489 1490 ret = kvm_setup_vcpu(vcpu); 1491 if (ret) 1492 goto out_unlock; 1493 1494 /* Now we know what it is, we can reset it. */ 1495 kvm_reset_vcpu(vcpu); 1496 1497 set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags); 1498 vcpu_set_flag(vcpu, VCPU_INITIALIZED); 1499 ret = 0; 1500 out_unlock: 1501 mutex_unlock(&kvm->arch.config_lock); 1502 return ret; 1503 } 1504 1505 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu, 1506 const struct kvm_vcpu_init *init) 1507 { 1508 int ret; 1509 1510 if (init->target != KVM_ARM_TARGET_GENERIC_V8 && 1511 init->target != kvm_target_cpu()) 1512 return -EINVAL; 1513 1514 ret = kvm_vcpu_init_check_features(vcpu, init); 1515 if (ret) 1516 return ret; 1517 1518 if (!kvm_vcpu_initialized(vcpu)) 1519 return __kvm_vcpu_set_target(vcpu, init); 1520 1521 if (kvm_vcpu_init_changed(vcpu, init)) 1522 return -EINVAL; 1523 1524 kvm_reset_vcpu(vcpu); 1525 return 0; 1526 } 1527 1528 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu, 1529 struct kvm_vcpu_init *init) 1530 { 1531 bool power_off = false; 1532 int ret; 1533 1534 /* 1535 * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid 1536 * reflecting it in the finalized feature set, thus limiting its scope 1537 * to a single KVM_ARM_VCPU_INIT call. 1538 */ 1539 if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) { 1540 init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF); 1541 power_off = true; 1542 } 1543 1544 ret = kvm_vcpu_set_target(vcpu, init); 1545 if (ret) 1546 return ret; 1547 1548 /* 1549 * Ensure a rebooted VM will fault in RAM pages and detect if the 1550 * guest MMU is turned off and flush the caches as needed. 1551 * 1552 * S2FWB enforces all memory accesses to RAM being cacheable, 1553 * ensuring that the data side is always coherent. We still 1554 * need to invalidate the I-cache though, as FWB does *not* 1555 * imply CTR_EL0.DIC. 1556 */ 1557 if (vcpu_has_run_once(vcpu)) { 1558 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) 1559 stage2_unmap_vm(vcpu->kvm); 1560 else 1561 icache_inval_all_pou(); 1562 } 1563 1564 vcpu_reset_hcr(vcpu); 1565 1566 /* 1567 * Handle the "start in power-off" case. 1568 */ 1569 spin_lock(&vcpu->arch.mp_state_lock); 1570 1571 if (power_off) 1572 __kvm_arm_vcpu_power_off(vcpu); 1573 else 1574 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE); 1575 1576 spin_unlock(&vcpu->arch.mp_state_lock); 1577 1578 return 0; 1579 } 1580 1581 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu, 1582 struct kvm_device_attr *attr) 1583 { 1584 int ret = -ENXIO; 1585 1586 switch (attr->group) { 1587 default: 1588 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr); 1589 break; 1590 } 1591 1592 return ret; 1593 } 1594 1595 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu, 1596 struct kvm_device_attr *attr) 1597 { 1598 int ret = -ENXIO; 1599 1600 switch (attr->group) { 1601 default: 1602 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr); 1603 break; 1604 } 1605 1606 return ret; 1607 } 1608 1609 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu, 1610 struct kvm_device_attr *attr) 1611 { 1612 int ret = -ENXIO; 1613 1614 switch (attr->group) { 1615 default: 1616 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr); 1617 break; 1618 } 1619 1620 return ret; 1621 } 1622 1623 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, 1624 struct kvm_vcpu_events *events) 1625 { 1626 memset(events, 0, sizeof(*events)); 1627 1628 return __kvm_arm_vcpu_get_events(vcpu, events); 1629 } 1630 1631 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, 1632 struct kvm_vcpu_events *events) 1633 { 1634 int i; 1635 1636 /* check whether the reserved field is zero */ 1637 for (i = 0; i < ARRAY_SIZE(events->reserved); i++) 1638 if (events->reserved[i]) 1639 return -EINVAL; 1640 1641 /* check whether the pad field is zero */ 1642 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++) 1643 if (events->exception.pad[i]) 1644 return -EINVAL; 1645 1646 return __kvm_arm_vcpu_set_events(vcpu, events); 1647 } 1648 1649 long kvm_arch_vcpu_ioctl(struct file *filp, 1650 unsigned int ioctl, unsigned long arg) 1651 { 1652 struct kvm_vcpu *vcpu = filp->private_data; 1653 void __user *argp = (void __user *)arg; 1654 struct kvm_device_attr attr; 1655 long r; 1656 1657 switch (ioctl) { 1658 case KVM_ARM_VCPU_INIT: { 1659 struct kvm_vcpu_init init; 1660 1661 r = -EFAULT; 1662 if (copy_from_user(&init, argp, sizeof(init))) 1663 break; 1664 1665 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init); 1666 break; 1667 } 1668 case KVM_SET_ONE_REG: 1669 case KVM_GET_ONE_REG: { 1670 struct kvm_one_reg reg; 1671 1672 r = -ENOEXEC; 1673 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1674 break; 1675 1676 r = -EFAULT; 1677 if (copy_from_user(®, argp, sizeof(reg))) 1678 break; 1679 1680 /* 1681 * We could owe a reset due to PSCI. Handle the pending reset 1682 * here to ensure userspace register accesses are ordered after 1683 * the reset. 