xref: /linux/arch/arm64/kvm/arm.c (revision f788bb2fb915a79eae0a160580766ba52984d61f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/errno.h>
10 #include <linux/err.h>
11 #include <linux/kvm_host.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/vmalloc.h>
15 #include <linux/fs.h>
16 #include <linux/mman.h>
17 #include <linux/sched.h>
18 #include <linux/kvm.h>
19 #include <linux/kvm_irqfd.h>
20 #include <linux/irqbypass.h>
21 #include <linux/sched/stat.h>
22 #include <trace/events/kvm.h>
23 
24 #define CREATE_TRACE_POINTS
25 #include "trace_arm.h"
26 
27 #include <linux/uaccess.h>
28 #include <asm/ptrace.h>
29 #include <asm/mman.h>
30 #include <asm/tlbflush.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cpufeature.h>
33 #include <asm/virt.h>
34 #include <asm/kvm_arm.h>
35 #include <asm/kvm_asm.h>
36 #include <asm/kvm_mmu.h>
37 #include <asm/kvm_emulate.h>
38 #include <asm/kvm_coproc.h>
39 #include <asm/sections.h>
40 
41 #include <kvm/arm_hypercalls.h>
42 #include <kvm/arm_pmu.h>
43 #include <kvm/arm_psci.h>
44 
45 #ifdef REQUIRES_VIRT
46 __asm__(".arch_extension	virt");
47 #endif
48 
49 DEFINE_PER_CPU(kvm_host_data_t, kvm_host_data);
50 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
51 
52 /* The VMID used in the VTTBR */
53 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
54 static u32 kvm_next_vmid;
55 static DEFINE_SPINLOCK(kvm_vmid_lock);
56 
57 static bool vgic_present;
58 
59 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
60 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
61 
62 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
63 {
64 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
65 }
66 
67 int kvm_arch_hardware_setup(void *opaque)
68 {
69 	return 0;
70 }
71 
72 int kvm_arch_check_processor_compat(void *opaque)
73 {
74 	return 0;
75 }
76 
77 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
78 			    struct kvm_enable_cap *cap)
79 {
80 	int r;
81 
82 	if (cap->flags)
83 		return -EINVAL;
84 
85 	switch (cap->cap) {
86 	case KVM_CAP_ARM_NISV_TO_USER:
87 		r = 0;
88 		kvm->arch.return_nisv_io_abort_to_user = true;
89 		break;
90 	default:
91 		r = -EINVAL;
92 		break;
93 	}
94 
95 	return r;
96 }
97 
98 static int kvm_arm_default_max_vcpus(void)
99 {
100 	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
101 }
102 
103 /**
104  * kvm_arch_init_vm - initializes a VM data structure
105  * @kvm:	pointer to the KVM struct
106  */
107 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
108 {
109 	int ret, cpu;
110 
111 	ret = kvm_arm_setup_stage2(kvm, type);
112 	if (ret)
113 		return ret;
114 
115 	kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
116 	if (!kvm->arch.last_vcpu_ran)
117 		return -ENOMEM;
118 
119 	for_each_possible_cpu(cpu)
120 		*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
121 
122 	ret = kvm_alloc_stage2_pgd(kvm);
123 	if (ret)
124 		goto out_fail_alloc;
125 
126 	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
127 	if (ret)
128 		goto out_free_stage2_pgd;
129 
130 	kvm_vgic_early_init(kvm);
131 
132 	/* Mark the initial VMID generation invalid */
133 	kvm->arch.vmid.vmid_gen = 0;
134 
135 	/* The maximum number of VCPUs is limited by the host's GIC model */
136 	kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
137 
138 	return ret;
139 out_free_stage2_pgd:
140 	kvm_free_stage2_pgd(kvm);
141 out_fail_alloc:
142 	free_percpu(kvm->arch.last_vcpu_ran);
143 	kvm->arch.last_vcpu_ran = NULL;
144 	return ret;
145 }
146 
147 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
148 {
149 	return VM_FAULT_SIGBUS;
150 }
151 
152 
153 /**
154  * kvm_arch_destroy_vm - destroy the VM data structure
155  * @kvm:	pointer to the KVM struct
156  */
157 void kvm_arch_destroy_vm(struct kvm *kvm)
158 {
159 	int i;
160 
161 	kvm_vgic_destroy(kvm);
162 
163 	free_percpu(kvm->arch.last_vcpu_ran);
164 	kvm->arch.last_vcpu_ran = NULL;
165 
166 	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
167 		if (kvm->vcpus[i]) {
168 			kvm_vcpu_destroy(kvm->vcpus[i]);
169 			kvm->vcpus[i] = NULL;
170 		}
171 	}
172 	atomic_set(&kvm->online_vcpus, 0);
173 }
174 
175 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
176 {
177 	int r;
178 	switch (ext) {
179 	case KVM_CAP_IRQCHIP:
180 		r = vgic_present;
181 		break;
182 	case KVM_CAP_IOEVENTFD:
183 	case KVM_CAP_DEVICE_CTRL:
184 	case KVM_CAP_USER_MEMORY:
185 	case KVM_CAP_SYNC_MMU:
186 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
187 	case KVM_CAP_ONE_REG:
188 	case KVM_CAP_ARM_PSCI:
189 	case KVM_CAP_ARM_PSCI_0_2:
190 	case KVM_CAP_READONLY_MEM:
191 	case KVM_CAP_MP_STATE:
192 	case KVM_CAP_IMMEDIATE_EXIT:
193 	case KVM_CAP_VCPU_EVENTS:
194 	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
195 	case KVM_CAP_ARM_NISV_TO_USER:
196 	case KVM_CAP_ARM_INJECT_EXT_DABT:
197 		r = 1;
198 		break;
199 	case KVM_CAP_ARM_SET_DEVICE_ADDR:
200 		r = 1;
201 		break;
202 	case KVM_CAP_NR_VCPUS:
203 		r = num_online_cpus();
204 		break;
205 	case KVM_CAP_MAX_VCPUS:
206 	case KVM_CAP_MAX_VCPU_ID:
207 		if (kvm)
208 			r = kvm->arch.max_vcpus;
209 		else
210 			r = kvm_arm_default_max_vcpus();
211 		break;
212 	case KVM_CAP_MSI_DEVID:
213 		if (!kvm)
214 			r = -EINVAL;
215 		else
216 			r = kvm->arch.vgic.msis_require_devid;
217 		break;
218 	case KVM_CAP_ARM_USER_IRQ:
219 		/*
220 		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
221 		 * (bump this number if adding more devices)
222 		 */
223 		r = 1;
224 		break;
225 	default:
226 		r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
227 		break;
228 	}
229 	return r;
230 }
231 
232 long kvm_arch_dev_ioctl(struct file *filp,
233 			unsigned int ioctl, unsigned long arg)
234 {
235 	return -EINVAL;
236 }
237 
238 struct kvm *kvm_arch_alloc_vm(void)
239 {
240 	if (!has_vhe())
241 		return kzalloc(sizeof(struct kvm), GFP_KERNEL);
