1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 4 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 5 */ 6 7 #include <linux/bug.h> 8 #include <linux/cpu_pm.h> 9 #include <linux/entry-kvm.h> 10 #include <linux/errno.h> 11 #include <linux/err.h> 12 #include <linux/kvm_host.h> 13 #include <linux/list.h> 14 #include <linux/module.h> 15 #include <linux/vmalloc.h> 16 #include <linux/fs.h> 17 #include <linux/mman.h> 18 #include <linux/sched.h> 19 #include <linux/kvm.h> 20 #include <linux/kvm_irqfd.h> 21 #include <linux/irqbypass.h> 22 #include <linux/sched/stat.h> 23 #include <linux/psci.h> 24 #include <trace/events/kvm.h> 25 26 #define CREATE_TRACE_POINTS 27 #include "trace_arm.h" 28 29 #include <linux/uaccess.h> 30 #include <asm/ptrace.h> 31 #include <asm/mman.h> 32 #include <asm/tlbflush.h> 33 #include <asm/cacheflush.h> 34 #include <asm/cpufeature.h> 35 #include <asm/virt.h> 36 #include <asm/kvm_arm.h> 37 #include <asm/kvm_asm.h> 38 #include <asm/kvm_emulate.h> 39 #include <asm/kvm_mmu.h> 40 #include <asm/kvm_nested.h> 41 #include <asm/kvm_pkvm.h> 42 #include <asm/kvm_ptrauth.h> 43 #include <asm/sections.h> 44 45 #include <kvm/arm_hypercalls.h> 46 #include <kvm/arm_pmu.h> 47 #include <kvm/arm_psci.h> 48 49 #include "sys_regs.h" 50 51 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT; 52 53 enum kvm_wfx_trap_policy { 54 KVM_WFX_NOTRAP_SINGLE_TASK, /* Default option */ 55 KVM_WFX_NOTRAP, 56 KVM_WFX_TRAP, 57 }; 58 59 static enum kvm_wfx_trap_policy kvm_wfi_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK; 60 static enum kvm_wfx_trap_policy kvm_wfe_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK; 61 62 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector); 63 64 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page); 65 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params); 66 67 DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt); 68 69 static bool vgic_present, kvm_arm_initialised; 70 71 static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized); 72 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use); 73 74 bool is_kvm_arm_initialised(void) 75 { 76 return kvm_arm_initialised; 77 } 78 79 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 80 { 81 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 82 } 83 84 /* 85 * This functions as an allow-list of protected VM capabilities. 86 * Features not explicitly allowed by this function are denied. 87 */ 88 static bool pkvm_ext_allowed(struct kvm *kvm, long ext) 89 { 90 switch (ext) { 91 case KVM_CAP_IRQCHIP: 92 case KVM_CAP_ARM_PSCI: 93 case KVM_CAP_ARM_PSCI_0_2: 94 case KVM_CAP_NR_VCPUS: 95 case KVM_CAP_MAX_VCPUS: 96 case KVM_CAP_MAX_VCPU_ID: 97 case KVM_CAP_MSI_DEVID: 98 case KVM_CAP_ARM_VM_IPA_SIZE: 99 case KVM_CAP_ARM_PMU_V3: 100 case KVM_CAP_ARM_SVE: 101 case KVM_CAP_ARM_PTRAUTH_ADDRESS: 102 case KVM_CAP_ARM_PTRAUTH_GENERIC: 103 return true; 104 default: 105 return false; 106 } 107 } 108 109 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 110 struct kvm_enable_cap *cap) 111 { 112 int r = -EINVAL; 113 114 if (cap->flags) 115 return -EINVAL; 116 117 if (kvm_vm_is_protected(kvm) && !pkvm_ext_allowed(kvm, cap->cap)) 118 return -EINVAL; 119 120 switch (cap->cap) { 121 case KVM_CAP_ARM_NISV_TO_USER: 122 r = 0; 123 set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER, 124 &kvm->arch.flags); 125 break; 126 case KVM_CAP_ARM_MTE: 127 mutex_lock(&kvm->lock); 128 if (system_supports_mte() && !kvm->created_vcpus) { 129 r = 0; 130 set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags); 131 } 132 mutex_unlock(&kvm->lock); 133 break; 134 case KVM_CAP_ARM_SYSTEM_SUSPEND: 135 r = 0; 136 set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags); 137 break; 138 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE: 139 mutex_lock(&kvm->slots_lock); 140 /* 141 * To keep things simple, allow changing the chunk 142 * size only when no memory slots have been created. 143 */ 144 if (kvm_are_all_memslots_empty(kvm)) { 145 u64 new_cap = cap->args[0]; 146 147 if (!new_cap || kvm_is_block_size_supported(new_cap)) { 148 r = 0; 149 kvm->arch.mmu.split_page_chunk_size = new_cap; 150 } 151 } 152 mutex_unlock(&kvm->slots_lock); 153 break; 154 default: 155 break; 156 } 157 158 return r; 159 } 160 161 static int kvm_arm_default_max_vcpus(void) 162 { 163 return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS; 164 } 165 166 /** 167 * kvm_arch_init_vm - initializes a VM data structure 168 * @kvm: pointer to the KVM struct 169 * @type: kvm device type 170 */ 171 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 172 { 173 int ret; 174 175 mutex_init(&kvm->arch.config_lock); 176 177 #ifdef CONFIG_LOCKDEP 178 /* Clue in lockdep that the config_lock must be taken inside kvm->lock */ 179 mutex_lock(&kvm->lock); 180 mutex_lock(&kvm->arch.config_lock); 181 mutex_unlock(&kvm->arch.config_lock); 182 mutex_unlock(&kvm->lock); 183 #endif 184 185 kvm_init_nested(kvm); 186 187 ret = kvm_share_hyp(kvm, kvm + 1); 188 if (ret) 189 return ret; 190 191 ret = pkvm_init_host_vm(kvm); 192 if (ret) 193 goto err_unshare_kvm; 194 195 if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) { 196 ret = -ENOMEM; 197 goto err_unshare_kvm; 198 } 199 cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask); 200 201 ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type); 202 if (ret) 203 goto err_free_cpumask; 204 205 kvm_vgic_early_init(kvm); 206 207 kvm_timer_init_vm(kvm); 208 209 /* The maximum number of VCPUs is limited by the host's GIC model */ 210 kvm->max_vcpus = kvm_arm_default_max_vcpus(); 211 212 kvm_arm_init_hypercalls(kvm); 213 214 bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES); 215 216 return 0; 217 218 err_free_cpumask: 219 free_cpumask_var(kvm->arch.supported_cpus); 220 err_unshare_kvm: 221 kvm_unshare_hyp(kvm, kvm + 1); 222 return ret; 223 } 224 225 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 226 { 227 return VM_FAULT_SIGBUS; 228 } 229 230 void kvm_arch_create_vm_debugfs(struct kvm *kvm) 231 { 232 kvm_sys_regs_create_debugfs(kvm); 233 kvm_s2_ptdump_create_debugfs(kvm); 234 } 235 236 static void kvm_destroy_mpidr_data(struct kvm *kvm) 237 { 238 struct kvm_mpidr_data *data; 239 240 mutex_lock(&kvm->arch.config_lock); 241 242 data = rcu_dereference_protected(kvm->arch.mpidr_data, 243 lockdep_is_held(&kvm->arch.config_lock)); 244 if (data) { 245 rcu_assign_pointer(kvm->arch.mpidr_data, NULL); 246 synchronize_rcu(); 247 kfree(data); 248 } 249 250 mutex_unlock(&kvm->arch.config_lock); 251 } 252 253 /** 254 * kvm_arch_destroy_vm - destroy the VM data structure 255 * @kvm: pointer to the KVM struct 256 */ 257 void kvm_arch_destroy_vm(struct kvm *kvm) 258 { 259 bitmap_free(kvm->arch.pmu_filter); 260 free_cpumask_var(kvm->arch.supported_cpus); 261 262 kvm_vgic_destroy(kvm); 263 264 if (is_protected_kvm_enabled()) 265 pkvm_destroy_hyp_vm(kvm); 266 267 kvm_destroy_mpidr_data(kvm); 268 269 kfree(kvm->arch.sysreg_masks); 270 kvm_destroy_vcpus(kvm); 271 272 kvm_unshare_hyp(kvm, kvm + 1); 273 274 kvm_arm_teardown_hypercalls(kvm); 275 } 276 277 static bool kvm_has_full_ptr_auth(void) 278 { 279 bool apa, gpa, api, gpi, apa3, gpa3; 280 u64 isar1, isar2, val; 281 282 /* 283 * Check that: 284 * 285 * - both Address and Generic auth are implemented for a given 286 * algorithm (Q5, IMPDEF or Q3) 287 * - only a single algorithm is implemented. 288 */ 289 if (!system_has_full_ptr_auth()) 290 return false; 291 292 isar1 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1); 293 isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1); 294 295 apa = !!FIELD_GET(ID_AA64ISAR1_EL1_APA_MASK, isar1); 296 val = FIELD_GET(ID_AA64ISAR1_EL1_GPA_MASK, isar1); 297 gpa = (val == ID_AA64ISAR1_EL1_GPA_IMP); 298 299 api = !!FIELD_GET(ID_AA64ISAR1_EL1_API_MASK, isar1); 300 val = FIELD_GET(ID_AA64ISAR1_EL1_GPI_MASK, isar1); 301 gpi = (val == ID_AA64ISAR1_EL1_GPI_IMP); 302 303 apa3 = !!FIELD_GET(ID_AA64ISAR2_EL1_APA3_MASK, isar2); 304 val = FIELD_GET(ID_AA64ISAR2_EL1_GPA3_MASK, isar2); 305 gpa3 = (val == ID_AA64ISAR2_EL1_GPA3_IMP); 306 307 return (apa == gpa && api == gpi && apa3 == gpa3 && 308 (apa + api + apa3) == 1); 309 } 310 311 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 312 { 313 int r; 314 315 if (kvm && kvm_vm_is_protected(kvm) && !pkvm_ext_allowed(kvm, ext)) 316 return 0; 317 318 switch (ext) { 319 case KVM_CAP_IRQCHIP: 320 r = vgic_present; 321 break; 322 case KVM_CAP_IOEVENTFD: 323 case KVM_CAP_USER_MEMORY: 324 case KVM_CAP_SYNC_MMU: 325 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 326 case KVM_CAP_ONE_REG: 327 case KVM_CAP_ARM_PSCI: 328 case KVM_CAP_ARM_PSCI_0_2: 329 case KVM_CAP_READONLY_MEM: 330 case KVM_CAP_MP_STATE: 331 case KVM_CAP_IMMEDIATE_EXIT: 332 case KVM_CAP_VCPU_EVENTS: 333 case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2: 334 case KVM_CAP_ARM_NISV_TO_USER: 335 case KVM_CAP_ARM_INJECT_EXT_DABT: 336 case KVM_CAP_SET_GUEST_DEBUG: 337 case KVM_CAP_VCPU_ATTRIBUTES: 338 case KVM_CAP_PTP_KVM: 339 case KVM_CAP_ARM_SYSTEM_SUSPEND: 340 case KVM_CAP_IRQFD_RESAMPLE: 341 case KVM_CAP_COUNTER_OFFSET: 342 r = 1; 343 break; 344 case KVM_CAP_SET_GUEST_DEBUG2: 345 return KVM_GUESTDBG_VALID_MASK; 346 case KVM_CAP_ARM_SET_DEVICE_ADDR: 347 r = 1; 348 break; 349 case KVM_CAP_NR_VCPUS: 350 /* 351 * ARM64 treats KVM_CAP_NR_CPUS differently from all other 352 * architectures, as it does not always bound it to 353 * KVM_CAP_MAX_VCPUS. It should not matter much because 354 * this is just an advisory value. 