1684 */ 1685 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) 1686 kvm_reset_vcpu(vcpu); 1687 1688 if (ioctl == KVM_SET_ONE_REG) 1689 r = kvm_arm_set_reg(vcpu, ®); 1690 else 1691 r = kvm_arm_get_reg(vcpu, ®); 1692 break; 1693 } 1694 case KVM_GET_REG_LIST: { 1695 struct kvm_reg_list __user *user_list = argp; 1696 struct kvm_reg_list reg_list; 1697 unsigned n; 1698 1699 r = -ENOEXEC; 1700 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1701 break; 1702 1703 r = -EPERM; 1704 if (!kvm_arm_vcpu_is_finalized(vcpu)) 1705 break; 1706 1707 r = -EFAULT; 1708 if (copy_from_user(®_list, user_list, sizeof(reg_list))) 1709 break; 1710 n = reg_list.n; 1711 reg_list.n = kvm_arm_num_regs(vcpu); 1712 if (copy_to_user(user_list, ®_list, sizeof(reg_list))) 1713 break; 1714 r = -E2BIG; 1715 if (n < reg_list.n) 1716 break; 1717 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg); 1718 break; 1719 } 1720 case KVM_SET_DEVICE_ATTR: { 1721 r = -EFAULT; 1722 if (copy_from_user(&attr, argp, sizeof(attr))) 1723 break; 1724 r = kvm_arm_vcpu_set_attr(vcpu, &attr); 1725 break; 1726 } 1727 case KVM_GET_DEVICE_ATTR: { 1728 r = -EFAULT; 1729 if (copy_from_user(&attr, argp, sizeof(attr))) 1730 break; 1731 r = kvm_arm_vcpu_get_attr(vcpu, &attr); 1732 break; 1733 } 1734 case KVM_HAS_DEVICE_ATTR: { 1735 r = -EFAULT; 1736 if (copy_from_user(&attr, argp, sizeof(attr))) 1737 break; 1738 r = kvm_arm_vcpu_has_attr(vcpu, &attr); 1739 break; 1740 } 1741 case KVM_GET_VCPU_EVENTS: { 1742 struct kvm_vcpu_events events; 1743 1744 if (kvm_arm_vcpu_get_events(vcpu, &events)) 1745 return -EINVAL; 1746 1747 if (copy_to_user(argp, &events, sizeof(events))) 1748 return -EFAULT; 1749 1750 return 0; 1751 } 1752 case KVM_SET_VCPU_EVENTS: { 1753 struct kvm_vcpu_events events; 1754 1755 if (copy_from_user(&events, argp, sizeof(events))) 1756 return -EFAULT; 1757 1758 return kvm_arm_vcpu_set_events(vcpu, &events); 1759 } 1760 case KVM_ARM_VCPU_FINALIZE: { 1761 int what; 1762 1763 if (!kvm_vcpu_initialized(vcpu)) 1764 return -ENOEXEC; 1765 1766 if (get_user(what, (const int __user *)argp)) 1767 return -EFAULT; 1768 1769 return kvm_arm_vcpu_finalize(vcpu, what); 1770 } 1771 default: 1772 r = -EINVAL; 1773 } 1774 1775 return r; 1776 } 1777 1778 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 1779 { 1780 1781 } 1782 1783 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm, 1784 struct kvm_arm_device_addr *dev_addr) 1785 { 1786 switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) { 1787 case KVM_ARM_DEVICE_VGIC_V2: 1788 if (!vgic_present) 1789 return -ENXIO; 1790 return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr); 1791 default: 1792 return -ENODEV; 1793 } 1794 } 1795 1796 static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1797 { 1798 switch (attr->group) { 1799 case KVM_ARM_VM_SMCCC_CTRL: 1800 return kvm_vm_smccc_has_attr(kvm, attr); 1801 default: 1802 return -ENXIO; 1803 } 1804 } 1805 1806 static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1807 { 1808 switch (attr->group) { 1809 case KVM_ARM_VM_SMCCC_CTRL: 1810 return kvm_vm_smccc_set_attr(kvm, attr); 1811 default: 1812 return -ENXIO; 1813 } 1814 } 1815 1816 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 1817 { 1818 struct kvm *kvm = filp->private_data; 1819 void __user *argp = (void __user *)arg; 1820 struct kvm_device_attr attr; 1821 1822 switch (ioctl) { 1823 case KVM_CREATE_IRQCHIP: { 1824 int ret; 1825 if (!vgic_present) 1826 return -ENXIO; 1827 mutex_lock(&kvm->lock); 1828 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2); 1829 mutex_unlock(&kvm->lock); 1830 return ret; 1831 } 1832 case KVM_ARM_SET_DEVICE_ADDR: { 1833 struct kvm_arm_device_addr dev_addr; 1834 1835 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr))) 1836 return -EFAULT; 1837 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr); 1838 } 1839 case KVM_ARM_PREFERRED_TARGET: { 1840 struct kvm_vcpu_init init = { 1841 .target = KVM_ARM_TARGET_GENERIC_V8, 1842 }; 1843 1844 if (copy_to_user(argp, &init, sizeof(init))) 1845 return -EFAULT; 1846 1847 return 0; 1848 } 1849 case KVM_ARM_MTE_COPY_TAGS: { 1850 struct kvm_arm_copy_mte_tags copy_tags; 1851 1852 if (copy_from_user(©_tags, argp, sizeof(copy_tags))) 1853 return -EFAULT; 1854 return kvm_vm_ioctl_mte_copy_tags(kvm, ©_tags); 1855 } 1856 case KVM_ARM_SET_COUNTER_OFFSET: { 1857 struct kvm_arm_counter_offset offset; 1858 1859 if (copy_from_user(&offset, argp, sizeof(offset))) 1860 return -EFAULT; 1861 return kvm_vm_ioctl_set_counter_offset(kvm, &offset); 1862 } 1863 case KVM_HAS_DEVICE_ATTR: { 1864 if (copy_from_user(&attr, argp, sizeof(attr))) 1865 return -EFAULT; 1866 1867 return kvm_vm_has_attr(kvm, &attr); 1868 } 1869 case KVM_SET_DEVICE_ATTR: { 1870 if (copy_from_user(&attr, argp, sizeof(attr))) 1871 return -EFAULT; 1872 1873 return