1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 4 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 5 */ 6 7 #include <linux/bug.h> 8 #include <linux/cpu_pm.h> 9 #include <linux/entry-kvm.h> 10 #include <linux/errno.h> 11 #include <linux/err.h> 12 #include <linux/kvm_host.h> 13 #include <linux/list.h> 14 #include <linux/module.h> 15 #include <linux/vmalloc.h> 16 #include <linux/fs.h> 17 #include <linux/mman.h> 18 #include <linux/sched.h> 19 #include <linux/kvm.h> 20 #include <linux/kvm_irqfd.h> 21 #include <linux/irqbypass.h> 22 #include <linux/sched/stat.h> 23 #include <linux/psci.h> 24 #include <trace/events/kvm.h> 25 26 #define CREATE_TRACE_POINTS 27 #include "trace_arm.h" 28 29 #include <linux/uaccess.h> 30 #include <asm/ptrace.h> 31 #include <asm/mman.h> 32 #include <asm/tlbflush.h> 33 #include <asm/cacheflush.h> 34 #include <asm/cpufeature.h> 35 #include <asm/virt.h> 36 #include <asm/kvm_arm.h> 37 #include <asm/kvm_asm.h> 38 #include <asm/kvm_emulate.h> 39 #include <asm/kvm_mmu.h> 40 #include <asm/kvm_nested.h> 41 #include <asm/kvm_pkvm.h> 42 #include <asm/kvm_ptrauth.h> 43 #include <asm/sections.h> 44 45 #include <kvm/arm_hypercalls.h> 46 #include <kvm/arm_pmu.h> 47 #include <kvm/arm_psci.h> 48 49 #include "sys_regs.h" 50 51 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT; 52 53 enum kvm_wfx_trap_policy { 54 KVM_WFX_NOTRAP_SINGLE_TASK, /* Default option */ 55 KVM_WFX_NOTRAP, 56 KVM_WFX_TRAP, 57 }; 58 59 static enum kvm_wfx_trap_policy kvm_wfi_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK; 60 static enum kvm_wfx_trap_policy kvm_wfe_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK; 61 62 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector); 63 64 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page); 65 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params); 66 67 DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt); 68 69 static bool vgic_present, kvm_arm_initialised; 70 71 static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized); 72 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use); 73 74 bool is_kvm_arm_initialised(void) 75 { 76 return kvm_arm_initialised; 77 } 78 79 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 80 { 81 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 82 } 83 84 /* 85 * This functions as an allow-list of protected VM capabilities. 86 * Features not explicitly allowed by this function are denied. 87 */ 88 static bool pkvm_ext_allowed(struct kvm *kvm, long ext) 89 { 90 switch (ext) { 91 case KVM_CAP_IRQCHIP: 92 case KVM_CAP_ARM_PSCI: 93 case KVM_CAP_ARM_PSCI_0_2: 94 case KVM_CAP_NR_VCPUS: 95 case KVM_CAP_MAX_VCPUS: 96 case KVM_CAP_MAX_VCPU_ID: 97 case KVM_CAP_MSI_DEVID: 98 case KVM_CAP_ARM_VM_IPA_SIZE: 99 case KVM_CAP_ARM_PMU_V3: 100 case KVM_CAP_ARM_SVE: 101 case KVM_CAP_ARM_PTRAUTH_ADDRESS: 102 case KVM_CAP_ARM_PTRAUTH_GENERIC: 103 return true; 104 default: 105 return false; 106 } 107 } 108 109 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 110 struct kvm_enable_cap *cap) 111 { 112 int r = -EINVAL; 113 114 if (cap->flags) 115 return -EINVAL; 116 117 if (kvm_vm_is_protected(kvm) && !pkvm_ext_allowed(kvm, cap->cap)) 118 return -EINVAL; 119 120 switch (cap->cap) { 121 case KVM_CAP_ARM_NISV_TO_USER: 122 r = 0; 123 set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER, 124 &kvm->arch.flags); 125 break; 126 case KVM_CAP_ARM_MTE: 127 mutex_lock(&kvm->lock); 128 if (system_supports_mte() && !kvm->created_vcpus) { 129 r = 0; 130 set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags); 131 } 132 mutex_unlock(&kvm->lock); 133 break; 134 case KVM_CAP_ARM_SYSTEM_SUSPEND: 135 r = 0; 136 set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags); 137 break; 138 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE: 139 mutex_lock(&kvm->slots_lock); 140 /* 141 * To keep things simple, allow changing the chunk 142 * size only when no memory slots have been created. 143 */ 144 if (kvm_are_all_memslots_empty(kvm)) { 145 u64 new_cap = cap->args[0]; 146 147 if (!new_cap || kvm_is_block_size_supported(new_cap)) { 148 r = 0; 149 kvm->arch.mmu.split_page_chunk_size = new_cap; 150 } 151 } 152 mutex_unlock(&kvm->slots_lock); 153 break; 154 default: 155 break; 156 } 157 158 return r; 159 } 160 161 static int kvm_arm_default_max_vcpus(void) 162 { 163 return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS; 164 } 165 166 /** 167 * kvm_arch_init_vm - initializes a VM data structure 168 * @kvm: pointer to the KVM struct 169 * @type: kvm device type 170 */ 171 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 172 { 173 int ret; 174 175 mutex_init(&kvm->arch.config_lock); 176 177 #ifdef CONFIG_LOCKDEP 178 /* Clue in lockdep that the config_lock must be taken inside kvm->lock */ 179 mutex_lock(&kvm->lock); 180 mutex_lock(&kvm->arch.config_lock); 181 mutex_unlock(&kvm->arch.config_lock); 182 mutex_unlock(&kvm->lock); 183 #endif 184 185 kvm_init_nested(kvm); 186 187 ret = kvm_share_hyp(kvm, kvm + 1); 188 if (ret) 189 return ret; 190 191 ret = pkvm_init_host_vm(kvm); 192 if (ret) 193 goto err_unshare_kvm; 194 195 if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) { 196 ret = -ENOMEM; 197 goto err_unshare_kvm; 198 } 199 cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask); 200 201 ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type); 202 if (ret) 203 goto err_free_cpumask; 204 205 kvm_vgic_early_init(kvm); 206 207 kvm_timer_init_vm(kvm); 208 209 /* The maximum number of VCPUs is limited by the host's GIC model */ 210 kvm->max_vcpus = kvm_arm_default_max_vcpus(); 211 212 kvm_arm_init_hypercalls(kvm); 213 214 bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES); 215 216 return 0; 217 218 err_free_cpumask: 219 free_cpumask_var(kvm->arch.supported_cpus); 220 err_unshare_kvm: 221 kvm_unshare_hyp(kvm, kvm + 1); 222 return ret; 223 } 224 225 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 226 { 227 return VM_FAULT_SIGBUS; 228 } 229 230 void kvm_arch_create_vm_debugfs(struct kvm *kvm) 231 { 232 kvm_sys_regs_create_debugfs(kvm); 233 kvm_s2_ptdump_create_debugfs(kvm); 234 } 235 236 static void kvm_destroy_mpidr_data(struct kvm *kvm) 237 { 238 struct kvm_mpidr_data *data; 239 240 mutex_lock(&kvm->arch.config_lock); 241 242 data = rcu_dereference_protected(kvm->arch.mpidr_data, 243 lockdep_is_held(&kvm->arch.config_lock)); 244 if (data) { 245 rcu_assign_pointer(kvm->arch.mpidr_data, NULL); 246 synchronize_rcu(); 247 kfree(data); 248 } 249 250 mutex_unlock(&kvm->arch.config_lock); 251 } 252 253 /** 254 * kvm_arch_destroy_vm - destroy the VM data structure 255 * @kvm: pointer to the KVM struct 256 */ 257 void kvm_arch_destroy_vm(struct kvm *kvm) 258 { 259 bitmap_free(kvm->arch.pmu_filter); 260 free_cpumask_var(kvm->arch.supported_cpus); 261 262 kvm_vgic_destroy(kvm); 263 264 if (is_protected_kvm_enabled()) 265 pkvm_destroy_hyp_vm(kvm); 266 267 kvm_destroy_mpidr_data(kvm); 268 269 kfree(kvm->arch.sysreg_masks); 270 kvm_destroy_vcpus(kvm); 271 272 kvm_unshare_hyp(kvm, kvm + 1); 273 274 kvm_arm_teardown_hypercalls(kvm); 275 } 276 277 static bool kvm_has_full_ptr_auth(void) 278 { 279 bool apa, gpa, api, gpi, apa3, gpa3; 280 u64 isar1, isar2, val; 281 282 /* 283 * Check that: 284 * 285 * - both Address and Generic auth are implemented for a given 286 * algorithm (Q5, IMPDEF or Q3) 287 * - only a single algorithm is implemented. 288 */ 289 if (!system_has_full_ptr_auth()) 290 return false; 291 292 isar1 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1); 293 isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1); 294 295 apa = !!FIELD_GET(ID_AA64ISAR1_EL1_APA_MASK, isar1); 296 val = FIELD_GET(ID_AA64ISAR1_EL1_GPA_MASK, isar1); 297 gpa = (val == ID_AA64ISAR1_EL1_GPA_IMP); 298 299 api = !!FIELD_GET(ID_AA64ISAR1_EL1_API_MASK, isar1); 300 val = FIELD_GET(ID_AA64ISAR1_EL1_GPI_MASK, isar1); 301 gpi = (val == ID_AA64ISAR1_EL1_GPI_IMP); 302 303 apa3 = !!FIELD_GET(ID_AA64ISAR2_EL1_APA3_MASK, isar2); 304 val = FIELD_GET(ID_AA64ISAR2_EL1_GPA3_MASK, isar2); 305 gpa3 = (val == ID_AA64ISAR2_EL1_GPA3_IMP); 306 307 return (apa == gpa && api == gpi && apa3 == gpa3 && 308 (apa + api + apa3) == 1); 309 } 310 311 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 312 { 313 int r; 314 315 if (kvm && kvm_vm_is_protected(kvm) && !pkvm_ext_allowed(kvm, ext)) 316 return 0; 317 318 switch (ext) { 319 case KVM_CAP_IRQCHIP: 320 r = vgic_present; 321 break; 322 case KVM_CAP_IOEVENTFD: 323 case KVM_CAP_USER_MEMORY: 324 case KVM_CAP_SYNC_MMU: 325 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 326 case KVM_CAP_ONE_REG: 327 case KVM_CAP_ARM_PSCI: 328 case KVM_CAP_ARM_PSCI_0_2: 329 case KVM_CAP_READONLY_MEM: 330 case KVM_CAP_MP_STATE: 331 case KVM_CAP_IMMEDIATE_EXIT: 332 case KVM_CAP_VCPU_EVENTS: 333 case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2: 334 case KVM_CAP_ARM_NISV_TO_USER: 335 case KVM_CAP_ARM_INJECT_EXT_DABT: 336 case KVM_CAP_SET_GUEST_DEBUG: 337 case KVM_CAP_VCPU_ATTRIBUTES: 338 case KVM_CAP_PTP_KVM: 339 case KVM_CAP_ARM_SYSTEM_SUSPEND: 340 case KVM_CAP_IRQFD_RESAMPLE: 341 case KVM_CAP_COUNTER_OFFSET: 342 r = 1; 343 break; 344 case KVM_CAP_SET_GUEST_DEBUG2: 345 return KVM_GUESTDBG_VALID_MASK; 346 case KVM_CAP_ARM_SET_DEVICE_ADDR: 347 r = 1; 348 break; 349 case KVM_CAP_NR_VCPUS: 350 /* 351 * ARM64 treats KVM_CAP_NR_CPUS differently from all other 352 * architectures, as it does not always bound it to 353 * KVM_CAP_MAX_VCPUS. It should not matter much because 354 * this is just an advisory value. 