xref: /linux/arch/arm64/kvm/arm.c (revision d09560435cb712c9ec1e62b8a43a79b0af69fe77)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/errno.h>
10 #include <linux/err.h>
11 #include <linux/kvm_host.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/vmalloc.h>
15 #include <linux/fs.h>
16 #include <linux/mman.h>
17 #include <linux/sched.h>
18 #include <linux/kvm.h>
19 #include <linux/kvm_irqfd.h>
20 #include <linux/irqbypass.h>
21 #include <linux/sched/stat.h>
22 #include <linux/psci.h>
23 #include <trace/events/kvm.h>
24 
25 #define CREATE_TRACE_POINTS
26 #include "trace_arm.h"
27 
28 #include <linux/uaccess.h>
29 #include <asm/ptrace.h>
30 #include <asm/mman.h>
31 #include <asm/tlbflush.h>
32 #include <asm/cacheflush.h>
33 #include <asm/cpufeature.h>
34 #include <asm/virt.h>
35 #include <asm/kvm_arm.h>
36 #include <asm/kvm_asm.h>
37 #include <asm/kvm_mmu.h>
38 #include <asm/kvm_emulate.h>
39 #include <asm/sections.h>
40 
41 #include <kvm/arm_hypercalls.h>
42 #include <kvm/arm_pmu.h>
43 #include <kvm/arm_psci.h>
44 
45 #ifdef REQUIRES_VIRT
46 __asm__(".arch_extension	virt");
47 #endif
48 
49 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
50 DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
51 
52 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
53 
54 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55 unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
56 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
57 
58 /* The VMID used in the VTTBR */
59 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
60 static u32 kvm_next_vmid;
61 static DEFINE_SPINLOCK(kvm_vmid_lock);
62 
63 static bool vgic_present;
64 
65 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
66 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
67 
68 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
69 {
70 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
71 }
72 
73 int kvm_arch_hardware_setup(void *opaque)
74 {
75 	return 0;
76 }
77 
78 int kvm_arch_check_processor_compat(void *opaque)
79 {
80 	return 0;
81 }
82 
83 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
84 			    struct kvm_enable_cap *cap)
85 {
86 	int r;
87 
88 	if (cap->flags)
89 		return -EINVAL;
90 
91 	switch (cap->cap) {
92 	case KVM_CAP_ARM_NISV_TO_USER:
93 		r = 0;
94 		kvm->arch.return_nisv_io_abort_to_user = true;
95 		break;
96 	case KVM_CAP_ARM_MTE:
97 		if (!system_supports_mte() || kvm->created_vcpus)
98 			return -EINVAL;
99 		r = 0;
100 		kvm->arch.mte_enabled = true;
101 		break;
102 	default:
103 		r = -EINVAL;
104 		break;
105 	}
106 
107 	return r;
108 }
109 
110 static int kvm_arm_default_max_vcpus(void)
111 {
112 	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
113 }
114 
115 static void set_default_spectre(struct kvm *kvm)
116 {
117 	/*
118 	 * The default is to expose CSV2 == 1 if the HW isn't affected.
119 	 * Although this is a per-CPU feature, we make it global because
120 	 * asymmetric systems are just a nuisance.
121 	 *
122 	 * Userspace can override this as long as it doesn't promise
123 	 * the impossible.
124 	 */
125 	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
126 		kvm->arch.pfr0_csv2 = 1;
127 	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
128 		kvm->arch.pfr0_csv3 = 1;
129 }
130 
131 /**
132  * kvm_arch_init_vm - initializes a VM data structure
133  * @kvm:	pointer to the KVM struct
134  */
135 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
136 {
137 	int ret;
138 
139 	ret = kvm_arm_setup_stage2(kvm, type);
140 	if (ret)
141 		return ret;
142 
143 	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
144 	if (ret)
145 		return ret;
146 
147 	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
148 	if (ret)
149 		goto out_free_stage2_pgd;
150 
151 	kvm_vgic_early_init(kvm);
152 
153 	/* The maximum number of VCPUs is limited by the host's GIC model */
154 	kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
155 
156 	set_default_spectre(kvm);
157 
158 	return ret;
159 out_free_stage2_pgd:
160 	kvm_free_stage2_pgd(&kvm->arch.mmu);
161 	return ret;
162 }
163 
164 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
165 {
166 	return VM_FAULT_SIGBUS;
167 }
168 
169 
170 /**
171  * kvm_arch_destroy_vm - destroy the VM data structure
172  * @kvm:	pointer to the KVM struct
173  */
174 void kvm_arch_destroy_vm(struct kvm *kvm)
175 {
176 	int i;
177 
178 	bitmap_free(kvm->arch.pmu_filter);
179 
180 	kvm_vgic_destroy(kvm);
181 
182 	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
183 		if (kvm->vcpus[i]) {
184 			kvm_vcpu_destroy(kvm->vcpus[i]);
185 			kvm->vcpus[i] = NULL;
186 		}
187 	}
188 	atomic_set(&kvm->online_vcpus, 0);
189 }
190 
191 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
192 {
193 	int r;
194 	switch (ext) {
195 	case KVM_CAP_IRQCHIP:
196 		r = vgic_present;
197 		break;
198 	case KVM_CAP_IOEVENTFD:
199 	case KVM_CAP_DEVICE_CTRL:
200 	case KVM_CAP_USER_MEMORY:
201 	case KVM_CAP_SYNC_MMU:
202 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
203 	case KVM_CAP_ONE_REG:
204 	case KVM_CAP_ARM_PSCI:
205 	case KVM_CAP_ARM_PSCI_0_2:
206 	case KVM_CAP_READONLY_MEM:
207 	case KVM_CAP_MP_STATE:
208 	case KVM_CAP_IMMEDIATE_EXIT:
209 	case KVM_CAP_VCPU_EVENTS:
210 	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
211 	case KVM_CAP_ARM_NISV_TO_USER:
212 	case KVM_CAP_ARM_INJECT_EXT_DABT:
213 	case KVM_CAP_SET_GUEST_DEBUG:
214 	case KVM_CAP_VCPU_ATTRIBUTES:
215 	case KVM_CAP_PTP_KVM:
216 		r = 1;
217 		break;
218 	case KVM_CAP_SET_GUEST_DEBUG2:
219 		return KVM_GUESTDBG_VALID_MASK;
220 	case KVM_CAP_ARM_SET_DEVICE_ADDR:
221 		r = 1;
222 		break;
223 	case KVM_CAP_NR_VCPUS:
224 		r = num_online_cpus();
225 		break;
226 	case KVM_CAP_MAX_VCPUS:
227 	case KVM_CAP_MAX_VCPU_ID:
228 		if (kvm)
229 			r = kvm->arch.max_vcpus;
230 		else
231 			r = kvm_arm_default_max_vcpus();
232 		break;
233 	case KVM_CAP_MSI_DEVID:
234 		if (!kvm)
235 			r = -EINVAL;
236 		else
237 			r = kvm->arch.vgic.msis_require_devid;
238 		break;
239 	case KVM_CAP_ARM_USER_IRQ:
240 		/*
241 		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
242 		 * (bump this number if adding more devices)
243 		 */
244 		r = 1;
245 		break;
246 	case KVM_CAP_ARM_MTE:
247 		r = system_supports_mte();
248 		break;
249 	case KVM_CAP_STEAL_TIME:
250 		r = kvm_arm_pvtime_supported();
251 		break;
252 	case KVM_CAP_ARM_EL1_32BIT:
253 		r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
254 		break;
255 	case KVM_CAP_GUEST_DEBUG_HW_BPS:
256 		r = get_num_brps();
257 		break;
258 	case KVM_CAP_GUEST_DEBUG_HW_WPS:
259 		r = get_num_wrps();
260 		break;
261 	case KVM_CAP_ARM_PMU_V3:
262 		r = kvm_arm_support_pmu_v3();
263 		break;
264 	case KVM_CAP_ARM_INJECT_SERROR_ESR:
265 		r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
266 		break;
267 	case KVM_CAP_ARM_VM_IPA_SIZE:
268 		r = get_kvm_ipa_limit();
269 		break;
270 	case KVM_CAP_ARM_SVE:
271 		r = system_supports_sve();
272 		break;
273 	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
274 	case KVM_CAP_ARM_PTRAUTH_GENERIC:
275 		r = system_has_full_ptr_auth();
276 		break;
277 	default:
278 		r = 0;
279 	}
280 
281 	return r;
282 }
283 
284 long kvm_arch_dev_ioctl(struct file *filp,
285 			unsigned int ioctl, unsigned long arg)
286 {