kvm_vm_set_attr(kvm, &attr); 1874 } 1875 case KVM_ARM_GET_REG_WRITABLE_MASKS: { 1876 struct reg_mask_range range; 1877 1878 if (copy_from_user(&range, argp, sizeof(range))) 1879 return -EFAULT; 1880 return kvm_vm_ioctl_get_reg_writable_masks(kvm, &range); 1881 } 1882 default: 1883 return -EINVAL; 1884 } 1885 } 1886 1887 /* unlocks vcpus from @vcpu_lock_idx and smaller */ 1888 static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx) 1889 { 1890 struct kvm_vcpu *tmp_vcpu; 1891 1892 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) { 1893 tmp_vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx); 1894 mutex_unlock(&tmp_vcpu->mutex); 1895 } 1896 } 1897 1898 void unlock_all_vcpus(struct kvm *kvm) 1899 { 1900 lockdep_assert_held(&kvm->lock); 1901 1902 unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1); 1903 } 1904 1905 /* Returns true if all vcpus were locked, false otherwise */ 1906 bool lock_all_vcpus(struct kvm *kvm) 1907 { 1908 struct kvm_vcpu *tmp_vcpu; 1909 unsigned long c; 1910 1911 lockdep_assert_held(&kvm->lock); 1912 1913 /* 1914 * Any time a vcpu is in an ioctl (including running), the 1915 * core KVM code tries to grab the vcpu->mutex. 1916 * 1917 * By grabbing the vcpu->mutex of all VCPUs we ensure that no 1918 * other VCPUs can fiddle with the state while we access it. 1919 */ 1920 kvm_for_each_vcpu(c, tmp_vcpu, kvm) { 1921 if (!mutex_trylock(&tmp_vcpu->mutex)) { 1922 unlock_vcpus(kvm, c - 1); 1923 return false; 1924 } 1925 } 1926 1927 return true; 1928 } 1929 1930 static unsigned long nvhe_percpu_size(void) 1931 { 1932 return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) - 1933 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start); 1934 } 1935 1936 static unsigned long nvhe_percpu_order(void) 1937 { 1938 unsigned long size = nvhe_percpu_size(); 1939 1940 return size ? get_order(size) : 0; 1941 } 1942 1943 static size_t pkvm_host_sve_state_order(void) 1944 { 1945 return get_order(pkvm_host_sve_state_size()); 1946 } 1947 1948 /* A lookup table holding the hypervisor VA for each vector slot */ 1949 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS]; 1950 1951 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot) 1952 { 1953 hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot); 1954 } 1955 1956 static int kvm_init_vector_slots(void) 1957 { 1958 int err; 1959 void *base; 1960 1961 base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector)); 1962 kvm_init_vector_slot(base, HYP_VECTOR_DIRECT); 1963 1964 base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs)); 1965 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT); 1966 1967 if (kvm_system_needs_idmapped_vectors() && 1968 !is_protected_kvm_enabled()) { 1969 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs), 1970 __BP_HARDEN_HYP_VECS_SZ, &base); 1971 if (err) 1972 return err; 1973 } 1974 1975 kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT); 1976 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT); 1977 return 0; 1978 } 1979 1980 static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits) 1981 { 1982 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu); 1983 unsigned long tcr, ips; 1984 1985 /* 1986 * Calculate the raw per-cpu offset without a translation from the 1987 * kernel's mapping to the linear mapping, and store it in tpidr_el2 1988 * so that we can use adr_l to access per-cpu variables in EL2. 1989 * Also drop the KASAN tag which gets in the way... 1990 */ 1991 params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) - 1992 (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start)); 1993 1994 params->mair_el2 = read_sysreg(mair_el1); 1995 1996 tcr = read_sysreg(tcr_el1); 1997 ips = FIELD_GET(TCR_IPS_MASK, tcr); 1998 if (cpus_have_final_cap(ARM64_KVM_HVHE)) { 1999 tcr |= TCR_EPD1_MASK; 2000 } else { 2001 tcr &= TCR_EL2_MASK; 2002 tcr |= TCR_EL2_RES1; 2003 } 2004 tcr &= ~TCR_T0SZ_MASK; 2005 tcr |= TCR_T0SZ(hyp_va_bits); 2006 tcr &= ~TCR_EL2_PS_MASK; 2007 tcr |= FIELD_PREP(TCR_EL2_PS_MASK, ips); 2008 if (lpa2_is_enabled()) 2009 tcr |= TCR_EL2_DS; 2010 params->tcr_el2 = tcr; 2011 2012 params->pgd_pa = kvm_mmu_get_httbr(); 2013 if (is_protected_kvm_enabled()) 2014 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS; 2015 else 2016 params->hcr_el2 = HCR_HOST_NVHE_FLAGS; 2017 if (cpus_have_final_cap(ARM64_KVM_HVHE)) 2018 params->hcr_el2 |= HCR_E2H; 2019 params->vttbr = params->vtcr = 0; 2020 2021 /* 2022 * Flush the init params from the data cache because the struct will 2023 * be read while the MMU is off. 2024 */ 2025 kvm_flush_dcache_to_poc(params, sizeof(*params)); 2026 } 2027 2028 static void hyp_install_host_vector(void) 2029 { 2030 struct kvm_nvhe_init_params *params; 2031 struct arm_smccc_res res; 2032 2033 /* Switch from the HYP stub to our own HYP init vector */ 2034 __hyp_set_vectors(kvm_get_idmap_vector()); 2035 2036 /* 2037 * Call initialization code, and switch to the full blown HYP code. 2038 * If the cpucaps haven't been finalized yet, something has gone very 2039 * wrong, and hyp will crash and burn when it uses any 2040 * cpus_have_*_cap() wrapper. 