242 
243 	return vzalloc(sizeof(struct kvm));
244 }
245 
246 void kvm_arch_free_vm(struct kvm *kvm)
247 {
248 	if (!has_vhe())
249 		kfree(kvm);
250 	else
251 		vfree(kvm);
252 }
253 
254 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
255 {
256 	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
257 		return -EBUSY;
258 
259 	if (id >= kvm->arch.max_vcpus)
260 		return -EINVAL;
261 
262 	return 0;
263 }
264 
265 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
266 {
267 	int err;
268 
269 	/* Force users to call KVM_ARM_VCPU_INIT */
270 	vcpu->arch.target = -1;
271 	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
272 
273 	/* Set up the timer */
274 	kvm_timer_vcpu_init(vcpu);
275 
276 	kvm_pmu_vcpu_init(vcpu);
277 
278 	kvm_arm_reset_debug_ptr(vcpu);
279 
280 	kvm_arm_pvtime_vcpu_init(&vcpu->arch);
281 
282 	err = kvm_vgic_vcpu_init(vcpu);
283 	if (err)
284 		return err;
285 
286 	return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
287 }
288 
289 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
290 {
291 }
292 
293 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
294 {
295 	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
296 		static_branch_dec(&userspace_irqchip_in_use);
297 
298 	kvm_mmu_free_memory_caches(vcpu);
299 	kvm_timer_vcpu_terminate(vcpu);
300 	kvm_pmu_vcpu_destroy(vcpu);
301 
302 	kvm_arm_vcpu_destroy(vcpu);
303 }
304 
305 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
306 {
307 	return kvm_timer_is_pending(vcpu);
308 }
309 
310 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
311 {
312 	/*
313 	 * If we're about to block (most likely because we've just hit a
314 	 * WFI), we need to sync back the state of the GIC CPU interface
315 	 * so that we have the latest PMR and group enables. This ensures
316 	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
317 	 * whether we have pending interrupts.
318 	 *
319 	 * For the same reason, we want to tell GICv4 that we need
320 	 * doorbells to be signalled, should an interrupt become pending.
321 	 */
322 	preempt_disable();
323 	kvm_vgic_vmcr_sync(vcpu);
324 	vgic_v4_put(vcpu, true);
325 	preempt_enable();
326 }
327 
328 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
329 {
330 	preempt_disable();
331 	vgic_v4_load(vcpu);
332 	preempt_enable();
333 }
334 
335 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
336 {
337 	int *last_ran;
338 
339 	last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
340 
341 	/*
342 	 * We might get preempted before the vCPU actually runs, but
343 	 * over-invalidation doesn't affect correctness.
344 	 */
345 	if (*last_ran != vcpu->vcpu_id) {
346 		kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
347 		*last_ran = vcpu->vcpu_id;
348 	}
349 
350 	vcpu->cpu = cpu;
351 
352 	kvm_vgic_load(vcpu);
353 	kvm_timer_vcpu_load(vcpu);
354 	kvm_vcpu_load_sysregs(vcpu);
355 	kvm_arch_vcpu_load_fp(vcpu);
356 	kvm_vcpu_pmu_restore_guest(vcpu);
357 	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
358 		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
359 
360 	if (single_task_running())
361 		vcpu_clear_wfx_traps(vcpu);
362 	else
363 		vcpu_set_wfx_traps(vcpu);
364 
365 	if (vcpu_has_ptrauth(vcpu))
366 		vcpu_ptrauth_disable(vcpu);
367 }
368 
369 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
370 {
371 	kvm_arch_vcpu_put_fp(vcpu);
372 	kvm_vcpu_put_sysregs(vcpu);
373 	kvm_timer_vcpu_put(vcpu);
374 	kvm_vgic_put(vcpu);
375 	kvm_vcpu_pmu_restore_host(vcpu);
376 
377 	vcpu->cpu = -1;
378 }
379 
380 static void vcpu_power_off(struct kvm_vcpu *vcpu)
381 {
382 	vcpu->arch.power_off = true;
383 	kvm_make_request(KVM_REQ_SLEEP, vcpu);
384 	kvm_vcpu_kick(vcpu);
385 }
386 
387 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
388 				    struct kvm_mp_state *mp_state)
389 {
390 	if (vcpu->arch.power_off)
391 		mp_state->mp_state = KVM_MP_STATE_STOPPED;
392 	else
393 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
394 
395 	return 0;
396 }
397 
398 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
399 				    struct kvm_mp_state *mp_state)
400 {
401 	int ret = 0;
402 
403 	switch (mp_state->mp_state) {
404 	case KVM_MP_STATE_RUNNABLE:
405 		vcpu->arch.power_off = false;
406 		break;
407 	case KVM_MP_STATE_STOPPED:
408 		vcpu_power_off(vcpu);
409 		break;
410 	default:
411 		ret = -EINVAL;
412 	}
413 
414 	return ret;
415 }
416 
417 /**
418  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
419  * @v:		The VCPU pointer
420  *
421  * If the guest CPU is not waiting for interrupts or an interrupt line is
422  * asserted, the CPU is by definition runnable.
423  */
424 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
425 {
426 	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
427 	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
428 		&& !v->arch.power_off && !v->arch.pause);
429 }
430 
431 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
432 {
433 	return vcpu_mode_priv(vcpu);
434 }
435 
436 /* Just ensure a guest exit from a particular CPU */
437 static void exit_vm_noop(void *info)
438 {
439 }
440 
441 void force_vm_exit(const cpumask_t *mask)
442 {
443 	preempt_disable();
444 	smp_call_function_many(mask, exit_vm_noop, NULL, true);
445 	preempt_enable();
446 }
447 
448 /**
449  * need_new_vmid_gen - check that the VMID is still valid
450  * @vmid: The VMID to check
451  *
452  * return true if there is a new generation of VMIDs being used
453  *
454  * The hardware supports a limited set of values with the value zero reserved
455  * for the host, so we check if an assigned value belongs to a previous
456  * generation, which requires us to assign a new value. If we're the first to
457  * use a VMID for the new generation, we must flush necessary caches and TLBs
458  * on all CPUs.