355 */ 356 r = min_t(unsigned int, num_online_cpus(), 357 kvm_arm_default_max_vcpus()); 358 break; 359 case KVM_CAP_MAX_VCPUS: 360 case KVM_CAP_MAX_VCPU_ID: 361 if (kvm) 362 r = kvm->max_vcpus; 363 else 364 r = kvm_arm_default_max_vcpus(); 365 break; 366 case KVM_CAP_MSI_DEVID: 367 if (!kvm) 368 r = -EINVAL; 369 else 370 r = kvm->arch.vgic.msis_require_devid; 371 break; 372 case KVM_CAP_ARM_USER_IRQ: 373 /* 374 * 1: EL1_VTIMER, EL1_PTIMER, and PMU. 375 * (bump this number if adding more devices) 376 */ 377 r = 1; 378 break; 379 case KVM_CAP_ARM_MTE: 380 r = system_supports_mte(); 381 break; 382 case KVM_CAP_STEAL_TIME: 383 r = kvm_arm_pvtime_supported(); 384 break; 385 case KVM_CAP_ARM_EL1_32BIT: 386 r = cpus_have_final_cap(ARM64_HAS_32BIT_EL1); 387 break; 388 case KVM_CAP_GUEST_DEBUG_HW_BPS: 389 r = get_num_brps(); 390 break; 391 case KVM_CAP_GUEST_DEBUG_HW_WPS: 392 r = get_num_wrps(); 393 break; 394 case KVM_CAP_ARM_PMU_V3: 395 r = kvm_arm_support_pmu_v3(); 396 break; 397 case KVM_CAP_ARM_INJECT_SERROR_ESR: 398 r = cpus_have_final_cap(ARM64_HAS_RAS_EXTN); 399 break; 400 case KVM_CAP_ARM_VM_IPA_SIZE: 401 r = get_kvm_ipa_limit(); 402 break; 403 case KVM_CAP_ARM_SVE: 404 r = system_supports_sve(); 405 break; 406 case KVM_CAP_ARM_PTRAUTH_ADDRESS: 407 case KVM_CAP_ARM_PTRAUTH_GENERIC: 408 r = kvm_has_full_ptr_auth(); 409 break; 410 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE: 411 if (kvm) 412 r = kvm->arch.mmu.split_page_chunk_size; 413 else 414 r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT; 415 break; 416 case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES: 417 r = kvm_supported_block_sizes(); 418 break; 419 case KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES: 420 r = BIT(0); 421 break; 422 default: 423 r = 0; 424 } 425 426 return r; 427 } 428 429 long kvm_arch_dev_ioctl(struct file *filp, 430 unsigned int ioctl, unsigned long arg) 431 { 432 return -EINVAL; 433 } 434 435 struct kvm *kvm_arch_alloc_vm(void) 436 { 437 size_t sz = sizeof(struct kvm); 438 439 if (!has_vhe()) 440 return kzalloc(sz, GFP_KERNEL_ACCOUNT); 441 442 return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO); 443 } 444 445 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 446 { 447 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) 448 return -EBUSY; 449 450 if (id >= kvm->max_vcpus) 451 return -EINVAL; 452 453 return 0; 454 } 455 456 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 457 { 458 int err; 459 460 spin_lock_init(&vcpu->arch.mp_state_lock); 461 462 #ifdef CONFIG_LOCKDEP 463 /* Inform lockdep that the config_lock is acquired after vcpu->mutex */ 464 mutex_lock(&vcpu->mutex); 465 mutex_lock(&vcpu->kvm->arch.config_lock); 466 mutex_unlock(&vcpu->kvm->arch.config_lock); 467 mutex_unlock(&vcpu->mutex); 468 #endif 469 470 /* Force users to call KVM_ARM_VCPU_INIT */ 471 vcpu_clear_flag(vcpu, VCPU_INITIALIZED); 472 473 vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO; 474 475 /* Set up the timer */ 476 kvm_timer_vcpu_init(vcpu); 477 478 kvm_pmu_vcpu_init(vcpu); 479 480 kvm_arm_reset_debug_ptr(vcpu); 481 482 kvm_arm_pvtime_vcpu_init(&vcpu->arch); 483 484 vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu; 485 486 /* 487 * This vCPU may have been created after mpidr_data was initialized. 488 * Throw out the pre-computed mappings if that is the case which forces 489 * KVM to fall back to iteratively searching the vCPUs. 490 */ 491 kvm_destroy_mpidr_data(vcpu->kvm); 492 493 err = kvm_vgic_vcpu_init(vcpu); 494 if (err) 495 return err; 496 497 return kvm_share_hyp(vcpu, vcpu + 1); 498 } 499 500 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 501 { 502 } 503 504 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 505 { 506 if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm))) 507 static_branch_dec(&userspace_irqchip_in_use); 508 509 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); 510 kvm_timer_vcpu_terminate(vcpu); 511 kvm_pmu_vcpu_destroy(vcpu); 512 kvm_vgic_vcpu_destroy(vcpu); 513 kvm_arm_vcpu_destroy(vcpu); 514 } 515 516 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 517 { 518 519 } 520 521 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 522 { 523 524 } 525 526 static void vcpu_set_pauth_traps(struct kvm_vcpu *vcpu) 527 { 528 if (vcpu_has_ptrauth(vcpu) && !is_protected_kvm_enabled()) { 529 /* 530 * Either we're running an L2 guest, and the API/APK bits come 531 * from L1's HCR_EL2, or API/APK are both set. 532 */ 533 if (unlikely(vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu))) { 534 u64 val; 535 536 val = __vcpu_sys_reg(vcpu, HCR_EL2); 537 val &= (HCR_API | HCR_APK); 538 vcpu->arch.hcr_el2 &= ~(HCR_API | HCR_APK); 539 vcpu->arch.hcr_el2 |= val; 540 } else { 541 vcpu->arch.hcr_el2 |= (HCR_API | HCR_APK); 542 } 543 544 /* 545 * Save the host keys if there is any chance for the guest 546 * to use pauth, as the entry code will reload the guest 547 * keys in that case. 548 */ 549 if (vcpu->arch.hcr_el2 & (HCR_API | HCR_APK)) { 550 struct kvm_cpu_context *ctxt; 551 552 ctxt = this_cpu_ptr_hyp_sym(kvm_hyp_ctxt); 553 ptrauth_save_keys(ctxt); 554 } 555 } 556 } 557 558 static bool kvm_vcpu_should_clear_twi(struct kvm_vcpu *vcpu) 559 { 560 if (unlikely(kvm_wfi_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK)) 561 return kvm_wfi_trap_policy == KVM_WFX_NOTRAP; 562 563 return single_task_running() && 564 (atomic_read(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count) || 565 vcpu->kvm->arch.vgic.nassgireq); 566 } 567 568 static bool kvm_vcpu_should_clear_twe(struct kvm_vcpu *vcpu) 569 { 570 if (unlikely(kvm_wfe_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK)) 571 return kvm_wfe_trap_policy == KVM_WFX_NOTRAP; 572 573 return single_task_running(); 574 } 575 576 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 577 { 578 struct kvm_s2_mmu *mmu; 579 int *last_ran; 580 581 if (vcpu_has_nv(vcpu)) 582 kvm_vcpu_load_hw_mmu(vcpu); 583 584 mmu = vcpu->arch.hw_mmu; 585 last_ran = this_cpu_ptr(mmu->last_vcpu_ran); 586 587 /* 588 * We guarantee that both TLBs and I-cache are private to each 589 * vcpu. If detecting that a vcpu from the same VM has 590 * previously run on the same physical CPU, call into the 591 * hypervisor code to nuke the relevant contexts. 592 * 593 * We might get preempted before the vCPU actually runs, but 594 * over-invalidation doesn't affect correctness. 595 */ 596 if (*last_ran != vcpu->vcpu_idx) { 597 kvm_call_hyp(__kvm_flush_cpu_context, mmu); 598 *last_ran = vcpu->vcpu_idx; 599 } 600 601 vcpu->cpu = cpu; 602 603 kvm_vgic_load(vcpu); 604 kvm_timer_vcpu_load(vcpu); 605 if (has_vhe()) 606 kvm_vcpu_load_vhe(vcpu); 607 kvm_arch_vcpu_load_fp(vcpu); 608 kvm_vcpu_pmu_restore_guest(vcpu); 609 if (kvm_arm_is_pvtime_enabled(&vcpu->arch)) 610 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu); 611 612 if (kvm_vcpu_should_clear_twe(vcpu)) 613 vcpu->arch.hcr_el2 &= ~HCR_TWE; 614 else 615 vcpu->arch.hcr_el2 |= HCR_TWE; 616 617 if (kvm_vcpu_should_clear_twi(vcpu)) 618 vcpu->arch.hcr_el2 &= ~HCR_TWI; 619 else 620 vcpu->arch.hcr_el2 |= HCR_TWI; 621 622 vcpu_set_pauth_traps(vcpu); 623 624 kvm_arch_vcpu_load_debug_state_flags(vcpu); 625 626 if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus)) 627 vcpu_set_on_unsupported_cpu(vcpu); 628 } 629 630 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 631 { 632 kvm_arch_vcpu_put_debug_state_flags(vcpu); 633 kvm_arch_vcpu_put_fp(vcpu); 634 if (has_vhe()) 635 kvm_vcpu_put_vhe(vcpu); 636 kvm_timer_vcpu_put(vcpu); 637 kvm_vgic_put(vcpu); 638 kvm_vcpu_pmu_restore_host(vcpu); 639 if (vcpu_has_nv(vcpu)) 640 kvm_vcpu_put_hw_mmu(vcpu); 641 kvm_arm_vmid_clear_active(); 642 643 vcpu_clear_on_unsupported_cpu(vcpu); 644 vcpu->cpu = -1; 645 } 646 647 static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu) 648 { 649 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED); 650 kvm_make_request(KVM_REQ_SLEEP, vcpu); 651 kvm_vcpu_kick(vcpu); 652 } 653 654 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu) 655 { 656 spin_lock(&vcpu->arch.mp_state_lock); 657 __kvm_arm_vcpu_power_off(vcpu); 658 spin_unlock(&vcpu->arch.mp_state_lock); 659 } 660 661 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu) 662 { 663 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED; 664 } 665 666 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu) 667 { 668 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED); 669 kvm_make_request(KVM_REQ_SUSPEND, vcpu); 670 kvm_vcpu_kick(vcpu); 671 } 672 673 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu) 674 { 675 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED; 676 } 677 678 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 679 struct kvm_mp_state *mp_state) 680 { 681 *mp_state = READ_ONCE(vcpu->arch.mp_state); 682 683 return 0; 684 } 685 686 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 687 struct kvm_mp_state *mp_state) 688 { 689 int ret = 0; 690 691 spin_lock(&vcpu->arch.mp_state_lock); 692 693 switch (mp_state->mp_state) { 694 case KVM_MP_STATE_RUNNABLE: 695 WRITE_ONCE(vcpu->arch.mp_state, *mp_state); 696 break; 697 case KVM_MP_STATE_STOPPED: 698 __kvm_arm_vcpu_power_off(vcpu); 699 break; 700 case KVM_MP_STATE_SUSPENDED: 701 kvm_arm_vcpu_suspend(vcpu); 702 break; 703 default: 704 ret = -EINVAL; 705 } 706 707 spin_unlock(&vcpu->arch.mp_state_lock); 708 709 return ret; 710 } 711 712 /** 713 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled 714 * @v: The VCPU pointer 715 * 716 * If the guest CPU is not waiting for interrupts or an interrupt line is 717 * asserted, the CPU is by definition runnable. 718 */ 719 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 720 { 721 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF); 722 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v)) 723 && !kvm_arm_vcpu_stopped(v) && !v->arch.pause); 724 } 725 726 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 727 { 728 return vcpu_mode_priv(vcpu); 729 } 730 731 #ifdef CONFIG_GUEST_PERF_EVENTS 732 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 733 { 734 return *vcpu_pc(vcpu); 735 } 736 #endif 737 738 static void kvm_init_mpidr_data(struct kvm *kvm) 739 { 740 struct kvm_mpidr_data *data = NULL; 741 unsigned long c, mask, nr_entries; 742 u64 aff_set = 0, aff_clr = ~0UL; 743 struct kvm_vcpu *vcpu; 744 745 mutex_lock(&kvm->arch.config_lock); 746 747 if (rcu_access_pointer(kvm->arch.mpidr_data) || 748 atomic_read(&kvm->online_vcpus) == 1) 749 goto out; 750 751 kvm_for_each_vcpu(c, vcpu, kvm) { 752 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu); 753 aff_set |= aff; 754 aff_clr &= aff; 755 } 756 757 /* 758 * A significant bit can be either 0 or 1, and will only appear in 759 * aff_set. Use aff_clr to weed out the useless stuff. 