2041 */ 2042 BUG_ON(!system_capabilities_finalized()); 2043 params = this_cpu_ptr_nvhe_sym(kvm_init_params); 2044 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res); 2045 WARN_ON(res.a0 != SMCCC_RET_SUCCESS); 2046 } 2047 2048 static void cpu_init_hyp_mode(void) 2049 { 2050 hyp_install_host_vector(); 2051 2052 /* 2053 * Disabling SSBD on a non-VHE system requires us to enable SSBS 2054 * at EL2. 2055 */ 2056 if (this_cpu_has_cap(ARM64_SSBS) && 2057 arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) { 2058 kvm_call_hyp_nvhe(__kvm_enable_ssbs); 2059 } 2060 } 2061 2062 static void cpu_hyp_reset(void) 2063 { 2064 if (!is_kernel_in_hyp_mode()) 2065 __hyp_reset_vectors(); 2066 } 2067 2068 /* 2069 * EL2 vectors can be mapped and rerouted in a number of ways, 2070 * depending on the kernel configuration and CPU present: 2071 * 2072 * - If the CPU is affected by Spectre-v2, the hardening sequence is 2073 * placed in one of the vector slots, which is executed before jumping 2074 * to the real vectors. 2075 * 2076 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot 2077 * containing the hardening sequence is mapped next to the idmap page, 2078 * and executed before jumping to the real vectors. 2079 * 2080 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an 2081 * empty slot is selected, mapped next to the idmap page, and 2082 * executed before jumping to the real vectors. 2083 * 2084 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with 2085 * VHE, as we don't have hypervisor-specific mappings. If the system 2086 * is VHE and yet selects this capability, it will be ignored. 2087 */ 2088 static void cpu_set_hyp_vector(void) 2089 { 2090 struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data); 2091 void *vector = hyp_spectre_vector_selector[data->slot]; 2092 2093 if (!is_protected_kvm_enabled()) 2094 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector; 2095 else 2096 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot); 2097 } 2098 2099 static void cpu_hyp_init_context(void) 2100 { 2101 kvm_init_host_cpu_context(host_data_ptr(host_ctxt)); 2102 kvm_init_host_debug_data(); 2103 2104 if (!is_kernel_in_hyp_mode()) 2105 cpu_init_hyp_mode(); 2106 } 2107 2108 static void cpu_hyp_init_features(void) 2109 { 2110 cpu_set_hyp_vector(); 2111 2112 if (is_kernel_in_hyp_mode()) 2113 kvm_timer_init_vhe(); 2114 2115 if (vgic_present) 2116 kvm_vgic_init_cpu_hardware(); 2117 } 2118 2119 static void cpu_hyp_reinit(void) 2120 { 2121 cpu_hyp_reset(); 2122 cpu_hyp_init_context(); 2123 cpu_hyp_init_features(); 2124 } 2125 2126 static void cpu_hyp_init(void *discard) 2127 { 2128 if (!__this_cpu_read(kvm_hyp_initialized)) { 2129 cpu_hyp_reinit(); 2130 __this_cpu_write(kvm_hyp_initialized, 1); 2131 } 2132 } 2133 2134 static void cpu_hyp_uninit(void *discard) 2135 { 2136 if (__this_cpu_read(kvm_hyp_initialized)) { 2137 cpu_hyp_reset(); 2138 __this_cpu_write(kvm_hyp_initialized, 0); 2139 } 2140 } 2141 2142 int kvm_arch_enable_virtualization_cpu(void) 2143 { 2144 /* 2145 * Most calls to this function are made with migration 2146 * disabled, but not with preemption disabled. The former is 2147 * enough to ensure correctness, but most of the helpers 2148 * expect the later and will throw a tantrum otherwise. 2149 */ 2150 preempt_disable(); 2151 2152 cpu_hyp_init(NULL); 2153 2154 kvm_vgic_cpu_up(); 2155 kvm_timer_cpu_up(); 2156 2157 preempt_enable(); 2158 2159 return 0; 2160 } 2161 2162 void kvm_arch_disable_virtualization_cpu(void) 2163 { 2164 kvm_timer_cpu_down(); 2165 kvm_vgic_cpu_down(); 2166 2167 if (!is_protected_kvm_enabled()) 2168 cpu_hyp_uninit(NULL); 2169 } 2170 2171 #ifdef CONFIG_CPU_PM 2172 static int hyp_init_cpu_pm_notifier(struct notifier_block *self, 2173 unsigned long cmd, 2174 void *v) 2175 { 2176 /* 2177 * kvm_hyp_initialized is left with its old value over 2178 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should 2179 * re-enable hyp. 2180 */ 2181 switch (cmd) { 2182 case CPU_PM_ENTER: 2183 if (__this_cpu_read(kvm_hyp_initialized)) 2184 /* 2185 * don't update kvm_hyp_initialized here 2186 * so that the hyp will be re-enabled 2187 * when we resume. See below. 