287 	return -EINVAL;
288 }
289 
290 struct kvm *kvm_arch_alloc_vm(void)
291 {
292 	if (!has_vhe())
293 		return kzalloc(sizeof(struct kvm), GFP_KERNEL);
294 
295 	return vzalloc(sizeof(struct kvm));
296 }
297 
298 void kvm_arch_free_vm(struct kvm *kvm)
299 {
300 	if (!has_vhe())
301 		kfree(kvm);
302 	else
303 		vfree(kvm);
304 }
305 
306 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
307 {
308 	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
309 		return -EBUSY;
310 
311 	if (id >= kvm->arch.max_vcpus)
312 		return -EINVAL;
313 
314 	return 0;
315 }
316 
317 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
318 {
319 	int err;
320 
321 	/* Force users to call KVM_ARM_VCPU_INIT */
322 	vcpu->arch.target = -1;
323 	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
324 
325 	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
326 
327 	/* Set up the timer */
328 	kvm_timer_vcpu_init(vcpu);
329 
330 	kvm_pmu_vcpu_init(vcpu);
331 
332 	kvm_arm_reset_debug_ptr(vcpu);
333 
334 	kvm_arm_pvtime_vcpu_init(&vcpu->arch);
335 
336 	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
337 
338 	err = kvm_vgic_vcpu_init(vcpu);
339 	if (err)
340 		return err;
341 
342 	return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
343 }
344 
345 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
346 {
347 }
348 
349 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
350 {
351 	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
352 		static_branch_dec(&userspace_irqchip_in_use);
353 
354 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
355 	kvm_timer_vcpu_terminate(vcpu);
356 	kvm_pmu_vcpu_destroy(vcpu);
357 
358 	kvm_arm_vcpu_destroy(vcpu);
359 }
360 
361 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
362 {
363 	return kvm_timer_is_pending(vcpu);
364 }
365 
366 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
367 {
368 	/*
369 	 * If we're about to block (most likely because we've just hit a
370 	 * WFI), we need to sync back the state of the GIC CPU interface
371 	 * so that we have the latest PMR and group enables. This ensures
372 	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
373 	 * whether we have pending interrupts.
374 	 *
375 	 * For the same reason, we want to tell GICv4 that we need
376 	 * doorbells to be signalled, should an interrupt become pending.
377 	 */
378 	preempt_disable();
379 	kvm_vgic_vmcr_sync(vcpu);
380 	vgic_v4_put(vcpu, true);
381 	preempt_enable();
382 }
383 
384 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
385 {
386 	preempt_disable();
387 	vgic_v4_load(vcpu);
388 	preempt_enable();
389 }
390 
391 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
392 {
393 	struct kvm_s2_mmu *mmu;
394 	int *last_ran;
395 
396 	mmu = vcpu->arch.hw_mmu;
397 	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
398 
399 	/*
400 	 * We guarantee that both TLBs and I-cache are private to each
401 	 * vcpu. If detecting that a vcpu from the same VM has
402 	 * previously run on the same physical CPU, call into the
403 	 * hypervisor code to nuke the relevant contexts.
404 	 *
405 	 * We might get preempted before the vCPU actually runs, but
406 	 * over-invalidation doesn't affect correctness.
407 	 */
408 	if (*last_ran != vcpu->vcpu_id) {
409 		kvm_call_hyp(__kvm_flush_cpu_context, mmu);
410 		*last_ran = vcpu->vcpu_id;
411 	}
412 
413 	vcpu->cpu = cpu;
414 
415 	kvm_vgic_load(vcpu);
416 	kvm_timer_vcpu_load(vcpu);
417 	if (has_vhe())
418 		kvm_vcpu_load_sysregs_vhe(vcpu);
419 	kvm_arch_vcpu_load_fp(vcpu);
420 	kvm_vcpu_pmu_restore_guest(vcpu);
421 	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
422 		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
423 
424 	if (single_task_running())
425 		vcpu_clear_wfx_traps(vcpu);
426 	else
427 		vcpu_set_wfx_traps(vcpu);
428 
429 	if (vcpu_has_ptrauth(vcpu))
430 		vcpu_ptrauth_disable(vcpu);
431 	kvm_arch_vcpu_load_debug_state_flags(vcpu);
432 }
433 
434 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
435 {
436 	kvm_arch_vcpu_put_debug_state_flags(vcpu);
437 	kvm_arch_vcpu_put_fp(vcpu);
438 	if (has_vhe())
439 		kvm_vcpu_put_sysregs_vhe(vcpu);
440 	kvm_timer_vcpu_put(vcpu);
441 	kvm_vgic_put(vcpu);
442 	kvm_vcpu_pmu_restore_host(vcpu);
443 
444 	vcpu->cpu = -1;
445 }
446 
447 static void vcpu_power_off(struct kvm_vcpu *vcpu)
448 {
449 	vcpu->arch.power_off = true;
450 	kvm_make_request(KVM_REQ_SLEEP, vcpu);
451 	kvm_vcpu_kick(vcpu);
452 }
453 
454 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
455 				    struct kvm_mp_state *mp_state)
456 {
457 	if (vcpu->arch.power_off)
458 		mp_state->mp_state = KVM_MP_STATE_STOPPED;
459 	else
460 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
461 
462 	return 0;
463 }
464 
465 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
466 				    struct kvm_mp_state *mp_state)
467 {
468 	int ret = 0;
469 
470 	switch (mp_state->mp_state) {
471 	case KVM_MP_STATE_RUNNABLE:
472 		vcpu->arch.power_off = false;
473 		break;
474 	case KVM_MP_STATE_STOPPED:
475 		vcpu_power_off(vcpu);
476 		break;
477 	default:
478 		ret = -EINVAL;
479 	}
480 
481 	return ret;
482 }
483 
484 /**
485  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
486  * @v:		The VCPU pointer
487  *
488  * If the guest CPU is not waiting for interrupts or an interrupt line is
489  * asserted, the CPU is by definition runnable.
490  */
491 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
492 {
493 	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
494 	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
495 		&& !v->arch.power_off && !v->arch.pause);
496 }
497 
498 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
499 {
500 	return vcpu_mode_priv(vcpu);
501 }
502 
503 /* Just ensure a guest exit from a particular CPU */
504 static void exit_vm_noop(void *info)
505 {
506 }
507 
508 void force_vm_exit(const cpumask_t *mask)
509 {
510 	preempt_disable();
511 	smp_call_function_many(mask, exit_vm_noop, NULL, true);
512 	preempt_enable();
513 }
514 
515 /**
516  * need_new_vmid_gen - check that the VMID is still valid
517  * @vmid: The VMID to check
518  *
519  * return true if there is a new generation of VMIDs being used
520  *
521  * The hardware supports a limited set of values with the value zero reserved
522  * for the host, so we check if an assigned value belongs to a previous
523  * generation, which requires us to assign a new value. If we're the first to
524  * use a VMID for the new generation, we must flush necessary caches and TLBs
525  * on all CPUs.
526  */
527 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
528 {
529 	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
530 	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
531 	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
532 }
533 
534 /**
535  * update_vmid - Update the vmid with a valid VMID for the current generation
536  * @vmid: The stage-2 VMID information struct
537  */
538 static void update_vmid(struct kvm_vmid *vmid)
539 {
540 	if (!need_new_vmid_gen(vmid))
541 		return;
542 
543 	spin_lock(&kvm_vmid_lock);
544 
545 	/*
546 	 * We need to re-check the vmid_gen here to ensure that if another vcpu
547 	 * already allocated a valid vmid for this vm, then this vcpu should
548 	 * use the same vmid.