760 */ 761 mask = aff_set ^ aff_clr; 762 nr_entries = BIT_ULL(hweight_long(mask)); 763 764 /* 765 * Don't let userspace fool us. If we need more than a single page 766 * to describe the compressed MPIDR array, just fall back to the 767 * iterative method. Single vcpu VMs do not need this either. 768 */ 769 if (struct_size(data, cmpidr_to_idx, nr_entries) <= PAGE_SIZE) 770 data = kzalloc(struct_size(data, cmpidr_to_idx, nr_entries), 771 GFP_KERNEL_ACCOUNT); 772 773 if (!data) 774 goto out; 775 776 data->mpidr_mask = mask; 777 778 kvm_for_each_vcpu(c, vcpu, kvm) { 779 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu); 780 u16 index = kvm_mpidr_index(data, aff); 781 782 data->cmpidr_to_idx[index] = c; 783 } 784 785 rcu_assign_pointer(kvm->arch.mpidr_data, data); 786 out: 787 mutex_unlock(&kvm->arch.config_lock); 788 } 789 790 /* 791 * Handle both the initialisation that is being done when the vcpu is 792 * run for the first time, as well as the updates that must be 793 * performed each time we get a new thread dealing with this vcpu. 794 */ 795 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 796 { 797 struct kvm *kvm = vcpu->kvm; 798 int ret; 799 800 if (!kvm_vcpu_initialized(vcpu)) 801 return -ENOEXEC; 802 803 if (!kvm_arm_vcpu_is_finalized(vcpu)) 804 return -EPERM; 805 806 ret = kvm_arch_vcpu_run_map_fp(vcpu); 807 if (ret) 808 return ret; 809 810 if (likely(vcpu_has_run_once(vcpu))) 811 return 0; 812 813 kvm_init_mpidr_data(kvm); 814 815 kvm_arm_vcpu_init_debug(vcpu); 816 817 if (likely(irqchip_in_kernel(kvm))) { 818 /* 819 * Map the VGIC hardware resources before running a vcpu the 820 * first time on this VM. 821 */ 822 ret = kvm_vgic_map_resources(kvm); 823 if (ret) 824 return ret; 825 } 826 827 ret = kvm_finalize_sys_regs(vcpu); 828 if (ret) 829 return ret; 830 831 /* 832 * This needs to happen after any restriction has been applied 833 * to the feature set. 834 */ 835 kvm_calculate_traps(vcpu); 836 837 ret = kvm_timer_enable(vcpu); 838 if (ret) 839 return ret; 840 841 ret = kvm_arm_pmu_v3_enable(vcpu); 842 if (ret) 843 return ret; 844 845 if (is_protected_kvm_enabled()) { 846 ret = pkvm_create_hyp_vm(kvm); 847 if (ret) 848 return ret; 849 } 850 851 if (!irqchip_in_kernel(kvm)) { 852 /* 853 * Tell the rest of the code that there are userspace irqchip 854 * VMs in the wild. 855 */ 856 static_branch_inc(&userspace_irqchip_in_use); 857 } 858 859 /* 860 * Initialize traps for protected VMs. 861 * NOTE: Move to run in EL2 directly, rather than via a hypercall, once 862 * the code is in place for first run initialization at EL2. 863 */ 864 if (kvm_vm_is_protected(kvm)) 865 kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu); 866 867 mutex_lock(&kvm->arch.config_lock); 868 set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags); 869 mutex_unlock(&kvm->arch.config_lock); 870 871 return ret; 872 } 873 874 bool kvm_arch_intc_initialized(struct kvm *kvm) 875 { 876 return vgic_initialized(kvm); 877 } 878 879 void kvm_arm_halt_guest(struct kvm *kvm) 880 { 881 unsigned long i; 882 struct kvm_vcpu *vcpu; 883 884 kvm_for_each_vcpu(i, vcpu, kvm) 885 vcpu->arch.pause = true; 886 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP); 887 } 888 889 void kvm_arm_resume_guest(struct kvm *kvm) 890 { 891 unsigned long i; 892 struct kvm_vcpu *vcpu; 893 894 kvm_for_each_vcpu(i, vcpu, kvm) { 895 vcpu->arch.pause = false; 896 __kvm_vcpu_wake_up(vcpu); 897 } 898 } 899 900 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu) 901 { 902 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 903 904 rcuwait_wait_event(wait, 905 (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause), 906 TASK_INTERRUPTIBLE); 907 908 if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) { 909 /* Awaken to handle a signal, request we sleep again later. */ 910 kvm_make_request(KVM_REQ_SLEEP, vcpu); 911 } 912 913 /* 914 * Make sure we will observe a potential reset request if we've 915 * observed a change to the power state. Pairs with the smp_wmb() in 916 * kvm_psci_vcpu_on(). 917 */ 918 smp_rmb(); 919 } 920 921 /** 922 * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior 923 * @vcpu: The VCPU pointer 924 * 925 * Suspend execution of a vCPU until a valid wake event is detected, i.e. until 926 * the vCPU is runnable. The vCPU may or may not be scheduled out, depending 927 * on when a wake event arrives, e.g. there may already be a pending wake event. 928 */ 929 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu) 930 { 931 /* 932 * Sync back the state of the GIC CPU interface so that we have 933 * the latest PMR and group enables. This ensures that 934 * kvm_arch_vcpu_runnable has up-to-date data to decide whether 935 * we have pending interrupts, e.g. when determining if the 936 * vCPU should block. 937 * 938 * For the same reason, we want to tell GICv4 that we need 939 * doorbells to be signalled, should an interrupt become pending. 940 */ 941 preempt_disable(); 942 vcpu_set_flag(vcpu, IN_WFI); 943 kvm_vgic_put(vcpu); 944 preempt_enable(); 945 946 kvm_vcpu_halt(vcpu); 947 vcpu_clear_flag(vcpu, IN_WFIT); 948 949 preempt_disable(); 950 vcpu_clear_flag(vcpu, IN_WFI); 951 kvm_vgic_load(vcpu); 952 preempt_enable(); 953 } 954 955 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu) 956 { 957 if (!kvm_arm_vcpu_suspended(vcpu)) 958 return 1; 959 960 kvm_vcpu_wfi(vcpu); 961 962 /* 963 * The suspend state is sticky; we do not leave it until userspace 964 * explicitly marks the vCPU as runnable. Request that we suspend again 965 * later. 966 */ 967 kvm_make_request(KVM_REQ_SUSPEND, vcpu); 968 969 /* 970 * Check to make sure the vCPU is actually runnable. If so, exit to 971 * userspace informing it of the wakeup condition. 972 */ 973 if (kvm_arch_vcpu_runnable(vcpu)) { 974 memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event)); 975 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP; 976 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 977 return 0; 978 } 979 980 /* 981 * Otherwise, we were unblocked to process a different event, such as a 982 * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to 983 * process the event. 984 */ 985 return 1; 986 } 987 988 /** 989 * check_vcpu_requests - check and handle pending vCPU requests 990 * @vcpu: the VCPU pointer 991 * 992 * Return: 1 if we should enter the guest 993 * 0 if we should exit to userspace 994 * < 0 if we should exit to userspace, where the return value indicates 995 * an error 996 */ 997 static int check_vcpu_requests(struct kvm_vcpu *vcpu) 998 { 999 if (kvm_request_pending(vcpu)) { 1000 if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) 1001 kvm_vcpu_sleep(vcpu); 1002 1003 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) 1004 kvm_reset_vcpu(vcpu); 1005 1006 /* 1007 * Clear IRQ_PENDING requests that were made to guarantee 1008 * that a VCPU sees new virtual interrupts. 1009 */ 1010 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu); 1011 1012 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu)) 1013 kvm_update_stolen_time(vcpu); 1014 1015 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) { 1016 /* The distributor enable bits were changed */ 1017 preempt_disable(); 1018 vgic_v4_put(vcpu); 1019 vgic_v4_load(vcpu); 1020 preempt_enable(); 1021 } 1022 1023 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu)) 1024 kvm_vcpu_reload_pmu(vcpu); 1025 1026 if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu)) 1027 kvm_vcpu_pmu_restore_guest(vcpu); 1028 1029 if (kvm_check_request(KVM_REQ_SUSPEND, vcpu)) 1030 return kvm_vcpu_suspend(vcpu); 1031 1032 if (kvm_dirty_ring_check_request(vcpu)) 1033 return 0; 1034 } 1035 1036 return 1; 1037 } 1038 1039 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu) 1040 { 1041 if (likely(!vcpu_mode_is_32bit(vcpu))) 1042 return false; 1043 1044 if (vcpu_has_nv(vcpu)) 1045 return true; 1046 1047 return !kvm_supports_32bit_el0(); 1048 } 1049 1050 /** 1051 * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest 1052 * @vcpu: The VCPU pointer 1053 * @ret: Pointer to write optional return code 1054 * 1055 * Returns: true if the VCPU needs to return to a preemptible + interruptible 1056 * and skip guest entry. 1057 * 1058 * This function disambiguates between two different types of exits: exits to a 1059 * preemptible + interruptible kernel context and exits to userspace. For an 1060 * exit to userspace, this function will write the return code to ret and return 1061 * true. For an exit to preemptible + interruptible kernel context (i.e. check 1062 * for pending work and re-enter), return true without writing to ret. 1063 */ 1064 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret) 1065 { 1066 struct kvm_run *run = vcpu->run; 1067 1068 /* 1069 * If we're using a userspace irqchip, then check if we need 1070 * to tell a userspace irqchip about timer or PMU level 1071 * changes and if so, exit to userspace (the actual level 1072 * state gets updated in kvm_timer_update_run and 1073 * kvm_pmu_update_run below). 1074 */ 1075 if (static_branch_unlikely(&userspace_irqchip_in_use)) { 1076 if (kvm_timer_should_notify_user(vcpu) || 1077 kvm_pmu_should_notify_user(vcpu)) { 1078 *ret = -EINTR; 1079 run->exit_reason = KVM_EXIT_INTR; 1080 return true; 1081 } 1082 } 1083 1084 if (unlikely(vcpu_on_unsupported_cpu(vcpu))) { 1085 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 1086 run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED; 1087 run->fail_entry.cpu = smp_processor_id(); 1088 *ret = 0; 1089 return true; 1090 } 1091 1092 return kvm_request_pending(vcpu) || 1093 xfer_to_guest_mode_work_pending(); 1094 } 1095 1096 /* 1097 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while 1098 * the vCPU is running. 