2188 */ 2189 cpu_hyp_reset(); 2190 2191 return NOTIFY_OK; 2192 case CPU_PM_ENTER_FAILED: 2193 case CPU_PM_EXIT: 2194 if (__this_cpu_read(kvm_hyp_initialized)) 2195 /* The hyp was enabled before suspend. */ 2196 cpu_hyp_reinit(); 2197 2198 return NOTIFY_OK; 2199 2200 default: 2201 return NOTIFY_DONE; 2202 } 2203 } 2204 2205 static struct notifier_block hyp_init_cpu_pm_nb = { 2206 .notifier_call = hyp_init_cpu_pm_notifier, 2207 }; 2208 2209 static void __init hyp_cpu_pm_init(void) 2210 { 2211 if (!is_protected_kvm_enabled()) 2212 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb); 2213 } 2214 static void __init hyp_cpu_pm_exit(void) 2215 { 2216 if (!is_protected_kvm_enabled()) 2217 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb); 2218 } 2219 #else 2220 static inline void __init hyp_cpu_pm_init(void) 2221 { 2222 } 2223 static inline void __init hyp_cpu_pm_exit(void) 2224 { 2225 } 2226 #endif 2227 2228 static void __init init_cpu_logical_map(void) 2229 { 2230 unsigned int cpu; 2231 2232 /* 2233 * Copy the MPIDR <-> logical CPU ID mapping to hyp. 2234 * Only copy the set of online CPUs whose features have been checked 2235 * against the finalized system capabilities. The hypervisor will not 2236 * allow any other CPUs from the `possible` set to boot. 2237 */ 2238 for_each_online_cpu(cpu) 2239 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu); 2240 } 2241 2242 #define init_psci_0_1_impl_state(config, what) \ 2243 config.psci_0_1_ ## what ## _implemented = psci_ops.what 2244 2245 static bool __init init_psci_relay(void) 2246 { 2247 /* 2248 * If PSCI has not been initialized, protected KVM cannot install 2249 * itself on newly booted CPUs. 2250 */ 2251 if (!psci_ops.get_version) { 2252 kvm_err("Cannot initialize protected mode without PSCI\n"); 2253 return false; 2254 } 2255 2256 kvm_host_psci_config.version = psci_ops.get_version(); 2257 kvm_host_psci_config.smccc_version = arm_smccc_get_version(); 2258 2259 if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) { 2260 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids(); 2261 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend); 2262 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on); 2263 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off); 2264 init_psci_0_1_impl_state(kvm_host_psci_config, migrate); 2265 } 2266 return true; 2267 } 2268 2269 static int __init init_subsystems(void) 2270 { 2271 int err = 0; 2272 2273 /* 2274 * Enable hardware so that subsystem initialisation can access EL2. 2275 */ 2276 on_each_cpu(cpu_hyp_init, NULL, 1); 2277 2278 /* 2279 * Register CPU lower-power notifier 2280 */ 2281 hyp_cpu_pm_init(); 2282 2283 /* 2284 * Init HYP view of VGIC 2285 */ 2286 err = kvm_vgic_hyp_init(); 2287 switch (err) { 2288 case 0: 2289 vgic_present = true; 2290 break; 2291 case -ENODEV: 2292 case -ENXIO: 2293 /* 2294 * No VGIC? No pKVM for you. 2295 * 2296 * Protected mode assumes that VGICv3 is present, so no point 2297 * in trying to hobble along if vgic initialization fails. 2298 */ 2299 if (is_protected_kvm_enabled()) 2300 goto out; 2301 2302 /* 2303 * Otherwise, userspace could choose to implement a GIC for its 2304 * guest on non-cooperative hardware. 2305 */ 2306 vgic_present = false; 2307 err = 0; 2308 break; 2309 default: 2310 goto out; 2311 } 2312 2313 /* 2314 * Init HYP architected timer support 2315 */ 2316 err = kvm_timer_hyp_init(vgic_present); 2317 if (err) 2318 goto out; 2319 2320 kvm_register_perf_callbacks(NULL); 2321 2322 out: 2323 if (err) 2324 hyp_cpu_pm_exit(); 2325 2326 if (err || !is_protected_kvm_enabled()) 2327 on_each_cpu(cpu_hyp_uninit, NULL, 1); 2328 2329 return err; 2330 } 2331 2332 static void __init teardown_subsystems(void) 2333 { 2334 kvm_unregister_perf_callbacks(); 2335 hyp_cpu_pm_exit(); 2336 } 2337 2338 static void __init teardown_hyp_mode(void) 2339 { 2340 bool free_sve = system_supports_sve() && is_protected_kvm_enabled(); 2341 int cpu; 2342 2343 free_hyp_pgds(); 2344 for_each_possible_cpu(cpu) { 2345 free_pages(per_cpu(kvm_arm_hyp_stack_base, cpu), NVHE_STACK_SHIFT - PAGE_SHIFT); 2346 free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order()); 2347 2348 if (free_sve) { 2349 struct cpu_sve_state *sve_state; 2350 2351 sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state; 2352 free_pages((unsigned long) sve_state, pkvm_host_sve_state_order()); 2353 } 2354 } 2355 } 2356 2357 static int __init do_pkvm_init(u32 hyp_va_bits) 2358 { 2359 void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)); 2360 int ret; 2361 2362 preempt_disable(); 2363 cpu_hyp_init_context(); 2364 ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size, 2365 num_possible_cpus(), kern_hyp_va(per_cpu_base), 2366 hyp_va_bits); 2367 cpu_hyp_init_features(); 2368 2369 /* 2370 * The stub hypercalls are now disabled, so set our local flag to 2371 * prevent a later re-init attempt in kvm_arch_enable_virtualization_cpu(). 2372 */ 2373 __this_cpu_write(kvm_hyp_initialized, 1); 2374 preempt_enable(); 2375 2376 return ret; 2377 } 2378 2379 static u64 get_hyp_id_aa64pfr0_el1(void) 2380 { 2381 /* 2382 * Track whether the system isn't affected by spectre/meltdown in the 2383 * hypervisor's view of id_aa64pfr0_el1, used for protected VMs. 2384 * Although this is per-CPU, we make it global for simplicity, e.g., not 2385 * to have to worry about vcpu migration. 