355 */ 356 r = min_t(unsigned int, num_online_cpus(), 357 kvm_arm_default_max_vcpus()); 358 break; 359 case KVM_CAP_MAX_VCPUS: 360 case KVM_CAP_MAX_VCPU_ID: 361 if (kvm) 362 r = kvm->max_vcpus; 363 else 364 r = kvm_arm_default_max_vcpus(); 365 break; 366 case KVM_CAP_MSI_DEVID: 367 if (!kvm) 368 r = -EINVAL; 369 else 370 r = kvm->arch.vgic.msis_require_devid; 371 break; 372 case KVM_CAP_ARM_USER_IRQ: 373 /* 374 * 1: EL1_VTIMER, EL1_PTIMER, and PMU. 375 * (bump this number if adding more devices) 376 */ 377 r = 1; 378 break; 379 case KVM_CAP_ARM_MTE: 380 r = system_supports_mte(); 381 break; 382 case KVM_CAP_STEAL_TIME: 383 r = kvm_arm_pvtime_supported(); 384 break; 385 case KVM_CAP_ARM_EL1_32BIT: 386 r = cpus_have_final_cap(ARM64_HAS_32BIT_EL1); 387 break; 388 case KVM_CAP_GUEST_DEBUG_HW_BPS: 389 r = get_num_brps(); 390 break; 391 case KVM_CAP_GUEST_DEBUG_HW_WPS: 392 r = get_num_wrps(); 393 break; 394 case KVM_CAP_ARM_PMU_V3: 395 r = kvm_arm_support_pmu_v3(); 396 break; 397 case KVM_CAP_ARM_INJECT_SERROR_ESR: 398 r = cpus_have_final_cap(ARM64_HAS_RAS_EXTN); 399 break; 400 case KVM_CAP_ARM_VM_IPA_SIZE: 401 r = get_kvm_ipa_limit(); 402 break; 403 case KVM_CAP_ARM_SVE: 404 r = system_supports_sve(); 405 break; 406 case KVM_CAP_ARM_PTRAUTH_ADDRESS: 407 case KVM_CAP_ARM_PTRAUTH_GENERIC: 408 r = kvm_has_full_ptr_auth(); 409 break; 410 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE: 411 if (kvm) 412 r = kvm->arch.mmu.split_page_chunk_size; 413 else 414 r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT; 415 break; 416 case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES: 417 r = kvm_supported_block_sizes(); 418 break; 419 case KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES: 420 r = BIT(0); 421 break; 422 default: 423 r = 0; 424 } 425 426 return r; 427 } 428 429 long kvm_arch_dev_ioctl(struct file *filp, 430 unsigned int ioctl, unsigned long arg) 431 { 432 return -EINVAL; 433 } 434 435 struct kvm *kvm_arch_alloc_vm(void) 436 { 437 size_t sz = sizeof(struct kvm); 438 439 if (!has_vhe()) 440 return kzalloc(sz, GFP_KERNEL_ACCOUNT); 441 442 return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO); 443 } 444 445 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 446 { 447 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) 448 return -EBUSY; 449 450 if (id >= kvm->max_vcpus) 451 return -EINVAL; 452 453 return 0; 454 } 455 456 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 457 { 458 int err; 459 460 spin_lock_init(&vcpu->arch.mp_state_lock); 461 462 #ifdef CONFIG_LOCKDEP 463 /* Inform lockdep that the config_lock is acquired after vcpu->mutex */ 464 mutex_lock(&vcpu->mutex); 465 mutex_lock(&vcpu->kvm->arch.config_lock); 466 mutex_unlock(&vcpu->kvm->arch.config_lock); 467 mutex_unlock(&vcpu->mutex); 468 #endif 469 470 /* Force users to call KVM_ARM_VCPU_INIT */ 471 vcpu_clear_flag(vcpu, VCPU_INITIALIZED); 472 473 vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO; 474 475 /* Set up the timer */ 476 kvm_timer_vcpu_init(vcpu); 477 478 kvm_pmu_vcpu_init(vcpu); 479 480 kvm_arm_reset_debug_ptr(vcpu); 481 482 kvm_arm_pvtime_vcpu_init(&vcpu->arch); 483 484 vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu; 485 486 /* 487 * This vCPU may have been created after mpidr_data was initialized. 488 * Throw out the pre-computed mappings if that is the case which forces 489 * KVM to fall back to iteratively searching the vCPUs. 490 */ 491 kvm_destroy_mpidr_data(vcpu->kvm); 492 493 err = kvm_vgic_vcpu_init(vcpu); 494 if (err) 495 return err; 496 497 return kvm_share_hyp(vcpu, vcpu + 1); 498 } 499 500 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 501 { 502 } 503 504 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 505 { 506 if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm))) 507 static_branch_dec(&userspace_irqchip_in_use); 508 509 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); 510 kvm_timer_vcpu_terminate(vcpu); 511 kvm_pmu_vcpu_destroy(vcpu); 512 kvm_vgic_vcpu_destroy(vcpu); 513 kvm_arm_vcpu_destroy(vcpu); 514 } 515 516 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 517 { 518 519 } 520 521 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 522 { 523 524 } 525 526 static void vcpu_set_pauth_traps(struct kvm_vcpu *vcpu) 527 { 528 if (vcpu_has_ptrauth(vcpu) && !is_protected_kvm_enabled()) { 529 /* 530 * Either we're running an L2 guest, and the API/APK bits come 531 * from L1's HCR_EL2, or API/APK are both set. 532 */ 533 if (unlikely(vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu))) { 534 u64 val; 535 536 val = __vcpu_sys_reg(vcpu, HCR_EL2); 537 val &= (HCR_API | HCR_APK); 538 vcpu->arch.hcr_el2 &= ~(HCR_API | HCR_APK); 539 vcpu->arch.hcr_el2 |= val; 540 } else { 541 vcpu->arch.hcr_el2 |= (HCR_API | HCR_APK); 542 } 543 544 /* 545 * Save the host keys if there is any chance for the guest 546 * to use pauth, as the entry code will reload the guest 547 * keys in that case. 548 */ 549 if (vcpu->arch.hcr_el2 & (HCR_API | HCR_APK)) { 550 struct kvm_cpu_context *ctxt; 551 552 ctxt = this_cpu_ptr_hyp_sym(kvm_hyp_ctxt); 553 ptrauth_save_keys(ctxt); 554 } 555 } 556 } 557 558 static bool kvm_vcpu_should_clear_twi(struct kvm_vcpu *vcpu) 559 { 560 if (unlikely(kvm_wfi_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK)) 561 return kvm_wfi_trap_policy == KVM_WFX_NOTRAP; 562 563 return single_task_running() && 564 (atomic_read(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count) || 565 vcpu->kvm->arch.vgic.nassgireq); 566 } 567 568 static bool kvm_vcpu_should_clear_twe(struct kvm_vcpu *vcpu) 569 { 570 if (unlikely(kvm_wfe_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK)) 571 return kvm_wfe_trap_policy == KVM_WFX_NOTRAP; 572 573 return single_task_running(); 574 } 575 576 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 577 { 578 struct kvm_s2_mmu *mmu; 579 int *last_ran; 580 581 if (vcpu_has_nv(vcpu)) 582 kvm_vcpu_load_hw_mmu(vcpu); 583 584 mmu = vcpu->arch.hw_mmu; 585 last_ran = this_cpu_ptr(mmu->last_vcpu_ran); 586 587 /* 588 * We guarantee that both TLBs and I-cache are private to each 589 * vcpu. If detecting that a vcpu from the same VM has 590 * previously run on the same physical CPU, call into the 591 * hypervisor code to nuke the relevant contexts. 592 * 593 * We might get preempted before the vCPU actually runs, but 594 * over-invalidation doesn't affect correctness. 595 */ 596 if (*last_ran != vcpu->vcpu_idx) { 597 kvm_call_hyp(__kvm_flush_cpu_context, mmu); 598 *last_ran = vcpu->vcpu_idx; 599 } 600 601 vcpu->cpu = cpu; 602 603 kvm_vgic_load(vcpu); 604 kvm_timer_vcpu_load(vcpu); 605 if (has_vhe()) 606 kvm_vcpu_load_vhe(vcpu); 607 kvm_arch_vcpu_load_fp(vcpu); 608 kvm_vcpu_pmu_restore_guest(vcpu); 609 if (kvm_arm_is_pvtime_enabled(&vcpu->arch)) 610 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu); 611 612 if (kvm_vcpu_should_clear_twe(vcpu)) 613 vcpu->arch.hcr_el2 &= ~HCR_TWE; 614 else 615 vcpu->arch.hcr_el2 |= HCR_TWE; 616 617 if (kvm_vcpu_should_clear_twi(vcpu)) 618 vcpu->arch.hcr_el2 &= ~HCR_TWI; 619 else 620 vcpu->arch.hcr_el2 |= HCR_TWI; 621 622 vcpu_set_pauth_traps(vcpu); 623 624 kvm_arch_vcpu_load_debug_state_flags(vcpu); 625 626 if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus)) 627 vcpu_set_on_unsupported_cpu(vcpu); 628 } 629 630 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 631 { 632 kvm_arch_vcpu_put_debug_state_flags(vcpu); 633 kvm_arch_vcpu_put_fp(vcpu); 634 if (has_vhe()) 635 kvm_vcpu_put_vhe(vcpu); 636 kvm_timer_vcpu_put(vcpu); 637 kvm_vgic_put(vcpu); 638 kvm_vcpu_pmu_restore_host(vcpu); 639 if (vcpu_has_nv(vcpu)) 640 kvm_vcpu_put_hw_mmu(vcpu); 641 kvm_arm_vmid_clear_active(); 642 643 vcpu_clear_on_unsupported_cpu(vcpu); 644 vcpu->cpu = -1; 645 } 646 647 static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu) 648 { 649 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED); 650 kvm_make_request(KVM_REQ_SLEEP, vcpu); 651 kvm_vcpu_kick(vcpu); 652 } 653 654 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu) 655 { 656 spin_lock(&vcpu->arch.mp_state_lock); 657 __kvm_arm_vcpu_power_off(vcpu); 658 spin_unlock(&vcpu->arch.mp_state_lock); 659 } 660 661 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu) 662 { 663 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED; 664 } 665 666 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu) 667 { 668 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED); 669 kvm_make_request(KVM_REQ_SUSPEND, vcpu); 670 kvm_vcpu_kick(vcpu); 671 } 672 673 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu) 674 { 675 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED; 676 } 677 678 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 679 struct kvm_mp_state *mp_state) 680 { 681 *mp_state = READ_ONCE(vcpu->arch.mp_state); 682 683 return 0; 684 } 685 686 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 687 struct kvm_mp_state *mp_state) 688 { 689 int ret = 0; 690 691 spin_lock(&vcpu->arch.mp_state_lock); 692 693 switch (mp_state->mp_state) { 694 case KVM_MP_STATE_RUNNABLE: 695 WRITE_ONCE(vcpu->arch.mp_state, *mp_state); 696 break; 697 case KVM_MP_STATE_STOPPED: 698 __kvm_arm_vcpu_power_off(vcpu); 699 break; 700 case KVM_MP_STATE_SUSPENDED: 701 kvm_arm_vcpu_suspend(vcpu); 702 break; 703 default: 704 ret = -EINVAL; 705 } 706 707 spin_unlock(&vcpu->arch.mp_state_lock); 708 709 return ret; 710 } 711 712 /** 713 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled 714 * @v: The VCPU pointer 715 * 716 * If the guest CPU is not waiting for interrupts or an interrupt line is 717 * asserted, the CPU is by definition runnable. 718 */ 719 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 720 { 721 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF); 722 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v)) 723 && !kvm_arm_vcpu_stopped(v) && !v->arch.pause); 724 } 725 726 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 727 { 728 return vcpu_mode_priv(vcpu); 729 } 730 731 #ifdef CONFIG_GUEST_PERF_EVENTS 732 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 733 { 734 return *vcpu_pc(vcpu); 735 } 736 #endif 737 738 static void kvm_init_mpidr_data(struct kvm *kvm) 739 { 740 struct kvm_mpidr_data *data = NULL; 741 unsigned long c, mask, nr_entries; 742 u64 aff_set = 0, aff_clr = ~0UL; 743 struct kvm_vcpu *vcpu; 744 745 mutex_lock(&kvm->arch.config_lock); 746 747 if (rcu_access_pointer(kvm->arch.mpidr_data) || 748 atomic_read(&kvm->online_vcpus) == 1) 749 goto out; 750 751 kvm_for_each_vcpu(c, vcpu, kvm) { 752 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu); 753 aff_set |= aff; 754 aff_clr &= aff; 755 } 756 757 /* 758 * A significant bit can be either 0 or 1, and will only appear in 759 * aff_set. Use aff_clr to weed out the useless stuff. 