xref: /linux/arch/arm64/kvm/arm.c (revision b8e4b0529d59a3ccd0b25a31d3cfc8b0f3b34068)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/entry-kvm.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/vmalloc.h>
16 #include <linux/fs.h>
17 #include <linux/mman.h>
18 #include <linux/sched.h>
19 #include <linux/kvm.h>
20 #include <linux/kvm_irqfd.h>
21 #include <linux/irqbypass.h>
22 #include <linux/sched/stat.h>
23 #include <linux/psci.h>
24 #include <trace/events/kvm.h>
25 
26 #define CREATE_TRACE_POINTS
27 #include "trace_arm.h"
28 
29 #include <linux/uaccess.h>
30 #include <asm/ptrace.h>
31 #include <asm/mman.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpufeature.h>
35 #include <asm/virt.h>
36 #include <asm/kvm_arm.h>
37 #include <asm/kvm_asm.h>
38 #include <asm/kvm_emulate.h>
39 #include <asm/kvm_mmu.h>
40 #include <asm/kvm_nested.h>
41 #include <asm/kvm_pkvm.h>
42 #include <asm/kvm_ptrauth.h>
43 #include <asm/sections.h>
44 
45 #include <kvm/arm_hypercalls.h>
46 #include <kvm/arm_pmu.h>
47 #include <kvm/arm_psci.h>
48 
49 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
50 
51 enum kvm_wfx_trap_policy {
52 	KVM_WFX_NOTRAP_SINGLE_TASK, /* Default option */
53 	KVM_WFX_NOTRAP,
54 	KVM_WFX_TRAP,
55 };
56 
57 static enum kvm_wfx_trap_policy kvm_wfi_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK;
58 static enum kvm_wfx_trap_policy kvm_wfe_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK;
59 
60 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
61 
62 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
63 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
64 
65 DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
66 
67 static bool vgic_present, kvm_arm_initialised;
68 
69 static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized);
70 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
71 
72 bool is_kvm_arm_initialised(void)
73 {
74 	return kvm_arm_initialised;
75 }
76 
77 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
78 {
79 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
80 }
81 
82 /*
83  * This functions as an allow-list of protected VM capabilities.
84  * Features not explicitly allowed by this function are denied.
85  */
86 static bool pkvm_ext_allowed(struct kvm *kvm, long ext)
87 {
88 	switch (ext) {
89 	case KVM_CAP_IRQCHIP:
90 	case KVM_CAP_ARM_PSCI:
91 	case KVM_CAP_ARM_PSCI_0_2:
92 	case KVM_CAP_NR_VCPUS:
93 	case KVM_CAP_MAX_VCPUS:
94 	case KVM_CAP_MAX_VCPU_ID:
95 	case KVM_CAP_MSI_DEVID:
96 	case KVM_CAP_ARM_VM_IPA_SIZE:
97 	case KVM_CAP_ARM_PMU_V3:
98 	case KVM_CAP_ARM_SVE:
99 	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
100 	case KVM_CAP_ARM_PTRAUTH_GENERIC:
101 		return true;
102 	default:
103 		return false;
104 	}
105 }
106 
107 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
108 			    struct kvm_enable_cap *cap)
109 {
110 	int r = -EINVAL;
111 
112 	if (cap->flags)
113 		return -EINVAL;
114 
115 	if (kvm_vm_is_protected(kvm) && !pkvm_ext_allowed(kvm, cap->cap))
116 		return -EINVAL;
117 
118 	switch (cap->cap) {
119 	case KVM_CAP_ARM_NISV_TO_USER:
120 		r = 0;
121 		set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
122 			&kvm->arch.flags);
123 		break;
124 	case KVM_CAP_ARM_MTE:
125 		mutex_lock(&kvm->lock);
126 		if (system_supports_mte() && !kvm->created_vcpus) {
127 			r = 0;
128 			set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
129 		}
130 		mutex_unlock(&kvm->lock);
131 		break;
132 	case KVM_CAP_ARM_SYSTEM_SUSPEND:
133 		r = 0;
134 		set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
135 		break;
136 	case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
137 		mutex_lock(&kvm->slots_lock);
138 		/*
139 		 * To keep things simple, allow changing the chunk
140 		 * size only when no memory slots have been created.