459  */
460 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
461 {
462 	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
463 	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
464 	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
465 }
466 
467 /**
468  * update_vmid - Update the vmid with a valid VMID for the current generation
469  * @kvm: The guest that struct vmid belongs to
470  * @vmid: The stage-2 VMID information struct
471  */
472 static void update_vmid(struct kvm_vmid *vmid)
473 {
474 	if (!need_new_vmid_gen(vmid))
475 		return;
476 
477 	spin_lock(&kvm_vmid_lock);
478 
479 	/*
480 	 * We need to re-check the vmid_gen here to ensure that if another vcpu
481 	 * already allocated a valid vmid for this vm, then this vcpu should
482 	 * use the same vmid.
483 	 */
484 	if (!need_new_vmid_gen(vmid)) {
485 		spin_unlock(&kvm_vmid_lock);
486 		return;
487 	}
488 
489 	/* First user of a new VMID generation? */
490 	if (unlikely(kvm_next_vmid == 0)) {
491 		atomic64_inc(&kvm_vmid_gen);
492 		kvm_next_vmid = 1;
493 
494 		/*
495 		 * On SMP we know no other CPUs can use this CPU's or each
496 		 * other's VMID after force_vm_exit returns since the
497 		 * kvm_vmid_lock blocks them from reentry to the guest.
498 		 */
499 		force_vm_exit(cpu_all_mask);
500 		/*
501 		 * Now broadcast TLB + ICACHE invalidation over the inner
502 		 * shareable domain to make sure all data structures are
503 		 * clean.
504 		 */
505 		kvm_call_hyp(__kvm_flush_vm_context);
506 	}
507 
508 	vmid->vmid = kvm_next_vmid;
509 	kvm_next_vmid++;
510 	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
511 
512 	smp_wmb();
513 	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
514 
515 	spin_unlock(&kvm_vmid_lock);
516 }
517 
518 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
519 {
520 	struct kvm *kvm = vcpu->kvm;
521 	int ret = 0;
522 
523 	if (likely(vcpu->arch.has_run_once))
524 		return 0;
525 
526 	if (!kvm_arm_vcpu_is_finalized(vcpu))
527 		return -EPERM;
528 
529 	vcpu->arch.has_run_once = true;
530 
531 	if (likely(irqchip_in_kernel(kvm))) {
532 		/*
533 		 * Map the VGIC hardware resources before running a vcpu the
534 		 * first time on this VM.
535 		 */
536 		if (unlikely(!vgic_ready(kvm))) {
537 			ret = kvm_vgic_map_resources(kvm);
538 			if (ret)
539 				return ret;
540 		}
541 	} else {
542 		/*
543 		 * Tell the rest of the code that there are userspace irqchip
544 		 * VMs in the wild.
545 		 */
546 		static_branch_inc(&userspace_irqchip_in_use);
547 	}
548 
549 	ret = kvm_timer_enable(vcpu);
550 	if (ret)
551 		return ret;
552 
553 	ret = kvm_arm_pmu_v3_enable(vcpu);
554 
555 	return ret;
556 }
557 
558 bool kvm_arch_intc_initialized(struct kvm *kvm)
559 {
560 	return vgic_initialized(kvm);
561 }
562 
563 void kvm_arm_halt_guest(struct kvm *kvm)
564 {
565 	int i;
566 	struct kvm_vcpu *vcpu;
567 
568 	kvm_for_each_vcpu(i, vcpu, kvm)
569 		vcpu->arch.pause = true;
570 	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
571 }
572 
573 void kvm_arm_resume_guest(struct kvm *kvm)
574 {
575 	int i;
576 	struct kvm_vcpu *vcpu;
577 
578 	kvm_for_each_vcpu(i, vcpu, kvm) {
579 		vcpu->arch.pause = false;
580 		rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
581 	}
582 }
583 
584 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
585 {
586 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
587 
588 	rcuwait_wait_event(wait,
589 			   (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
590 			   TASK_INTERRUPTIBLE);
591 
592 	if (vcpu->arch.power_off || vcpu->arch.pause) {
593 		/* Awaken to handle a signal, request we sleep again later. */
594 		kvm_make_request(KVM_REQ_SLEEP, vcpu);
595 	}
596 
597 	/*
598 	 * Make sure we will observe a potential reset request if we've
599 	 * observed a change to the power state. Pairs with the smp_wmb() in
600 	 * kvm_psci_vcpu_on().
601 	 */
602 	smp_rmb();
603 }
604 
605 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
606 {
607 	return vcpu->arch.target >= 0;
608 }
609 
610 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
611 {
612 	if (kvm_request_pending(vcpu)) {
613 		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
614 			vcpu_req_sleep(vcpu);
615 
616 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
617 			kvm_reset_vcpu(vcpu);
618 
619 		/*
620 		 * Clear IRQ_PENDING requests that were made to guarantee
621 		 * that a VCPU sees new virtual interrupts.
622 		 */
623 		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
624 
625 		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
626 			kvm_update_stolen_time(vcpu);
627 
628 		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
629 			/* The distributor enable bits were changed */
630 			preempt_disable();
631 			vgic_v4_put(vcpu, false);
632 			vgic_v4_load(vcpu);
633 			preempt_enable();
634 		}
635 	}
636 }
637 
638 /**
639  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
640  * @vcpu:	The VCPU pointer
641  *
642  * This function is called through the VCPU_RUN ioctl called from user space. It
643  * will execute VM code in a loop until the time slice for the process is used
644  * or some emulation is needed from user space in which case the function will
645  * return with return value 0 and with the kvm_run structure filled in with the
646  * required data for the requested emulation.