760 */ 761 mask = aff_set ^ aff_clr; 762 nr_entries = BIT_ULL(hweight_long(mask)); 763 764 /* 765 * Don't let userspace fool us. If we need more than a single page 766 * to describe the compressed MPIDR array, just fall back to the 767 * iterative method. Single vcpu VMs do not need this either. 768 */ 769 if (struct_size(data, cmpidr_to_idx, nr_entries) <= PAGE_SIZE) 770 data = kzalloc(struct_size(data, cmpidr_to_idx, nr_entries), 771 GFP_KERNEL_ACCOUNT); 772 773 if (!data) 774 goto out; 775 776 data->mpidr_mask = mask; 777 778 kvm_for_each_vcpu(c, vcpu, kvm) { 779 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu); 780 u16 index = kvm_mpidr_index(data, aff); 781 782 data->cmpidr_to_idx[index] = c; 783 } 784 785 rcu_assign_pointer(kvm->arch.mpidr_data, data); 786 out: 787 mutex_unlock(&kvm->arch.config_lock); 788 } 789 790 /* 791 * Handle both the initialisation that is being done when the vcpu is 792 * run for the first time, as well as the updates that must be 793 * performed each time we get a new thread dealing with this vcpu. 794 */ 795 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 796 { 797 struct kvm *kvm = vcpu->kvm; 798 int ret; 799 800 if (!kvm_vcpu_initialized(vcpu)) 801 return -ENOEXEC; 802 803 if (!kvm_arm_vcpu_is_finalized(vcpu)) 804 return -EPERM; 805 806 ret = kvm_arch_vcpu_run_map_fp(vcpu); 807 if (ret) 808 return ret; 809 810 if (likely(vcpu_has_run_once(vcpu))) 811 return 0; 812 813 kvm_init_mpidr_data(kvm); 814 815 kvm_arm_vcpu_init_debug(vcpu); 816 817 if (likely(irqchip_in_kernel(kvm))) { 818 /* 819 * Map the VGIC hardware resources before running a vcpu the 820 * first time on this VM. 821 */ 822 ret = kvm_vgic_map_resources(kvm); 823 if (ret) 824 return ret; 825 } 826 827 ret = kvm_finalize_sys_regs(vcpu); 828 if (ret) 829 return ret; 830 831 /* 832 * This needs to happen after any restriction has been applied 833 * to the feature set. 834 */ 835 kvm_calculate_traps(vcpu); 836 837 ret = kvm_timer_enable(vcpu); 838 if (ret) 839 return ret; 840 841 ret = kvm_arm_pmu_v3_enable(vcpu); 842 if (ret) 843 return ret; 844 845 if (is_protected_kvm_enabled()) { 846 ret = pkvm_create_hyp_vm(kvm); 847 if (ret) 848 return ret; 849 } 850 851 if (!irqchip_in_kernel(kvm)) { 852 /* 853 * Tell the rest of the code that there are userspace irqchip 854 * VMs in the wild. 855 */ 856 static_branch_inc(&userspace_irqchip_in_use); 857 } 858 859 /* 860 * Initialize traps for protected VMs. 861 * NOTE: Move to run in EL2 directly, rather than via a hypercall, once 862 * the code is in place for first run initialization at EL2. 863 */ 864 if (kvm_vm_is_protected(kvm)) 865 kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu); 866 867 mutex_lock(&kvm->arch.config_lock); 868 set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags); 869 mutex_unlock(&kvm->arch.config_lock); 870 871 return ret; 872 } 873 874 bool kvm_arch_intc_initialized(struct kvm *kvm) 875 { 876 return vgic_initialized(kvm); 877 } 878 879 void kvm_arm_halt_guest(struct kvm *kvm) 880 { 881 unsigned long i; 882 struct kvm_vcpu *vcpu; 883 884 kvm_for_each_vcpu(i, vcpu, kvm) 885 vcpu->arch.pause = true; 886 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP); 887 } 888 889 void kvm_arm_resume_guest(struct kvm *kvm) 890 { 891 unsigned long i; 892 struct kvm_vcpu *vcpu; 893 894 kvm_for_each_vcpu(i, vcpu, kvm) { 895 vcpu->arch.pause = false; 896 __kvm_vcpu_wake_up(vcpu); 897 } 898 } 899 900 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu) 901 { 902 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 903 904 rcuwait_wait_event(wait, 905 (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause), 906 TASK_INTERRUPTIBLE); 907 908 if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) { 909 /* Awaken to handle a signal, request we sleep again later. */ 910 kvm_make_request(KVM_REQ_SLEEP, vcpu); 911 } 912 913 /* 914 * Make sure we will observe a potential reset request if we've 915 * observed a change to the power state. Pairs with the smp_wmb() in 916 * kvm_psci_vcpu_on(). 917 */ 918 smp_rmb(); 919 } 920 921 /** 922 * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior 923 * @vcpu: The VCPU pointer 924 * 925 * Suspend execution of a vCPU until a valid wake event is detected, i.e. until 926 * the vCPU is runnable. The vCPU may or may not be scheduled out, depending 927 * on when a wake event arrives, e.g. there may already be a pending wake event. 928 */ 929 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu) 930 { 931 /* 932 * Sync back the state of the GIC CPU interface so that we have 933 * the latest PMR and group enables. This ensures that 934 * kvm_arch_vcpu_runnable has up-to-date data to decide whether 935 * we have pending interrupts, e.g. when determining if the 936 * vCPU should block. 937 * 938 * For the same reason, we want to tell GICv4 that we need 939 * doorbells to be signalled, should an interrupt become pending. 940 */ 941 preempt_disable(); 942 vcpu_set_flag(vcpu, IN_WFI); 943 kvm_vgic_put(vcpu); 944 preempt_enable(); 945 946 kvm_vcpu_halt(vcpu); 947 vcpu_clear_flag(vcpu, IN_WFIT); 948 949 preempt_disable(); 950 vcpu_clear_flag(vcpu, IN_WFI); 951 kvm_vgic_load(vcpu); 952 preempt_enable(); 953 } 954 955 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu) 956 { 957 if (!kvm_arm_vcpu_suspended(vcpu)) 958 return 1; 959 960 kvm_vcpu_wfi(vcpu); 961 962 /* 963 * The suspend state is sticky; we do not leave it until userspace 964 * explicitly marks the vCPU as runnable. Request that we suspend again 965 * later. 966 */ 967 kvm_make_request(KVM_REQ_SUSPEND, vcpu); 968 969 /* 970 * Check to make sure the vCPU is actually runnable. If so, exit to 971 * userspace informing it of the wakeup condition. 972 */ 973 if (kvm_arch_vcpu_runnable(vcpu)) { 974 memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event)); 975 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP; 976 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 977 return 0; 978 } 979 980 /* 981 * Otherwise, we were unblocked to process a different event, such as a 982 * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to 983 * process the event. 984 */ 985 return 1; 986 } 987 988 /** 989 * check_vcpu_requests - check and handle pending vCPU requests 990 * @vcpu: the VCPU pointer 991 * 992 * Return: 1 if we should enter the guest 993 * 0 if we should exit to userspace 994 * < 0 if we should exit to userspace, where the return value indicates 995 * an error 996 */ 997 static int check_vcpu_requests(struct kvm_vcpu *vcpu) 998 { 999 if (kvm_request_pending(vcpu)) { 1000 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) 1001 return -EIO; 1002 1003 if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) 1004 kvm_vcpu_sleep(vcpu); 1005 1006 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) 1007 kvm_reset_vcpu(vcpu); 1008 1009 /* 1010 * Clear IRQ_PENDING requests that were made to guarantee 1011 * that a VCPU sees new virtual interrupts. 1012 */ 1013 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu); 1014 1015 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu)) 1016 kvm_update_stolen_time(vcpu); 1017 1018 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) { 1019 /* The distributor enable bits were changed */ 1020 preempt_disable(); 1021 vgic_v4_put(vcpu); 1022 vgic_v4_load(vcpu); 1023 preempt_enable(); 1024 } 1025 1026 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu)) 1027 kvm_vcpu_reload_pmu(vcpu); 1028 1029 if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu)) 1030 kvm_vcpu_pmu_restore_guest(vcpu); 1031 1032 if (kvm_check_request(KVM_REQ_SUSPEND, vcpu)) 1033 return kvm_vcpu_suspend(vcpu); 1034 1035 if (kvm_dirty_ring_check_request(vcpu)) 1036 return 0; 1037 1038 check_nested_vcpu_requests(vcpu); 1039 } 1040 1041 return 1; 1042 } 1043 1044 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu) 1045 { 1046 if (likely(!vcpu_mode_is_32bit(vcpu))) 1047 return false; 1048 1049 if (vcpu_has_nv(vcpu)) 1050 return true; 1051 1052 return !kvm_supports_32bit_el0(); 1053 } 1054 1055 /** 1056 * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest 1057 * @vcpu: The VCPU pointer 1058 * @ret: Pointer to write optional return code 1059 * 1060 * Returns: true if the VCPU needs to return to a preemptible + interruptible 1061 * and skip guest entry. 1062 * 1063 * This function disambiguates between two different types of exits: exits to a 1064 * preemptible + interruptible kernel context and exits to userspace. For an 1065 * exit to userspace, this function will write the return code to ret and return 1066 * true. For an exit to preemptible + interruptible kernel context (i.e. check 1067 * for pending work and re-enter), return true without writing to ret. 1068 */ 1069 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret) 1070 { 1071 struct kvm_run *run = vcpu->run; 1072 1073 /* 1074 * If we're using a userspace irqchip, then check if we need 1075 * to tell a userspace irqchip about timer or PMU level 1076 * changes and if so, exit to userspace (the actual level 1077 * state gets updated in kvm_timer_update_run and 1078 * kvm_pmu_update_run below). 1079 */ 1080 if (static_branch_unlikely(&userspace_irqchip_in_use)) { 1081 if (kvm_timer_should_notify_user(vcpu) || 1082 kvm_pmu_should_notify_user(vcpu)) { 1083 *ret = -EINTR; 1084 run->exit_reason = KVM_EXIT_INTR; 1085 return true; 1086 } 1087 } 1088 1089 if (unlikely(vcpu_on_unsupported_cpu(vcpu))) { 1090 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 1091 run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED; 1092 run->fail_entry.cpu = smp_processor_id(); 1093 *ret = 0; 1094 return true; 1095 } 1096 1097 return kvm_request_pending(vcpu) || 1098 xfer_to_guest_mode_work_pending(); 1099 } 1100 1101 /* 1102 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while 1103 * the vCPU is running. 