2386 * 2387 * Unlike for non-protected VMs, userspace cannot override this for 2388 * protected VMs. 2389 */ 2390 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); 2391 2392 val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) | 2393 ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3)); 2394 2395 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2), 2396 arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED); 2397 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3), 2398 arm64_get_meltdown_state() == SPECTRE_UNAFFECTED); 2399 2400 return val; 2401 } 2402 2403 static void kvm_hyp_init_symbols(void) 2404 { 2405 kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1(); 2406 kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1); 2407 kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1); 2408 kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1); 2409 kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1); 2410 kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 2411 kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 2412 kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1); 2413 kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1); 2414 kvm_nvhe_sym(__icache_flags) = __icache_flags; 2415 kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits; 2416 2417 /* 2418 * Flush entire BSS since part of its data containing init symbols is read 2419 * while the MMU is off. 2420 */ 2421 kvm_flush_dcache_to_poc(kvm_ksym_ref(__hyp_bss_start), 2422 kvm_ksym_ref(__hyp_bss_end) - kvm_ksym_ref(__hyp_bss_start)); 2423 } 2424 2425 static int __init kvm_hyp_init_protection(u32 hyp_va_bits) 2426 { 2427 void *addr = phys_to_virt(hyp_mem_base); 2428 int ret; 2429 2430 ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP); 2431 if (ret) 2432 return ret; 2433 2434 ret = do_pkvm_init(hyp_va_bits); 2435 if (ret) 2436 return ret; 2437 2438 free_hyp_pgds(); 2439 2440 return 0; 2441 } 2442 2443 static int init_pkvm_host_sve_state(void) 2444 { 2445 int cpu; 2446 2447 if (!system_supports_sve()) 2448 return 0; 2449 2450 /* Allocate pages for host sve state in protected mode. */ 2451 for_each_possible_cpu(cpu) { 2452 struct page *page = alloc_pages(GFP_KERNEL, pkvm_host_sve_state_order()); 2453 2454 if (!page) 2455 return -ENOMEM; 2456 2457 per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state = page_address(page); 2458 } 2459 2460 /* 2461 * Don't map the pages in hyp since these are only used in protected 2462 * mode, which will (re)create its own mapping when initialized. 2463 */ 2464 2465 return 0; 2466 } 2467 2468 /* 2469 * Finalizes the initialization of hyp mode, once everything else is initialized 2470 * and the initialziation process cannot fail. 2471 */ 2472 static void finalize_init_hyp_mode(void) 2473 { 2474 int cpu; 2475 2476 if (system_supports_sve() && is_protected_kvm_enabled()) { 2477 for_each_possible_cpu(cpu) { 2478 struct cpu_sve_state *sve_state; 2479 2480 sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state; 2481 per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state = 2482 kern_hyp_va(sve_state); 2483 } 2484 } 2485 } 2486 2487 static void pkvm_hyp_init_ptrauth(void) 2488 { 2489 struct kvm_cpu_context *hyp_ctxt; 2490 int cpu; 2491 2492 for_each_possible_cpu(cpu) { 2493 hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu); 2494 hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long(); 2495 hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long(); 2496 hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long(); 2497 hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long(); 2498 hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long(); 2499 hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long(); 2500 hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long(); 2501 hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long(); 2502 hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long(); 2503 hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long(); 2504 } 2505 } 2506 2507 /* Inits Hyp-mode on all online CPUs */ 2508 static int __init init_hyp_mode(void) 2509 { 2510 u32 hyp_va_bits; 2511 int cpu; 2512 int err = -ENOMEM; 2513 2514 /* 2515 * The protected Hyp-mode cannot be initialized if the memory pool 2516 * allocation has failed. 2517 */ 2518 if (is_protected_kvm_enabled() && !hyp_mem_base) 2519 goto out_err; 2520 2521 /* 2522 * Allocate Hyp PGD and setup Hyp identity mapping 2523 */ 2524 err = kvm_mmu_init(&hyp_va_bits); 2525 if (err) 2526 goto out_err; 2527 2528 /* 2529 * Allocate stack pages for Hypervisor-mode 2530 */ 2531 for_each_possible_cpu(cpu) { 2532 unsigned long stack_base; 2533 2534 stack_base = __get_free_pages(GFP_KERNEL, NVHE_STACK_SHIFT - PAGE_SHIFT); 2535 if (!stack_base) { 2536 err = -ENOMEM; 2537 goto out_err; 2538 } 2539 2540 per_cpu(kvm_arm_hyp_stack_base, cpu) = stack_base; 2541 } 2542 2543 /* 2544 * Allocate and initialize pages for Hypervisor-mode percpu regions. 