1099 * 1100 * This must be noinstr as instrumentation may make use of RCU, and this is not 1101 * safe during the EQS. 1102 */ 1103 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu) 1104 { 1105 int ret; 1106 1107 guest_state_enter_irqoff(); 1108 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu); 1109 guest_state_exit_irqoff(); 1110 1111 return ret; 1112 } 1113 1114 /** 1115 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code 1116 * @vcpu: The VCPU pointer 1117 * 1118 * This function is called through the VCPU_RUN ioctl called from user space. It 1119 * will execute VM code in a loop until the time slice for the process is used 1120 * or some emulation is needed from user space in which case the function will 1121 * return with return value 0 and with the kvm_run structure filled in with the 1122 * required data for the requested emulation. 1123 */ 1124 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 1125 { 1126 struct kvm_run *run = vcpu->run; 1127 int ret; 1128 1129 if (run->exit_reason == KVM_EXIT_MMIO) { 1130 ret = kvm_handle_mmio_return(vcpu); 1131 if (ret <= 0) 1132 return ret; 1133 } 1134 1135 vcpu_load(vcpu); 1136 1137 if (!vcpu->wants_to_run) { 1138 ret = -EINTR; 1139 goto out; 1140 } 1141 1142 kvm_sigset_activate(vcpu); 1143 1144 ret = 1; 1145 run->exit_reason = KVM_EXIT_UNKNOWN; 1146 run->flags = 0; 1147 while (ret > 0) { 1148 /* 1149 * Check conditions before entering the guest 1150 */ 1151 ret = xfer_to_guest_mode_handle_work(vcpu); 1152 if (!ret) 1153 ret = 1; 1154 1155 if (ret > 0) 1156 ret = check_vcpu_requests(vcpu); 1157 1158 /* 1159 * Preparing the interrupts to be injected also 1160 * involves poking the GIC, which must be done in a 1161 * non-preemptible context. 1162 */ 1163 preempt_disable(); 1164 1165 /* 1166 * The VMID allocator only tracks active VMIDs per 1167 * physical CPU, and therefore the VMID allocated may not be 1168 * preserved on VMID roll-over if the task was preempted, 1169 * making a thread's VMID inactive. So we need to call 1170 * kvm_arm_vmid_update() in non-premptible context. 1171 */ 1172 if (kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid) && 1173 has_vhe()) 1174 __load_stage2(vcpu->arch.hw_mmu, 1175 vcpu->arch.hw_mmu->arch); 1176 1177 kvm_pmu_flush_hwstate(vcpu); 1178 1179 local_irq_disable(); 1180 1181 kvm_vgic_flush_hwstate(vcpu); 1182 1183 kvm_pmu_update_vcpu_events(vcpu); 1184 1185 /* 1186 * Ensure we set mode to IN_GUEST_MODE after we disable 1187 * interrupts and before the final VCPU requests check. 1188 * See the comment in kvm_vcpu_exiting_guest_mode() and 1189 * Documentation/virt/kvm/vcpu-requests.rst 1190 */ 1191 smp_store_mb(vcpu->mode, IN_GUEST_MODE); 1192 1193 if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) { 1194 vcpu->mode = OUTSIDE_GUEST_MODE; 1195 isb(); /* Ensure work in x_flush_hwstate is committed */ 1196 kvm_pmu_sync_hwstate(vcpu); 1197 if (static_branch_unlikely(&userspace_irqchip_in_use)) 1198 kvm_timer_sync_user(vcpu); 1199 kvm_vgic_sync_hwstate(vcpu); 1200 local_irq_enable(); 1201 preempt_enable(); 1202 continue; 1203 } 1204 1205 kvm_arm_setup_debug(vcpu); 1206 kvm_arch_vcpu_ctxflush_fp(vcpu); 1207 1208 /************************************************************** 1209 * Enter the guest 1210 */ 1211 trace_kvm_entry(*vcpu_pc(vcpu)); 1212 guest_timing_enter_irqoff(); 1213 1214 ret = kvm_arm_vcpu_enter_exit(vcpu); 1215 1216 vcpu->mode = OUTSIDE_GUEST_MODE; 1217 vcpu->stat.exits++; 1218 /* 1219 * Back from guest 1220 *************************************************************/ 1221 1222 kvm_arm_clear_debug(vcpu); 1223 1224 /* 1225 * We must sync the PMU state before the vgic state so 1226 * that the vgic can properly sample the updated state of the 1227 * interrupt line. 1228 */ 1229 kvm_pmu_sync_hwstate(vcpu); 1230 1231 /* 1232 * Sync the vgic state before syncing the timer state because 1233 * the timer code needs to know if the virtual timer 1234 * interrupts are active. 1235 */ 1236 kvm_vgic_sync_hwstate(vcpu); 1237 1238 /* 1239 * Sync the timer hardware state before enabling interrupts as 1240 * we don't want vtimer interrupts to race with syncing the 1241 * timer virtual interrupt state. 1242 */ 1243 if (static_branch_unlikely(&userspace_irqchip_in_use)) 1244 kvm_timer_sync_user(vcpu); 1245 1246 kvm_arch_vcpu_ctxsync_fp(vcpu); 1247 1248 /* 1249 * We must ensure that any pending interrupts are taken before 1250 * we exit guest timing so that timer ticks are accounted as 1251 * guest time. Transiently unmask interrupts so that any 1252 * pending interrupts are taken. 1253 * 1254 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other 1255 * context synchronization event) is necessary to ensure that 1256 * pending interrupts are taken. 1257 */ 1258 if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) { 1259 local_irq_enable(); 1260 isb(); 1261 local_irq_disable(); 1262 } 1263 1264 guest_timing_exit_irqoff(); 1265 1266 local_irq_enable(); 1267 1268 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu)); 1269 1270 /* Exit types that need handling before we can be preempted */ 1271 handle_exit_early(vcpu, ret); 1272 1273 preempt_enable(); 1274 1275 /* 1276 * The ARMv8 architecture doesn't give the hypervisor 1277 * a mechanism to prevent a guest from dropping to AArch32 EL0 1278 * if implemented by the CPU. If we spot the guest in such 1279 * state and that we decided it wasn't supposed to do so (like 1280 * with the asymmetric AArch32 case), return to userspace with 1281 * a fatal error. 1282 */ 1283 if (vcpu_mode_is_bad_32bit(vcpu)) { 1284 /* 1285 * As we have caught the guest red-handed, decide that 1286 * it isn't fit for purpose anymore by making the vcpu 1287 * invalid. The VMM can try and fix it by issuing a 1288 * KVM_ARM_VCPU_INIT if it really wants to. 1289 */ 1290 vcpu_clear_flag(vcpu, VCPU_INITIALIZED); 1291 ret = ARM_EXCEPTION_IL; 1292 } 1293 1294 ret = handle_exit(vcpu, ret); 1295 } 1296 1297 /* Tell userspace about in-kernel device output levels */ 1298 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) { 1299 kvm_timer_update_run(vcpu); 1300 kvm_pmu_update_run(vcpu); 1301 } 1302 1303 kvm_sigset_deactivate(vcpu); 1304 1305 out: 1306 /* 1307 * In the unlikely event that we are returning to userspace 1308 * with pending exceptions or PC adjustment, commit these 1309 * adjustments in order to give userspace a consistent view of 1310 * the vcpu state. Note that this relies on __kvm_adjust_pc() 1311 * being preempt-safe on VHE. 1312 */ 1313 if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) || 1314 vcpu_get_flag(vcpu, INCREMENT_PC))) 1315 kvm_call_hyp(__kvm_adjust_pc, vcpu); 1316 1317 vcpu_put(vcpu); 1318 return ret; 1319 } 1320 1321 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level) 1322 { 1323 int bit_index; 1324 bool set; 1325 unsigned long *hcr; 1326 1327 if (number == KVM_ARM_IRQ_CPU_IRQ) 1328 bit_index = __ffs(HCR_VI); 1329 else /* KVM_ARM_IRQ_CPU_FIQ */ 1330 bit_index = __ffs(HCR_VF); 1331 1332 hcr = vcpu_hcr(vcpu); 1333 if (level) 1334 set = test_and_set_bit(bit_index, hcr); 1335 else 1336 set = test_and_clear_bit(bit_index, hcr); 1337 1338 /* 1339 * If we didn't change anything, no need to wake up or kick other CPUs 1340 */ 1341 if (set == level) 1342 return 0; 1343 1344 /* 1345 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and 1346 * trigger a world-switch round on the running physical CPU to set the 1347 * virtual IRQ/FIQ fields in the HCR appropriately. 1348 */ 1349 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); 1350 kvm_vcpu_kick(vcpu); 1351 1352 return 0; 1353 } 1354 1355 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1356 bool line_status) 1357 { 1358 u32 irq = irq_level->irq; 1359 unsigned int irq_type, vcpu_id, irq_num; 1360 struct kvm_vcpu *vcpu = NULL; 1361 bool level = irq_level->level; 1362 1363 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK; 1364 vcpu_id = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK; 1365 vcpu_id += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1); 1366 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK; 1367 1368 trace_kvm_irq_line(irq_type, vcpu_id, irq_num, irq_level->level); 1369 1370 switch (irq_type) { 1371 case KVM_ARM_IRQ_TYPE_CPU: 1372 if (irqchip_in_kernel(kvm)) 1373 return -ENXIO; 1374 1375 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); 1376 if (!vcpu) 1377 return -EINVAL; 1378 1379 if (irq_num > KVM_ARM_IRQ_CPU_FIQ) 1380 return -EINVAL; 1381 1382 return vcpu_interrupt_line(vcpu, irq_num, level); 1383 case KVM_ARM_IRQ_TYPE_PPI: 1384 if (!irqchip_in_kernel(kvm)) 1385 return -ENXIO; 1386 1387 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); 1388 if (!vcpu) 1389 return -EINVAL; 1390 1391 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS) 1392 return -EINVAL; 1393 1394 return kvm_vgic_inject_irq(kvm, vcpu, irq_num, level, NULL); 1395 case KVM_ARM_IRQ_TYPE_SPI: 1396 if (!irqchip_in_kernel(kvm)) 1397 return -ENXIO; 1398 1399 if (irq_num < VGIC_NR_PRIVATE_IRQS) 1400 return -EINVAL; 1401 1402 return kvm_vgic_inject_irq(kvm, NULL, irq_num, level, NULL); 1403 } 1404 1405 return -EINVAL; 1406 } 1407 1408 static unsigned long system_supported_vcpu_features(void) 1409 { 1410 unsigned long features = KVM_VCPU_VALID_FEATURES; 1411 1412 if (!cpus_have_final_cap(ARM64_HAS_32BIT_EL1)) 1413 clear_bit(KVM_ARM_VCPU_EL1_32BIT, &features); 1414 1415 if (!kvm_arm_support_pmu_v3()) 1416 clear_bit(KVM_ARM_VCPU_PMU_V3, &features); 1417 1418 if (!system_supports_sve()) 1419 clear_bit(KVM_ARM_VCPU_SVE, &features); 1420 1421 if (!kvm_has_full_ptr_auth()) { 1422 clear_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features); 1423 clear_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features); 1424 } 1425 1426 if (!cpus_have_final_cap(ARM64_HAS_NESTED_VIRT)) 1427 clear_bit(KVM_ARM_VCPU_HAS_EL2, &features); 1428 1429 return features; 1430 } 1431 1432 static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu, 1433 const struct kvm_vcpu_init *init) 1434 { 1435 unsigned long features = init->features[0]; 1436 int i; 1437 1438 if (features & ~KVM_VCPU_VALID_FEATURES) 1439 return -ENOENT; 1440 1441 for (i = 1; i < ARRAY_SIZE(init->features); i++) { 1442 if (init->features[i]) 1443 return -ENOENT; 1444 } 1445 1446 if (features & ~system_supported_vcpu_features()) 1447 return -EINVAL; 1448 1449 /* 1450 * For now make sure that both address/generic pointer authentication 1451 * features are requested by the userspace together. 