549 	 */
550 	if (!need_new_vmid_gen(vmid)) {
551 		spin_unlock(&kvm_vmid_lock);
552 		return;
553 	}
554 
555 	/* First user of a new VMID generation? */
556 	if (unlikely(kvm_next_vmid == 0)) {
557 		atomic64_inc(&kvm_vmid_gen);
558 		kvm_next_vmid = 1;
559 
560 		/*
561 		 * On SMP we know no other CPUs can use this CPU's or each
562 		 * other's VMID after force_vm_exit returns since the
563 		 * kvm_vmid_lock blocks them from reentry to the guest.
564 		 */
565 		force_vm_exit(cpu_all_mask);
566 		/*
567 		 * Now broadcast TLB + ICACHE invalidation over the inner
568 		 * shareable domain to make sure all data structures are
569 		 * clean.
570 		 */
571 		kvm_call_hyp(__kvm_flush_vm_context);
572 	}
573 
574 	vmid->vmid = kvm_next_vmid;
575 	kvm_next_vmid++;
576 	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
577 
578 	smp_wmb();
579 	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
580 
581 	spin_unlock(&kvm_vmid_lock);
582 }
583 
584 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
585 {
586 	struct kvm *kvm = vcpu->kvm;
587 	int ret = 0;
588 
589 	if (likely(vcpu->arch.has_run_once))
590 		return 0;
591 
592 	if (!kvm_arm_vcpu_is_finalized(vcpu))
593 		return -EPERM;
594 
595 	vcpu->arch.has_run_once = true;
596 
597 	kvm_arm_vcpu_init_debug(vcpu);
598 
599 	if (likely(irqchip_in_kernel(kvm))) {
600 		/*
601 		 * Map the VGIC hardware resources before running a vcpu the
602 		 * first time on this VM.
603 		 */
604 		ret = kvm_vgic_map_resources(kvm);
605 		if (ret)
606 			return ret;
607 	} else {
608 		/*
609 		 * Tell the rest of the code that there are userspace irqchip
610 		 * VMs in the wild.
611 		 */
612 		static_branch_inc(&userspace_irqchip_in_use);
613 	}
614 
615 	ret = kvm_timer_enable(vcpu);
616 	if (ret)
617 		return ret;
618 
619 	ret = kvm_arm_pmu_v3_enable(vcpu);
620 
621 	return ret;
622 }
623 
624 bool kvm_arch_intc_initialized(struct kvm *kvm)
625 {
626 	return vgic_initialized(kvm);
627 }
628 
629 void kvm_arm_halt_guest(struct kvm *kvm)
630 {
631 	int i;
632 	struct kvm_vcpu *vcpu;
633 
634 	kvm_for_each_vcpu(i, vcpu, kvm)
635 		vcpu->arch.pause = true;
636 	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
637 }
638 
639 void kvm_arm_resume_guest(struct kvm *kvm)
640 {
641 	int i;
642 	struct kvm_vcpu *vcpu;
643 
644 	kvm_for_each_vcpu(i, vcpu, kvm) {
645 		vcpu->arch.pause = false;
646 		rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
647 	}
648 }
649 
650 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
651 {
652 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
653 
654 	rcuwait_wait_event(wait,
655 			   (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
656 			   TASK_INTERRUPTIBLE);
657 
658 	if (vcpu->arch.power_off || vcpu->arch.pause) {
659 		/* Awaken to handle a signal, request we sleep again later. */
660 		kvm_make_request(KVM_REQ_SLEEP, vcpu);
661 	}
662 
663 	/*
664 	 * Make sure we will observe a potential reset request if we've
665 	 * observed a change to the power state. Pairs with the smp_wmb() in
666 	 * kvm_psci_vcpu_on().
667 	 */
668 	smp_rmb();
669 }
670 
671 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
672 {
673 	return vcpu->arch.target >= 0;
674 }
675 
676 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
677 {
678 	if (kvm_request_pending(vcpu)) {
679 		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
680 			vcpu_req_sleep(vcpu);
681 
682 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
683 			kvm_reset_vcpu(vcpu);
684 
685 		/*
686 		 * Clear IRQ_PENDING requests that were made to guarantee
687 		 * that a VCPU sees new virtual interrupts.
688 		 */
689 		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
690 
691 		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
692 			kvm_update_stolen_time(vcpu);
693 
694 		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
695 			/* The distributor enable bits were changed */
696 			preempt_disable();
697 			vgic_v4_put(vcpu, false);
698 			vgic_v4_load(vcpu);
699 			preempt_enable();
700 		}
701 
702 		if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
703 			kvm_pmu_handle_pmcr(vcpu,
704 					    __vcpu_sys_reg(vcpu, PMCR_EL0));
705 	}
706 }
707 
708 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
709 {
710 	if (likely(!vcpu_mode_is_32bit(vcpu)))
711 		return false;
712 
713 	return !system_supports_32bit_el0() ||
714 		static_branch_unlikely(&arm64_mismatched_32bit_el0);
715 }
716 
717 /**
718  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
719  * @vcpu:	The VCPU pointer
720  *
721  * This function is called through the VCPU_RUN ioctl called from user space. It
722  * will execute VM code in a loop until the time slice for the process is used
723  * or some emulation is needed from user space in which case the function will
724  * return with return value 0 and with the kvm_run structure filled in with the
725  * required data for the requested emulation.
726  */
727 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
728 {
729 	struct kvm_run *run = vcpu->run;
730 	int ret;
731 
732 	if (unlikely(!kvm_vcpu_initialized(vcpu)))
733 		return -ENOEXEC;
734 
735 	ret = kvm_vcpu_first_run_init(vcpu);
736 	if (ret)
737 		return ret;
738 
739 	if (run->exit_reason == KVM_EXIT_MMIO) {
740 		ret = kvm_handle_mmio_return(vcpu);
741 		if (ret)
742 			return ret;
743 	}
744 
745 	vcpu_load(vcpu);
746 
747 	if (run->immediate_exit) {
748 		ret = -EINTR;
749 		goto out;
750 	}
751 
752 	kvm_sigset_activate(vcpu);
753 
754 	ret = 1;
755 	run->exit_reason = KVM_EXIT_UNKNOWN;
756 	while (ret > 0) {
757 		/*
758 		 * Check conditions before entering the guest
759 		 */
760 		cond_resched();
761 
762 		update_vmid(&vcpu->arch.hw_mmu->vmid);
763 
764 		check_vcpu_requests(vcpu);
765 
766 		/*
767 		 * Preparing the interrupts to be injected also
768 		 * involves poking the GIC, which must be done in a
769 		 * non-preemptible context.
770 		 */
771 		preempt_disable();
772 
773 		kvm_pmu_flush_hwstate(vcpu);
774 
775 		local_irq_disable();
776 
777 		kvm_vgic_flush_hwstate(vcpu);
778 
779 		/*
780 		 * Exit if we have a signal pending so that we can deliver the
781 		 * signal to user space.
782 		 */
783 		if (signal_pending(current)) {
784 			ret = -EINTR;
785 			run->exit_reason = KVM_EXIT_INTR;
786 		}
787 
788 		/*
789 		 * If we're using a userspace irqchip, then check if we need
790 		 * to tell a userspace irqchip about timer or PMU level
791 		 * changes and if so, exit to userspace (the actual level
792 		 * state gets updated in kvm_timer_update_run and
793 		 * kvm_pmu_update_run below).
794 		 */
795 		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
796 			if (kvm_timer_should_notify_user(vcpu) ||
797 			    kvm_pmu_should_notify_user(vcpu)) {
798 				ret = -EINTR;
799 				run->exit_reason = KVM_EXIT_INTR;
800 			}
801 		}
802 
803 		/*
804 		 * Ensure we set mode to IN_GUEST_MODE after we disable
805 		 * interrupts and before the final VCPU requests check.