1104 * 1105 * This must be noinstr as instrumentation may make use of RCU, and this is not 1106 * safe during the EQS. 1107 */ 1108 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu) 1109 { 1110 int ret; 1111 1112 guest_state_enter_irqoff(); 1113 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu); 1114 guest_state_exit_irqoff(); 1115 1116 return ret; 1117 } 1118 1119 /** 1120 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code 1121 * @vcpu: The VCPU pointer 1122 * 1123 * This function is called through the VCPU_RUN ioctl called from user space. It 1124 * will execute VM code in a loop until the time slice for the process is used 1125 * or some emulation is needed from user space in which case the function will 1126 * return with return value 0 and with the kvm_run structure filled in with the 1127 * required data for the requested emulation. 1128 */ 1129 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 1130 { 1131 struct kvm_run *run = vcpu->run; 1132 int ret; 1133 1134 if (run->exit_reason == KVM_EXIT_MMIO) { 1135 ret = kvm_handle_mmio_return(vcpu); 1136 if (ret <= 0) 1137 return ret; 1138 } 1139 1140 vcpu_load(vcpu); 1141 1142 if (!vcpu->wants_to_run) { 1143 ret = -EINTR; 1144 goto out; 1145 } 1146 1147 kvm_sigset_activate(vcpu); 1148 1149 ret = 1; 1150 run->exit_reason = KVM_EXIT_UNKNOWN; 1151 run->flags = 0; 1152 while (ret > 0) { 1153 /* 1154 * Check conditions before entering the guest 1155 */ 1156 ret = xfer_to_guest_mode_handle_work(vcpu); 1157 if (!ret) 1158 ret = 1; 1159 1160 if (ret > 0) 1161 ret = check_vcpu_requests(vcpu); 1162 1163 /* 1164 * Preparing the interrupts to be injected also 1165 * involves poking the GIC, which must be done in a 1166 * non-preemptible context. 1167 */ 1168 preempt_disable(); 1169 1170 /* 1171 * The VMID allocator only tracks active VMIDs per 1172 * physical CPU, and therefore the VMID allocated may not be 1173 * preserved on VMID roll-over if the task was preempted, 1174 * making a thread's VMID inactive. So we need to call 1175 * kvm_arm_vmid_update() in non-premptible context. 1176 */ 1177 if (kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid) && 1178 has_vhe()) 1179 __load_stage2(vcpu->arch.hw_mmu, 1180 vcpu->arch.hw_mmu->arch); 1181 1182 kvm_pmu_flush_hwstate(vcpu); 1183 1184 local_irq_disable(); 1185 1186 kvm_vgic_flush_hwstate(vcpu); 1187 1188 kvm_pmu_update_vcpu_events(vcpu); 1189 1190 /* 1191 * Ensure we set mode to IN_GUEST_MODE after we disable 1192 * interrupts and before the final VCPU requests check. 1193 * See the comment in kvm_vcpu_exiting_guest_mode() and 1194 * Documentation/virt/kvm/vcpu-requests.rst 1195 */ 1196 smp_store_mb(vcpu->mode, IN_GUEST_MODE); 1197 1198 if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) { 1199 vcpu->mode = OUTSIDE_GUEST_MODE; 1200 isb(); /* Ensure work in x_flush_hwstate is committed */ 1201 kvm_pmu_sync_hwstate(vcpu); 1202 if (static_branch_unlikely(&userspace_irqchip_in_use)) 1203 kvm_timer_sync_user(vcpu); 1204 kvm_vgic_sync_hwstate(vcpu); 1205 local_irq_enable(); 1206 preempt_enable(); 1207 continue; 1208 } 1209 1210 kvm_arm_setup_debug(vcpu); 1211 kvm_arch_vcpu_ctxflush_fp(vcpu); 1212 1213 /************************************************************** 1214 * Enter the guest 1215 */ 1216 trace_kvm_entry(*vcpu_pc(vcpu)); 1217 guest_timing_enter_irqoff(); 1218 1219 ret = kvm_arm_vcpu_enter_exit(vcpu); 1220 1221 vcpu->mode = OUTSIDE_GUEST_MODE; 1222 vcpu->stat.exits++; 1223 /* 1224 * Back from guest 1225 *************************************************************/ 1226 1227 kvm_arm_clear_debug(vcpu); 1228 1229 /* 1230 * We must sync the PMU state before the vgic state so 1231 * that the vgic can properly sample the updated state of the 1232 * interrupt line. 1233 */ 1234 kvm_pmu_sync_hwstate(vcpu); 1235 1236 /* 1237 * Sync the vgic state before syncing the timer state because 1238 * the timer code needs to know if the virtual timer 1239 * interrupts are active. 1240 */ 1241 kvm_vgic_sync_hwstate(vcpu); 1242 1243 /* 1244 * Sync the timer hardware state before enabling interrupts as 1245 * we don't want vtimer interrupts to race with syncing the 1246 * timer virtual interrupt state. 1247 */ 1248 if (static_branch_unlikely(&userspace_irqchip_in_use)) 1249 kvm_timer_sync_user(vcpu); 1250 1251 kvm_arch_vcpu_ctxsync_fp(vcpu); 1252 1253 /* 1254 * We must ensure that any pending interrupts are taken before 1255 * we exit guest timing so that timer ticks are accounted as 1256 * guest time. Transiently unmask interrupts so that any 1257 * pending interrupts are taken. 1258 * 1259 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other 1260 * context synchronization event) is necessary to ensure that 1261 * pending interrupts are taken. 1262 */ 1263 if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) { 1264 local_irq_enable(); 1265 isb(); 1266 local_irq_disable(); 1267 } 1268 1269 guest_timing_exit_irqoff(); 1270 1271 local_irq_enable(); 1272 1273 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu)); 1274 1275 /* Exit types that need handling before we can be preempted */ 1276 handle_exit_early(vcpu, ret); 1277 1278 preempt_enable(); 1279 1280 /* 1281 * The ARMv8 architecture doesn't give the hypervisor 1282 * a mechanism to prevent a guest from dropping to AArch32 EL0 1283 * if implemented by the CPU. If we spot the guest in such 1284 * state and that we decided it wasn't supposed to do so (like 1285 * with the asymmetric AArch32 case), return to userspace with 1286 * a fatal error. 1287 */ 1288 if (vcpu_mode_is_bad_32bit(vcpu)) { 1289 /* 1290 * As we have caught the guest red-handed, decide that 1291 * it isn't fit for purpose anymore by making the vcpu 1292 * invalid. The VMM can try and fix it by issuing a 1293 * KVM_ARM_VCPU_INIT if it really wants to. 1294 */ 1295 vcpu_clear_flag(vcpu, VCPU_INITIALIZED); 1296 ret = ARM_EXCEPTION_IL; 1297 } 1298 1299 ret = handle_exit(vcpu, ret); 1300 } 1301 1302 /* Tell userspace about in-kernel device output levels */ 1303 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) { 1304 kvm_timer_update_run(vcpu); 1305 kvm_pmu_update_run(vcpu); 1306 } 1307 1308 kvm_sigset_deactivate(vcpu); 1309 1310 out: 1311 /* 1312 * In the unlikely event that we are returning to userspace 1313 * with pending exceptions or PC adjustment, commit these 1314 * adjustments in order to give userspace a consistent view of 1315 * the vcpu state. Note that this relies on __kvm_adjust_pc() 1316 * being preempt-safe on VHE. 1317 */ 1318 if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) || 1319 vcpu_get_flag(vcpu, INCREMENT_PC))) 1320 kvm_call_hyp(__kvm_adjust_pc, vcpu); 1321 1322 vcpu_put(vcpu); 1323 return ret; 1324 } 1325 1326 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level) 1327 { 1328 int bit_index; 1329 bool set; 1330 unsigned long *hcr; 1331 1332 if (number == KVM_ARM_IRQ_CPU_IRQ) 1333 bit_index = __ffs(HCR_VI); 1334 else /* KVM_ARM_IRQ_CPU_FIQ */ 1335 bit_index = __ffs(HCR_VF); 1336 1337 hcr = vcpu_hcr(vcpu); 1338 if (level) 1339 set = test_and_set_bit(bit_index, hcr); 1340 else 1341 set = test_and_clear_bit(bit_index, hcr); 1342 1343 /* 1344 * If we didn't change anything, no need to wake up or kick other CPUs 1345 */ 1346 if (set == level) 1347 return 0; 1348 1349 /* 1350 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and 1351 * trigger a world-switch round on the running physical CPU to set the 1352 * virtual IRQ/FIQ fields in the HCR appropriately. 1353 */ 1354 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); 1355 kvm_vcpu_kick(vcpu); 1356 1357 return 0; 1358 } 1359 1360 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1361 bool line_status) 1362 { 1363 u32 irq = irq_level->irq; 1364 unsigned int irq_type, vcpu_id, irq_num; 1365 struct kvm_vcpu *vcpu = NULL; 1366 bool level = irq_level->level; 1367 1368 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK; 1369 vcpu_id = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK; 1370 vcpu_id += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1); 1371 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK; 1372 1373 trace_kvm_irq_line(irq_type, vcpu_id, irq_num, irq_level->level); 1374 1375 switch (irq_type) { 1376 case KVM_ARM_IRQ_TYPE_CPU: 1377 if (irqchip_in_kernel(kvm)) 1378 return -ENXIO; 1379 1380 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); 1381 if (!vcpu) 1382 return -EINVAL; 1383 1384 if (irq_num > KVM_ARM_IRQ_CPU_FIQ) 1385 return -EINVAL; 1386 1387 return vcpu_interrupt_line(vcpu, irq_num, level); 1388 case KVM_ARM_IRQ_TYPE_PPI: 1389 if (!irqchip_in_kernel(kvm)) 1390 return -ENXIO; 1391 1392 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); 1393 if (!vcpu) 1394 return -EINVAL; 1395 1396 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS) 1397 return -EINVAL; 1398 1399 return kvm_vgic_inject_irq(kvm, vcpu, irq_num, level, NULL); 1400 case KVM_ARM_IRQ_TYPE_SPI: 1401 if (!irqchip_in_kernel(kvm)) 1402 return -ENXIO; 1403 1404 if (irq_num < VGIC_NR_PRIVATE_IRQS) 1405 return -EINVAL; 1406 1407 return kvm_vgic_inject_irq(kvm, NULL, irq_num, level, NULL); 1408 } 1409 1410 return -EINVAL; 1411 } 1412 1413 static unsigned long system_supported_vcpu_features(void) 1414 { 1415 unsigned long features = KVM_VCPU_VALID_FEATURES; 1416 1417 if (!cpus_have_final_cap(ARM64_HAS_32BIT_EL1)) 1418 clear_bit(KVM_ARM_VCPU_EL1_32BIT, &features); 1419 1420 if (!kvm_arm_support_pmu_v3()) 1421 clear_bit(KVM_ARM_VCPU_PMU_V3, &features); 1422 1423 if (!system_supports_sve()) 1424 clear_bit(KVM_ARM_VCPU_SVE, &features); 1425 1426 if (!kvm_has_full_ptr_auth()) { 1427 clear_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features); 1428 clear_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features); 1429 } 1430 1431 if (!cpus_have_final_cap(ARM64_HAS_NESTED_VIRT)) 1432 clear_bit(KVM_ARM_VCPU_HAS_EL2, &features); 1433 1434 return features; 1435 } 1436 1437 static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu, 1438 const struct kvm_vcpu_init *init) 1439 { 1440 unsigned long features = init->features[0]; 1441 int i; 1442 1443 if (features & ~KVM_VCPU_VALID_FEATURES) 1444 return -ENOENT; 1445 1446 for (i = 1; i < ARRAY_SIZE(init->features); i++) { 1447 if (init->features[i]) 1448 return -ENOENT; 1449 } 1450 1451 if (features & ~system_supported_vcpu_features()) 1452 return -EINVAL; 1453 1454 /* 1455 * For now make sure that both address/generic pointer authentication 1456 * features are requested by the userspace together. 