1452 */ 1453 if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features) != 1454 test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features)) 1455 return -EINVAL; 1456 1457 if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features)) 1458 return 0; 1459 1460 /* MTE is incompatible with AArch32 */ 1461 if (kvm_has_mte(vcpu->kvm)) 1462 return -EINVAL; 1463 1464 /* NV is incompatible with AArch32 */ 1465 if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features)) 1466 return -EINVAL; 1467 1468 return 0; 1469 } 1470 1471 static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu, 1472 const struct kvm_vcpu_init *init) 1473 { 1474 unsigned long features = init->features[0]; 1475 1476 return !bitmap_equal(vcpu->kvm->arch.vcpu_features, &features, 1477 KVM_VCPU_MAX_FEATURES); 1478 } 1479 1480 static int kvm_setup_vcpu(struct kvm_vcpu *vcpu) 1481 { 1482 struct kvm *kvm = vcpu->kvm; 1483 int ret = 0; 1484 1485 /* 1486 * When the vCPU has a PMU, but no PMU is set for the guest 1487 * yet, set the default one. 1488 */ 1489 if (kvm_vcpu_has_pmu(vcpu) && !kvm->arch.arm_pmu) 1490 ret = kvm_arm_set_default_pmu(kvm); 1491 1492 /* Prepare for nested if required */ 1493 if (!ret && vcpu_has_nv(vcpu)) 1494 ret = kvm_vcpu_init_nested(vcpu); 1495 1496 return ret; 1497 } 1498 1499 static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu, 1500 const struct kvm_vcpu_init *init) 1501 { 1502 unsigned long features = init->features[0]; 1503 struct kvm *kvm = vcpu->kvm; 1504 int ret = -EINVAL; 1505 1506 mutex_lock(&kvm->arch.config_lock); 1507 1508 if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) && 1509 kvm_vcpu_init_changed(vcpu, init)) 1510 goto out_unlock; 1511 1512 bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES); 1513 1514 ret = kvm_setup_vcpu(vcpu); 1515 if (ret) 1516 goto out_unlock; 1517 1518 /* Now we know what it is, we can reset it. */ 1519 kvm_reset_vcpu(vcpu); 1520 1521 set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags); 1522 vcpu_set_flag(vcpu, VCPU_INITIALIZED); 1523 ret = 0; 1524 out_unlock: 1525 mutex_unlock(&kvm->arch.config_lock); 1526 return ret; 1527 } 1528 1529 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu, 1530 const struct kvm_vcpu_init *init) 1531 { 1532 int ret; 1533 1534 if (init->target != KVM_ARM_TARGET_GENERIC_V8 && 1535 init->target != kvm_target_cpu()) 1536 return -EINVAL; 1537 1538 ret = kvm_vcpu_init_check_features(vcpu, init); 1539 if (ret) 1540 return ret; 1541 1542 if (!kvm_vcpu_initialized(vcpu)) 1543 return __kvm_vcpu_set_target(vcpu, init); 1544 1545 if (kvm_vcpu_init_changed(vcpu, init)) 1546 return -EINVAL; 1547 1548 kvm_reset_vcpu(vcpu); 1549 return 0; 1550 } 1551 1552 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu, 1553 struct kvm_vcpu_init *init) 1554 { 1555 bool power_off = false; 1556 int ret; 1557 1558 /* 1559 * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid 1560 * reflecting it in the finalized feature set, thus limiting its scope 1561 * to a single KVM_ARM_VCPU_INIT call. 1562 */ 1563 if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) { 1564 init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF); 1565 power_off = true; 1566 } 1567 1568 ret = kvm_vcpu_set_target(vcpu, init); 1569 if (ret) 1570 return ret; 1571 1572 /* 1573 * Ensure a rebooted VM will fault in RAM pages and detect if the 1574 * guest MMU is turned off and flush the caches as needed. 1575 * 1576 * S2FWB enforces all memory accesses to RAM being cacheable, 1577 * ensuring that the data side is always coherent. We still 1578 * need to invalidate the I-cache though, as FWB does *not* 1579 * imply CTR_EL0.DIC. 1580 */ 1581 if (vcpu_has_run_once(vcpu)) { 1582 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) 1583 stage2_unmap_vm(vcpu->kvm); 1584 else 1585 icache_inval_all_pou(); 1586 } 1587 1588 vcpu_reset_hcr(vcpu); 1589 vcpu->arch.cptr_el2 = kvm_get_reset_cptr_el2(vcpu); 1590 1591 /* 1592 * Handle the "start in power-off" case. 1593 */ 1594 spin_lock(&vcpu->arch.mp_state_lock); 1595 1596 if (power_off) 1597 __kvm_arm_vcpu_power_off(vcpu); 1598 else 1599 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE); 1600 1601 spin_unlock(&vcpu->arch.mp_state_lock); 1602 1603 return 0; 1604 } 1605 1606 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu, 1607 struct kvm_device_attr *attr) 1608 { 1609 int ret = -ENXIO; 1610 1611 switch (attr->group) { 1612 default: 1613 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr); 1614 break; 1615 } 1616 1617 return ret; 1618 } 1619 1620 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu, 1621 struct kvm_device_attr *attr) 1622 { 1623 int ret = -ENXIO; 1624 1625 switch (attr->group) { 1626 default: 1627 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr); 1628 break; 1629 } 1630 1631 return ret; 1632 } 1633 1634 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu, 1635 struct kvm_device_attr *attr) 1636 { 1637 int ret = -ENXIO; 1638 1639 switch (attr->group) { 1640 default: 1641 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr); 1642 break; 1643 } 1644 1645 return ret; 1646 } 1647 1648 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, 1649 struct kvm_vcpu_events *events) 1650 { 1651 memset(events, 0, sizeof(*events)); 1652 1653 return __kvm_arm_vcpu_get_events(vcpu, events); 1654 } 1655 1656 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, 1657 struct kvm_vcpu_events *events) 1658 { 1659 int i; 1660 1661 /* check whether the reserved field is zero */ 1662 for (i = 0; i < ARRAY_SIZE(events->reserved); i++) 1663 if (events->reserved[i]) 1664 return -EINVAL; 1665 1666 /* check whether the pad field is zero */ 1667 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++) 1668 if (events->exception.pad[i]) 1669 return -EINVAL; 1670 1671 return __kvm_arm_vcpu_set_events(vcpu, events); 1672 } 1673 1674 long kvm_arch_vcpu_ioctl(struct file *filp, 1675 unsigned int ioctl, unsigned long arg) 1676 { 1677 struct kvm_vcpu *vcpu = filp->private_data; 1678 void __user *argp = (void __user *)arg; 1679 struct kvm_device_attr attr; 1680 long r; 1681 1682 switch (ioctl) { 1683 case KVM_ARM_VCPU_INIT: { 1684 struct kvm_vcpu_init init; 1685 1686 r = -EFAULT; 1687 if (copy_from_user(&init, argp, sizeof(init))) 1688 break; 1689 1690 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init); 1691 break; 1692 } 1693 case KVM_SET_ONE_REG: 1694 case KVM_GET_ONE_REG: { 1695 struct kvm_one_reg reg; 1696 1697 r = -ENOEXEC; 1698 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1699 break; 1700 1701 r = -EFAULT; 1702 if (copy_from_user(®, argp, sizeof(reg))) 1703 break; 1704 1705 /* 1706 * We could owe a reset due to PSCI. Handle the pending reset 1707 * here to ensure userspace register accesses are ordered after 1708 * the reset. 1709 */ 1710 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) 1711 kvm_reset_vcpu(vcpu); 1712 1713 if (ioctl == KVM_SET_ONE_REG) 1714 r = kvm_arm_set_reg(vcpu, ®); 1715 else 1716 r = kvm_arm_get_reg(vcpu, ®); 1717 break; 1718 } 1719 case KVM_GET_REG_LIST: { 1720 struct kvm_reg_list __user *user_list = argp; 1721 struct kvm_reg_list reg_list; 1722 unsigned n; 1723 1724 r = -ENOEXEC; 1725 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1726 break; 1727 1728 r = -EPERM; 1729 if (!kvm_arm_vcpu_is_finalized(vcpu)) 1730 break; 1731 1732 r = -EFAULT; 1733 if (copy_from_user(®_list, user_list, sizeof(reg_list))) 1734 break; 1735 n = reg_list.n; 1736 reg_list.n = kvm_arm_num_regs(vcpu); 1737 if (copy_to_user(user_list, ®_list, sizeof(reg_list))) 1738 break; 1739 r = -E2BIG; 1740 if (n < reg_list.n) 1741 break; 1742 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg); 1743 break; 1744 } 1745 case KVM_SET_DEVICE_ATTR: { 1746 r = -EFAULT; 1747 if (copy_from_user(&attr, argp, sizeof(attr))) 1748 break; 1749 r = kvm_arm_vcpu_set_attr(vcpu, &attr); 1750 break; 1751 } 1752 case KVM_GET_DEVICE_ATTR: { 1753 r = -EFAULT; 1754 if (copy_from_user(&attr, argp, sizeof(attr))) 1755 break; 1756 r = kvm_arm_vcpu_get_attr(vcpu, &attr); 1757 break; 1758 } 1759 case KVM_HAS_DEVICE_ATTR: { 1760 r = -EFAULT; 1761 if (copy_from_user(&attr, argp, sizeof(attr))) 1762 break; 1763 r = kvm_arm_vcpu_has_attr(vcpu, &attr); 1764 break; 1765 } 1766 case KVM_GET_VCPU_EVENTS: { 1767 struct kvm_vcpu_events events; 1768 1769 if (kvm_arm_vcpu_get_events(vcpu, &events)) 1770 return -EINVAL; 1771 1772 if (copy_to_user(argp, &events, sizeof(events))) 1773 return -EFAULT; 1774 1775 return 0; 1776 } 1777 case KVM_SET_VCPU_EVENTS: { 1778 struct kvm_vcpu_events events; 1779 1780 if (copy_from_user(&events, argp, sizeof(events))) 1781 return -EFAULT; 1782 1783 return kvm_arm_vcpu_set_events(vcpu, &events); 1784 } 1785 case KVM_ARM_VCPU_FINALIZE: { 1786 int what; 1787 1788 if (!kvm_vcpu_initialized(vcpu)) 1789 return -ENOEXEC; 1790 1791 if (get_user(what, (const int __user *)argp)) 1792 return -EFAULT; 1793 1794 return kvm_arm_vcpu_finalize(vcpu, what); 1795 } 1796 default: 1797 r = -EINVAL; 1798 } 1799 1800 return r; 1801 } 1802 1803 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 1804 { 1805 1806 } 1807 1808 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm, 1809 struct kvm_arm_device_addr *dev_addr) 1810 { 1811 switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) { 1812 case KVM_ARM_DEVICE_VGIC_V2: 1813 if (!vgic_present) 1814 return -ENXIO; 1815 return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr); 1816 default: 1817 return -ENODEV; 1818 } 1819 } 1820 1821 static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1822 { 1823 switch (attr->group) { 1824 case KVM_ARM_VM_SMCCC_CTRL: 1825 return kvm_vm_smccc_has_attr(kvm, attr); 1826 default: 1827 return -ENXIO; 1828 } 1829 } 1830 1831 static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1832 { 1833 switch (attr->group) { 1834 case KVM_ARM_VM_SMCCC_CTRL: 1835 return kvm_vm_smccc_set_attr(kvm, attr); 1836 default: 1837 return -ENXIO; 1838 } 1839 } 1840 1841 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 1842 { 1843 struct kvm *kvm = filp->private_data; 1844 void __user *argp = (void __user *)arg; 1845 struct kvm_device_attr attr; 1846 1847 switch (ioctl) { 1848 case KVM_CREATE_IRQCHIP: { 1849 int ret; 1850 if (!vgic_present) 1851 return -ENXIO; 1852 mutex_lock(&kvm->lock); 1853 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2); 1854 mutex_unlock(&kvm->lock); 1855 return ret; 1856 } 1857 case KVM_ARM_SET_DEVICE_ADDR: { 1858 struct kvm_arm_device_addr dev_addr; 1859 1860 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr))) 1861 return -EFAULT; 1862 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr); 1863 } 1864 case KVM_ARM_PREFERRED_TARGET: { 1865 struct kvm_vcpu_init init = { 1866 .target = KVM_ARM_TARGET_GENERIC_V8, 1867 }; 1868 1869 if (copy_to_user(argp, &init, sizeof(init))) 1870 return -EFAULT; 1871 1872 return 0; 1873 } 1874 case KVM_ARM_MTE_COPY_TAGS: { 1875 struct kvm_arm_copy_mte_tags copy_tags; 1876 1877 if (copy_from_user(©_tags, argp, sizeof(copy_tags))) 1878 return -EFAULT; 1879 return kvm_vm_ioctl_mte_copy_tags(kvm, ©_tags); 1880 } 1881 case KVM_ARM_SET_COUNTER_OFFSET: { 1882 struct kvm_arm_counter_offset offset; 1883 1884 if (copy_from_user(&offset, argp, sizeof(offset))) 1885 return -EFAULT; 1886 return kvm_vm_ioctl_set_counter_offset(kvm, &offset); 1887 } 1888 case KVM_HAS_DEVICE_ATTR: { 1889 if (copy_from_user(&attr, argp, sizeof(attr))) 1890 return -EFAULT; 1891 1892 return kvm_vm_has_attr(kvm, &attr); 1893 } 1894 case KVM_SET_DEVICE_ATTR: { 1895 if (copy_from_user(&attr, argp, sizeof(attr))) 1896 return -EFAULT; 1897 1898 return kvm_vm_set_attr(kvm, &attr); 1899 } 1900 case KVM_ARM_GET_REG_WRITABLE_MASKS: { 1901 struct reg_mask_range range; 1902 1903 if (copy_from_user(&range, argp, sizeof(range))) 1904 return -EFAULT; 1905 return kvm_vm_ioctl_get_reg_writable_masks(kvm, &range); 1906 } 1907 default: 1908 return -EINVAL; 1909 } 1910 } 1911 1912 /* unlocks vcpus from @vcpu_lock_idx and smaller */ 1913 static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx) 1914 { 1915 struct kvm_vcpu *tmp_vcpu; 1916 1917 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) { 1918 tmp_vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx); 1919 mutex_unlock(&tmp_vcpu->mutex); 1920 } 1921 } 1922 1923 void unlock_all_vcpus(struct kvm *kvm) 1924 { 1925 lockdep_assert_held(&kvm->lock); 1926 1927 unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1); 1928 } 1929 1930 /* Returns true if all vcpus were locked, false otherwise */ 1931 bool lock_all_vcpus(struct kvm *kvm) 1932 { 1933 struct kvm_vcpu *tmp_vcpu; 1934 unsigned long c; 1935 1936 lockdep_assert_held(&kvm->lock); 1937 1938 /* 1939 * Any time a vcpu is in an ioctl (including running), the 1940 * core KVM code tries to grab the vcpu->mutex. 1941 * 1942 * By grabbing the vcpu->mutex of all VCPUs we ensure that no 1943 * other VCPUs can fiddle with the state while we access it. 1944 */ 1945 kvm_for_each_vcpu(c, tmp_vcpu, kvm) { 1946 if (!mutex_trylock(&tmp_vcpu->mutex)) { 1947 unlock_vcpus(kvm, c - 1); 1948 return false; 1949 } 1950 } 1951 1952 return true; 1953 } 1954 1955 static unsigned long nvhe_percpu_size(void) 1956 { 1957 return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) - 1958 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start); 1959 } 1960 1961 static unsigned long nvhe_percpu_order(void) 1962 { 1963 unsigned long size = nvhe_percpu_size(); 1964 1965 return size ? get_order(size) : 0; 1966 } 1967 1968 static size_t pkvm_host_sve_state_order(void) 1969 { 1970 return get_order(pkvm_host_sve_state_size()); 1971 } 1972 1973 /* A lookup table holding the hypervisor VA for each vector slot */ 1974 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS]; 1975 1976 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot) 1977 { 1978 hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot); 1979 } 1980 1981 static int kvm_init_vector_slots(void) 1982 { 1983 int err; 1984 void *base; 1985 1986 base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector)); 1987 kvm_init_vector_slot(base, HYP_VECTOR_DIRECT); 1988 1989 base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs)); 1990 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT); 1991 1992 if (kvm_system_needs_idmapped_vectors() && 1993 !is_protected_kvm_enabled()) { 1994 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs), 1995 __BP_HARDEN_HYP_VECS_SZ, &base); 1996 if (err) 1997 return err; 1998 } 1999 2000 kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT); 2001 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT); 2002 return 0; 2003 } 2004 2005 static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits) 2006 { 2007 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu); 2008 u64 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 2009 unsigned long tcr; 2010 2011 /* 2012 * Calculate the raw per-cpu offset without a translation from the 2013 * kernel's mapping to the linear mapping, and store it in tpidr_el2 2014 * so that we can use adr_l to access per-cpu variables in EL2. 2015 * Also drop the KASAN tag which gets in the way... 2016 */ 2017 params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) - 2018 (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start)); 2019 2020 params->mair_el2 = read_sysreg(mair_el1); 2021 2022 tcr = read_sysreg(tcr_el1); 2023 if (cpus_have_final_cap(ARM64_KVM_HVHE)) { 2024 tcr |= TCR_EPD1_MASK; 2025 } else { 2026 tcr &= TCR_EL2_MASK; 2027 tcr |= TCR_EL2_RES1; 2028 } 2029 tcr &= ~TCR_T0SZ_MASK; 2030 tcr |= TCR_T0SZ(hyp_va_bits); 2031 tcr &= ~TCR_EL2_PS_MASK; 2032 tcr |= FIELD_PREP(TCR_EL2_PS_MASK, kvm_get_parange(mmfr0)); 2033 if (kvm_lpa2_is_enabled()) 2034 tcr |= TCR_EL2_DS; 2035 params->tcr_el2 = tcr; 2036 2037 params->pgd_pa = kvm_mmu_get_httbr(); 2038 if (is_protected_kvm_enabled()) 2039 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS; 2040 else 2041 params->hcr_el2 = HCR_HOST_NVHE_FLAGS; 2042 if (cpus_have_final_cap(ARM64_KVM_HVHE)) 2043 params->hcr_el2 |= HCR_E2H; 2044 params->vttbr = params->vtcr = 0; 2045 2046 /* 2047 * Flush the init params from the data cache because the struct will 2048 * be read while the MMU is off. 2049 */ 2050 kvm_flush_dcache_to_poc(params, sizeof(*params)); 2051 } 2052 2053 static void hyp_install_host_vector(void) 2054 { 2055 struct kvm_nvhe_init_params *params; 2056 struct arm_smccc_res res; 2057 2058 /* Switch from the HYP stub to our own HYP init vector */ 2059 __hyp_set_vectors(kvm_get_idmap_vector()); 2060 2061 /* 2062 * Call initialization code, and switch to the full blown HYP code. 2063 * If the cpucaps haven't been finalized yet, something has gone very 2064 * wrong, and hyp will crash and burn when it uses any 2065 * cpus_have_*_cap() wrapper. 2066 */ 2067 BUG_ON(!system_capabilities_finalized()); 2068 params = this_cpu_ptr_nvhe_sym(kvm_init_params); 2069 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res); 2070 WARN_ON(res.a0 != SMCCC_RET_SUCCESS); 2071 } 2072 2073 static void cpu_init_hyp_mode(void) 2074 { 2075 hyp_install_host_vector(); 2076 2077 /* 2078 * Disabling SSBD on a non-VHE system requires us to enable SSBS 2079 * at EL2. 2080 */ 2081 if (this_cpu_has_cap(ARM64_SSBS) && 2082 arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) { 2083 kvm_call_hyp_nvhe(__kvm_enable_ssbs); 2084 } 2085 } 2086 2087 static void cpu_hyp_reset(void) 2088 { 2089 if (!is_kernel_in_hyp_mode()) 2090 __hyp_reset_vectors(); 2091 } 2092 2093 /* 2094 * EL2 vectors can be mapped and rerouted in a number of ways, 2095 * depending on the kernel configuration and CPU present: 2096 * 2097 * - If the CPU is affected by Spectre-v2, the hardening sequence is 2098 * placed in one of the vector slots, which is executed before jumping 2099 * to the real vectors. 2100 * 2101 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot 2102 * containing the hardening sequence is mapped next to the idmap page, 2103 * and executed before jumping to the real vectors. 2104 * 2105 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an 2106 * empty slot is selected, mapped next to the idmap page, and 2107 * executed before jumping to the real vectors. 2108 * 2109 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with 2110 * VHE, as we don't have hypervisor-specific mappings. If the system 2111 * is VHE and yet selects this capability, it will be ignored. 2112 */ 2113 static void cpu_set_hyp_vector(void) 2114 { 2115 struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data); 2116 void *vector = hyp_spectre_vector_selector[data->slot]; 2117 2118 if (!is_protected_kvm_enabled()) 2119 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector; 2120 else 2121 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot); 2122 } 2123 2124 static void cpu_hyp_init_context(void) 2125 { 2126 kvm_init_host_cpu_context(host_data_ptr(host_ctxt)); 2127 2128 if (!is_kernel_in_hyp_mode()) 2129 cpu_init_hyp_mode(); 2130 } 2131 2132 static void cpu_hyp_init_features(void) 2133 { 2134 cpu_set_hyp_vector(); 2135 kvm_arm_init_debug(); 2136 2137 if (is_kernel_in_hyp_mode()) 2138 kvm_timer_init_vhe(); 2139 2140 if (vgic_present) 2141 kvm_vgic_init_cpu_hardware(); 2142 } 2143 2144 static void cpu_hyp_reinit(void) 2145 { 2146 cpu_hyp_reset(); 2147 cpu_hyp_init_context(); 2148 cpu_hyp_init_features(); 2149 } 2150 2151 static void cpu_hyp_init(void *discard) 2152 { 2153 if (!__this_cpu_read(kvm_hyp_initialized)) { 2154 cpu_hyp_reinit(); 2155 __this_cpu_write(kvm_hyp_initialized, 1); 2156 } 2157 } 2158 2159 static void cpu_hyp_uninit(void *discard) 2160 { 2161 if (__this_cpu_read(kvm_hyp_initialized)) { 2162 cpu_hyp_reset(); 2163 __this_cpu_write(kvm_hyp_initialized, 0); 2164 } 2165 } 2166 2167 int kvm_arch_hardware_enable(void) 2168 { 2169 /* 2170 * Most calls to this function are made with migration 2171 * disabled, but not with preemption disabled. The former is 2172 * enough to ensure correctness, but most of the helpers 2173 * expect the later and will throw a tantrum otherwise. 