806 		 * See the comment in kvm_vcpu_exiting_guest_mode() and
807 		 * Documentation/virt/kvm/vcpu-requests.rst
808 		 */
809 		smp_store_mb(vcpu->mode, IN_GUEST_MODE);
810 
811 		if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
812 		    kvm_request_pending(vcpu)) {
813 			vcpu->mode = OUTSIDE_GUEST_MODE;
814 			isb(); /* Ensure work in x_flush_hwstate is committed */
815 			kvm_pmu_sync_hwstate(vcpu);
816 			if (static_branch_unlikely(&userspace_irqchip_in_use))
817 				kvm_timer_sync_user(vcpu);
818 			kvm_vgic_sync_hwstate(vcpu);
819 			local_irq_enable();
820 			preempt_enable();
821 			continue;
822 		}
823 
824 		kvm_arm_setup_debug(vcpu);
825 
826 		/**************************************************************
827 		 * Enter the guest
828 		 */
829 		trace_kvm_entry(*vcpu_pc(vcpu));
830 		guest_enter_irqoff();
831 
832 		ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
833 
834 		vcpu->mode = OUTSIDE_GUEST_MODE;
835 		vcpu->stat.exits++;
836 		/*
837 		 * Back from guest
838 		 *************************************************************/
839 
840 		kvm_arm_clear_debug(vcpu);
841 
842 		/*
843 		 * We must sync the PMU state before the vgic state so
844 		 * that the vgic can properly sample the updated state of the
845 		 * interrupt line.
846 		 */
847 		kvm_pmu_sync_hwstate(vcpu);
848 
849 		/*
850 		 * Sync the vgic state before syncing the timer state because
851 		 * the timer code needs to know if the virtual timer
852 		 * interrupts are active.
853 		 */
854 		kvm_vgic_sync_hwstate(vcpu);
855 
856 		/*
857 		 * Sync the timer hardware state before enabling interrupts as
858 		 * we don't want vtimer interrupts to race with syncing the
859 		 * timer virtual interrupt state.
860 		 */
861 		if (static_branch_unlikely(&userspace_irqchip_in_use))
862 			kvm_timer_sync_user(vcpu);
863 
864 		kvm_arch_vcpu_ctxsync_fp(vcpu);
865 
866 		/*
867 		 * We may have taken a host interrupt in HYP mode (ie
868 		 * while executing the guest). This interrupt is still
869 		 * pending, as we haven't serviced it yet!
870 		 *
871 		 * We're now back in SVC mode, with interrupts
872 		 * disabled.  Enabling the interrupts now will have
873 		 * the effect of taking the interrupt again, in SVC
874 		 * mode this time.
875 		 */
876 		local_irq_enable();
877 
878 		/*
879 		 * We do local_irq_enable() before calling guest_exit() so
880 		 * that if a timer interrupt hits while running the guest we
881 		 * account that tick as being spent in the guest.  We enable
882 		 * preemption after calling guest_exit() so that if we get
883 		 * preempted we make sure ticks after that is not counted as
884 		 * guest time.
885 		 */
886 		guest_exit();
887 		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
888 
889 		/* Exit types that need handling before we can be preempted */
890 		handle_exit_early(vcpu, ret);
891 
892 		preempt_enable();
893 
894 		/*
895 		 * The ARMv8 architecture doesn't give the hypervisor
896 		 * a mechanism to prevent a guest from dropping to AArch32 EL0
897 		 * if implemented by the CPU. If we spot the guest in such
898 		 * state and that we decided it wasn't supposed to do so (like
899 		 * with the asymmetric AArch32 case), return to userspace with
900 		 * a fatal error.
901 		 */
902 		if (vcpu_mode_is_bad_32bit(vcpu)) {
903 			/*
904 			 * As we have caught the guest red-handed, decide that
905 			 * it isn't fit for purpose anymore by making the vcpu
906 			 * invalid. The VMM can try and fix it by issuing  a
907 			 * KVM_ARM_VCPU_INIT if it really wants to.
908 			 */
909 			vcpu->arch.target = -1;
910 			ret = ARM_EXCEPTION_IL;
911 		}
912 
913 		ret = handle_exit(vcpu, ret);
914 	}
915 
916 	/* Tell userspace about in-kernel device output levels */
917 	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
918 		kvm_timer_update_run(vcpu);
919 		kvm_pmu_update_run(vcpu);
920 	}
921 
922 	kvm_sigset_deactivate(vcpu);
923 
924 out:
925 	/*
926 	 * In the unlikely event that we are returning to userspace
927 	 * with pending exceptions or PC adjustment, commit these
928 	 * adjustments in order to give userspace a consistent view of
929 	 * the vcpu state. Note that this relies on __kvm_adjust_pc()
930 	 * being preempt-safe on VHE.
931 	 */
932 	if (unlikely(vcpu->arch.flags & (KVM_ARM64_PENDING_EXCEPTION |
933 					 KVM_ARM64_INCREMENT_PC)))
934 		kvm_call_hyp(__kvm_adjust_pc, vcpu);
935 
936 	vcpu_put(vcpu);
937 	return ret;
938 }
939 
940 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
941 {
942 	int bit_index;
943 	bool set;
944 	unsigned long *hcr;
945 
946 	if (number == KVM_ARM_IRQ_CPU_IRQ)
947 		bit_index = __ffs(HCR_VI);
948 	else /* KVM_ARM_IRQ_CPU_FIQ */
949 		bit_index = __ffs(HCR_VF);
950 
951 	hcr = vcpu_hcr(vcpu);
952 	if (level)
953 		set = test_and_set_bit(bit_index, hcr);
954 	else
955 		set = test_and_clear_bit(bit_index, hcr);
956 
957 	/*
958 	 * If we didn't change anything, no need to wake up or kick other CPUs
959 	 */
960 	if (set == level)
961 		return 0;
962 
963 	/*
964 	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
965 	 * trigger a world-switch round on the running physical CPU to set the
966 	 * virtual IRQ/FIQ fields in the HCR appropriately.
967 	 */
968 	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
969 	kvm_vcpu_kick(vcpu);
970 
971 	return 0;
972 }
973 
974 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
975 			  bool line_status)
976 {
977 	u32 irq = irq_level->irq;
978 	unsigned int irq_type, vcpu_idx, irq_num;
979 	int nrcpus = atomic_read(&kvm->online_vcpus);
980 	struct kvm_vcpu *vcpu = NULL;
981 	bool level = irq_level->level;
982 
983 	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
984 	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
985 	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
986 	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
987 
988 	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
989 
990 	switch (irq_type) {
991 	case KVM_ARM_IRQ_TYPE_CPU:
992 		if (irqchip_in_kernel(kvm))
993 			return -ENXIO;
994 
995 		if (vcpu_idx >= nrcpus)
996 			return -EINVAL;
997 
998 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
999 		if (!vcpu)
1000 			return -EINVAL;
1001 
1002 		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1003 			return -EINVAL;
1004 
1005 		return vcpu_interrupt_line(vcpu, irq_num, level);
1006 	case KVM_ARM_IRQ_TYPE_PPI:
1007 		if (!irqchip_in_kernel(kvm))
1008 			return -ENXIO;
1009 
1010 		if (vcpu_idx >= nrcpus)
1011 			return -EINVAL;
1012 
1013 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1014 		if (!vcpu)
1015 			return -EINVAL;
1016 
1017 		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1018 			return -EINVAL;
1019 
1020 		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
1021 	case KVM_ARM_IRQ_TYPE_SPI:
1022 		if (!irqchip_in_kernel(kvm))
1023 			return -ENXIO;
1024 
1025 		if (irq_num < VGIC_NR_PRIVATE_IRQS)
1026 			return -EINVAL;
1027 
1028 		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1029 	}
1030 
1031 	return -EINVAL;
1032 }
1033 
1034 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1035 			       const struct kvm_vcpu_init *init)
1036 {
1037 	unsigned int i, ret;
1038 	int phys_target = kvm_target_cpu();
1039 
1040 	if (init->target != phys_target)
1041 		return -EINVAL;
1042 
1043 	/*
1044 	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1045 	 * use the same target.
1046 	 */
1047 	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
1048 		return -EINVAL;
1049 
1050 	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
1051 	for (i = 0; i < sizeof(init->features) * 8; i++) {
1052 		bool set = (init->features[i / 32] & (1 << (i % 32)));
1053 
1054 		if (set && i >= KVM_VCPU_MAX_FEATURES)
1055 			return -ENOENT;
1056 
1057 		/*
1058 		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1059 		 * use the same feature set.