141 		 */
142 		if (kvm_are_all_memslots_empty(kvm)) {
143 			u64 new_cap = cap->args[0];
144 
145 			if (!new_cap || kvm_is_block_size_supported(new_cap)) {
146 				r = 0;
147 				kvm->arch.mmu.split_page_chunk_size = new_cap;
148 			}
149 		}
150 		mutex_unlock(&kvm->slots_lock);
151 		break;
152 	default:
153 		break;
154 	}
155 
156 	return r;
157 }
158 
159 static int kvm_arm_default_max_vcpus(void)
160 {
161 	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
162 }
163 
164 /**
165  * kvm_arch_init_vm - initializes a VM data structure
166  * @kvm:	pointer to the KVM struct
167  */
168 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
169 {
170 	int ret;
171 
172 	mutex_init(&kvm->arch.config_lock);
173 
174 #ifdef CONFIG_LOCKDEP
175 	/* Clue in lockdep that the config_lock must be taken inside kvm->lock */
176 	mutex_lock(&kvm->lock);
177 	mutex_lock(&kvm->arch.config_lock);
178 	mutex_unlock(&kvm->arch.config_lock);
179 	mutex_unlock(&kvm->lock);
180 #endif
181 
182 	kvm_init_nested(kvm);
183 
184 	ret = kvm_share_hyp(kvm, kvm + 1);
185 	if (ret)
186 		return ret;
187 
188 	ret = pkvm_init_host_vm(kvm);
189 	if (ret)
190 		goto err_unshare_kvm;
191 
192 	if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) {
193 		ret = -ENOMEM;
194 		goto err_unshare_kvm;
195 	}
196 	cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
197 
198 	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type);
199 	if (ret)
200 		goto err_free_cpumask;
201 
202 	kvm_vgic_early_init(kvm);
203 
204 	kvm_timer_init_vm(kvm);
205 
206 	/* The maximum number of VCPUs is limited by the host's GIC model */
207 	kvm->max_vcpus = kvm_arm_default_max_vcpus();
208 
209 	kvm_arm_init_hypercalls(kvm);
210 
211 	bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES);
212 
213 	return 0;
214 
215 err_free_cpumask:
216 	free_cpumask_var(kvm->arch.supported_cpus);
217 err_unshare_kvm:
218 	kvm_unshare_hyp(kvm, kvm + 1);
219 	return ret;
220 }
221 
222 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
223 {
224 	return VM_FAULT_SIGBUS;
225 }
226 
227 void kvm_arch_create_vm_debugfs(struct kvm *kvm)
228 {
229 	kvm_sys_regs_create_debugfs(kvm);
230 }
231 
232 static void kvm_destroy_mpidr_data(struct kvm *kvm)
233 {
234 	struct kvm_mpidr_data *data;
235 
236 	mutex_lock(&kvm->arch.config_lock);
237 
238 	data = rcu_dereference_protected(kvm->arch.mpidr_data,
239 					 lockdep_is_held(&kvm->arch.config_lock));
240 	if (data) {
241 		rcu_assign_pointer(kvm->arch.mpidr_data, NULL);
242 		synchronize_rcu();
243 		kfree(data);
244 	}
245 
246 	mutex_unlock(&kvm->arch.config_lock);
247 }
248 
249 /**
250  * kvm_arch_destroy_vm - destroy the VM data structure
251  * @kvm:	pointer to the KVM struct
252  */
253 void kvm_arch_destroy_vm(struct kvm *kvm)
254 {
255 	bitmap_free(kvm->arch.pmu_filter);
256 	free_cpumask_var(kvm->arch.supported_cpus);
257 
258 	kvm_vgic_destroy(kvm);
259 
260 	if (is_protected_kvm_enabled())
261 		pkvm_destroy_hyp_vm(kvm);
262 
263 	kvm_destroy_mpidr_data(kvm);
264 
265 	kfree(kvm->arch.sysreg_masks);
266 	kvm_destroy_vcpus(kvm);
267 
268 	kvm_unshare_hyp(kvm, kvm + 1);
269 
270 	kvm_arm_teardown_hypercalls(kvm);
271 }
272 
273 static bool kvm_has_full_ptr_auth(void)
274 {
275 	bool apa, gpa, api, gpi, apa3, gpa3;
276 	u64 isar1, isar2, val;
277 
278 	/*
279 	 * Check that:
280 	 *
281 	 * - both Address and Generic auth are implemented for a given
282          *   algorithm (Q5, IMPDEF or Q3)
283 	 * - only a single algorithm is implemented.
284 	 */
285 	if (!system_has_full_ptr_auth())
286 		return false;
287 
288 	isar1 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
289 	isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
290 
291 	apa = !!FIELD_GET(ID_AA64ISAR1_EL1_APA_MASK, isar1);
292 	val = FIELD_GET(ID_AA64ISAR1_EL1_GPA_MASK, isar1);
293 	gpa = (val == ID_AA64ISAR1_EL1_GPA_IMP);
294 
295 	api = !!FIELD_GET(ID_AA64ISAR1_EL1_API_MASK, isar1);
296 	val = FIELD_GET(ID_AA64ISAR1_EL1_GPI_MASK, isar1);
297 	gpi = (val == ID_AA64ISAR1_EL1_GPI_IMP);
298 
299 	apa3 = !!FIELD_GET(ID_AA64ISAR2_EL1_APA3_MASK, isar2);
300 	val  = FIELD_GET(ID_AA64ISAR2_EL1_GPA3_MASK, isar2);
301 	gpa3 = (val == ID_AA64ISAR2_EL1_GPA3_IMP);
302 
303 	return (apa == gpa && api == gpi && apa3 == gpa3 &&
304 		(apa + api + apa3) == 1);
305 }
306 
307 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
308 {
309 	int r;
310 
311 	if (kvm && kvm_vm_is_protected(kvm) && !pkvm_ext_allowed(kvm, ext))
312 		return 0;
313 
314 	switch (ext) {
315 	case KVM_CAP_IRQCHIP:
316 		r = vgic_present;
317 		break;
318 	case KVM_CAP_IOEVENTFD:
319 	case KVM_CAP_USER_MEMORY:
320 	case KVM_CAP_SYNC_MMU:
321 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
322 	case KVM_CAP_ONE_REG:
323 	case KVM_CAP_ARM_PSCI:
324 	case KVM_CAP_ARM_PSCI_0_2:
325 	case KVM_CAP_READONLY_MEM:
326 	case KVM_CAP_MP_STATE:
327 	case KVM_CAP_IMMEDIATE_EXIT:
328 	case KVM_CAP_VCPU_EVENTS:
329 	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
330 	case KVM_CAP_ARM_NISV_TO_USER:
331 	case KVM_CAP_ARM_INJECT_EXT_DABT:
332 	case KVM_CAP_SET_GUEST_DEBUG:
333 	case KVM_CAP_VCPU_ATTRIBUTES:
334 	case KVM_CAP_PTP_KVM:
335 	case KVM_CAP_ARM_SYSTEM_SUSPEND:
336 	case KVM_CAP_IRQFD_RESAMPLE:
337 	case KVM_CAP_COUNTER_OFFSET:
338 		r = 1;
339 		break;
340 	case KVM_CAP_SET_GUEST_DEBUG2:
341 		return KVM_GUESTDBG_VALID_MASK;
342 	case KVM_CAP_ARM_SET_DEVICE_ADDR:
343 		r = 1;
344 		break;
345 	case KVM_CAP_NR_VCPUS:
346 		/*
347 		 * ARM64 treats KVM_CAP_NR_CPUS differently from all other
348 		 * architectures, as it does not always bound it to
349 		 * KVM_CAP_MAX_VCPUS. It should not matter much because
350 		 * this is just an advisory value.