2545 */ 2546 for_each_possible_cpu(cpu) { 2547 struct page *page; 2548 void *page_addr; 2549 2550 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order()); 2551 if (!page) { 2552 err = -ENOMEM; 2553 goto out_err; 2554 } 2555 2556 page_addr = page_address(page); 2557 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size()); 2558 kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr; 2559 } 2560 2561 /* 2562 * Map the Hyp-code called directly from the host 2563 */ 2564 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start), 2565 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC); 2566 if (err) { 2567 kvm_err("Cannot map world-switch code\n"); 2568 goto out_err; 2569 } 2570 2571 err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start), 2572 kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO); 2573 if (err) { 2574 kvm_err("Cannot map .hyp.rodata section\n"); 2575 goto out_err; 2576 } 2577 2578 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata), 2579 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO); 2580 if (err) { 2581 kvm_err("Cannot map rodata section\n"); 2582 goto out_err; 2583 } 2584 2585 /* 2586 * .hyp.bss is guaranteed to be placed at the beginning of the .bss 2587 * section thanks to an assertion in the linker script. Map it RW and 2588 * the rest of .bss RO. 2589 */ 2590 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start), 2591 kvm_ksym_ref(__hyp_bss_end), PAGE_HYP); 2592 if (err) { 2593 kvm_err("Cannot map hyp bss section: %d\n", err); 2594 goto out_err; 2595 } 2596 2597 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end), 2598 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO); 2599 if (err) { 2600 kvm_err("Cannot map bss section\n"); 2601 goto out_err; 2602 } 2603 2604 /* 2605 * Map the Hyp stack pages 2606 */ 2607 for_each_possible_cpu(cpu) { 2608 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu); 2609 char *stack_base = (char *)per_cpu(kvm_arm_hyp_stack_base, cpu); 2610 2611 err = create_hyp_stack(__pa(stack_base), ¶ms->stack_hyp_va); 2612 if (err) { 2613 kvm_err("Cannot map hyp stack\n"); 2614 goto out_err; 2615 } 2616 2617 /* 2618 * Save the stack PA in nvhe_init_params. This will be needed 2619 * to recreate the stack mapping in protected nVHE mode. 2620 * __hyp_pa() won't do the right thing there, since the stack 2621 * has been mapped in the flexible private VA space. 2622 */ 2623 params->stack_pa = __pa(stack_base); 2624 } 2625 2626 for_each_possible_cpu(cpu) { 2627 char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu]; 2628 char *percpu_end = percpu_begin + nvhe_percpu_size(); 2629 2630 /* Map Hyp percpu pages */ 2631 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP); 2632 if (err) { 2633 kvm_err("Cannot map hyp percpu region\n"); 2634 goto out_err; 2635 } 2636 2637 /* Prepare the CPU initialization parameters */ 2638 cpu_prepare_hyp_mode(cpu, hyp_va_bits); 2639 } 2640 2641 kvm_hyp_init_symbols(); 2642 2643 if (is_protected_kvm_enabled()) { 2644 if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) && 2645 cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH)) 2646 pkvm_hyp_init_ptrauth(); 2647 2648 init_cpu_logical_map(); 2649 2650 if (!init_psci_relay()) { 2651 err = -ENODEV; 2652 goto out_err; 2653 } 2654 2655 err = init_pkvm_host_sve_state(); 2656 if (err) 2657 goto out_err; 2658 2659 err = kvm_hyp_init_protection(hyp_va_bits); 2660 if (err) { 2661 kvm_err("Failed to init hyp memory protection\n"); 2662 goto out_err; 2663 } 2664 } 2665 2666 return 0; 2667 2668 out_err: 2669 teardown_hyp_mode(); 2670 kvm_err("error initializing Hyp mode: %d\n", err); 2671 return err; 2672 } 2673 2674 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr) 2675 { 2676 struct kvm_vcpu *vcpu = NULL; 2677 struct kvm_mpidr_data *data; 2678 unsigned long i; 2679 2680 mpidr &= MPIDR_HWID_BITMASK; 2681 2682 rcu_read_lock(); 2683 data = rcu_dereference(kvm->arch.mpidr_data); 2684 2685 if (data) { 2686 u16 idx = kvm_mpidr_index(data, mpidr); 2687 2688 vcpu = kvm_get_vcpu(kvm, data->cmpidr_to_idx[idx]); 2689 if (mpidr != kvm_vcpu_get_mpidr_aff(vcpu)) 2690 vcpu = NULL; 2691 } 2692 2693 rcu_read_unlock(); 2694 2695 if (vcpu) 2696 return vcpu; 2697 2698 kvm_for_each_vcpu(i, vcpu, kvm) { 2699 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu)) 2700 return vcpu; 2701 } 2702 return NULL; 2703 } 2704 2705 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm) 2706 { 2707 return irqchip_in_kernel(kvm); 2708 } 2709 2710 bool kvm_arch_has_irq_bypass(void) 2711 { 2712 return true; 2713 } 2714 2715 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 2716 struct irq_bypass_producer *prod) 2717 { 2718 struct kvm_kernel_irqfd *irqfd = 2719 container_of(cons, struct kvm_kernel_irqfd, consumer); 2720 2721 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq, 