647  */
648 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
649 {
650 	struct kvm_run *run = vcpu->run;
651 	int ret;
652 
653 	if (unlikely(!kvm_vcpu_initialized(vcpu)))
654 		return -ENOEXEC;
655 
656 	ret = kvm_vcpu_first_run_init(vcpu);
657 	if (ret)
658 		return ret;
659 
660 	if (run->exit_reason == KVM_EXIT_MMIO) {
661 		ret = kvm_handle_mmio_return(vcpu, run);
662 		if (ret)
663 			return ret;
664 	}
665 
666 	if (run->immediate_exit)
667 		return -EINTR;
668 
669 	vcpu_load(vcpu);
670 
671 	kvm_sigset_activate(vcpu);
672 
673 	ret = 1;
674 	run->exit_reason = KVM_EXIT_UNKNOWN;
675 	while (ret > 0) {
676 		/*
677 		 * Check conditions before entering the guest
678 		 */
679 		cond_resched();
680 
681 		update_vmid(&vcpu->kvm->arch.vmid);
682 
683 		check_vcpu_requests(vcpu);
684 
685 		/*
686 		 * Preparing the interrupts to be injected also
687 		 * involves poking the GIC, which must be done in a
688 		 * non-preemptible context.
689 		 */
690 		preempt_disable();
691 
692 		kvm_pmu_flush_hwstate(vcpu);
693 
694 		local_irq_disable();
695 
696 		kvm_vgic_flush_hwstate(vcpu);
697 
698 		/*
699 		 * Exit if we have a signal pending so that we can deliver the
700 		 * signal to user space.
701 		 */
702 		if (signal_pending(current)) {
703 			ret = -EINTR;
704 			run->exit_reason = KVM_EXIT_INTR;
705 		}
706 
707 		/*
708 		 * If we're using a userspace irqchip, then check if we need
709 		 * to tell a userspace irqchip about timer or PMU level
710 		 * changes and if so, exit to userspace (the actual level
711 		 * state gets updated in kvm_timer_update_run and
712 		 * kvm_pmu_update_run below).
713 		 */
714 		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
715 			if (kvm_timer_should_notify_user(vcpu) ||
716 			    kvm_pmu_should_notify_user(vcpu)) {
717 				ret = -EINTR;
718 				run->exit_reason = KVM_EXIT_INTR;
719 			}
720 		}
721 
722 		/*
723 		 * Ensure we set mode to IN_GUEST_MODE after we disable
724 		 * interrupts and before the final VCPU requests check.
725 		 * See the comment in kvm_vcpu_exiting_guest_mode() and
726 		 * Documentation/virt/kvm/vcpu-requests.rst
727 		 */
728 		smp_store_mb(vcpu->mode, IN_GUEST_MODE);
729 
730 		if (ret <= 0 || need_new_vmid_gen(&vcpu->kvm->arch.vmid) ||
731 		    kvm_request_pending(vcpu)) {
732 			vcpu->mode = OUTSIDE_GUEST_MODE;
733 			isb(); /* Ensure work in x_flush_hwstate is committed */
734 			kvm_pmu_sync_hwstate(vcpu);
735 			if (static_branch_unlikely(&userspace_irqchip_in_use))
736 				kvm_timer_sync_hwstate(vcpu);
737 			kvm_vgic_sync_hwstate(vcpu);
738 			local_irq_enable();
739 			preempt_enable();
740 			continue;
741 		}
742 
743 		kvm_arm_setup_debug(vcpu);
744 
745 		/**************************************************************
746 		 * Enter the guest
747 		 */
748 		trace_kvm_entry(*vcpu_pc(vcpu));
749 		guest_enter_irqoff();
750 
751 		if (has_vhe()) {
752 			ret = kvm_vcpu_run_vhe(vcpu);
753 		} else {
754 			ret = kvm_call_hyp_ret(__kvm_vcpu_run_nvhe, vcpu);
755 		}
756 
757 		vcpu->mode = OUTSIDE_GUEST_MODE;
758 		vcpu->stat.exits++;
759 		/*
760 		 * Back from guest
761 		 *************************************************************/
762 
763 		kvm_arm_clear_debug(vcpu);
764 
765 		/*
766 		 * We must sync the PMU state before the vgic state so
767 		 * that the vgic can properly sample the updated state of the
768 		 * interrupt line.
769 		 */
770 		kvm_pmu_sync_hwstate(vcpu);
771 
772 		/*
773 		 * Sync the vgic state before syncing the timer state because
774 		 * the timer code needs to know if the virtual timer
775 		 * interrupts are active.
776 		 */
777 		kvm_vgic_sync_hwstate(vcpu);
778 
779 		/*
780 		 * Sync the timer hardware state before enabling interrupts as
781 		 * we don't want vtimer interrupts to race with syncing the
782 		 * timer virtual interrupt state.
783 		 */
784 		if (static_branch_unlikely(&userspace_irqchip_in_use))
785 			kvm_timer_sync_hwstate(vcpu);
786 
787 		kvm_arch_vcpu_ctxsync_fp(vcpu);
788 
789 		/*
790 		 * We may have taken a host interrupt in HYP mode (ie
791 		 * while executing the guest). This interrupt is still
792 		 * pending, as we haven't serviced it yet!
793 		 *
794 		 * We're now back in SVC mode, with interrupts
795 		 * disabled.  Enabling the interrupts now will have
796 		 * the effect of taking the interrupt again, in SVC
797 		 * mode this time.
798 		 */
799 		local_irq_enable();
800 
801 		/*
802 		 * We do local_irq_enable() before calling guest_exit() so
803 		 * that if a timer interrupt hits while running the guest we
804 		 * account that tick as being spent in the guest.  We enable
805 		 * preemption after calling guest_exit() so that if we get
806 		 * preempted we make sure ticks after that is not counted as
807 		 * guest time.
808 		 */
809 		guest_exit();
810 		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
811 
812 		/* Exit types that need handling before we can be preempted */
813 		handle_exit_early(vcpu, run, ret);
814 
815 		preempt_enable();
816 
817 		ret = handle_exit(vcpu, run, ret);
818 	}
819 
820 	/* Tell userspace about in-kernel device output levels */
821 	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
822 		kvm_timer_update_run(vcpu);
823 		kvm_pmu_update_run(vcpu);
824 	}
825 
826 	kvm_sigset_deactivate(vcpu);
827 
828 	vcpu_put(vcpu);
829 	return ret;
830 }
831 
832 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
833 {
834 	int bit_index;
835 	bool set;
836 	unsigned long *hcr;
837 
838 	if (number == KVM_ARM_IRQ_CPU_IRQ)
839 		bit_index = __ffs(HCR_VI);
840 	else /* KVM_ARM_IRQ_CPU_FIQ */
841 		bit_index = __ffs(HCR_VF);
842 
843 	hcr = vcpu_hcr(vcpu);
844 	if (level)
845 		set = test_and_set_bit(bit_index, hcr);
846 	else
847 		set = test_and_clear_bit(bit_index, hcr);
848 
849 	/*
850 	 * If we didn't change anything, no need to wake up or kick other CPUs
851 	 */
852 	if (set == level)
853 		return 0;
854 
855 	/*
856 	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
857 	 * trigger a world-switch round on the running physical CPU to set the
858 	 * virtual IRQ/FIQ fields in the HCR appropriately.