1457 */ 1458 if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features) != 1459 test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features)) 1460 return -EINVAL; 1461 1462 if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features)) 1463 return 0; 1464 1465 /* MTE is incompatible with AArch32 */ 1466 if (kvm_has_mte(vcpu->kvm)) 1467 return -EINVAL; 1468 1469 /* NV is incompatible with AArch32 */ 1470 if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features)) 1471 return -EINVAL; 1472 1473 return 0; 1474 } 1475 1476 static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu, 1477 const struct kvm_vcpu_init *init) 1478 { 1479 unsigned long features = init->features[0]; 1480 1481 return !bitmap_equal(vcpu->kvm->arch.vcpu_features, &features, 1482 KVM_VCPU_MAX_FEATURES); 1483 } 1484 1485 static int kvm_setup_vcpu(struct kvm_vcpu *vcpu) 1486 { 1487 struct kvm *kvm = vcpu->kvm; 1488 int ret = 0; 1489 1490 /* 1491 * When the vCPU has a PMU, but no PMU is set for the guest 1492 * yet, set the default one. 1493 */ 1494 if (kvm_vcpu_has_pmu(vcpu) && !kvm->arch.arm_pmu) 1495 ret = kvm_arm_set_default_pmu(kvm); 1496 1497 /* Prepare for nested if required */ 1498 if (!ret && vcpu_has_nv(vcpu)) 1499 ret = kvm_vcpu_init_nested(vcpu); 1500 1501 return ret; 1502 } 1503 1504 static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu, 1505 const struct kvm_vcpu_init *init) 1506 { 1507 unsigned long features = init->features[0]; 1508 struct kvm *kvm = vcpu->kvm; 1509 int ret = -EINVAL; 1510 1511 mutex_lock(&kvm->arch.config_lock); 1512 1513 if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) && 1514 kvm_vcpu_init_changed(vcpu, init)) 1515 goto out_unlock; 1516 1517 bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES); 1518 1519 ret = kvm_setup_vcpu(vcpu); 1520 if (ret) 1521 goto out_unlock; 1522 1523 /* Now we know what it is, we can reset it. */ 1524 kvm_reset_vcpu(vcpu); 1525 1526 set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags); 1527 vcpu_set_flag(vcpu, VCPU_INITIALIZED); 1528 ret = 0; 1529 out_unlock: 1530 mutex_unlock(&kvm->arch.config_lock); 1531 return ret; 1532 } 1533 1534 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu, 1535 const struct kvm_vcpu_init *init) 1536 { 1537 int ret; 1538 1539 if (init->target != KVM_ARM_TARGET_GENERIC_V8 && 1540 init->target != kvm_target_cpu()) 1541 return -EINVAL; 1542 1543 ret = kvm_vcpu_init_check_features(vcpu, init); 1544 if (ret) 1545 return ret; 1546 1547 if (!kvm_vcpu_initialized(vcpu)) 1548 return __kvm_vcpu_set_target(vcpu, init); 1549 1550 if (kvm_vcpu_init_changed(vcpu, init)) 1551 return -EINVAL; 1552 1553 kvm_reset_vcpu(vcpu); 1554 return 0; 1555 } 1556 1557 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu, 1558 struct kvm_vcpu_init *init) 1559 { 1560 bool power_off = false; 1561 int ret; 1562 1563 /* 1564 * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid 1565 * reflecting it in the finalized feature set, thus limiting its scope 1566 * to a single KVM_ARM_VCPU_INIT call. 1567 */ 1568 if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) { 1569 init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF); 1570 power_off = true; 1571 } 1572 1573 ret = kvm_vcpu_set_target(vcpu, init); 1574 if (ret) 1575 return ret; 1576 1577 /* 1578 * Ensure a rebooted VM will fault in RAM pages and detect if the 1579 * guest MMU is turned off and flush the caches as needed. 1580 * 1581 * S2FWB enforces all memory accesses to RAM being cacheable, 1582 * ensuring that the data side is always coherent. We still 1583 * need to invalidate the I-cache though, as FWB does *not* 1584 * imply CTR_EL0.DIC. 1585 */ 1586 if (vcpu_has_run_once(vcpu)) { 1587 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) 1588 stage2_unmap_vm(vcpu->kvm); 1589 else 1590 icache_inval_all_pou(); 1591 } 1592 1593 vcpu_reset_hcr(vcpu); 1594 vcpu->arch.cptr_el2 = kvm_get_reset_cptr_el2(vcpu); 1595 1596 /* 1597 * Handle the "start in power-off" case. 1598 */ 1599 spin_lock(&vcpu->arch.mp_state_lock); 1600 1601 if (power_off) 1602 __kvm_arm_vcpu_power_off(vcpu); 1603 else 1604 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE); 1605 1606 spin_unlock(&vcpu->arch.mp_state_lock); 1607 1608 return 0; 1609 } 1610 1611 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu, 1612 struct kvm_device_attr *attr) 1613 { 1614 int ret = -ENXIO; 1615 1616 switch (attr->group) { 1617 default: 1618 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr); 1619 break; 1620 } 1621 1622 return ret; 1623 } 1624 1625 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu, 1626 struct kvm_device_attr *attr) 1627 { 1628 int ret = -ENXIO; 1629 1630 switch (attr->group) { 1631 default: 1632 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr); 1633 break; 1634 } 1635 1636 return ret; 1637 } 1638 1639 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu, 1640 struct kvm_device_attr *attr) 1641 { 1642 int ret = -ENXIO; 1643 1644 switch (attr->group) { 1645 default: 1646 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr); 1647 break; 1648 } 1649 1650 return ret; 1651 } 1652 1653 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, 1654 struct kvm_vcpu_events *events) 1655 { 1656 memset(events, 0, sizeof(*events)); 1657 1658 return __kvm_arm_vcpu_get_events(vcpu, events); 1659 } 1660 1661 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, 1662 struct kvm_vcpu_events *events) 1663 { 1664 int i; 1665 1666 /* check whether the reserved field is zero */ 1667 for (i = 0; i < ARRAY_SIZE(events->reserved); i++) 1668 if (events->reserved[i]) 1669 return -EINVAL; 1670 1671 /* check whether the pad field is zero */ 1672 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++) 1673 if (events->exception.pad[i]) 1674 return -EINVAL; 1675 1676 return __kvm_arm_vcpu_set_events(vcpu, events); 1677 } 1678 1679 long kvm_arch_vcpu_ioctl(struct file *filp, 1680 unsigned int ioctl, unsigned long arg) 1681 { 1682 struct kvm_vcpu *vcpu = filp->private_data; 1683 void __user *argp = (void __user *)arg; 1684 struct kvm_device_attr attr; 1685 long r; 1686 1687 switch (ioctl) { 1688 case KVM_ARM_VCPU_INIT: { 1689 struct kvm_vcpu_init init; 1690 1691 r = -EFAULT; 1692 if (copy_from_user(&init, argp, sizeof(init))) 1693 break; 1694 1695 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init); 1696 break; 1697 } 1698 case KVM_SET_ONE_REG: 1699 case KVM_GET_ONE_REG: { 1700 struct kvm_one_reg reg; 1701 1702 r = -ENOEXEC; 1703 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1704 break; 1705 1706 r = -EFAULT; 1707 if (copy_from_user(®, argp, sizeof(reg))) 1708 break; 1709 1710 /* 1711 * We could owe a reset due to PSCI. Handle the pending reset 1712 * here to ensure userspace register accesses are ordered after 1713 * the reset. 1714 */ 1715 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) 1716 kvm_reset_vcpu(vcpu); 1717 1718 if (ioctl == KVM_SET_ONE_REG) 1719 r = kvm_arm_set_reg(vcpu, ®); 1720 else 1721 r = kvm_arm_get_reg(vcpu, ®); 1722 break; 1723 } 1724 case KVM_GET_REG_LIST: { 1725 struct kvm_reg_list __user *user_list = argp; 1726 struct kvm_reg_list reg_list; 1727 unsigned n; 1728 1729 r = -ENOEXEC; 1730 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1731 break; 1732 1733 r = -EPERM; 1734 if (!kvm_arm_vcpu_is_finalized(vcpu)) 1735 break; 1736 1737 r = -EFAULT; 1738 if (copy_from_user(®_list, user_list, sizeof(reg_list))) 1739 break; 1740 n = reg_list.n; 1741 reg_list.n = kvm_arm_num_regs(vcpu); 1742 if (copy_to_user(user_list, ®_list, sizeof(reg_list))) 1743 break; 1744 r = -E2BIG; 1745 if (n < reg_list.n) 1746 break; 1747 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg); 1748 break; 1749 } 1750 case KVM_SET_DEVICE_ATTR: { 1751 r = -EFAULT; 1752 if (copy_from_user(&attr, argp, sizeof(attr))) 1753 break; 1754 r = kvm_arm_vcpu_set_attr(vcpu, &attr); 1755 break; 1756 } 1757 case KVM_GET_DEVICE_ATTR: { 1758 r = -EFAULT; 1759 if (copy_from_user(&attr, argp, sizeof(attr))) 1760 break; 1761 r = kvm_arm_vcpu_get_attr(vcpu, &attr); 1762 break; 1763 } 1764 case KVM_HAS_DEVICE_ATTR: { 1765 r = -EFAULT; 1766 if (copy_from_user(&attr, argp, sizeof(attr))) 1767 break; 1768 r = kvm_arm_vcpu_has_attr(vcpu, &attr); 1769 break; 1770 } 1771 case KVM_GET_VCPU_EVENTS: { 1772 struct kvm_vcpu_events events; 1773 1774 if (kvm_arm_vcpu_get_events(vcpu, &events)) 1775 return -EINVAL; 1776 1777 if (copy_to_user(argp, &events, sizeof(events))) 1778 return -EFAULT; 1779 1780 return 0; 1781 } 1782 case KVM_SET_VCPU_EVENTS: { 1783 struct kvm_vcpu_events events; 1784 1785 if (copy_from_user(&events, argp, sizeof(events))) 1786 return -EFAULT; 1787 1788 return kvm_arm_vcpu_set_events(vcpu, &events); 1789 } 1790 case KVM_ARM_VCPU_FINALIZE: { 1791 int what; 1792 1793 if (!kvm_vcpu_initialized(vcpu)) 1794 return -ENOEXEC; 1795 1796 if (get_user(what, (const int __user *)argp)) 1797 return -EFAULT; 1798 1799 return kvm_arm_vcpu_finalize(vcpu, what); 1800 } 1801 default: 1802 r = -EINVAL; 1803 } 1804 1805 return r; 1806 } 1807 1808 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 1809 { 1810 1811 } 1812 1813 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm, 1814 struct kvm_arm_device_addr *dev_addr) 1815 { 1816 switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) { 1817 case KVM_ARM_DEVICE_VGIC_V2: 1818 if (!vgic_present) 1819 return -ENXIO; 1820 return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr); 1821 default: 1822 return -ENODEV; 1823 } 1824 } 1825 1826 static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1827 { 1828 switch (attr->group) { 1829 case KVM_ARM_VM_SMCCC_CTRL: 1830 return kvm_vm_smccc_has_attr(kvm, attr); 1831 default: 1832 return -ENXIO; 1833 } 1834 } 1835 1836 static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1837 { 1838 switch (attr->group) { 1839 case KVM_ARM_VM_SMCCC_CTRL: 1840 return kvm_vm_smccc_set_attr(kvm, attr); 1841 default: 1842 return -ENXIO; 1843 } 1844 } 1845 1846 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 1847 { 1848 struct kvm *kvm = filp->private_data; 1849 void __user *argp = (void __user *)arg; 1850 struct kvm_device_attr attr; 1851 1852 switch (ioctl) { 