2174 */ 2175 preempt_disable(); 2176 2177 cpu_hyp_init(NULL); 2178 2179 kvm_vgic_cpu_up(); 2180 kvm_timer_cpu_up(); 2181 2182 preempt_enable(); 2183 2184 return 0; 2185 } 2186 2187 void kvm_arch_hardware_disable(void) 2188 { 2189 kvm_timer_cpu_down(); 2190 kvm_vgic_cpu_down(); 2191 2192 if (!is_protected_kvm_enabled()) 2193 cpu_hyp_uninit(NULL); 2194 } 2195 2196 #ifdef CONFIG_CPU_PM 2197 static int hyp_init_cpu_pm_notifier(struct notifier_block *self, 2198 unsigned long cmd, 2199 void *v) 2200 { 2201 /* 2202 * kvm_hyp_initialized is left with its old value over 2203 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should 2204 * re-enable hyp. 2205 */ 2206 switch (cmd) { 2207 case CPU_PM_ENTER: 2208 if (__this_cpu_read(kvm_hyp_initialized)) 2209 /* 2210 * don't update kvm_hyp_initialized here 2211 * so that the hyp will be re-enabled 2212 * when we resume. See below. 2213 */ 2214 cpu_hyp_reset(); 2215 2216 return NOTIFY_OK; 2217 case CPU_PM_ENTER_FAILED: 2218 case CPU_PM_EXIT: 2219 if (__this_cpu_read(kvm_hyp_initialized)) 2220 /* The hyp was enabled before suspend. */ 2221 cpu_hyp_reinit(); 2222 2223 return NOTIFY_OK; 2224 2225 default: 2226 return NOTIFY_DONE; 2227 } 2228 } 2229 2230 static struct notifier_block hyp_init_cpu_pm_nb = { 2231 .notifier_call = hyp_init_cpu_pm_notifier, 2232 }; 2233 2234 static void __init hyp_cpu_pm_init(void) 2235 { 2236 if (!is_protected_kvm_enabled()) 2237 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb); 2238 } 2239 static void __init hyp_cpu_pm_exit(void) 2240 { 2241 if (!is_protected_kvm_enabled()) 2242 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb); 2243 } 2244 #else 2245 static inline void __init hyp_cpu_pm_init(void) 2246 { 2247 } 2248 static inline void __init hyp_cpu_pm_exit(void) 2249 { 2250 } 2251 #endif 2252 2253 static void __init init_cpu_logical_map(void) 2254 { 2255 unsigned int cpu; 2256 2257 /* 2258 * Copy the MPIDR <-> logical CPU ID mapping to hyp. 2259 * Only copy the set of online CPUs whose features have been checked 2260 * against the finalized system capabilities. The hypervisor will not 2261 * allow any other CPUs from the `possible` set to boot. 2262 */ 2263 for_each_online_cpu(cpu) 2264 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu); 2265 } 2266 2267 #define init_psci_0_1_impl_state(config, what) \ 2268 config.psci_0_1_ ## what ## _implemented = psci_ops.what 2269 2270 static bool __init init_psci_relay(void) 2271 { 2272 /* 2273 * If PSCI has not been initialized, protected KVM cannot install 2274 * itself on newly booted CPUs. 2275 */ 2276 if (!psci_ops.get_version) { 2277 kvm_err("Cannot initialize protected mode without PSCI\n"); 2278 return false; 2279 } 2280 2281 kvm_host_psci_config.version = psci_ops.get_version(); 2282 kvm_host_psci_config.smccc_version = arm_smccc_get_version(); 2283 2284 if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) { 2285 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids(); 2286 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend); 2287 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on); 2288 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off); 2289 init_psci_0_1_impl_state(kvm_host_psci_config, migrate); 2290 } 2291 return true; 2292 } 2293 2294 static int __init init_subsystems(void) 2295 { 2296 int err = 0; 2297 2298 /* 2299 * Enable hardware so that subsystem initialisation can access EL2. 2300 */ 2301 on_each_cpu(cpu_hyp_init, NULL, 1); 2302 2303 /* 2304 * Register CPU lower-power notifier 2305 */ 2306 hyp_cpu_pm_init(); 2307 2308 /* 2309 * Init HYP view of VGIC 2310 */ 2311 err = kvm_vgic_hyp_init(); 2312 switch (err) { 2313 case 0: 2314 vgic_present = true; 2315 break; 2316 case -ENODEV: 2317 case -ENXIO: 2318 vgic_present = false; 2319 err = 0; 2320 break; 2321 default: 2322 goto out; 2323 } 2324 2325 /* 2326 * Init HYP architected timer support 2327 */ 2328 err = kvm_timer_hyp_init(vgic_present); 2329 if (err) 2330 goto out; 2331 2332 kvm_register_perf_callbacks(NULL); 2333 2334 out: 2335 if (err) 2336 hyp_cpu_pm_exit(); 2337 2338 if (err || !is_protected_kvm_enabled()) 2339 on_each_cpu(cpu_hyp_uninit, NULL, 1); 2340 2341 return err; 2342 } 2343 2344 static void __init teardown_subsystems(void) 2345 { 2346 kvm_unregister_perf_callbacks(); 2347 hyp_cpu_pm_exit(); 2348 } 2349 2350 static void __init teardown_hyp_mode(void) 2351 { 2352 bool free_sve = system_supports_sve() && is_protected_kvm_enabled(); 2353 int cpu; 2354 2355 free_hyp_pgds(); 2356 for_each_possible_cpu(cpu) { 2357 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu)); 2358 free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order()); 2359 2360 if (free_sve) { 2361 struct cpu_sve_state *sve_state; 2362 2363 sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state; 2364 free_pages((unsigned long) sve_state, pkvm_host_sve_state_order()); 2365 } 2366 } 2367 } 2368 2369 static int __init do_pkvm_init(u32 hyp_va_bits) 2370 { 2371 void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)); 2372 int ret; 2373 2374 preempt_disable(); 2375 cpu_hyp_init_context(); 2376 ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size, 2377 num_possible_cpus(), kern_hyp_va(per_cpu_base), 2378 hyp_va_bits); 2379 cpu_hyp_init_features(); 2380 2381 /* 2382 * The stub hypercalls are now disabled, so set our local flag to 2383 * prevent a later re-init attempt in kvm_arch_hardware_enable(). 2384 */ 2385 __this_cpu_write(kvm_hyp_initialized, 1); 2386 preempt_enable(); 2387 2388 return ret; 2389 } 2390 2391 static u64 get_hyp_id_aa64pfr0_el1(void) 2392 { 2393 /* 2394 * Track whether the system isn't affected by spectre/meltdown in the 2395 * hypervisor's view of id_aa64pfr0_el1, used for protected VMs. 2396 * Although this is per-CPU, we make it global for simplicity, e.g., not 2397 * to have to worry about vcpu migration. 2398 * 2399 * Unlike for non-protected VMs, userspace cannot override this for 2400 * protected VMs. 2401 */ 2402 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); 2403 2404 val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) | 2405 ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3)); 2406 2407 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2), 2408 arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED); 2409 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3), 2410 arm64_get_meltdown_state() == SPECTRE_UNAFFECTED); 2411 2412 return val; 2413 } 2414 2415 static void kvm_hyp_init_symbols(void) 2416 { 2417 kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1(); 2418 kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1); 2419 kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1); 2420 kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1); 2421 kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1); 2422 kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 2423 kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 2424 kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1); 2425 kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1); 2426 kvm_nvhe_sym(__icache_flags) = __icache_flags; 2427 kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits; 2428 } 2429 2430 static int __init kvm_hyp_init_protection(u32 hyp_va_bits) 2431 { 2432 void *addr = phys_to_virt(hyp_mem_base); 2433 int ret; 2434 2435 ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP); 2436 if (ret) 2437 return ret; 2438 2439 ret = do_pkvm_init(hyp_va_bits); 2440 if (ret) 2441 return ret; 2442 2443 free_hyp_pgds(); 2444 2445 return 0; 2446 } 2447 2448 static int init_pkvm_host_sve_state(void) 2449 { 2450 int cpu; 2451 2452 if (!system_supports_sve()) 2453 return 0; 2454 2455 /* Allocate pages for host sve state in protected mode. */ 2456 for_each_possible_cpu(cpu) { 2457 struct page *page = alloc_pages(GFP_KERNEL, pkvm_host_sve_state_order()); 2458 2459 if (!page) 2460 return -ENOMEM; 2461 2462 per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state = page_address(page); 2463 } 2464 2465 /* 2466 * Don't map the pages in hyp since these are only used in protected 2467 * mode, which will (re)create its own mapping when initialized. 2468 */ 2469 2470 return 0; 2471 } 2472 2473 /* 2474 * Finalizes the initialization of hyp mode, once everything else is initialized 2475 * and the initialziation process cannot fail. 2476 */ 2477 static void finalize_init_hyp_mode(void) 2478 { 2479 int cpu; 2480 2481 if (system_supports_sve() && is_protected_kvm_enabled()) { 2482 for_each_possible_cpu(cpu) { 2483 struct cpu_sve_state *sve_state; 2484 2485 sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state; 2486 per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state = 2487 kern_hyp_va(sve_state); 2488 } 2489 } else { 2490 for_each_possible_cpu(cpu) { 2491 struct user_fpsimd_state *fpsimd_state; 2492 2493 fpsimd_state = &per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->host_ctxt.fp_regs; 2494 per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->fpsimd_state = 2495 kern_hyp_va(fpsimd_state); 2496 } 2497 } 2498 } 2499 2500 static void pkvm_hyp_init_ptrauth(void) 2501 { 2502 struct kvm_cpu_context *hyp_ctxt; 2503 int cpu; 2504 2505 for_each_possible_cpu(cpu) { 2506 hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu); 2507 hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long(); 2508 hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long(); 2509 hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long(); 2510 hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long(); 2511 hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long(); 2512 hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long(); 2513 hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long(); 2514 hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long(); 2515 hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long(); 2516 hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long(); 2517 } 2518 } 2519 2520 /* Inits Hyp-mode on all online CPUs */ 2521 static int __init init_hyp_mode(void) 2522 { 2523 u32 hyp_va_bits; 2524 int cpu; 2525 int err = -ENOMEM; 2526 2527 /* 2528 * The protected Hyp-mode cannot be initialized if the memory pool 2529 * allocation has failed. 