859 	 */
860 	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
861 	kvm_vcpu_kick(vcpu);
862 
863 	return 0;
864 }
865 
866 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
867 			  bool line_status)
868 {
869 	u32 irq = irq_level->irq;
870 	unsigned int irq_type, vcpu_idx, irq_num;
871 	int nrcpus = atomic_read(&kvm->online_vcpus);
872 	struct kvm_vcpu *vcpu = NULL;
873 	bool level = irq_level->level;
874 
875 	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
876 	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
877 	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
878 	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
879 
880 	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
881 
882 	switch (irq_type) {
883 	case KVM_ARM_IRQ_TYPE_CPU:
884 		if (irqchip_in_kernel(kvm))
885 			return -ENXIO;
886 
887 		if (vcpu_idx >= nrcpus)
888 			return -EINVAL;
889 
890 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
891 		if (!vcpu)
892 			return -EINVAL;
893 
894 		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
895 			return -EINVAL;
896 
897 		return vcpu_interrupt_line(vcpu, irq_num, level);
898 	case KVM_ARM_IRQ_TYPE_PPI:
899 		if (!irqchip_in_kernel(kvm))
900 			return -ENXIO;
901 
902 		if (vcpu_idx >= nrcpus)
903 			return -EINVAL;
904 
905 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
906 		if (!vcpu)
907 			return -EINVAL;
908 
909 		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
910 			return -EINVAL;
911 
912 		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
913 	case KVM_ARM_IRQ_TYPE_SPI:
914 		if (!irqchip_in_kernel(kvm))
915 			return -ENXIO;
916 
917 		if (irq_num < VGIC_NR_PRIVATE_IRQS)
918 			return -EINVAL;
919 
920 		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
921 	}
922 
923 	return -EINVAL;
924 }
925 
926 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
927 			       const struct kvm_vcpu_init *init)
928 {
929 	unsigned int i, ret;
930 	int phys_target = kvm_target_cpu();
931 
932 	if (init->target != phys_target)
933 		return -EINVAL;
934 
935 	/*
936 	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
937 	 * use the same target.
938 	 */
939 	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
940 		return -EINVAL;
941 
942 	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
943 	for (i = 0; i < sizeof(init->features) * 8; i++) {
944 		bool set = (init->features[i / 32] & (1 << (i % 32)));
945 
946 		if (set && i >= KVM_VCPU_MAX_FEATURES)
947 			return -ENOENT;
948 
949 		/*
950 		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
951 		 * use the same feature set.
952 		 */
953 		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
954 		    test_bit(i, vcpu->arch.features) != set)
955 			return -EINVAL;
956 
957 		if (set)
958 			set_bit(i, vcpu->arch.features);
959 	}
960 
961 	vcpu->arch.target = phys_target;
962 
963 	/* Now we know what it is, we can reset it. */
964 	ret = kvm_reset_vcpu(vcpu);
965 	if (ret) {
966 		vcpu->arch.target = -1;
967 		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
968 	}
969 
970 	return ret;
971 }
972 
973 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
974 					 struct kvm_vcpu_init *init)
975 {
976 	int ret;
977 
978 	ret = kvm_vcpu_set_target(vcpu, init);
979 	if (ret)
980 		return ret;
981 
982 	/*
983 	 * Ensure a rebooted VM will fault in RAM pages and detect if the
984 	 * guest MMU is turned off and flush the caches as needed.
985 	 *
986 	 * S2FWB enforces all memory accesses to RAM being cacheable,
987 	 * ensuring that the data side is always coherent. We still
988 	 * need to invalidate the I-cache though, as FWB does *not*
989 	 * imply CTR_EL0.DIC.
990 	 */
991 	if (vcpu->arch.has_run_once) {
992 		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
993 			stage2_unmap_vm(vcpu->kvm);
994 		else
995 			__flush_icache_all();
996 	}
997 
998 	vcpu_reset_hcr(vcpu);
999 
1000 	/*
1001 	 * Handle the "start in power-off" case.