351 		 */
352 		r = min_t(unsigned int, num_online_cpus(),
353 			  kvm_arm_default_max_vcpus());
354 		break;
355 	case KVM_CAP_MAX_VCPUS:
356 	case KVM_CAP_MAX_VCPU_ID:
357 		if (kvm)
358 			r = kvm->max_vcpus;
359 		else
360 			r = kvm_arm_default_max_vcpus();
361 		break;
362 	case KVM_CAP_MSI_DEVID:
363 		if (!kvm)
364 			r = -EINVAL;
365 		else
366 			r = kvm->arch.vgic.msis_require_devid;
367 		break;
368 	case KVM_CAP_ARM_USER_IRQ:
369 		/*
370 		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
371 		 * (bump this number if adding more devices)
372 		 */
373 		r = 1;
374 		break;
375 	case KVM_CAP_ARM_MTE:
376 		r = system_supports_mte();
377 		break;
378 	case KVM_CAP_STEAL_TIME:
379 		r = kvm_arm_pvtime_supported();
380 		break;
381 	case KVM_CAP_ARM_EL1_32BIT:
382 		r = cpus_have_final_cap(ARM64_HAS_32BIT_EL1);
383 		break;
384 	case KVM_CAP_GUEST_DEBUG_HW_BPS:
385 		r = get_num_brps();
386 		break;
387 	case KVM_CAP_GUEST_DEBUG_HW_WPS:
388 		r = get_num_wrps();
389 		break;
390 	case KVM_CAP_ARM_PMU_V3:
391 		r = kvm_arm_support_pmu_v3();
392 		break;
393 	case KVM_CAP_ARM_INJECT_SERROR_ESR:
394 		r = cpus_have_final_cap(ARM64_HAS_RAS_EXTN);
395 		break;
396 	case KVM_CAP_ARM_VM_IPA_SIZE:
397 		r = get_kvm_ipa_limit();
398 		break;
399 	case KVM_CAP_ARM_SVE:
400 		r = system_supports_sve();
401 		break;
402 	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
403 	case KVM_CAP_ARM_PTRAUTH_GENERIC:
404 		r = kvm_has_full_ptr_auth();
405 		break;
406 	case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
407 		if (kvm)
408 			r = kvm->arch.mmu.split_page_chunk_size;
409 		else
410 			r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
411 		break;
412 	case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES:
413 		r = kvm_supported_block_sizes();
414 		break;
415 	case KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES:
416 		r = BIT(0);
417 		break;
418 	default:
419 		r = 0;
420 	}
421 
422 	return r;
423 }
424 
425 long kvm_arch_dev_ioctl(struct file *filp,
426 			unsigned int ioctl, unsigned long arg)
427 {
428 	return -EINVAL;
429 }
430 
431 struct kvm *kvm_arch_alloc_vm(void)
432 {
433 	size_t sz = sizeof(struct kvm);
434 
435 	if (!has_vhe())
436 		return kzalloc(sz, GFP_KERNEL_ACCOUNT);
437 
438 	return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
439 }
440 
441 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
442 {
443 	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
444 		return -EBUSY;
445 
446 	if (id >= kvm->max_vcpus)
447 		return -EINVAL;
448 
449 	return 0;
450 }
451 
452 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
453 {
454 	int err;
455 
456 	spin_lock_init(&vcpu->arch.mp_state_lock);
457 
458 #ifdef CONFIG_LOCKDEP
459 	/* Inform lockdep that the config_lock is acquired after vcpu->mutex */
460 	mutex_lock(&vcpu->mutex);
461 	mutex_lock(&vcpu->kvm->arch.config_lock);
462 	mutex_unlock(&vcpu->kvm->arch.config_lock);
463 	mutex_unlock(&vcpu->mutex);
464 #endif
465 
466 	/* Force users to call KVM_ARM_VCPU_INIT */
467 	vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
468 
469 	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
470 
471 	/* Set up the timer */
472 	kvm_timer_vcpu_init(vcpu);
473 
474 	kvm_pmu_vcpu_init(vcpu);
475 
476 	kvm_arm_reset_debug_ptr(vcpu);
477 
478 	kvm_arm_pvtime_vcpu_init(&vcpu->arch);
479 
480 	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
481 
482 	/*
483 	 * This vCPU may have been created after mpidr_data was initialized.