2722 &irqfd->irq_entry); 2723 } 2724 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 2725 struct irq_bypass_producer *prod) 2726 { 2727 struct kvm_kernel_irqfd *irqfd = 2728 container_of(cons, struct kvm_kernel_irqfd, consumer); 2729 2730 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq, 2731 &irqfd->irq_entry); 2732 } 2733 2734 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons) 2735 { 2736 struct kvm_kernel_irqfd *irqfd = 2737 container_of(cons, struct kvm_kernel_irqfd, consumer); 2738 2739 kvm_arm_halt_guest(irqfd->kvm); 2740 } 2741 2742 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons) 2743 { 2744 struct kvm_kernel_irqfd *irqfd = 2745 container_of(cons, struct kvm_kernel_irqfd, consumer); 2746 2747 kvm_arm_resume_guest(irqfd->kvm); 2748 } 2749 2750 /* Initialize Hyp-mode and memory mappings on all CPUs */ 2751 static __init int kvm_arm_init(void) 2752 { 2753 int err; 2754 bool in_hyp_mode; 2755 2756 if (!is_hyp_mode_available()) { 2757 kvm_info("HYP mode not available\n"); 2758 return -ENODEV; 2759 } 2760 2761 if (kvm_get_mode() == KVM_MODE_NONE) { 2762 kvm_info("KVM disabled from command line\n"); 2763 return -ENODEV; 2764 } 2765 2766 err = kvm_sys_reg_table_init(); 2767 if (err) { 2768 kvm_info("Error initializing system register tables"); 2769 return err; 2770 } 2771 2772 in_hyp_mode = is_kernel_in_hyp_mode(); 2773 2774 if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) || 2775 cpus_have_final_cap(ARM64_WORKAROUND_1508412)) 2776 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \ 2777 "Only trusted guests should be used on this system.\n"); 2778 2779 err = kvm_set_ipa_limit(); 2780 if (err) 2781 return err; 2782 2783 err = kvm_arm_init_sve(); 2784 if (err) 2785 return err; 2786 2787 err = kvm_arm_vmid_alloc_init(); 2788 if (err) { 2789 kvm_err("Failed to initialize VMID allocator.\n"); 2790 return err; 2791 } 2792 2793 if (!in_hyp_mode) { 2794 err = init_hyp_mode(); 2795 if (err) 2796 goto out_err; 2797 } 2798 2799 err = kvm_init_vector_slots(); 2800 if (err) { 2801 kvm_err("Cannot initialise vector slots\n"); 2802 goto out_hyp; 2803 } 2804 2805 err = init_subsystems(); 2806 if (err) 2807 goto out_hyp; 2808 2809 kvm_info("%s%sVHE mode initialized successfully\n", 2810 in_hyp_mode ? "" : (is_protected_kvm_enabled() ? 2811 "Protected " : "Hyp "), 2812 in_hyp_mode ? "" : (cpus_have_final_cap(ARM64_KVM_HVHE) ? 2813 "h" : "n")); 2814 2815 /* 2816 * FIXME: Do something reasonable if kvm_init() fails after pKVM 2817 * hypervisor protection is finalized. 2818 */ 2819 err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE); 2820 if (err) 2821 goto out_subs; 2822 2823 /* 2824 * This should be called after initialization is done and failure isn't 2825 * possible anymore. 2826 */ 2827 if (!in_hyp_mode) 2828 finalize_init_hyp_mode(); 2829 2830 kvm_arm_initialised = true; 2831 2832 return 0; 2833 2834 out_subs: 2835 teardown_subsystems(); 2836 out_hyp: 2837 if (!in_hyp_mode) 2838 teardown_hyp_mode(); 2839 out_err: 2840 kvm_arm_vmid_alloc_free(); 2841 return err; 2842 } 2843 2844 static int __init early_kvm_mode_cfg(char *arg) 2845 { 2846 if (!arg) 2847 return -EINVAL; 2848 2849 if (strcmp(arg, "none") == 0) { 2850 kvm_mode = KVM_MODE_NONE; 2851 return 0; 2852 } 2853 2854 if (!is_hyp_mode_available()) { 2855 pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n"); 2856 return 0; 2857 } 2858 2859 if (strcmp(arg, "protected") == 0) { 2860 if (!is_kernel_in_hyp_mode()) 2861 kvm_mode = KVM_MODE_PROTECTED; 2862 else 2863 pr_warn_once("Protected KVM not available with VHE\n"); 2864 2865 return 0; 2866 } 2867 2868 if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) { 2869 kvm_mode = KVM_MODE_DEFAULT; 2870 return 0; 2871 } 2872 2873 if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) { 2874 kvm_mode = KVM_MODE_NV; 2875 return 0; 2876 } 2877 2878 return -EINVAL; 2879 } 2880 early_param("kvm-arm.mode", early_kvm_mode_cfg); 2881 2882 static int __init early_kvm_wfx_trap_policy_cfg(char *arg, enum kvm_wfx_trap_policy *p) 2883 { 2884 if (!arg) 2885 return -EINVAL; 2886 2887 if (strcmp(arg, "trap") == 0) { 2888 *p = KVM_WFX_TRAP; 2889 return 0; 2890 } 2891 2892 if (strcmp(arg, "notrap") == 0) { 2893 *p = KVM_WFX_NOTRAP; 2894 return 0; 2895 } 2896 2897 return -EINVAL; 2898 } 2899 2900 static int __init early_kvm_wfi_trap_policy_cfg(char *arg) 2901 { 2902 return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfi_trap_policy); 2903 } 2904 early_param("kvm-arm.wfi_trap_policy", early_kvm_wfi_trap_policy_cfg); 2905 2906 static int __init early_kvm_wfe_trap_policy_cfg(char *arg) 2907 { 2908 return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfe_trap_policy); 2909 } 2910 early_param("kvm-arm.wfe_trap_policy", early_kvm_wfe_trap_policy_cfg); 2911 2912 enum kvm_mode kvm_get_mode(void) 2913 { 2914 return kvm_mode; 2915 } 2916 2917 module_init(kvm_arm_init); 2918