1002 	 */
1003 	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1004 		vcpu_power_off(vcpu);
1005 	else
1006 		vcpu->arch.power_off = false;
1007 
1008 	return 0;
1009 }
1010 
1011 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1012 				 struct kvm_device_attr *attr)
1013 {
1014 	int ret = -ENXIO;
1015 
1016 	switch (attr->group) {
1017 	default:
1018 		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1019 		break;
1020 	}
1021 
1022 	return ret;
1023 }
1024 
1025 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1026 				 struct kvm_device_attr *attr)
1027 {
1028 	int ret = -ENXIO;
1029 
1030 	switch (attr->group) {
1031 	default:
1032 		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1033 		break;
1034 	}
1035 
1036 	return ret;
1037 }
1038 
1039 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1040 				 struct kvm_device_attr *attr)
1041 {
1042 	int ret = -ENXIO;
1043 
1044 	switch (attr->group) {
1045 	default:
1046 		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1047 		break;
1048 	}
1049 
1050 	return ret;
1051 }
1052 
1053 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1054 				   struct kvm_vcpu_events *events)
1055 {
1056 	memset(events, 0, sizeof(*events));
1057 
1058 	return __kvm_arm_vcpu_get_events(vcpu, events);
1059 }
1060 
1061 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1062 				   struct kvm_vcpu_events *events)
1063 {
1064 	int i;
1065 
1066 	/* check whether the reserved field is zero */
1067 	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1068 		if (events->reserved[i])
1069 			return -EINVAL;
1070 
1071 	/* check whether the pad field is zero */
1072 	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1073 		if (events->exception.pad[i])
1074 			return -EINVAL;
1075 
1076 	return __kvm_arm_vcpu_set_events(vcpu, events);
1077 }
1078 
1079 long kvm_arch_vcpu_ioctl(struct file *filp,
1080 			 unsigned int ioctl, unsigned long arg)
1081 {
1082 	struct kvm_vcpu *vcpu = filp->private_data;
1083 	void __user *argp = (void __user *)arg;
1084 	struct kvm_device_attr attr;
1085 	long r;
1086 
1087 	switch (ioctl) {
1088 	case KVM_ARM_VCPU_INIT: {
1089 		struct kvm_vcpu_init init;
1090 
1091 		r = -EFAULT;
1092 		if (copy_from_user(&init, argp, sizeof(init)))
1093 			break;
1094 
1095 		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1096 		break;
1097 	}
1098 	case KVM_SET_ONE_REG:
1099 	case KVM_GET_ONE_REG: {
1100 		struct kvm_one_reg reg;
1101 
1102 		r = -ENOEXEC;
1103 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1104 			break;
1105 
1106 		r = -EFAULT;
1107 		if (copy_from_user(&reg, argp, sizeof(reg)))
1108 			break;
1109 
1110 		if (ioctl == KVM_SET_ONE_REG)
1111 			r = kvm_arm_set_reg(vcpu, &reg);
1112 		else
1113 			r = kvm_arm_get_reg(vcpu, &reg);
1114 		break;
1115 	}
1116 	case KVM_GET_REG_LIST: {
1117 		struct kvm_reg_list __user *user_list = argp;
1118 		struct kvm_reg_list reg_list;
1119 		unsigned n;
1120 
1121 		r = -ENOEXEC;
1122 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1123 			break;
1124 
1125 		r = -EPERM;
1126 		if (!kvm_arm_vcpu_is_finalized(vcpu))
1127 			break;
1128 
1129 		r = -EFAULT;
1130 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1131 			break;
1132 		n = reg_list.n;
1133 		reg_list.n = kvm_arm_num_regs(vcpu);
1134 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1135 			break;
1136 		r = -E2BIG;
1137 		if (n < reg_list.n)
1138 			break;
1139 		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1140 		break;
1141 	}
1142 	case KVM_SET_DEVICE_ATTR: {
1143 		r = -EFAULT;
1144 		if (copy_from_user(&attr, argp, sizeof(attr)))
1145 			break;
1146 		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1147 		break;
1148 	}
1149 	case KVM_GET_DEVICE_ATTR: {
1150 		r = -EFAULT;
1151 		if (copy_from_user(&attr, argp, sizeof(attr)))
1152 			break;
1153 		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1154 		break;
1155 	}
1156 	case KVM_HAS_DEVICE_ATTR: {
1157 		r = -EFAULT;
1158 		if (copy_from_user(&attr, argp, sizeof(attr)))
1159 			break;
1160 		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1161 		break;
1162 	}
1163 	case KVM_GET_VCPU_EVENTS: {
1164 		struct kvm_vcpu_events events;
1165 
1166 		if (kvm_arm_vcpu_get_events(vcpu, &events))
1167 			return -EINVAL;
1168 
1169 		if (copy_to_user(argp, &events, sizeof(events)))
1170 			return -EFAULT;
1171 
1172 		return 0;
1173 	}
1174 	case KVM_SET_VCPU_EVENTS: {
1175 		struct kvm_vcpu_events events;
1176 
1177 		if (copy_from_user(&events, argp, sizeof(events)))
1178 			return -EFAULT;
1179 
1180 		return kvm_arm_vcpu_set_events(vcpu, &events);
1181 	}
1182 	case KVM_ARM_VCPU_FINALIZE: {
1183 		int what;
1184 
1185 		if (!kvm_vcpu_initialized(vcpu))
1186 			return -ENOEXEC;
1187 
1188 		if (get_user(what, (const int __user *)argp))
1189 			return -EFAULT;
1190 
1191 		return kvm_arm_vcpu_finalize(vcpu, what);
1192 	}
1193 	default:
1194 		r = -EINVAL;
1195 	}
1196 
1197 	return r;
1198 }
1199 
1200 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1201 {
1202 
1203 }
1204 
1205 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1206 					struct kvm_memory_slot *memslot)
1207 {
1208 	kvm_flush_remote_tlbs(kvm);
1209 }
1210 
1211 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1212 					struct kvm_arm_device_addr *dev_addr)
1213 {
1214 	unsigned long dev_id, type;
1215 
1216 	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1217 		KVM_ARM_DEVICE_ID_SHIFT;
1218 	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1219 		KVM_ARM_DEVICE_TYPE_SHIFT;
1220 
1221 	switch (dev_id) {
1222 	case KVM_ARM_DEVICE_VGIC_V2:
1223 		if (!vgic_present)
1224 			return -ENXIO;
1225 		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1226 	default:
1227 		return -ENODEV;
1228 	}
1229 }
1230 
1231 long kvm_arch_vm_ioctl(struct file *filp,
1232 		       unsigned int ioctl, unsigned long arg)
1233 {
1234 	struct kvm *kvm = filp->private_data;
1235 	void __user *argp = (void __user *)arg;
1236 
1237 	switch (ioctl) {
1238 	case KVM_CREATE_IRQCHIP: {
1239 		int ret;
1240 		if (!vgic_present)
1241 			return -ENXIO;
1242 		mutex_lock(&kvm->lock);
1243 		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1244 		mutex_unlock(&kvm->lock);
1245 		return ret;
1246 	}
1247 	case KVM_ARM_SET_DEVICE_ADDR: {
1248 		struct kvm_arm_device_addr dev_addr;
1249 
1250 		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1251 			return -EFAULT;
1252 		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1253 	}
1254 	case KVM_ARM_PREFERRED_TARGET: {
1255 		int err;
1256 		struct kvm_vcpu_init init;
1257 
1258 		err = kvm_vcpu_preferred_target(&init);
1259 		if (err)
1260 			return err;
1261 
1262 		if (copy_to_user(argp, &init, sizeof(init)))
1263 			return -EFAULT;
1264 
1265 		return 0;
1266 	}
1267 	default:
1268 		return -EINVAL;
1269 	}
1270 }
1271 
1272 static void cpu_init_hyp_mode(void)
1273 {
1274 	phys_addr_t pgd_ptr;
1275 	unsigned long hyp_stack_ptr;
1276 	unsigned long vector_ptr;
1277 	unsigned long tpidr_el2;
1278 
1279 	/* Switch from the HYP stub to our own HYP init vector */
1280 	__hyp_set_vectors(kvm_get_idmap_vector());
1281 
1282 	/*
1283 	 * Calculate the raw per-cpu offset without a translation from the
1284 	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
1285 	 * so that we can use adr_l to access per-cpu variables in EL2.