484 	 * Throw out the pre-computed mappings if that is the case which forces
485 	 * KVM to fall back to iteratively searching the vCPUs.
486 	 */
487 	kvm_destroy_mpidr_data(vcpu->kvm);
488 
489 	err = kvm_vgic_vcpu_init(vcpu);
490 	if (err)
491 		return err;
492 
493 	return kvm_share_hyp(vcpu, vcpu + 1);
494 }
495 
496 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
497 {
498 }
499 
500 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
501 {
502 	if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm)))
503 		static_branch_dec(&userspace_irqchip_in_use);
504 
505 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
506 	kvm_timer_vcpu_terminate(vcpu);
507 	kvm_pmu_vcpu_destroy(vcpu);
508 	kvm_vgic_vcpu_destroy(vcpu);
509 	kvm_arm_vcpu_destroy(vcpu);
510 }
511 
512 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
513 {
514 
515 }
516 
517 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
518 {
519 
520 }
521 
522 static void vcpu_set_pauth_traps(struct kvm_vcpu *vcpu)
523 {
524 	if (vcpu_has_ptrauth(vcpu)) {
525 		/*
526 		 * Either we're running running an L2 guest, and the API/APK
527 		 * bits come from L1's HCR_EL2, or API/APK are both set.
528 		 */
529 		if (unlikely(vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu))) {
530 			u64 val;
531 
532 			val = __vcpu_sys_reg(vcpu, HCR_EL2);
533 			val &= (HCR_API | HCR_APK);
534 			vcpu->arch.hcr_el2 &= ~(HCR_API | HCR_APK);
535 			vcpu->arch.hcr_el2 |= val;
536 		} else {
537 			vcpu->arch.hcr_el2 |= (HCR_API | HCR_APK);
538 		}
539 
540 		/*
541 		 * Save the host keys if there is any chance for the guest
542 		 * to use pauth, as the entry code will reload the guest
543 		 * keys in that case.
544 		 * Protected mode is the exception to that rule, as the
545 		 * entry into the EL2 code eagerly switch back and forth
546 		 * between host and hyp keys (and kvm_hyp_ctxt is out of
547 		 * reach anyway).
548 		 */
549 		if (is_protected_kvm_enabled())
550 			return;
551 
552 		if (vcpu->arch.hcr_el2 & (HCR_API | HCR_APK)) {
553 			struct kvm_cpu_context *ctxt;
554 			ctxt = this_cpu_ptr_hyp_sym(kvm_hyp_ctxt);
555 			ptrauth_save_keys(ctxt);
556 		}
557 	}
558 }
559 
560 static bool kvm_vcpu_should_clear_twi(struct kvm_vcpu *vcpu)
561 {
562 	if (unlikely(kvm_wfi_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK))
563 		return kvm_wfi_trap_policy == KVM_WFX_NOTRAP;
564 
565 	return single_task_running() &&
566 	       (atomic_read(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count) ||
567 		vcpu->kvm->arch.vgic.nassgireq);
568 }
569 
570 static bool kvm_vcpu_should_clear_twe(struct kvm_vcpu *vcpu)
571 {
572 	if (unlikely(kvm_wfe_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK))
573 		return kvm_wfe_trap_policy == KVM_WFX_NOTRAP;
574 
575 	return single_task_running();
576 }
577 
578 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
579 {
580 	struct kvm_s2_mmu *mmu;
581 	int *last_ran;
582 
583 	if (vcpu_has_nv(vcpu))
584 		kvm_vcpu_load_hw_mmu(vcpu);
585 
586 	mmu = vcpu->arch.hw_mmu;
587 	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
588 
589 	/*
590 	 * We guarantee that both TLBs and I-cache are private to each
591 	 * vcpu. If detecting that a vcpu from the same VM has
592 	 * previously run on the same physical CPU, call into the
593 	 * hypervisor code to nuke the relevant contexts.
594 	 *
595 	 * We might get preempted before the vCPU actually runs, but
596 	 * over-invalidation doesn't affect correctness.