1853 case KVM_CREATE_IRQCHIP: { 1854 int ret; 1855 if (!vgic_present) 1856 return -ENXIO; 1857 mutex_lock(&kvm->lock); 1858 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2); 1859 mutex_unlock(&kvm->lock); 1860 return ret; 1861 } 1862 case KVM_ARM_SET_DEVICE_ADDR: { 1863 struct kvm_arm_device_addr dev_addr; 1864 1865 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr))) 1866 return -EFAULT; 1867 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr); 1868 } 1869 case KVM_ARM_PREFERRED_TARGET: { 1870 struct kvm_vcpu_init init = { 1871 .target = KVM_ARM_TARGET_GENERIC_V8, 1872 }; 1873 1874 if (copy_to_user(argp, &init, sizeof(init))) 1875 return -EFAULT; 1876 1877 return 0; 1878 } 1879 case KVM_ARM_MTE_COPY_TAGS: { 1880 struct kvm_arm_copy_mte_tags copy_tags; 1881 1882 if (copy_from_user(©_tags, argp, sizeof(copy_tags))) 1883 return -EFAULT; 1884 return kvm_vm_ioctl_mte_copy_tags(kvm, ©_tags); 1885 } 1886 case KVM_ARM_SET_COUNTER_OFFSET: { 1887 struct kvm_arm_counter_offset offset; 1888 1889 if (copy_from_user(&offset, argp, sizeof(offset))) 1890 return -EFAULT; 1891 return kvm_vm_ioctl_set_counter_offset(kvm, &offset); 1892 } 1893 case KVM_HAS_DEVICE_ATTR: { 1894 if (copy_from_user(&attr, argp, sizeof(attr))) 1895 return -EFAULT; 1896 1897 return kvm_vm_has_attr(kvm, &attr); 1898 } 1899 case KVM_SET_DEVICE_ATTR: { 1900 if (copy_from_user(&attr, argp, sizeof(attr))) 1901 return -EFAULT; 1902 1903 return kvm_vm_set_attr(kvm, &attr); 1904 } 1905 case KVM_ARM_GET_REG_WRITABLE_MASKS: { 1906 struct reg_mask_range range; 1907 1908 if (copy_from_user(&range, argp, sizeof(range))) 1909 return -EFAULT; 1910 return kvm_vm_ioctl_get_reg_writable_masks(kvm, &range); 1911 } 1912 default: 1913 return -EINVAL; 1914 } 1915 } 1916 1917 /* unlocks vcpus from @vcpu_lock_idx and smaller */ 1918 static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx) 1919 { 1920 struct kvm_vcpu *tmp_vcpu; 1921 1922 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) { 1923 tmp_vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx); 1924 mutex_unlock(&tmp_vcpu->mutex); 1925 } 1926 } 1927 1928 void unlock_all_vcpus(struct kvm *kvm) 1929 { 1930 lockdep_assert_held(&kvm->lock); 1931 1932 unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1); 1933 } 1934 1935 /* Returns true if all vcpus were locked, false otherwise */ 1936 bool lock_all_vcpus(struct kvm *kvm) 1937 { 1938 struct kvm_vcpu *tmp_vcpu; 1939 unsigned long c; 1940 1941 lockdep_assert_held(&kvm->lock); 1942 1943 /* 1944 * Any time a vcpu is in an ioctl (including running), the 1945 * core KVM code tries to grab the vcpu->mutex. 1946 * 1947 * By grabbing the vcpu->mutex of all VCPUs we ensure that no 1948 * other VCPUs can fiddle with the state while we access it. 1949 */ 1950 kvm_for_each_vcpu(c, tmp_vcpu, kvm) { 1951 if (!mutex_trylock(&tmp_vcpu->mutex)) { 1952 unlock_vcpus(kvm, c - 1); 1953 return false; 1954 } 1955 } 1956 1957 return true; 1958 } 1959 1960 static unsigned long nvhe_percpu_size(void) 1961 { 1962 return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) - 1963 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start); 1964 } 1965 1966 static unsigned long nvhe_percpu_order(void) 1967 { 1968 unsigned long size = nvhe_percpu_size(); 1969 1970 return size ? get_order(size) : 0; 1971 } 1972 1973 static size_t pkvm_host_sve_state_order(void) 1974 { 1975 return get_order(pkvm_host_sve_state_size()); 1976 } 1977 1978 /* A lookup table holding the hypervisor VA for each vector slot */ 1979 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS]; 1980 1981 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot) 1982 { 1983 hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot); 1984 } 1985 1986 static int kvm_init_vector_slots(void) 1987 { 1988 int err; 1989 void *base; 1990 1991 base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector)); 1992 kvm_init_vector_slot(base, HYP_VECTOR_DIRECT); 1993 1994 base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs)); 1995 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT); 1996 1997 if (kvm_system_needs_idmapped_vectors() && 1998 !is_protected_kvm_enabled()) { 1999 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs), 2000 __BP_HARDEN_HYP_VECS_SZ, &base); 2001 if (err) 2002 return err; 2003 } 2004 2005 kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT); 2006 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT); 2007 return 0; 2008 } 2009 2010 static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits) 2011 { 2012 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu); 2013 u64 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 2014 unsigned long tcr; 2015 2016 /* 2017 * Calculate the raw per-cpu offset without a translation from the 2018 * kernel's mapping to the linear mapping, and store it in tpidr_el2 2019 * so that we can use adr_l to access per-cpu variables in EL2. 2020 * Also drop the KASAN tag which gets in the way... 2021 */ 2022 params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) - 2023 (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start)); 2024 2025 params->mair_el2 = read_sysreg(mair_el1); 2026 2027 tcr = read_sysreg(tcr_el1); 2028 if (cpus_have_final_cap(ARM64_KVM_HVHE)) { 2029 tcr |= TCR_EPD1_MASK; 2030 } else { 2031 tcr &= TCR_EL2_MASK; 2032 tcr |= TCR_EL2_RES1; 2033 } 2034 tcr &= ~TCR_T0SZ_MASK; 2035 tcr |= TCR_T0SZ(hyp_va_bits); 2036 tcr &= ~TCR_EL2_PS_MASK; 2037 tcr |= FIELD_PREP(TCR_EL2_PS_MASK, kvm_get_parange(mmfr0)); 2038 if (kvm_lpa2_is_enabled()) 2039 tcr |= TCR_EL2_DS; 2040 params->tcr_el2 = tcr; 2041 2042 params->pgd_pa = kvm_mmu_get_httbr(); 2043 if (is_protected_kvm_enabled()) 2044 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS; 2045 else 2046 params->hcr_el2 = HCR_HOST_NVHE_FLAGS; 2047 if (cpus_have_final_cap(ARM64_KVM_HVHE)) 2048 params->hcr_el2 |= HCR_E2H; 2049 params->vttbr = params->vtcr = 0; 2050 2051 /* 2052 * Flush the init params from the data cache because the struct will 2053 * be read while the MMU is off. 2054 */ 2055 kvm_flush_dcache_to_poc(params, sizeof(*params)); 2056 } 2057 2058 static void hyp_install_host_vector(void) 2059 { 2060 struct kvm_nvhe_init_params *params; 2061 struct arm_smccc_res res; 2062 2063 /* Switch from the HYP stub to our own HYP init vector */ 2064 __hyp_set_vectors(kvm_get_idmap_vector()); 2065 2066 /* 2067 * Call initialization code, and switch to the full blown HYP code. 2068 * If the cpucaps haven't been finalized yet, something has gone very 2069 * wrong, and hyp will crash and burn when it uses any 2070 * cpus_have_*_cap() wrapper. 2071 */ 2072 BUG_ON(!system_capabilities_finalized()); 2073 params = this_cpu_ptr_nvhe_sym(kvm_init_params); 2074 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res); 2075 WARN_ON(res.a0 != SMCCC_RET_SUCCESS); 2076 } 2077 2078 static void cpu_init_hyp_mode(void) 2079 { 2080 hyp_install_host_vector(); 2081 2082 /* 2083 * Disabling SSBD on a non-VHE system requires us to enable SSBS 2084 * at EL2. 2085 */ 2086 if (this_cpu_has_cap(ARM64_SSBS) && 2087 arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) { 2088 kvm_call_hyp_nvhe(__kvm_enable_ssbs); 2089 } 2090 } 2091 2092 static void cpu_hyp_reset(void) 2093 { 2094 if (!is_kernel_in_hyp_mode()) 2095 __hyp_reset_vectors(); 2096 } 2097 2098 /* 2099 * EL2 vectors can be mapped and rerouted in a number of ways, 2100 * depending on the kernel configuration and CPU present: 2101 * 2102 * - If the CPU is affected by Spectre-v2, the hardening sequence is 2103 * placed in one of the vector slots, which is executed before jumping 2104 * to the real vectors. 2105 * 2106 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot 2107 * containing the hardening sequence is mapped next to the idmap page, 2108 * and executed before jumping to the real vectors. 2109 * 2110 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an 2111 * empty slot is selected, mapped next to the idmap page, and 2112 * executed before jumping to the real vectors. 2113 * 2114 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with 2115 * VHE, as we don't have hypervisor-specific mappings. If the system 2116 * is VHE and yet selects this capability, it will be ignored. 2117 */ 2118 static void cpu_set_hyp_vector(void) 2119 { 2120 struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data); 2121 void *vector = hyp_spectre_vector_selector[data->slot]; 2122 2123 if (!is_protected_kvm_enabled()) 2124 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector; 2125 else 2126 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot); 2127 } 2128 2129 static void cpu_hyp_init_context(void) 2130 { 2131 kvm_init_host_cpu_context(host_data_ptr(host_ctxt)); 2132 2133 if (!is_kernel_in_hyp_mode()) 2134 cpu_init_hyp_mode(); 2135 } 2136 2137 static void cpu_hyp_init_features(void) 2138 { 2139 cpu_set_hyp_vector(); 2140 kvm_arm_init_debug(); 2141 2142 if (is_kernel_in_hyp_mode()) 2143 kvm_timer_init_vhe(); 2144 2145 if (vgic_present) 2146 kvm_vgic_init_cpu_hardware(); 2147 } 2148 2149 static void cpu_hyp_reinit(void) 2150 { 2151 cpu_hyp_reset(); 2152 cpu_hyp_init_context(); 2153 cpu_hyp_init_features(); 2154 } 2155 2156 static void cpu_hyp_init(void *discard) 2157 { 2158 if (!__this_cpu_read(kvm_hyp_initialized)) { 2159 cpu_hyp_reinit(); 2160 __this_cpu_write(kvm_hyp_initialized, 1); 2161 } 2162 } 2163 2164 static void cpu_hyp_uninit(void *discard) 2165 { 2166 if (__this_cpu_read(kvm_hyp_initialized)) { 2167 cpu_hyp_reset(); 2168 __this_cpu_write(kvm_hyp_initialized, 0); 2169 } 2170 } 2171 2172 int kvm_arch_enable_virtualization_cpu(void) 2173 { 2174 /* 2175 * Most calls to this function are made with migration 2176 * disabled, but not with preemption disabled. The former is 2177 * enough to ensure correctness, but most of the helpers 2178 * expect the later and will throw a tantrum otherwise. 