1286 	 */
1287 	tpidr_el2 = ((unsigned long)this_cpu_ptr(&kvm_host_data) -
1288 		     (unsigned long)kvm_ksym_ref(kvm_host_data));
1289 
1290 	pgd_ptr = kvm_mmu_get_httbr();
1291 	hyp_stack_ptr = __this_cpu_read(kvm_arm_hyp_stack_page) + PAGE_SIZE;
1292 	vector_ptr = (unsigned long)kvm_get_hyp_vector();
1293 
1294 	/*
1295 	 * Call initialization code, and switch to the full blown HYP code.
1296 	 * If the cpucaps haven't been finalized yet, something has gone very
1297 	 * wrong, and hyp will crash and burn when it uses any
1298 	 * cpus_have_const_cap() wrapper.
1299 	 */
1300 	BUG_ON(!system_capabilities_finalized());
1301 	__kvm_call_hyp((void *)pgd_ptr, hyp_stack_ptr, vector_ptr, tpidr_el2);
1302 
1303 	/*
1304 	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
1305 	 * at EL2.
1306 	 */
1307 	if (this_cpu_has_cap(ARM64_SSBS) &&
1308 	    arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
1309 		kvm_call_hyp(__kvm_enable_ssbs);
1310 	}
1311 }
1312 
1313 static void cpu_hyp_reset(void)
1314 {
1315 	if (!is_kernel_in_hyp_mode())
1316 		__hyp_reset_vectors();
1317 }
1318 
1319 static void cpu_hyp_reinit(void)
1320 {
1321 	kvm_init_host_cpu_context(&this_cpu_ptr(&kvm_host_data)->host_ctxt);
1322 
1323 	cpu_hyp_reset();
1324 
1325 	if (is_kernel_in_hyp_mode())
1326 		kvm_timer_init_vhe();
1327 	else
1328 		cpu_init_hyp_mode();
1329 
1330 	kvm_arm_init_debug();
1331 
1332 	if (vgic_present)
1333 		kvm_vgic_init_cpu_hardware();
1334 }
1335 
1336 static void _kvm_arch_hardware_enable(void *discard)
1337 {
1338 	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1339 		cpu_hyp_reinit();
1340 		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1341 	}
1342 }
1343 
1344 int kvm_arch_hardware_enable(void)
1345 {
1346 	_kvm_arch_hardware_enable(NULL);
1347 	return 0;
1348 }
1349 
1350 static void _kvm_arch_hardware_disable(void *discard)
1351 {
1352 	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1353 		cpu_hyp_reset();
1354 		__this_cpu_write(kvm_arm_hardware_enabled, 0);
1355 	}
1356 }
1357 
1358 void kvm_arch_hardware_disable(void)
1359 {
1360 	_kvm_arch_hardware_disable(NULL);
1361 }
1362 
1363 #ifdef CONFIG_CPU_PM
1364 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1365 				    unsigned long cmd,
1366 				    void *v)
1367 {
1368 	/*
1369 	 * kvm_arm_hardware_enabled is left with its old value over
1370 	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1371 	 * re-enable hyp.
1372 	 */
1373 	switch (cmd) {
1374 	case CPU_PM_ENTER:
1375 		if (__this_cpu_read(kvm_arm_hardware_enabled))
1376 			/*
1377 			 * don't update kvm_arm_hardware_enabled here
1378 			 * so that the hardware will be re-enabled
1379 			 * when we resume. See below.
1380 			 */
1381 			cpu_hyp_reset();
1382 
1383 		return NOTIFY_OK;
1384 	case CPU_PM_ENTER_FAILED:
1385 	case CPU_PM_EXIT:
1386 		if (__this_cpu_read(kvm_arm_hardware_enabled))
1387 			/* The hardware was enabled before suspend. */
1388 			cpu_hyp_reinit();
1389 
1390 		return NOTIFY_OK;
1391 
1392 	default:
1393 		return NOTIFY_DONE;
1394 	}
1395 }
1396 
1397 static struct notifier_block hyp_init_cpu_pm_nb = {
1398 	.notifier_call = hyp_init_cpu_pm_notifier,
1399 };
1400 
1401 static void __init hyp_cpu_pm_init(void)
1402 {
1403 	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1404 }
1405 static void __init hyp_cpu_pm_exit(void)
1406 {
1407 	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1408 }
1409 #else
1410 static inline void hyp_cpu_pm_init(void)
1411 {
1412 }
1413 static inline void hyp_cpu_pm_exit(void)
1414 {
1415 }
1416 #endif
1417 
1418 static int init_common_resources(void)
1419 {
1420 	return kvm_set_ipa_limit();
1421 }
1422 
1423 static int init_subsystems(void)
1424 {
1425 	int err = 0;
1426 
1427 	/*
1428 	 * Enable hardware so that subsystem initialisation can access EL2.