597 	 */
598 	if (*last_ran != vcpu->vcpu_idx) {
599 		kvm_call_hyp(__kvm_flush_cpu_context, mmu);
600 		*last_ran = vcpu->vcpu_idx;
601 	}
602 
603 	vcpu->cpu = cpu;
604 
605 	kvm_vgic_load(vcpu);
606 	kvm_timer_vcpu_load(vcpu);
607 	if (has_vhe())
608 		kvm_vcpu_load_vhe(vcpu);
609 	kvm_arch_vcpu_load_fp(vcpu);
610 	kvm_vcpu_pmu_restore_guest(vcpu);
611 	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
612 		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
613 
614 	if (kvm_vcpu_should_clear_twe(vcpu))
615 		vcpu->arch.hcr_el2 &= ~HCR_TWE;
616 	else
617 		vcpu->arch.hcr_el2 |= HCR_TWE;
618 
619 	if (kvm_vcpu_should_clear_twi(vcpu))
620 		vcpu->arch.hcr_el2 &= ~HCR_TWI;
621 	else
622 		vcpu->arch.hcr_el2 |= HCR_TWI;
623 
624 	vcpu_set_pauth_traps(vcpu);
625 
626 	kvm_arch_vcpu_load_debug_state_flags(vcpu);
627 
628 	if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus))
629 		vcpu_set_on_unsupported_cpu(vcpu);
630 }
631 
632 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
633 {
634 	kvm_arch_vcpu_put_debug_state_flags(vcpu);
635 	kvm_arch_vcpu_put_fp(vcpu);
636 	if (has_vhe())
637 		kvm_vcpu_put_vhe(vcpu);
638 	kvm_timer_vcpu_put(vcpu);
639 	kvm_vgic_put(vcpu);
640 	kvm_vcpu_pmu_restore_host(vcpu);
641 	if (vcpu_has_nv(vcpu))
642 		kvm_vcpu_put_hw_mmu(vcpu);
643 	kvm_arm_vmid_clear_active();
644 
645 	vcpu_clear_on_unsupported_cpu(vcpu);
646 	vcpu->cpu = -1;
647 }
648 
649 static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
650 {
651 	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
652 	kvm_make_request(KVM_REQ_SLEEP, vcpu);
653 	kvm_vcpu_kick(vcpu);
654 }
655 
656 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
657 {
658 	spin_lock(&vcpu->arch.mp_state_lock);
659 	__kvm_arm_vcpu_power_off(vcpu);
660 	spin_unlock(&vcpu->arch.mp_state_lock);
661 }
662 
663 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
664 {
665 	return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED;
666 }
667 
668 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
669 {
670 	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED);
671 	kvm_make_request(KVM_REQ_SUSPEND, vcpu);
672 	kvm_vcpu_kick(vcpu);
673 }
674 
675 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
676 {
677 	return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED;
678 }
679 
680 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
681 				    struct kvm_mp_state *mp_state)
682 {
683 	*mp_state = READ_ONCE(vcpu->arch.mp_state);
684 
685 	return 0;
686 }
687 
688 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
689 				    struct kvm_mp_state *mp_state)
690 {
691 	int ret = 0;
692 
693 	spin_lock(&vcpu->arch.mp_state_lock);
694 
695 	switch (mp_state->mp_state) {
696 	case KVM_MP_STATE_RUNNABLE:
697 		WRITE_ONCE(vcpu->arch.mp_state, *mp_state);
698 		break;
699 	case KVM_MP_STATE_STOPPED:
700 		__kvm_arm_vcpu_power_off(vcpu);
701 		break;
702 	case KVM_MP_STATE_SUSPENDED:
703 		kvm_arm_vcpu_suspend(vcpu);
704 		break;
705 	default:
706 		ret = -EINVAL;
707 	}
708 
709 	spin_unlock(&vcpu->arch.mp_state_lock);
710 
711 	return ret;
712 }
713 
714 /**
715  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
716  * @v:		The VCPU pointer
717  *
718  * If the guest CPU is not waiting for interrupts or an interrupt line is
719  * asserted, the CPU is by definition runnable.
720  */
721 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
722 {
723 	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
724 	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
725 		&& !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
726 }
727 
728 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
729 {
730 	return vcpu_mode_priv(vcpu);
731 }
732 
733 #ifdef CONFIG_GUEST_PERF_EVENTS
734 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
735 {
736 	return *vcpu_pc(vcpu);
737 }
738 #endif
739 
740 static void kvm_init_mpidr_data(struct kvm *kvm)
741 {
742 	struct kvm_mpidr_data *data = NULL;
743 	unsigned long c, mask, nr_entries;
744 	u64 aff_set = 0, aff_clr = ~0UL;
745 	struct kvm_vcpu *vcpu;
746 
747 	mutex_lock(&kvm->arch.config_lock);
748 
749 	if (rcu_access_pointer(kvm->arch.mpidr_data) ||
750 	    atomic_read(&kvm->online_vcpus) == 1)
751 		goto out;
752 
753 	kvm_for_each_vcpu(c, vcpu, kvm) {
754 		u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
755 		aff_set |= aff;
756 		aff_clr &= aff;
757 	}
758 
759 	/*
760 	 * A significant bit can be either 0 or 1, and will only appear in
761 	 * aff_set. Use aff_clr to weed out the useless stuff.
762 	 */
763 	mask = aff_set ^ aff_clr;
764 	nr_entries = BIT_ULL(hweight_long(mask));
765 
766 	/*
767 	 * Don't let userspace fool us. If we need more than a single page
768 	 * to describe the compressed MPIDR array, just fall back to the
769 	 * iterative method. Single vcpu VMs do not need this either.