1060 		 */
1061 		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
1062 		    test_bit(i, vcpu->arch.features) != set)
1063 			return -EINVAL;
1064 
1065 		if (set)
1066 			set_bit(i, vcpu->arch.features);
1067 	}
1068 
1069 	vcpu->arch.target = phys_target;
1070 
1071 	/* Now we know what it is, we can reset it. */
1072 	ret = kvm_reset_vcpu(vcpu);
1073 	if (ret) {
1074 		vcpu->arch.target = -1;
1075 		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1076 	}
1077 
1078 	return ret;
1079 }
1080 
1081 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1082 					 struct kvm_vcpu_init *init)
1083 {
1084 	int ret;
1085 
1086 	ret = kvm_vcpu_set_target(vcpu, init);
1087 	if (ret)
1088 		return ret;
1089 
1090 	/*
1091 	 * Ensure a rebooted VM will fault in RAM pages and detect if the
1092 	 * guest MMU is turned off and flush the caches as needed.
1093 	 *
1094 	 * S2FWB enforces all memory accesses to RAM being cacheable,
1095 	 * ensuring that the data side is always coherent. We still
1096 	 * need to invalidate the I-cache though, as FWB does *not*
1097 	 * imply CTR_EL0.DIC.
1098 	 */
1099 	if (vcpu->arch.has_run_once) {
1100 		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1101 			stage2_unmap_vm(vcpu->kvm);
1102 		else
1103 			icache_inval_all_pou();
1104 	}
1105 
1106 	vcpu_reset_hcr(vcpu);
1107 
1108 	/*
1109 	 * Handle the "start in power-off" case.
1110 	 */
1111 	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1112 		vcpu_power_off(vcpu);
1113 	else
1114 		vcpu->arch.power_off = false;
1115 
1116 	return 0;
1117 }
1118 
1119 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1120 				 struct kvm_device_attr *attr)
1121 {
1122 	int ret = -ENXIO;
1123 
1124 	switch (attr->group) {
1125 	default:
1126 		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1127 		break;
1128 	}
1129 
1130 	return ret;
1131 }
1132 
1133 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1134 				 struct kvm_device_attr *attr)
1135 {
1136 	int ret = -ENXIO;
1137 
1138 	switch (attr->group) {
1139 	default:
1140 		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1141 		break;
1142 	}
1143 
1144 	return ret;
1145 }
1146 
1147 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1148 				 struct kvm_device_attr *attr)
1149 {
1150 	int ret = -ENXIO;
1151 
1152 	switch (attr->group) {
1153 	default:
1154 		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1155 		break;
1156 	}
1157 
1158 	return ret;
1159 }
1160 
1161 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1162 				   struct kvm_vcpu_events *events)
1163 {
1164 	memset(events, 0, sizeof(*events));
1165 
1166 	return __kvm_arm_vcpu_get_events(vcpu, events);
1167 }
1168 
1169 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1170 				   struct kvm_vcpu_events *events)
1171 {
1172 	int i;
1173 
1174 	/* check whether the reserved field is zero */
1175 	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1176 		if (events->reserved[i])
1177 			return -EINVAL;
1178 
1179 	/* check whether the pad field is zero */
1180 	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1181 		if (events->exception.pad[i])
1182 			return -EINVAL;
1183 
1184 	return __kvm_arm_vcpu_set_events(vcpu, events);
1185 }
1186 
1187 long kvm_arch_vcpu_ioctl(struct file *filp,
1188 			 unsigned int ioctl, unsigned long arg)
1189 {
1190 	struct kvm_vcpu *vcpu = filp->private_data;
1191 	void __user *argp = (void __user *)arg;
1192 	struct kvm_device_attr attr;
1193 	long r;
1194 
1195 	switch (ioctl) {
1196 	case KVM_ARM_VCPU_INIT: {
1197 		struct kvm_vcpu_init init;
1198 
1199 		r = -EFAULT;
1200 		if (copy_from_user(&init, argp, sizeof(init)))
1201 			break;
1202 
1203 		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1204 		break;
1205 	}
1206 	case KVM_SET_ONE_REG:
1207 	case KVM_GET_ONE_REG: {
1208 		struct kvm_one_reg reg;
1209 
1210 		r = -ENOEXEC;
1211 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1212 			break;
1213 
1214 		r = -EFAULT;
1215 		if (copy_from_user(&reg, argp, sizeof(reg)))
1216 			break;
1217 
1218 		if (ioctl == KVM_SET_ONE_REG)
1219 			r = kvm_arm_set_reg(vcpu, &reg);
1220 		else
1221 			r = kvm_arm_get_reg(vcpu, &reg);
1222 		break;
1223 	}
1224 	case KVM_GET_REG_LIST: {
1225 		struct kvm_reg_list __user *user_list = argp;
1226 		struct kvm_reg_list reg_list;
1227 		unsigned n;
1228 
1229 		r = -ENOEXEC;
1230 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1231 			break;
1232 
1233 		r = -EPERM;
1234 		if (!kvm_arm_vcpu_is_finalized(vcpu))
1235 			break;
1236 
1237 		r = -EFAULT;
1238 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1239 			break;
1240 		n = reg_list.n;
1241 		reg_list.n = kvm_arm_num_regs(vcpu);
1242 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1243 			break;
1244 		r = -E2BIG;
1245 		if (n < reg_list.n)
1246 			break;
1247 		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1248 		break;
1249 	}
1250 	case KVM_SET_DEVICE_ATTR: {
1251 		r = -EFAULT;
1252 		if (copy_from_user(&attr, argp, sizeof(attr)))
1253 			break;
1254 		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1255 		break;
1256 	}
1257 	case KVM_GET_DEVICE_ATTR: {
1258 		r = -EFAULT;
1259 		if (copy_from_user(&attr, argp, sizeof(attr)))
1260 			break;
1261 		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1262 		break;
1263 	}
1264 	case KVM_HAS_DEVICE_ATTR: {
1265 		r = -EFAULT;
1266 		if (copy_from_user(&attr, argp, sizeof(attr)))
1267 			break;
1268 		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1269 		break;
1270 	}
1271 	case KVM_GET_VCPU_EVENTS: {
1272 		struct kvm_vcpu_events events;
1273 
1274 		if (kvm_arm_vcpu_get_events(vcpu, &events))
1275 			return -EINVAL;
1276 
1277 		if (copy_to_user(argp, &events, sizeof(events)))
1278 			return -EFAULT;
1279 
1280 		return 0;
1281 	}
1282 	case KVM_SET_VCPU_EVENTS: {
1283 		struct kvm_vcpu_events events;
1284 
1285 		if (copy_from_user(&events, argp, sizeof(events)))
1286 			return -EFAULT;
1287 
1288 		return kvm_arm_vcpu_set_events(vcpu, &events);
1289 	}
1290 	case KVM_ARM_VCPU_FINALIZE: {
1291 		int what;
1292 
1293 		if (!kvm_vcpu_initialized(vcpu))
1294 			return -ENOEXEC;
1295 
1296 		if (get_user(what, (const int __user *)argp))
1297 			return -EFAULT;
1298 
1299 		return kvm_arm_vcpu_finalize(vcpu, what);
1300 	}
1301 	default:
1302 		r = -EINVAL;
1303 	}
1304 
1305 	return r;
1306 }
1307 
1308 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1309 {
1310 
1311 }
1312 
1313 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1314 					const struct kvm_memory_slot *memslot)
1315 {
1316 	kvm_flush_remote_tlbs(kvm);
1317 }
1318 
1319 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1320 					struct kvm_arm_device_addr *dev_addr)
1321 {
1322 	unsigned long dev_id, type;
1323 
1324 	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1325 		KVM_ARM_DEVICE_ID_SHIFT;
1326 	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1327 		KVM_ARM_DEVICE_TYPE_SHIFT;
1328 
1329 	switch (dev_id) {
1330 	case KVM_ARM_DEVICE_VGIC_V2:
1331 		if (!vgic_present)
1332 			return -ENXIO;
1333 		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1334 	default:
1335 		return -ENODEV;
1336 	}
1337 }
1338 
1339 long kvm_arch_vm_ioctl(struct file *filp,
1340 		       unsigned int ioctl, unsigned long arg)
1341 {
1342 	struct kvm *kvm = filp->private_data;
1343 	void __user *argp = (void __user *)arg;
1344 
1345 	switch (ioctl) {
1346 	case KVM_CREATE_IRQCHIP: {
1347 		int ret;
1348 		if (!vgic_present)
1349 			return -ENXIO;
1350 		mutex_lock(&kvm->lock);
1351 		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1352 		mutex_unlock(&kvm->lock);
1353 		return ret;
1354 	}
1355 	case KVM_ARM_SET_DEVICE_ADDR: {
1356 		struct kvm_arm_device_addr dev_addr;
1357 
1358 		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1359 			return -EFAULT;
1360 		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1361 	}
1362 	case KVM_ARM_PREFERRED_TARGET: {
1363 		int err;
1364 		struct kvm_vcpu_init init;
1365 
1366 		err = kvm_vcpu_preferred_target(&init);
1367 		if (err)
1368 			return err;
1369 
1370 		if (copy_to_user(argp, &init, sizeof(init)))
1371 			return -EFAULT;
1372 
1373 		return 0;
1374 	}
1375 	case KVM_ARM_MTE_COPY_TAGS: {
1376 		struct kvm_arm_copy_mte_tags copy_tags;
1377 
1378 		if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1379 			return -EFAULT;
1380 		return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1381 	}
1382 	default:
1383 		return -EINVAL;
1384 	}
1385 }
1386 
1387 static unsigned long nvhe_percpu_size(void)
1388 {
1389 	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1390 		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1391 }
1392 
1393 static unsigned long nvhe_percpu_order(void)
1394 {
1395 	unsigned long size = nvhe_percpu_size();
1396 
1397 	return size ? get_order(size) : 0;
1398 }
1399 
1400 /* A lookup table holding the hypervisor VA for each vector slot */
1401 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1402 
1403 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1404 {
1405 	hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1406 }
1407 
1408 static int kvm_init_vector_slots(void)
1409 {
1410 	int err;
1411 	void *base;
1412 
1413 	base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1414 	kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1415 
1416 	base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1417 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1418 
1419 	if (!cpus_have_const_cap(ARM64_SPECTRE_V3A))
1420 		return 0;
1421 
1422 	if (!has_vhe()) {
1423 		err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1424 					       __BP_HARDEN_HYP_VECS_SZ, &base);
1425 		if (err)
1426 			return err;
1427 	}
1428 
1429 	kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1430 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1431 	return 0;
1432 }
1433 
1434 static void cpu_prepare_hyp_mode(int cpu)
1435 {
1436 	struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1437 	unsigned long tcr;
1438 
1439 	/*
1440 	 * Calculate the raw per-cpu offset without a translation from the
1441 	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
1442 	 * so that we can use adr_l to access per-cpu variables in EL2.