2179 */ 2180 preempt_disable(); 2181 2182 cpu_hyp_init(NULL); 2183 2184 kvm_vgic_cpu_up(); 2185 kvm_timer_cpu_up(); 2186 2187 preempt_enable(); 2188 2189 return 0; 2190 } 2191 2192 void kvm_arch_disable_virtualization_cpu(void) 2193 { 2194 kvm_timer_cpu_down(); 2195 kvm_vgic_cpu_down(); 2196 2197 if (!is_protected_kvm_enabled()) 2198 cpu_hyp_uninit(NULL); 2199 } 2200 2201 #ifdef CONFIG_CPU_PM 2202 static int hyp_init_cpu_pm_notifier(struct notifier_block *self, 2203 unsigned long cmd, 2204 void *v) 2205 { 2206 /* 2207 * kvm_hyp_initialized is left with its old value over 2208 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should 2209 * re-enable hyp. 2210 */ 2211 switch (cmd) { 2212 case CPU_PM_ENTER: 2213 if (__this_cpu_read(kvm_hyp_initialized)) 2214 /* 2215 * don't update kvm_hyp_initialized here 2216 * so that the hyp will be re-enabled 2217 * when we resume. See below. 2218 */ 2219 cpu_hyp_reset(); 2220 2221 return NOTIFY_OK; 2222 case CPU_PM_ENTER_FAILED: 2223 case CPU_PM_EXIT: 2224 if (__this_cpu_read(kvm_hyp_initialized)) 2225 /* The hyp was enabled before suspend. */ 2226 cpu_hyp_reinit(); 2227 2228 return NOTIFY_OK; 2229 2230 default: 2231 return NOTIFY_DONE; 2232 } 2233 } 2234 2235 static struct notifier_block hyp_init_cpu_pm_nb = { 2236 .notifier_call = hyp_init_cpu_pm_notifier, 2237 }; 2238 2239 static void __init hyp_cpu_pm_init(void) 2240 { 2241 if (!is_protected_kvm_enabled()) 2242 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb); 2243 } 2244 static void __init hyp_cpu_pm_exit(void) 2245 { 2246 if (!is_protected_kvm_enabled()) 2247 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb); 2248 } 2249 #else 2250 static inline void __init hyp_cpu_pm_init(void) 2251 { 2252 } 2253 static inline void __init hyp_cpu_pm_exit(void) 2254 { 2255 } 2256 #endif 2257 2258 static void __init init_cpu_logical_map(void) 2259 { 2260 unsigned int cpu; 2261 2262 /* 2263 * Copy the MPIDR <-> logical CPU ID mapping to hyp. 2264 * Only copy the set of online CPUs whose features have been checked 2265 * against the finalized system capabilities. The hypervisor will not 2266 * allow any other CPUs from the `possible` set to boot. 2267 */ 2268 for_each_online_cpu(cpu) 2269 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu); 2270 } 2271 2272 #define init_psci_0_1_impl_state(config, what) \ 2273 config.psci_0_1_ ## what ## _implemented = psci_ops.what 2274 2275 static bool __init init_psci_relay(void) 2276 { 2277 /* 2278 * If PSCI has not been initialized, protected KVM cannot install 2279 * itself on newly booted CPUs. 2280 */ 2281 if (!psci_ops.get_version) { 2282 kvm_err("Cannot initialize protected mode without PSCI\n"); 2283 return false; 2284 } 2285 2286 kvm_host_psci_config.version = psci_ops.get_version(); 2287 kvm_host_psci_config.smccc_version = arm_smccc_get_version(); 2288 2289 if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) { 2290 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids(); 2291 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend); 2292 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on); 2293 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off); 2294 init_psci_0_1_impl_state(kvm_host_psci_config, migrate); 2295 } 2296 return true; 2297 } 2298 2299 static int __init init_subsystems(void) 2300 { 2301 int err = 0; 2302 2303 /* 2304 * Enable hardware so that subsystem initialisation can access EL2. 2305 */ 2306 on_each_cpu(cpu_hyp_init, NULL, 1); 2307 2308 /* 2309 * Register CPU lower-power notifier 2310 */ 2311 hyp_cpu_pm_init(); 2312 2313 /* 2314 * Init HYP view of VGIC 2315 */ 2316 err = kvm_vgic_hyp_init(); 2317 switch (err) { 2318 case 0: 2319 vgic_present = true; 2320 break; 2321 case -ENODEV: 2322 case -ENXIO: 2323 vgic_present = false; 2324 err = 0; 2325 break; 2326 default: 2327 goto out; 2328 } 2329 2330 /* 2331 * Init HYP architected timer support 2332 */ 2333 err = kvm_timer_hyp_init(vgic_present); 2334 if (err) 2335 goto out; 2336 2337 kvm_register_perf_callbacks(NULL); 2338 2339 out: 2340 if (err) 2341 hyp_cpu_pm_exit(); 2342 2343 if (err || !is_protected_kvm_enabled()) 2344 on_each_cpu(cpu_hyp_uninit, NULL, 1); 2345 2346 return err; 2347 } 2348 2349 static void __init teardown_subsystems(void) 2350 { 2351 kvm_unregister_perf_callbacks(); 2352 hyp_cpu_pm_exit(); 2353 } 2354 2355 static void __init teardown_hyp_mode(void) 2356 { 2357 bool free_sve = system_supports_sve() && is_protected_kvm_enabled(); 2358 int cpu; 2359 2360 free_hyp_pgds(); 2361 for_each_possible_cpu(cpu) { 2362 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu)); 2363 free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order()); 2364 2365 if (free_sve) { 2366 struct cpu_sve_state *sve_state; 2367 2368 sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state; 2369 free_pages((unsigned long) sve_state, pkvm_host_sve_state_order()); 2370 } 2371 } 2372 } 2373 2374 static int __init do_pkvm_init(u32 hyp_va_bits) 2375 { 2376 void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)); 2377 int ret; 2378 2379 preempt_disable(); 2380 cpu_hyp_init_context(); 2381 ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size, 2382 num_possible_cpus(), kern_hyp_va(per_cpu_base), 2383 hyp_va_bits); 2384 cpu_hyp_init_features(); 2385 2386 /* 2387 * The stub hypercalls are now disabled, so set our local flag to 2388 * prevent a later re-init attempt in kvm_arch_enable_virtualization_cpu(). 2389 */ 2390 __this_cpu_write(kvm_hyp_initialized, 1); 2391 preempt_enable(); 2392 2393 return ret; 2394 } 2395 2396 static u64 get_hyp_id_aa64pfr0_el1(void) 2397 { 2398 /* 2399 * Track whether the system isn't affected by spectre/meltdown in the 2400 * hypervisor's view of id_aa64pfr0_el1, used for protected VMs. 2401 * Although this is per-CPU, we make it global for simplicity, e.g., not 2402 * to have to worry about vcpu migration. 2403 * 2404 * Unlike for non-protected VMs, userspace cannot override this for 2405 * protected VMs. 2406 */ 2407 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); 2408 2409 val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) | 2410 ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3)); 2411 2412 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2), 2413 arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED); 2414 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3), 2415 arm64_get_meltdown_state() == SPECTRE_UNAFFECTED); 2416 2417 return val; 2418 } 2419 2420 static void kvm_hyp_init_symbols(void) 2421 { 2422 kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1(); 2423 kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1); 2424 kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1); 2425 kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1); 2426 kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1); 2427 kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 2428 kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 2429 kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1); 2430 kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1); 2431 kvm_nvhe_sym(__icache_flags) = __icache_flags; 2432 kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits; 2433 } 2434 2435 static int __init kvm_hyp_init_protection(u32 hyp_va_bits) 2436 { 2437 void *addr = phys_to_virt(hyp_mem_base); 2438 int ret; 2439 2440 ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP); 2441 if (ret) 2442 return ret; 2443 2444 ret = do_pkvm_init(hyp_va_bits); 2445 if (ret) 2446 return ret; 2447 2448 free_hyp_pgds(); 2449 2450 return 0; 2451 } 2452 2453 static int init_pkvm_host_sve_state(void) 2454 { 2455 int cpu; 2456 2457 if (!system_supports_sve()) 2458 return 0; 2459 2460 /* Allocate pages for host sve state in protected mode. */ 2461 for_each_possible_cpu(cpu) { 2462 struct page *page = alloc_pages(GFP_KERNEL, pkvm_host_sve_state_order()); 2463 2464 if (!page) 2465 return -ENOMEM; 2466 2467 per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state = page_address(page); 2468 } 2469 2470 /* 2471 * Don't map the pages in hyp since these are only used in protected 2472 * mode, which will (re)create its own mapping when initialized. 2473 */ 2474 2475 return 0; 2476 } 2477 2478 /* 2479 * Finalizes the initialization of hyp mode, once everything else is initialized 2480 * and the initialziation process cannot fail. 2481 */ 2482 static void finalize_init_hyp_mode(void) 2483 { 2484 int cpu; 2485 2486 if (system_supports_sve() && is_protected_kvm_enabled()) { 2487 for_each_possible_cpu(cpu) { 2488 struct cpu_sve_state *sve_state; 2489 2490 sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state; 2491 per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state = 2492 kern_hyp_va(sve_state); 2493 } 2494 } else { 2495 for_each_possible_cpu(cpu) { 2496 struct user_fpsimd_state *fpsimd_state; 2497 2498 fpsimd_state = &per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->host_ctxt.fp_regs; 2499 per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->fpsimd_state = 2500 kern_hyp_va(fpsimd_state); 2501 } 2502 } 2503 } 2504 2505 static void pkvm_hyp_init_ptrauth(void) 2506 { 2507 struct kvm_cpu_context *hyp_ctxt; 2508 int cpu; 2509 2510 for_each_possible_cpu(cpu) { 2511 hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu); 2512 hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long(); 2513 hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long(); 2514 hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long(); 2515 hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long(); 2516 hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long(); 2517 hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long(); 2518 hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long(); 2519 hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long(); 2520 hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long(); 2521 hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long(); 2522 } 2523 } 2524 2525 /* Inits Hyp-mode on all online CPUs */ 2526 static int __init init_hyp_mode(void) 2527 { 2528 u32 hyp_va_bits; 2529 int cpu; 2530 int err = -ENOMEM; 2531 2532 /* 2533 * The protected Hyp-mode cannot be initialized if the memory pool 2534 * allocation has failed. 