770 	 */
771 	if (struct_size(data, cmpidr_to_idx, nr_entries) <= PAGE_SIZE)
772 		data = kzalloc(struct_size(data, cmpidr_to_idx, nr_entries),
773 			       GFP_KERNEL_ACCOUNT);
774 
775 	if (!data)
776 		goto out;
777 
778 	data->mpidr_mask = mask;
779 
780 	kvm_for_each_vcpu(c, vcpu, kvm) {
781 		u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
782 		u16 index = kvm_mpidr_index(data, aff);
783 
784 		data->cmpidr_to_idx[index] = c;
785 	}
786 
787 	rcu_assign_pointer(kvm->arch.mpidr_data, data);
788 out:
789 	mutex_unlock(&kvm->arch.config_lock);
790 }
791 
792 /*
793  * Handle both the initialisation that is being done when the vcpu is
794  * run for the first time, as well as the updates that must be
795  * performed each time we get a new thread dealing with this vcpu.
796  */
797 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
798 {
799 	struct kvm *kvm = vcpu->kvm;
800 	int ret;
801 
802 	if (!kvm_vcpu_initialized(vcpu))
803 		return -ENOEXEC;
804 
805 	if (!kvm_arm_vcpu_is_finalized(vcpu))
806 		return -EPERM;
807 
808 	ret = kvm_arch_vcpu_run_map_fp(vcpu);
809 	if (ret)
810 		return ret;
811 
812 	if (likely(vcpu_has_run_once(vcpu)))
813 		return 0;
814 
815 	kvm_init_mpidr_data(kvm);
816 
817 	kvm_arm_vcpu_init_debug(vcpu);
818 
819 	if (likely(irqchip_in_kernel(kvm))) {
820 		/*
821 		 * Map the VGIC hardware resources before running a vcpu the
822 		 * first time on this VM.
823 		 */
824 		ret = kvm_vgic_map_resources(kvm);
825 		if (ret)
826 			return ret;
827 	}
828 
829 	if (vcpu_has_nv(vcpu)) {
830 		ret = kvm_init_nv_sysregs(vcpu->kvm);
831 		if (ret)
832 			return ret;
833 	}
834 
835 	/*
836 	 * This needs to happen after NV has imposed its own restrictions on
837 	 * the feature set
838 	 */
839 	kvm_calculate_traps(vcpu);
840 
841 	ret = kvm_timer_enable(vcpu);
842 	if (ret)
843 		return ret;
844 
845 	ret = kvm_arm_pmu_v3_enable(vcpu);
846 	if (ret)
847 		return ret;
848 
849 	if (is_protected_kvm_enabled()) {
850 		ret = pkvm_create_hyp_vm(kvm);
851 		if (ret)
852 			return ret;
853 	}
854 
855 	if (!irqchip_in_kernel(kvm)) {
856 		/*
857 		 * Tell the rest of the code that there are userspace irqchip
858 		 * VMs in the wild.
859 		 */
860 		static_branch_inc(&userspace_irqchip_in_use);
861 	}
862 
863 	/*
864 	 * Initialize traps for protected VMs.
865 	 * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
866 	 * the code is in place for first run initialization at EL2.
867 	 */
868 	if (kvm_vm_is_protected(kvm))
869 		kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);
870 
871 	mutex_lock(&kvm->arch.config_lock);
872 	set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
873 	mutex_unlock(&kvm->arch.config_lock);
874 
875 	return ret;
876 }
877 
878 bool kvm_arch_intc_initialized(struct kvm *kvm)
879 {
880 	return vgic_initialized(kvm);
881 }
882 
883 void kvm_arm_halt_guest(struct kvm *kvm)
884 {
885 	unsigned long i;
886 	struct kvm_vcpu *vcpu;
887 
888 	kvm_for_each_vcpu(i, vcpu, kvm)
889 		vcpu->arch.pause = true;
890 	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
891 }
892 
893 void kvm_arm_resume_guest(struct kvm *kvm)
894 {
895 	unsigned long i;
896 	struct kvm_vcpu *vcpu;
897 
898 	kvm_for_each_vcpu(i, vcpu, kvm) {
899 		vcpu->arch.pause = false;
900 		__kvm_vcpu_wake_up(vcpu);
901 	}
902 }
903 
904 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
905 {
906 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
907 
908 	rcuwait_wait_event(wait,
909 			   (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
910 			   TASK_INTERRUPTIBLE);
911 
912 	if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
913 		/* Awaken to handle a signal, request we sleep again later. */
914 		kvm_make_request(KVM_REQ_SLEEP, vcpu);
915 	}
916 
917 	/*
918 	 * Make sure we will observe a potential reset request if we've
919 	 * observed a change to the power state. Pairs with the smp_wmb() in
920 	 * kvm_psci_vcpu_on().
921 	 */
922 	smp_rmb();
923 }
924 
925 /**
926  * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
927  * @vcpu:	The VCPU pointer
928  *
929  * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
930  * the vCPU is runnable.  The vCPU may or may not be scheduled out, depending
931  * on when a wake event arrives, e.g. there may already be a pending wake event.
932  */
933 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
934 {
935 	/*
936 	 * Sync back the state of the GIC CPU interface so that we have
937 	 * the latest PMR and group enables. This ensures that
938 	 * kvm_arch_vcpu_runnable has up-to-date data to decide whether
939 	 * we have pending interrupts, e.g. when determining if the
940 	 * vCPU should block.
941 	 *
942 	 * For the same reason, we want to tell GICv4 that we need
943 	 * doorbells to be signalled, should an interrupt become pending.