1443 	 * Also drop the KASAN tag which gets in the way...
1444 	 */
1445 	params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1446 			    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1447 
1448 	params->mair_el2 = read_sysreg(mair_el1);
1449 
1450 	/*
1451 	 * The ID map may be configured to use an extended virtual address
1452 	 * range. This is only the case if system RAM is out of range for the
1453 	 * currently configured page size and VA_BITS, in which case we will
1454 	 * also need the extended virtual range for the HYP ID map, or we won't
1455 	 * be able to enable the EL2 MMU.
1456 	 *
1457 	 * However, at EL2, there is only one TTBR register, and we can't switch
1458 	 * between translation tables *and* update TCR_EL2.T0SZ at the same
1459 	 * time. Bottom line: we need to use the extended range with *both* our
1460 	 * translation tables.
1461 	 *
1462 	 * So use the same T0SZ value we use for the ID map.
1463 	 */
1464 	tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
1465 	tcr &= ~TCR_T0SZ_MASK;
1466 	tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
1467 	params->tcr_el2 = tcr;
1468 
1469 	params->stack_hyp_va = kern_hyp_va(per_cpu(kvm_arm_hyp_stack_page, cpu) + PAGE_SIZE);
1470 	params->pgd_pa = kvm_mmu_get_httbr();
1471 	if (is_protected_kvm_enabled())
1472 		params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1473 	else
1474 		params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1475 	params->vttbr = params->vtcr = 0;
1476 
1477 	/*
1478 	 * Flush the init params from the data cache because the struct will
1479 	 * be read while the MMU is off.
1480 	 */
1481 	kvm_flush_dcache_to_poc(params, sizeof(*params));
1482 }
1483 
1484 static void hyp_install_host_vector(void)
1485 {
1486 	struct kvm_nvhe_init_params *params;
1487 	struct arm_smccc_res res;
1488 
1489 	/* Switch from the HYP stub to our own HYP init vector */
1490 	__hyp_set_vectors(kvm_get_idmap_vector());
1491 
1492 	/*
1493 	 * Call initialization code, and switch to the full blown HYP code.
1494 	 * If the cpucaps haven't been finalized yet, something has gone very
1495 	 * wrong, and hyp will crash and burn when it uses any
1496 	 * cpus_have_const_cap() wrapper.
1497 	 */
1498 	BUG_ON(!system_capabilities_finalized());
1499 	params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1500 	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1501 	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1502 }
1503 
1504 static void cpu_init_hyp_mode(void)
1505 {
1506 	hyp_install_host_vector();
1507 
1508 	/*
1509 	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
1510 	 * at EL2.
1511 	 */
1512 	if (this_cpu_has_cap(ARM64_SSBS) &&
1513 	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1514 		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1515 	}
1516 }
1517 
1518 static void cpu_hyp_reset(void)
1519 {
1520 	if (!is_kernel_in_hyp_mode())
1521 		__hyp_reset_vectors();
1522 }
1523 
1524 /*
1525  * EL2 vectors can be mapped and rerouted in a number of ways,
1526  * depending on the kernel configuration and CPU present:
1527  *
1528  * - If the CPU is affected by Spectre-v2, the hardening sequence is
1529  *   placed in one of the vector slots, which is executed before jumping
1530  *   to the real vectors.
1531  *
1532  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1533  *   containing the hardening sequence is mapped next to the idmap page,
1534  *   and executed before jumping to the real vectors.
1535  *
1536  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1537  *   empty slot is selected, mapped next to the idmap page, and
1538  *   executed before jumping to the real vectors.
1539  *
1540  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1541  * VHE, as we don't have hypervisor-specific mappings. If the system
1542  * is VHE and yet selects this capability, it will be ignored.
1543  */
1544 static void cpu_set_hyp_vector(void)
1545 {
1546 	struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1547 	void *vector = hyp_spectre_vector_selector[data->slot];
1548 
1549 	if (!is_protected_kvm_enabled())
1550 		*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1551 	else
1552 		kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1553 }
1554 
1555 static void cpu_hyp_reinit(void)
1556 {
1557 	kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1558 
1559 	cpu_hyp_reset();
1560 
1561 	if (is_kernel_in_hyp_mode())
1562 		kvm_timer_init_vhe();
1563 	else
1564 		cpu_init_hyp_mode();
1565 
1566 	cpu_set_hyp_vector();
1567 
1568 	kvm_arm_init_debug();
1569 
1570 	if (vgic_present)
1571 		kvm_vgic_init_cpu_hardware();
1572 }
1573 
1574 static void _kvm_arch_hardware_enable(void *discard)
1575 {
1576 	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1577 		cpu_hyp_reinit();
1578 		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1579 	}
1580 }
1581 
1582 int kvm_arch_hardware_enable(void)
1583 {
1584 	_kvm_arch_hardware_enable(NULL);
1585 	return 0;
1586 }
1587 
1588 static void _kvm_arch_hardware_disable(void *discard)
1589 {
1590 	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1591 		cpu_hyp_reset();
1592 		__this_cpu_write(kvm_arm_hardware_enabled, 0);
1593 	}
1594 }
1595 
1596 void kvm_arch_hardware_disable(void)
1597 {
1598 	if (!is_protected_kvm_enabled())
1599 		_kvm_arch_hardware_disable(NULL);
1600 }
1601 
1602 #ifdef CONFIG_CPU_PM
1603 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1604 				    unsigned long cmd,
1605 				    void *v)
1606 {
1607 	/*
1608 	 * kvm_arm_hardware_enabled is left with its old value over
1609 	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1610 	 * re-enable hyp.
1611 	 */
1612 	switch (cmd) {
1613 	case CPU_PM_ENTER:
1614 		if (__this_cpu_read(kvm_arm_hardware_enabled))
1615 			/*
1616 			 * don't update kvm_arm_hardware_enabled here
1617 			 * so that the hardware will be re-enabled
1618 			 * when we resume. See below.