2535 */ 2536 if (is_protected_kvm_enabled() && !hyp_mem_base) 2537 goto out_err; 2538 2539 /* 2540 * Allocate Hyp PGD and setup Hyp identity mapping 2541 */ 2542 err = kvm_mmu_init(&hyp_va_bits); 2543 if (err) 2544 goto out_err; 2545 2546 /* 2547 * Allocate stack pages for Hypervisor-mode 2548 */ 2549 for_each_possible_cpu(cpu) { 2550 unsigned long stack_page; 2551 2552 stack_page = __get_free_page(GFP_KERNEL); 2553 if (!stack_page) { 2554 err = -ENOMEM; 2555 goto out_err; 2556 } 2557 2558 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page; 2559 } 2560 2561 /* 2562 * Allocate and initialize pages for Hypervisor-mode percpu regions. 2563 */ 2564 for_each_possible_cpu(cpu) { 2565 struct page *page; 2566 void *page_addr; 2567 2568 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order()); 2569 if (!page) { 2570 err = -ENOMEM; 2571 goto out_err; 2572 } 2573 2574 page_addr = page_address(page); 2575 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size()); 2576 kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr; 2577 } 2578 2579 /* 2580 * Map the Hyp-code called directly from the host 2581 */ 2582 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start), 2583 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC); 2584 if (err) { 2585 kvm_err("Cannot map world-switch code\n"); 2586 goto out_err; 2587 } 2588 2589 err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start), 2590 kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO); 2591 if (err) { 2592 kvm_err("Cannot map .hyp.rodata section\n"); 2593 goto out_err; 2594 } 2595 2596 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata), 2597 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO); 2598 if (err) { 2599 kvm_err("Cannot map rodata section\n"); 2600 goto out_err; 2601 } 2602 2603 /* 2604 * .hyp.bss is guaranteed to be placed at the beginning of the .bss 2605 * section thanks to an assertion in the linker script. Map it RW and 2606 * the rest of .bss RO. 2607 */ 2608 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start), 2609 kvm_ksym_ref(__hyp_bss_end), PAGE_HYP); 2610 if (err) { 2611 kvm_err("Cannot map hyp bss section: %d\n", err); 2612 goto out_err; 2613 } 2614 2615 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end), 2616 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO); 2617 if (err) { 2618 kvm_err("Cannot map bss section\n"); 2619 goto out_err; 2620 } 2621 2622 /* 2623 * Map the Hyp stack pages 2624 */ 2625 for_each_possible_cpu(cpu) { 2626 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu); 2627 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu); 2628 2629 err = create_hyp_stack(__pa(stack_page), ¶ms->stack_hyp_va); 2630 if (err) { 2631 kvm_err("Cannot map hyp stack\n"); 2632 goto out_err; 2633 } 2634 2635 /* 2636 * Save the stack PA in nvhe_init_params. This will be needed 2637 * to recreate the stack mapping in protected nVHE mode. 2638 * __hyp_pa() won't do the right thing there, since the stack 2639 * has been mapped in the flexible private VA space. 2640 */ 2641 params->stack_pa = __pa(stack_page); 2642 } 2643 2644 for_each_possible_cpu(cpu) { 2645 char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu]; 2646 char *percpu_end = percpu_begin + nvhe_percpu_size(); 2647 2648 /* Map Hyp percpu pages */ 2649 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP); 2650 if (err) { 2651 kvm_err("Cannot map hyp percpu region\n"); 2652 goto out_err; 2653 } 2654 2655 /* Prepare the CPU initialization parameters */ 2656 cpu_prepare_hyp_mode(cpu, hyp_va_bits); 2657 } 2658 2659 kvm_hyp_init_symbols(); 2660 2661 if (is_protected_kvm_enabled()) { 2662 if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) && 2663 cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH)) 2664 pkvm_hyp_init_ptrauth(); 2665 2666 init_cpu_logical_map(); 2667 2668 if (!init_psci_relay()) { 2669 err = -ENODEV; 2670 goto out_err; 2671 } 2672 2673 err = init_pkvm_host_sve_state(); 2674 if (err) 2675 goto out_err; 2676 2677 err = kvm_hyp_init_protection(hyp_va_bits); 2678 if (err) { 2679 kvm_err("Failed to init hyp memory protection\n"); 2680 goto out_err; 2681 } 2682 } 2683 2684 return 0; 2685 2686 out_err: 2687 teardown_hyp_mode(); 2688 kvm_err("error initializing Hyp mode: %d\n", err); 2689 return err; 2690 } 2691 2692 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr) 2693 { 2694 struct kvm_vcpu *vcpu = NULL; 2695 struct kvm_mpidr_data *data; 2696 unsigned long i; 2697 2698 mpidr &= MPIDR_HWID_BITMASK; 2699 2700 rcu_read_lock(); 2701 data = rcu_dereference(kvm->arch.mpidr_data); 2702 2703 if (data) { 2704 u16 idx = kvm_mpidr_index(data, mpidr); 2705 2706 vcpu = kvm_get_vcpu(kvm, data->cmpidr_to_idx[idx]); 2707 if (mpidr != kvm_vcpu_get_mpidr_aff(vcpu)) 2708 vcpu = NULL; 2709 } 2710 2711 rcu_read_unlock(); 2712 2713 if (vcpu) 2714 return vcpu; 2715 2716 kvm_for_each_vcpu(i, vcpu, kvm) { 2717 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu)) 2718 return vcpu; 2719 } 2720 return NULL; 2721 } 2722 2723 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm) 2724 { 2725 return irqchip_in_kernel(kvm); 2726 } 2727 2728 bool kvm_arch_has_irq_bypass(void) 2729 { 2730 return true; 2731 } 2732 2733 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 2734 struct irq_bypass_producer *prod) 2735 { 2736 struct kvm_kernel_irqfd *irqfd = 2737 container_of(cons, struct kvm_kernel_irqfd, consumer); 2738 2739 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq, 2740 &irqfd->irq_entry); 2741 } 2742 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 2743 struct irq_bypass_producer *prod) 2744 { 2745 struct kvm_kernel_irqfd *irqfd = 2746 container_of(cons, struct kvm_kernel_irqfd, consumer); 2747 2748 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq, 2749 &irqfd->irq_entry); 2750 } 2751 2752 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons) 2753 { 2754 struct kvm_kernel_irqfd *irqfd = 2755 container_of(cons, struct kvm_kernel_irqfd, consumer); 2756 2757 kvm_arm_halt_guest(irqfd->kvm); 2758 } 2759 2760 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons) 2761 { 2762 struct kvm_kernel_irqfd *irqfd = 2763 container_of(cons, struct kvm_kernel_irqfd, consumer); 2764 2765 kvm_arm_resume_guest(irqfd->kvm); 2766 } 2767 2768 /* Initialize Hyp-mode and memory mappings on all CPUs */ 2769 static __init int kvm_arm_init(void) 2770 { 2771 int err; 2772 bool in_hyp_mode; 2773 2774 if (!is_hyp_mode_available()) { 2775 kvm_info("HYP mode not available\n"); 2776 return -ENODEV; 2777 } 2778 2779 if (kvm_get_mode() == KVM_MODE_NONE) { 2780 kvm_info("KVM disabled from command line\n"); 2781 return -ENODEV; 2782 } 2783 2784 err = kvm_sys_reg_table_init(); 2785 if (err) { 2786 kvm_info("Error initializing system register tables"); 2787 return err; 2788 } 2789 2790 in_hyp_mode = is_kernel_in_hyp_mode(); 2791 2792 if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) || 2793 cpus_have_final_cap(ARM64_WORKAROUND_1508412)) 2794 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \ 2795 "Only trusted guests should be used on this system.\n"); 2796 2797 err = kvm_set_ipa_limit(); 2798 if (err) 2799 return err; 2800 2801 err = kvm_arm_init_sve(); 2802 if (err) 2803 return err; 2804 2805 err = kvm_arm_vmid_alloc_init(); 2806 if (err) { 2807 kvm_err("Failed to initialize VMID allocator.\n"); 2808 return err; 2809 } 2810 2811 if (!in_hyp_mode) { 2812 err = init_hyp_mode(); 2813 if (err) 2814 goto out_err; 2815 } 2816 2817 err = kvm_init_vector_slots(); 2818 if (err) { 2819 kvm_err("Cannot initialise vector slots\n"); 2820 goto out_hyp; 2821 } 2822 2823 err = init_subsystems(); 2824 if (err) 2825 goto out_hyp; 2826 2827 kvm_info("%s%sVHE mode initialized successfully\n", 2828 in_hyp_mode ? "" : (is_protected_kvm_enabled() ? 2829 "Protected " : "Hyp "), 2830 in_hyp_mode ? "" : (cpus_have_final_cap(ARM64_KVM_HVHE) ? 2831 "h" : "n")); 2832 2833 /* 2834 * FIXME: Do something reasonable if kvm_init() fails after pKVM 2835 * hypervisor protection is finalized. 2836 */ 2837 err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE); 2838 if (err) 2839 goto out_subs; 2840 2841 /* 2842 * This should be called after initialization is done and failure isn't 2843 * possible anymore. 2844 */ 2845 if (!in_hyp_mode) 2846 finalize_init_hyp_mode(); 2847 2848 kvm_arm_initialised = true; 2849 2850 return 0; 2851 2852 out_subs: 2853 teardown_subsystems(); 2854 out_hyp: 2855 if (!in_hyp_mode) 2856 teardown_hyp_mode(); 2857 out_err: 2858 kvm_arm_vmid_alloc_free(); 2859 return err; 2860 } 2861 2862 static int __init early_kvm_mode_cfg(char *arg) 2863 { 2864 if (!arg) 2865 return -EINVAL; 2866 2867 if (strcmp(arg, "none") == 0) { 2868 kvm_mode = KVM_MODE_NONE; 2869 return 0; 2870 } 2871 2872 if (!is_hyp_mode_available()) { 2873 pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n"); 2874 return 0; 2875 } 2876 2877 if (strcmp(arg, "protected") == 0) { 2878 if (!is_kernel_in_hyp_mode()) 2879 kvm_mode = KVM_MODE_PROTECTED; 2880 else 2881 pr_warn_once("Protected KVM not available with VHE\n"); 2882 2883 return 0; 2884 } 2885 2886 if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) { 2887 kvm_mode = KVM_MODE_DEFAULT; 2888 return 0; 2889 } 2890 2891 if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) { 2892 kvm_mode = KVM_MODE_NV; 2893 return 0; 2894 } 2895 2896 return -EINVAL; 2897 } 2898 early_param("kvm-arm.mode", early_kvm_mode_cfg); 2899 2900 static int __init early_kvm_wfx_trap_policy_cfg(char *arg, enum kvm_wfx_trap_policy *p) 2901 { 2902 if (!arg) 2903 return -EINVAL; 2904 2905 if (strcmp(arg, "trap") == 0) { 2906 *p = KVM_WFX_TRAP; 2907 return 0; 2908 } 2909 2910 if (strcmp(arg, "notrap") == 0) { 2911 *p = KVM_WFX_NOTRAP; 2912 return 0; 2913 } 2914 2915 return -EINVAL; 2916 } 2917 2918 static int __init early_kvm_wfi_trap_policy_cfg(char *arg) 2919 { 2920 return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfi_trap_policy); 2921 } 2922 early_param("kvm-arm.wfi_trap_policy", early_kvm_wfi_trap_policy_cfg); 2923 2924 static int __init early_kvm_wfe_trap_policy_cfg(char *arg) 2925 { 2926 return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfe_trap_policy); 2927 } 2928 early_param("kvm-arm.wfe_trap_policy", early_kvm_wfe_trap_policy_cfg); 2929 2930 enum kvm_mode kvm_get_mode(void) 2931 { 2932 return kvm_mode; 2933 } 2934 2935 module_init(kvm_arm_init); 2936