944 	 */
945 	preempt_disable();
946 	vcpu_set_flag(vcpu, IN_WFI);
947 	kvm_vgic_put(vcpu);
948 	preempt_enable();
949 
950 	kvm_vcpu_halt(vcpu);
951 	vcpu_clear_flag(vcpu, IN_WFIT);
952 
953 	preempt_disable();
954 	vcpu_clear_flag(vcpu, IN_WFI);
955 	kvm_vgic_load(vcpu);
956 	preempt_enable();
957 }
958 
959 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
960 {
961 	if (!kvm_arm_vcpu_suspended(vcpu))
962 		return 1;
963 
964 	kvm_vcpu_wfi(vcpu);
965 
966 	/*
967 	 * The suspend state is sticky; we do not leave it until userspace
968 	 * explicitly marks the vCPU as runnable. Request that we suspend again
969 	 * later.
970 	 */
971 	kvm_make_request(KVM_REQ_SUSPEND, vcpu);
972 
973 	/*
974 	 * Check to make sure the vCPU is actually runnable. If so, exit to
975 	 * userspace informing it of the wakeup condition.
976 	 */
977 	if (kvm_arch_vcpu_runnable(vcpu)) {
978 		memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
979 		vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
980 		vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
981 		return 0;
982 	}
983 
984 	/*
985 	 * Otherwise, we were unblocked to process a different event, such as a
986 	 * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
987 	 * process the event.
988 	 */
989 	return 1;
990 }
991 
992 /**
993  * check_vcpu_requests - check and handle pending vCPU requests
994  * @vcpu:	the VCPU pointer
995  *
996  * Return: 1 if we should enter the guest
997  *	   0 if we should exit to userspace
998  *	   < 0 if we should exit to userspace, where the return value indicates
999  *	   an error
1000  */
1001 static int check_vcpu_requests(struct kvm_vcpu *vcpu)
1002 {
1003 	if (kvm_request_pending(vcpu)) {
1004 		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
1005 			kvm_vcpu_sleep(vcpu);
1006 
1007 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1008 			kvm_reset_vcpu(vcpu);
1009 
1010 		/*
1011 		 * Clear IRQ_PENDING requests that were made to guarantee
1012 		 * that a VCPU sees new virtual interrupts.
1013 		 */
1014 		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
1015 
1016 		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
1017 			kvm_update_stolen_time(vcpu);
1018 
1019 		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
1020 			/* The distributor enable bits were changed */
1021 			preempt_disable();
1022 			vgic_v4_put(vcpu);
1023 			vgic_v4_load(vcpu);
1024 			preempt_enable();
1025 		}
1026 
1027 		if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
1028 			kvm_vcpu_reload_pmu(vcpu);
1029 
1030 		if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu))
1031 			kvm_vcpu_pmu_restore_guest(vcpu);
1032 
1033 		if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
1034 			return kvm_vcpu_suspend(vcpu);
1035 
1036 		if (kvm_dirty_ring_check_request(vcpu))
1037 			return 0;
1038 	}
1039 
1040 	return 1;
1041 }
1042 
1043 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
1044 {
1045 	if (likely(!vcpu_mode_is_32bit(vcpu)))
1046 		return false;
1047 
1048 	if (vcpu_has_nv(vcpu))
1049 		return true;
1050 
1051 	return !kvm_supports_32bit_el0();
1052 }
1053 
1054 /**
1055  * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
1056  * @vcpu:	The VCPU pointer
1057  * @ret:	Pointer to write optional return code
1058  *
1059  * Returns: true if the VCPU needs to return to a preemptible + interruptible
1060  *	    and skip guest entry.
1061  *
1062  * This function disambiguates between two different types of exits: exits to a
1063  * preemptible + interruptible kernel context and exits to userspace. For an
1064  * exit to userspace, this function will write the return code to ret and return
1065  * true. For an exit to preemptible + interruptible kernel context (i.e. check
1066  * for pending work and re-enter), return true without writing to ret.
1067  */
1068 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
1069 {
1070 	struct kvm_run *run = vcpu->run;
1071 
1072 	/*
1073 	 * If we're using a userspace irqchip, then check if we need
1074 	 * to tell a userspace irqchip about timer or PMU level
1075 	 * changes and if so, exit to userspace (the actual level
1076 	 * state gets updated in kvm_timer_update_run and
1077 	 * kvm_pmu_update_run below).
1078 	 */
1079 	if (static_branch_unlikely(&userspace_irqchip_in_use)) {
1080 		if (kvm_timer_should_notify_user(vcpu) ||
1081 		    kvm_pmu_should_notify_user(vcpu)) {
1082 			*ret = -EINTR;
1083 			run->exit_reason = KVM_EXIT_INTR;
1084 			return true;
1085 		}
1086 	}
1087 
1088 	if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
1089 		run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1090 		run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
1091 		run->fail_entry.cpu = smp_processor_id();
1092 		*ret = 0;
1093 		return true;
1094 	}
1095 
1096 	return kvm_request_pending(vcpu) ||
1097 			xfer_to_guest_mode_work_pending();
1098 }
1099 
1100 /*
1101  * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
1102  * the vCPU is running.
1103  *
1104  * This must be noinstr as instrumentation may make use of RCU, and this is not
1105  * safe during the EQS.