1619 			 */
1620 			cpu_hyp_reset();
1621 
1622 		return NOTIFY_OK;
1623 	case CPU_PM_ENTER_FAILED:
1624 	case CPU_PM_EXIT:
1625 		if (__this_cpu_read(kvm_arm_hardware_enabled))
1626 			/* The hardware was enabled before suspend. */
1627 			cpu_hyp_reinit();
1628 
1629 		return NOTIFY_OK;
1630 
1631 	default:
1632 		return NOTIFY_DONE;
1633 	}
1634 }
1635 
1636 static struct notifier_block hyp_init_cpu_pm_nb = {
1637 	.notifier_call = hyp_init_cpu_pm_notifier,
1638 };
1639 
1640 static void hyp_cpu_pm_init(void)
1641 {
1642 	if (!is_protected_kvm_enabled())
1643 		cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1644 }
1645 static void hyp_cpu_pm_exit(void)
1646 {
1647 	if (!is_protected_kvm_enabled())
1648 		cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1649 }
1650 #else
1651 static inline void hyp_cpu_pm_init(void)
1652 {
1653 }
1654 static inline void hyp_cpu_pm_exit(void)
1655 {
1656 }
1657 #endif
1658 
1659 static void init_cpu_logical_map(void)
1660 {
1661 	unsigned int cpu;
1662 
1663 	/*
1664 	 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1665 	 * Only copy the set of online CPUs whose features have been chacked
1666 	 * against the finalized system capabilities. The hypervisor will not
1667 	 * allow any other CPUs from the `possible` set to boot.
1668 	 */
1669 	for_each_online_cpu(cpu)
1670 		hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1671 }
1672 
1673 #define init_psci_0_1_impl_state(config, what)	\
1674 	config.psci_0_1_ ## what ## _implemented = psci_ops.what
1675 
1676 static bool init_psci_relay(void)
1677 {
1678 	/*
1679 	 * If PSCI has not been initialized, protected KVM cannot install
1680 	 * itself on newly booted CPUs.
1681 	 */
1682 	if (!psci_ops.get_version) {
1683 		kvm_err("Cannot initialize protected mode without PSCI\n");
1684 		return false;
1685 	}
1686 
1687 	kvm_host_psci_config.version = psci_ops.get_version();
1688 
1689 	if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
1690 		kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1691 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
1692 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
1693 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
1694 		init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1695 	}
1696 	return true;
1697 }
1698 
1699 static int init_common_resources(void)
1700 {
1701 	return kvm_set_ipa_limit();
1702 }
1703 
1704 static int init_subsystems(void)
1705 {
1706 	int err = 0;
1707 
1708 	/*
1709 	 * Enable hardware so that subsystem initialisation can access EL2.
1710 	 */
1711 	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1712 
1713 	/*
1714 	 * Register CPU lower-power notifier
1715 	 */
1716 	hyp_cpu_pm_init();
1717 
1718 	/*
1719 	 * Init HYP view of VGIC
1720 	 */
1721 	err = kvm_vgic_hyp_init();
1722 	switch (err) {
1723 	case 0:
1724 		vgic_present = true;
1725 		break;
1726 	case -ENODEV:
1727 	case -ENXIO:
1728 		vgic_present = false;
1729 		err = 0;
1730 		break;
1731 	default:
1732 		goto out;
1733 	}
1734 
1735 	/*
1736 	 * Init HYP architected timer support
1737 	 */
1738 	err = kvm_timer_hyp_init(vgic_present);
1739 	if (err)
1740 		goto out;
1741 
1742 	kvm_perf_init();
1743 	kvm_sys_reg_table_init();
1744 
1745 out:
1746 	if (err || !is_protected_kvm_enabled())
1747 		on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1748 
1749 	return err;
1750 }
1751 
1752 static void teardown_hyp_mode(void)
1753 {
1754 	int cpu;
1755 
1756 	free_hyp_pgds();
1757 	for_each_possible_cpu(cpu) {
1758 		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1759 		free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
1760 	}
1761 }
1762 
1763 static int do_pkvm_init(u32 hyp_va_bits)
1764 {
1765 	void *per_cpu_base = kvm_ksym_ref(kvm_arm_hyp_percpu_base);
1766 	int ret;
1767 
1768 	preempt_disable();
1769 	hyp_install_host_vector();
1770 	ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
1771 				num_possible_cpus(), kern_hyp_va(per_cpu_base),
1772 				hyp_va_bits);
1773 	preempt_enable();
1774 
1775 	return ret;
1776 }
1777 
1778 static int kvm_hyp_init_protection(u32 hyp_va_bits)
1779 {
1780 	void *addr = phys_to_virt(hyp_mem_base);
1781 	int ret;
1782 
1783 	kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1784 	kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
1785 
1786 	ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
1787 	if (ret)
1788 		return ret;
1789 
1790 	ret = do_pkvm_init(hyp_va_bits);
1791 	if (ret)
1792 		return ret;
1793 
1794 	free_hyp_pgds();
1795 
1796 	return 0;
1797 }
1798 
1799 /**
1800  * Inits Hyp-mode on all online CPUs
1801  */
1802 static int init_hyp_mode(void)
1803 {
1804 	u32 hyp_va_bits;
1805 	int cpu;
1806 	int err = -ENOMEM;
1807 
1808 	/*
1809 	 * The protected Hyp-mode cannot be initialized if the memory pool
1810 	 * allocation has failed.
1811 	 */
1812 	if (is_protected_kvm_enabled() && !hyp_mem_base)
1813 		goto out_err;
1814 
1815 	/*
1816 	 * Allocate Hyp PGD and setup Hyp identity mapping
1817 	 */
1818 	err = kvm_mmu_init(&hyp_va_bits);
1819 	if (err)
1820 		goto out_err;
1821 
1822 	/*
1823 	 * Allocate stack pages for Hypervisor-mode
1824 	 */
1825 	for_each_possible_cpu(cpu) {
1826 		unsigned long stack_page;
1827 
1828 		stack_page = __get_free_page(GFP_KERNEL);
1829 		if (!stack_page) {
1830 			err = -ENOMEM;
1831 			goto out_err;
1832 		}
1833 
1834 		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1835 	}
1836 
1837 	/*
1838 	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
1839 	 */
1840 	for_each_possible_cpu(cpu) {
1841 		struct page *page;
1842 		void *page_addr;
1843 
1844 		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
1845 		if (!page) {
1846 			err = -ENOMEM;
1847 			goto out_err;
1848 		}
1849 
1850 		page_addr = page_address(page);
1851 		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
1852 		kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
1853 	}
1854 
1855 	/*
1856 	 * Map the Hyp-code called directly from the host
1857 	 */
1858 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1859 				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1860 	if (err) {
1861 		kvm_err("Cannot map world-switch code\n");
1862 		goto out_err;
1863 	}
1864 
1865 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
1866 				  kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1867 	if (err) {
1868 		kvm_err("Cannot map .hyp.rodata section\n");
1869 		goto out_err;
1870 	}
1871 
1872 	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1873 				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1874 	if (err) {
1875 		kvm_err("Cannot map rodata section\n");
1876 		goto out_err;
1877 	}
1878 
1879 	/*
1880 	 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
1881 	 * section thanks to an assertion in the linker script. Map it RW and
1882 	 * the rest of .bss RO.