1429 	 */
1430 	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1431 
1432 	/*
1433 	 * Register CPU lower-power notifier
1434 	 */
1435 	hyp_cpu_pm_init();
1436 
1437 	/*
1438 	 * Init HYP view of VGIC
1439 	 */
1440 	err = kvm_vgic_hyp_init();
1441 	switch (err) {
1442 	case 0:
1443 		vgic_present = true;
1444 		break;
1445 	case -ENODEV:
1446 	case -ENXIO:
1447 		vgic_present = false;
1448 		err = 0;
1449 		break;
1450 	default:
1451 		goto out;
1452 	}
1453 
1454 	/*
1455 	 * Init HYP architected timer support
1456 	 */
1457 	err = kvm_timer_hyp_init(vgic_present);
1458 	if (err)
1459 		goto out;
1460 
1461 	kvm_perf_init();
1462 	kvm_coproc_table_init();
1463 
1464 out:
1465 	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1466 
1467 	return err;
1468 }
1469 
1470 static void teardown_hyp_mode(void)
1471 {
1472 	int cpu;
1473 
1474 	free_hyp_pgds();
1475 	for_each_possible_cpu(cpu)
1476 		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1477 }
1478 
1479 /**
1480  * Inits Hyp-mode on all online CPUs
1481  */
1482 static int init_hyp_mode(void)
1483 {
1484 	int cpu;
1485 	int err = 0;
1486 
1487 	/*
1488 	 * Allocate Hyp PGD and setup Hyp identity mapping
1489 	 */
1490 	err = kvm_mmu_init();
1491 	if (err)
1492 		goto out_err;
1493 
1494 	/*
1495 	 * Allocate stack pages for Hypervisor-mode
1496 	 */
1497 	for_each_possible_cpu(cpu) {
1498 		unsigned long stack_page;
1499 
1500 		stack_page = __get_free_page(GFP_KERNEL);
1501 		if (!stack_page) {
1502 			err = -ENOMEM;
1503 			goto out_err;
1504 		}
1505 
1506 		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1507 	}
1508 
1509 	/*
1510 	 * Map the Hyp-code called directly from the host
1511 	 */
1512 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1513 				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1514 	if (err) {
1515 		kvm_err("Cannot map world-switch code\n");
1516 		goto out_err;
1517 	}
1518 
1519 	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1520 				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1521 	if (err) {
1522 		kvm_err("Cannot map rodata section\n");
1523 		goto out_err;
1524 	}
1525 
1526 	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1527 				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1528 	if (err) {
1529 		kvm_err("Cannot map bss section\n");
1530 		goto out_err;
1531 	}
1532 
1533 	err = kvm_map_vectors();
1534 	if (err) {
1535 		kvm_err("Cannot map vectors\n");
1536 		goto out_err;
1537 	}
1538 
1539 	/*
1540 	 * Map the Hyp stack pages
1541 	 */
1542 	for_each_possible_cpu(cpu) {
1543 		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1544 		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1545 					  PAGE_HYP);
1546 
1547 		if (err) {
1548 			kvm_err("Cannot map hyp stack\n");
1549 			goto out_err;
1550 		}
1551 	}
1552 
1553 	for_each_possible_cpu(cpu) {
1554 		kvm_host_data_t *cpu_data;
1555 
1556 		cpu_data = per_cpu_ptr(&kvm_host_data, cpu);
1557 		err = create_hyp_mappings(cpu_data, cpu_data + 1, PAGE_HYP);
1558 
1559 		if (err) {
1560 			kvm_err("Cannot map host CPU state: %d\n", err);
1561 			goto out_err;
1562 		}
1563 	}
1564 
1565 	err = hyp_map_aux_data();
1566 	if (err)
1567 		kvm_err("Cannot map host auxiliary data: %d\n", err);
1568 
1569 	return 0;
1570 
1571 out_err:
1572 	teardown_hyp_mode();
1573 	kvm_err("error initializing Hyp mode: %d\n", err);
1574 	return err;
1575 }
1576 
1577 static void check_kvm_target_cpu(void *ret)
1578 {
1579 	*(int *)ret = kvm_target_cpu();
1580 }
1581 
1582 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1583 {
1584 	struct kvm_vcpu *vcpu;
1585 	int i;
1586 
1587 	mpidr &= MPIDR_HWID_BITMASK;
1588 	kvm_for_each_vcpu(i, vcpu, kvm) {
1589 		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1590 			return vcpu;
1591 	}
1592 	return NULL;
1593 }
1594 
1595 bool kvm_arch_has_irq_bypass(void)
1596 {
1597 	return true;
1598 }
1599 
1600 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1601 				      struct irq_bypass_producer *prod)
1602 {
1603 	struct kvm_kernel_irqfd *irqfd =
1604 		container_of(cons, struct kvm_kernel_irqfd, consumer);
1605 
1606 	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1607 					  &irqfd->irq_entry);
1608 }
1609 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1610 				      struct irq_bypass_producer *prod)
1611 {
1612 	struct kvm_kernel_irqfd *irqfd =
1613 		container_of(cons, struct kvm_kernel_irqfd, consumer);
1614 
1615 	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1616 				     &irqfd->irq_entry);
1617 }
1618 
1619 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1620 {
1621 	struct kvm_kernel_irqfd *irqfd =
1622 		container_of(cons, struct kvm_kernel_irqfd, consumer);
1623 
1624 	kvm_arm_halt_guest(irqfd->kvm);
1625 }
1626 
1627 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1628 {
1629 	struct kvm_kernel_irqfd *irqfd =
1630 		container_of(cons, struct kvm_kernel_irqfd, consumer);
1631 
1632 	kvm_arm_resume_guest(irqfd->kvm);
1633 }
1634 
1635 /**
1636  * Initialize Hyp-mode and memory mappings on all CPUs.
1637  */
1638 int kvm_arch_init(void *opaque)
1639 {
1640 	int err;
1641 	int ret, cpu;
1642 	bool in_hyp_mode;
1643 
1644 	if (!is_hyp_mode_available()) {
1645 		kvm_info("HYP mode not available\n");
1646 		return -ENODEV;
1647 	}
1648 
1649 	in_hyp_mode = is_kernel_in_hyp_mode();
1650 
1651 	if (!in_hyp_mode && kvm_arch_requires_vhe()) {
1652 		kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1653 		return -ENODEV;
1654 	}
1655 
1656 	for_each_online_cpu(cpu) {
1657 		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1658 		if (ret < 0) {
1659 			kvm_err("Error, CPU %d not supported!\n", cpu);
1660 			return -ENODEV;
1661 		}
1662 	}
1663 
1664 	err = init_common_resources();
1665 	if (err)
1666 		return err;
1667 
1668 	err = kvm_arm_init_sve();
1669 	if (err)
1670 		return err;
1671 
1672 	if (!in_hyp_mode) {
1673 		err = init_hyp_mode();
1674 		if (err)
1675 			goto out_err;
1676 	}
1677 
1678 	err = init_subsystems();
1679 	if (err)
1680 		goto out_hyp;
1681 
1682 	if (in_hyp_mode)
1683 		kvm_info("VHE mode initialized successfully\n");
1684 	else
1685 		kvm_info("Hyp mode initialized successfully\n");
1686 
1687 	return 0;
1688 
1689 out_hyp:
1690 	hyp_cpu_pm_exit();
1691 	if (!in_hyp_mode)
1692 		teardown_hyp_mode();
1693 out_err:
1694 	return err;
1695 }
1696 
1697 /* NOP: Compiling as a module not supported */
1698 void kvm_arch_exit(void)
1699 {
1700 	kvm_perf_teardown();
1701 }
1702 
1703 static int arm_init(void)
1704 {
1705 	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1706 	return rc;
1707 }
1708 
1709 module_init(arm_init);
1710