2530 */ 2531 if (is_protected_kvm_enabled() && !hyp_mem_base) 2532 goto out_err; 2533 2534 /* 2535 * Allocate Hyp PGD and setup Hyp identity mapping 2536 */ 2537 err = kvm_mmu_init(&hyp_va_bits); 2538 if (err) 2539 goto out_err; 2540 2541 /* 2542 * Allocate stack pages for Hypervisor-mode 2543 */ 2544 for_each_possible_cpu(cpu) { 2545 unsigned long stack_page; 2546 2547 stack_page = __get_free_page(GFP_KERNEL); 2548 if (!stack_page) { 2549 err = -ENOMEM; 2550 goto out_err; 2551 } 2552 2553 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page; 2554 } 2555 2556 /* 2557 * Allocate and initialize pages for Hypervisor-mode percpu regions. 2558 */ 2559 for_each_possible_cpu(cpu) { 2560 struct page *page; 2561 void *page_addr; 2562 2563 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order()); 2564 if (!page) { 2565 err = -ENOMEM; 2566 goto out_err; 2567 } 2568 2569 page_addr = page_address(page); 2570 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size()); 2571 kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr; 2572 } 2573 2574 /* 2575 * Map the Hyp-code called directly from the host 2576 */ 2577 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start), 2578 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC); 2579 if (err) { 2580 kvm_err("Cannot map world-switch code\n"); 2581 goto out_err; 2582 } 2583 2584 err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start), 2585 kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO); 2586 if (err) { 2587 kvm_err("Cannot map .hyp.rodata section\n"); 2588 goto out_err; 2589 } 2590 2591 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata), 2592 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO); 2593 if (err) { 2594 kvm_err("Cannot map rodata section\n"); 2595 goto out_err; 2596 } 2597 2598 /* 2599 * .hyp.bss is guaranteed to be placed at the beginning of the .bss 2600 * section thanks to an assertion in the linker script. Map it RW and 2601 * the rest of .bss RO. 2602 */ 2603 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start), 2604 kvm_ksym_ref(__hyp_bss_end), PAGE_HYP); 2605 if (err) { 2606 kvm_err("Cannot map hyp bss section: %d\n", err); 2607 goto out_err; 2608 } 2609 2610 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end), 2611 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO); 2612 if (err) { 2613 kvm_err("Cannot map bss section\n"); 2614 goto out_err; 2615 } 2616 2617 /* 2618 * Map the Hyp stack pages 2619 */ 2620 for_each_possible_cpu(cpu) { 2621 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu); 2622 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu); 2623 2624 err = create_hyp_stack(__pa(stack_page), ¶ms->stack_hyp_va); 2625 if (err) { 2626 kvm_err("Cannot map hyp stack\n"); 2627 goto out_err; 2628 } 2629 2630 /* 2631 * Save the stack PA in nvhe_init_params. This will be needed 2632 * to recreate the stack mapping in protected nVHE mode. 2633 * __hyp_pa() won't do the right thing there, since the stack 2634 * has been mapped in the flexible private VA space. 2635 */ 2636 params->stack_pa = __pa(stack_page); 2637 } 2638 2639 for_each_possible_cpu(cpu) { 2640 char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu]; 2641 char *percpu_end = percpu_begin + nvhe_percpu_size(); 2642 2643 /* Map Hyp percpu pages */ 2644 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP); 2645 if (err) { 2646 kvm_err("Cannot map hyp percpu region\n"); 2647 goto out_err; 2648 } 2649 2650 /* Prepare the CPU initialization parameters */ 2651 cpu_prepare_hyp_mode(cpu, hyp_va_bits); 2652 } 2653 2654 kvm_hyp_init_symbols(); 2655 2656 if (is_protected_kvm_enabled()) { 2657 if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) && 2658 cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH)) 2659 pkvm_hyp_init_ptrauth(); 2660 2661 init_cpu_logical_map(); 2662 2663 if (!init_psci_relay()) { 2664 err = -ENODEV; 2665 goto out_err; 2666 } 2667 2668 err = init_pkvm_host_sve_state(); 2669 if (err) 2670 goto out_err; 2671 2672 err = kvm_hyp_init_protection(hyp_va_bits); 2673 if (err) { 2674 kvm_err("Failed to init hyp memory protection\n"); 2675 goto out_err; 2676 } 2677 } 2678 2679 return 0; 2680 2681 out_err: 2682 teardown_hyp_mode(); 2683 kvm_err("error initializing Hyp mode: %d\n", err); 2684 return err; 2685 } 2686 2687 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr) 2688 { 2689 struct kvm_vcpu *vcpu = NULL; 2690 struct kvm_mpidr_data *data; 2691 unsigned long i; 2692 2693 mpidr &= MPIDR_HWID_BITMASK; 2694 2695 rcu_read_lock(); 2696 data = rcu_dereference(kvm->arch.mpidr_data); 2697 2698 if (data) { 2699 u16 idx = kvm_mpidr_index(data, mpidr); 2700 2701 vcpu = kvm_get_vcpu(kvm, data->cmpidr_to_idx[idx]); 2702 if (mpidr != kvm_vcpu_get_mpidr_aff(vcpu)) 2703 vcpu = NULL; 2704 } 2705 2706 rcu_read_unlock(); 2707 2708 if (vcpu) 2709 return vcpu; 2710 2711 kvm_for_each_vcpu(i, vcpu, kvm) { 2712 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu)) 2713 return vcpu; 2714 } 2715 return NULL; 2716 } 2717 2718 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm) 2719 { 2720 return irqchip_in_kernel(kvm); 2721 } 2722 2723 bool kvm_arch_has_irq_bypass(void) 2724 { 2725 return true; 2726 } 2727 2728 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 2729 struct irq_bypass_producer *prod) 2730 { 2731 struct kvm_kernel_irqfd *irqfd = 2732 container_of(cons, struct kvm_kernel_irqfd, consumer); 2733 2734 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq, 2735 &irqfd->irq_entry); 2736 } 2737 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 2738 struct irq_bypass_producer *prod) 2739 { 2740 struct kvm_kernel_irqfd *irqfd = 2741 container_of(cons, struct kvm_kernel_irqfd, consumer); 2742 2743 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq, 2744 &irqfd->irq_entry); 2745 } 2746 2747 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons) 2748 { 2749 struct kvm_kernel_irqfd *irqfd = 2750 container_of(cons, struct kvm_kernel_irqfd, consumer); 2751 2752 kvm_arm_halt_guest(irqfd->kvm); 2753 } 2754 2755 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons) 2756 { 2757 struct kvm_kernel_irqfd *irqfd = 2758 container_of(cons, struct kvm_kernel_irqfd, consumer); 2759 2760 kvm_arm_resume_guest(irqfd->kvm); 2761 } 2762 2763 /* Initialize Hyp-mode and memory mappings on all CPUs */ 2764 static __init int kvm_arm_init(void) 2765 { 2766 int err; 2767 bool in_hyp_mode; 2768 2769 if (!is_hyp_mode_available()) { 2770 kvm_info("HYP mode not available\n"); 2771 return -ENODEV; 2772 } 2773 2774 if (kvm_get_mode() == KVM_MODE_NONE) { 2775 kvm_info("KVM disabled from command line\n"); 2776 return -ENODEV; 2777 } 2778 2779 err = kvm_sys_reg_table_init(); 2780 if (err) { 2781 kvm_info("Error initializing system register tables"); 2782 return err; 2783 } 2784 2785 in_hyp_mode = is_kernel_in_hyp_mode(); 2786 2787 if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) || 2788 cpus_have_final_cap(ARM64_WORKAROUND_1508412)) 2789 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \ 2790 "Only trusted guests should be used on this system.\n"); 2791 2792 err = kvm_set_ipa_limit(); 2793 if (err) 2794 return err; 2795 2796 err = kvm_arm_init_sve(); 2797 if (err) 2798 return err; 2799 2800 err = kvm_arm_vmid_alloc_init(); 2801 if (err) { 2802 kvm_err("Failed to initialize VMID allocator.\n"); 2803 return err; 2804 } 2805 2806 if (!in_hyp_mode) { 2807 err = init_hyp_mode(); 2808 if (err) 2809 goto out_err; 2810 } 2811 2812 err = kvm_init_vector_slots(); 2813 if (err) { 2814 kvm_err("Cannot initialise vector slots\n"); 2815 goto out_hyp; 2816 } 2817 2818 err = init_subsystems(); 2819 if (err) 2820 goto out_hyp; 2821 2822 kvm_info("%s%sVHE mode initialized successfully\n", 2823 in_hyp_mode ? "" : (is_protected_kvm_enabled() ? 2824 "Protected " : "Hyp "), 2825 in_hyp_mode ? "" : (cpus_have_final_cap(ARM64_KVM_HVHE) ? 2826 "h" : "n")); 2827 2828 /* 2829 * FIXME: Do something reasonable if kvm_init() fails after pKVM 2830 * hypervisor protection is finalized. 2831 */ 2832 err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE); 2833 if (err) 2834 goto out_subs; 2835 2836 /* 2837 * This should be called after initialization is done and failure isn't 2838 * possible anymore. 2839 */ 2840 if (!in_hyp_mode) 2841 finalize_init_hyp_mode(); 2842 2843 kvm_arm_initialised = true; 2844 2845 return 0; 2846 2847 out_subs: 2848 teardown_subsystems(); 2849 out_hyp: 2850 if (!in_hyp_mode) 2851 teardown_hyp_mode(); 2852 out_err: 2853 kvm_arm_vmid_alloc_free(); 2854 return err; 2855 } 2856 2857 static int __init early_kvm_mode_cfg(char *arg) 2858 { 2859 if (!arg) 2860 return -EINVAL; 2861 2862 if (strcmp(arg, "none") == 0) { 2863 kvm_mode = KVM_MODE_NONE; 2864 return 0; 2865 } 2866 2867 if (!is_hyp_mode_available()) { 2868 pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n"); 2869 return 0; 2870 } 2871 2872 if (strcmp(arg, "protected") == 0) { 2873 if (!is_kernel_in_hyp_mode()) 2874 kvm_mode = KVM_MODE_PROTECTED; 2875 else 2876 pr_warn_once("Protected KVM not available with VHE\n"); 2877 2878 return 0; 2879 } 2880 2881 if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) { 2882 kvm_mode = KVM_MODE_DEFAULT; 2883 return 0; 2884 } 2885 2886 if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) { 2887 kvm_mode = KVM_MODE_NV; 2888 return 0; 2889 } 2890 2891 return -EINVAL; 2892 } 2893 early_param("kvm-arm.mode", early_kvm_mode_cfg); 2894 2895 static int __init early_kvm_wfx_trap_policy_cfg(char *arg, enum kvm_wfx_trap_policy *p) 2896 { 2897 if (!arg) 2898 return -EINVAL; 2899 2900 if (strcmp(arg, "trap") == 0) { 2901 *p = KVM_WFX_TRAP; 2902 return 0; 2903 } 2904 2905 if (strcmp(arg, "notrap") == 0) { 2906 *p = KVM_WFX_NOTRAP; 2907 return 0; 2908 } 2909 2910 return -EINVAL; 2911 } 2912 2913 static int __init early_kvm_wfi_trap_policy_cfg(char *arg) 2914 { 2915 return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfi_trap_policy); 2916 } 2917 early_param("kvm-arm.wfi_trap_policy", early_kvm_wfi_trap_policy_cfg); 2918 2919 static int __init early_kvm_wfe_trap_policy_cfg(char *arg) 2920 { 2921 return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfe_trap_policy); 2922 } 2923 early_param("kvm-arm.wfe_trap_policy", early_kvm_wfe_trap_policy_cfg); 2924 2925 enum kvm_mode kvm_get_mode(void) 2926 { 2927 return kvm_mode; 2928 } 2929 2930 module_init(kvm_arm_init); 2931