1883 	 */
1884 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
1885 				  kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
1886 	if (err) {
1887 		kvm_err("Cannot map hyp bss section: %d\n", err);
1888 		goto out_err;
1889 	}
1890 
1891 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
1892 				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1893 	if (err) {
1894 		kvm_err("Cannot map bss section\n");
1895 		goto out_err;
1896 	}
1897 
1898 	/*
1899 	 * Map the Hyp stack pages
1900 	 */
1901 	for_each_possible_cpu(cpu) {
1902 		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1903 		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1904 					  PAGE_HYP);
1905 
1906 		if (err) {
1907 			kvm_err("Cannot map hyp stack\n");
1908 			goto out_err;
1909 		}
1910 	}
1911 
1912 	for_each_possible_cpu(cpu) {
1913 		char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
1914 		char *percpu_end = percpu_begin + nvhe_percpu_size();
1915 
1916 		/* Map Hyp percpu pages */
1917 		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1918 		if (err) {
1919 			kvm_err("Cannot map hyp percpu region\n");
1920 			goto out_err;
1921 		}
1922 
1923 		/* Prepare the CPU initialization parameters */
1924 		cpu_prepare_hyp_mode(cpu);
1925 	}
1926 
1927 	if (is_protected_kvm_enabled()) {
1928 		init_cpu_logical_map();
1929 
1930 		if (!init_psci_relay()) {
1931 			err = -ENODEV;
1932 			goto out_err;
1933 		}
1934 	}
1935 
1936 	if (is_protected_kvm_enabled()) {
1937 		err = kvm_hyp_init_protection(hyp_va_bits);
1938 		if (err) {
1939 			kvm_err("Failed to init hyp memory protection\n");
1940 			goto out_err;
1941 		}
1942 	}
1943 
1944 	return 0;
1945 
1946 out_err:
1947 	teardown_hyp_mode();
1948 	kvm_err("error initializing Hyp mode: %d\n", err);
1949 	return err;
1950 }
1951 
1952 static void _kvm_host_prot_finalize(void *discard)
1953 {
1954 	WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize));
1955 }
1956 
1957 static inline int pkvm_mark_hyp(phys_addr_t start, phys_addr_t end)
1958 {
1959 	return kvm_call_hyp_nvhe(__pkvm_mark_hyp, start, end);
1960 }
1961 
1962 #define pkvm_mark_hyp_section(__section)		\
1963 	pkvm_mark_hyp(__pa_symbol(__section##_start),	\
1964 			__pa_symbol(__section##_end))
1965 
1966 static int finalize_hyp_mode(void)
1967 {
1968 	int cpu, ret;
1969 
1970 	if (!is_protected_kvm_enabled())
1971 		return 0;
1972 
1973 	ret = pkvm_mark_hyp_section(__hyp_idmap_text);
1974 	if (ret)
1975 		return ret;
1976 
1977 	ret = pkvm_mark_hyp_section(__hyp_text);
1978 	if (ret)
1979 		return ret;
1980 
1981 	ret = pkvm_mark_hyp_section(__hyp_rodata);
1982 	if (ret)
1983 		return ret;
1984 
1985 	ret = pkvm_mark_hyp_section(__hyp_bss);
1986 	if (ret)
1987 		return ret;
1988 
1989 	ret = pkvm_mark_hyp(hyp_mem_base, hyp_mem_base + hyp_mem_size);
1990 	if (ret)
1991 		return ret;
1992 
1993 	for_each_possible_cpu(cpu) {
1994 		phys_addr_t start = virt_to_phys((void *)kvm_arm_hyp_percpu_base[cpu]);
1995 		phys_addr_t end = start + (PAGE_SIZE << nvhe_percpu_order());
1996 
1997 		ret = pkvm_mark_hyp(start, end);
1998 		if (ret)
1999 			return ret;
2000 
2001 		start = virt_to_phys((void *)per_cpu(kvm_arm_hyp_stack_page, cpu));
2002 		end = start + PAGE_SIZE;
2003 		ret = pkvm_mark_hyp(start, end);
2004 		if (ret)
2005 			return ret;
2006 	}
2007 
2008 	/*
2009 	 * Flip the static key upfront as that may no longer be possible
2010 	 * once the host stage 2 is installed.
2011 	 */
2012 	static_branch_enable(&kvm_protected_mode_initialized);
2013 	on_each_cpu(_kvm_host_prot_finalize, NULL, 1);
2014 
2015 	return 0;
2016 }
2017 
2018 static void check_kvm_target_cpu(void *ret)
2019 {
2020 	*(int *)ret = kvm_target_cpu();
2021 }
2022 
2023 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2024 {
2025 	struct kvm_vcpu *vcpu;
2026 	int i;
2027 
2028 	mpidr &= MPIDR_HWID_BITMASK;
2029 	kvm_for_each_vcpu(i, vcpu, kvm) {
2030 		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2031 			return vcpu;
2032 	}
2033 	return NULL;
2034 }
2035 
2036 bool kvm_arch_has_irq_bypass(void)
2037 {
2038 	return true;
2039 }
2040 
2041 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2042 				      struct irq_bypass_producer *prod)
2043 {
2044 	struct kvm_kernel_irqfd *irqfd =
2045 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2046 
2047 	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2048 					  &irqfd->irq_entry);
2049 }
2050 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2051 				      struct irq_bypass_producer *prod)
2052 {
2053 	struct kvm_kernel_irqfd *irqfd =
2054 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2055 
2056 	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2057 				     &irqfd->irq_entry);
2058 }
2059 
2060 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2061 {
2062 	struct kvm_kernel_irqfd *irqfd =
2063 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2064 
2065 	kvm_arm_halt_guest(irqfd->kvm);
2066 }
2067 
2068 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2069 {
2070 	struct kvm_kernel_irqfd *irqfd =
2071 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2072 
2073 	kvm_arm_resume_guest(irqfd->kvm);
2074 }
2075 
2076 /**
2077  * Initialize Hyp-mode and memory mappings on all CPUs.
2078  */
2079 int kvm_arch_init(void *opaque)
2080 {
2081 	int err;
2082 	int ret, cpu;
2083 	bool in_hyp_mode;
2084 
2085 	if (!is_hyp_mode_available()) {
2086 		kvm_info("HYP mode not available\n");
2087 		return -ENODEV;
2088 	}
2089 
2090 	in_hyp_mode = is_kernel_in_hyp_mode();
2091 
2092 	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2093 	    cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2094 		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2095 			 "Only trusted guests should be used on this system.\n");
2096 
2097 	for_each_online_cpu(cpu) {
2098 		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
2099 		if (ret < 0) {
2100 			kvm_err("Error, CPU %d not supported!\n", cpu);
2101 			return -ENODEV;
2102 		}
2103 	}
2104 
2105 	err = init_common_resources();
2106 	if (err)
2107 		return err;
2108 
2109 	err = kvm_arm_init_sve();
2110 	if (err)
2111 		return err;
2112 
2113 	if (!in_hyp_mode) {
2114 		err = init_hyp_mode();
2115 		if (err)
2116 			goto out_err;
2117 	}
2118 
2119 	err = kvm_init_vector_slots();
2120 	if (err) {
2121 		kvm_err("Cannot initialise vector slots\n");
2122 		goto out_err;
2123 	}
2124 
2125 	err = init_subsystems();
2126 	if (err)
2127 		goto out_hyp;
2128 
2129 	if (!in_hyp_mode) {
2130 		err = finalize_hyp_mode();
2131 		if (err) {
2132 			kvm_err("Failed to finalize Hyp protection\n");
2133 			goto out_hyp;
2134 		}
2135 	}
2136 
2137 	if (is_protected_kvm_enabled()) {
2138 		kvm_info("Protected nVHE mode initialized successfully\n");
2139 	} else if (in_hyp_mode) {
2140 		kvm_info("VHE mode initialized successfully\n");
2141 	} else {
2142 		kvm_info("Hyp mode initialized successfully\n");
2143 	}
2144 
2145 	return 0;
2146 
2147 out_hyp:
2148 	hyp_cpu_pm_exit();
2149 	if (!in_hyp_mode)
2150 		teardown_hyp_mode();
2151 out_err:
2152 	return err;
2153 }
2154 
2155 /* NOP: Compiling as a module not supported */
2156 void kvm_arch_exit(void)
2157 {
2158 	kvm_perf_teardown();
2159 }
2160 
2161 static int __init early_kvm_mode_cfg(char *arg)
2162 {
2163 	if (!arg)
2164 		return -EINVAL;
2165 
2166 	if (strcmp(arg, "protected") == 0) {
2167 		kvm_mode = KVM_MODE_PROTECTED;
2168 		return 0;
2169 	}
2170 
2171 	if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode()))
2172 		return 0;
2173 
2174 	return -EINVAL;
2175 }
2176 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2177 
2178 enum kvm_mode kvm_get_mode(void)
2179 {
2180 	return kvm_mode;
2181 }
2182 
2183 static int arm_init(void)
2184 {
2185 	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2186 	return rc;
2187 }
2188 
2189 module_init(arm_init);
2190