1106  */
1107 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
1108 {
1109 	int ret;
1110 
1111 	guest_state_enter_irqoff();
1112 	ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
1113 	guest_state_exit_irqoff();
1114 
1115 	return ret;
1116 }
1117 
1118 /**
1119  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
1120  * @vcpu:	The VCPU pointer
1121  *
1122  * This function is called through the VCPU_RUN ioctl called from user space. It
1123  * will execute VM code in a loop until the time slice for the process is used
1124  * or some emulation is needed from user space in which case the function will
1125  * return with return value 0 and with the kvm_run structure filled in with the
1126  * required data for the requested emulation.
1127  */
1128 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
1129 {
1130 	struct kvm_run *run = vcpu->run;
1131 	int ret;
1132 
1133 	if (run->exit_reason == KVM_EXIT_MMIO) {
1134 		ret = kvm_handle_mmio_return(vcpu);
1135 		if (ret <= 0)
1136 			return ret;
1137 	}
1138 
1139 	vcpu_load(vcpu);
1140 
1141 	if (!vcpu->wants_to_run) {
1142 		ret = -EINTR;
1143 		goto out;
1144 	}
1145 
1146 	kvm_sigset_activate(vcpu);
1147 
1148 	ret = 1;
1149 	run->exit_reason = KVM_EXIT_UNKNOWN;
1150 	run->flags = 0;
1151 	while (ret > 0) {
1152 		/*
1153 		 * Check conditions before entering the guest
1154 		 */
1155 		ret = xfer_to_guest_mode_handle_work(vcpu);
1156 		if (!ret)
1157 			ret = 1;
1158 
1159 		if (ret > 0)
1160 			ret = check_vcpu_requests(vcpu);
1161 
1162 		/*
1163 		 * Preparing the interrupts to be injected also
1164 		 * involves poking the GIC, which must be done in a
1165 		 * non-preemptible context.
1166 		 */
1167 		preempt_disable();
1168 
1169 		/*
1170 		 * The VMID allocator only tracks active VMIDs per
1171 		 * physical CPU, and therefore the VMID allocated may not be
1172 		 * preserved on VMID roll-over if the task was preempted,
1173 		 * making a thread's VMID inactive. So we need to call
1174 		 * kvm_arm_vmid_update() in non-premptible context.
1175 		 */
1176 		if (kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid) &&
1177 		    has_vhe())
1178 			__load_stage2(vcpu->arch.hw_mmu,
1179 				      vcpu->arch.hw_mmu->arch);
1180 
1181 		kvm_pmu_flush_hwstate(vcpu);
1182 
1183 		local_irq_disable();
1184 
1185 		kvm_vgic_flush_hwstate(vcpu);
1186 
1187 		kvm_pmu_update_vcpu_events(vcpu);
1188 
1189 		/*
1190 		 * Ensure we set mode to IN_GUEST_MODE after we disable
1191 		 * interrupts and before the final VCPU requests check.
1192 		 * See the comment in kvm_vcpu_exiting_guest_mode() and
1193 		 * Documentation/virt/kvm/vcpu-requests.rst
1194 		 */
1195 		smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1196 
1197 		if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
1198 			vcpu->mode = OUTSIDE_GUEST_MODE;
1199 			isb(); /* Ensure work in x_flush_hwstate is committed */
1200 			kvm_pmu_sync_hwstate(vcpu);
1201 			if (static_branch_unlikely(&userspace_irqchip_in_use))
1202 				kvm_timer_sync_user(vcpu);
1203 			kvm_vgic_sync_hwstate(vcpu);
1204 			local_irq_enable();
1205 			preempt_enable();
1206 			continue;
1207 		}
1208 
1209 		kvm_arm_setup_debug(vcpu);
1210 		kvm_arch_vcpu_ctxflush_fp(vcpu);
1211 
1212 		/**************************************************************
1213 		 * Enter the guest
1214 		 */
1215 		trace_kvm_entry(*vcpu_pc(vcpu));
1216 		guest_timing_enter_irqoff();
1217 
1218 		ret = kvm_arm_vcpu_enter_exit(vcpu);
1219 
1220 		vcpu->mode = OUTSIDE_GUEST_MODE;
1221 		vcpu->stat.exits++;
1222 		/*
1223 		 * Back from guest
1224 		 *************************************************************/
1225 
1226 		kvm_arm_clear_debug(vcpu);
1227 
1228 		/*
1229 		 * We must sync the PMU state before the vgic state so
1230 		 * that the vgic can properly sample the updated state of the
1231 		 * interrupt line.
1232 		 */
1233 		kvm_pmu_sync_hwstate(vcpu);
1234 
1235 		/*
1236 		 * Sync the vgic state before syncing the timer state because
1237 		 * the timer code needs to know if the virtual timer
1238 		 * interrupts are active.
1239 		 */
1240 		kvm_vgic_sync_hwstate(vcpu);
1241 
1242 		/*
1243 		 * Sync the timer hardware state before enabling interrupts as
1244 		 * we don't want vtimer interrupts to race with syncing the
1245 		 * timer virtual interrupt state.
1246 		 */
1247 		if (static_branch_unlikely(&userspace_irqchip_in_use))
1248 			kvm_timer_sync_user(vcpu);
1249 
1250 		kvm_arch_vcpu_ctxsync_fp(vcpu);
1251 
1252 		/*
1253 		 * We must ensure that any pending interrupts are taken before
1254 		 * we exit guest timing so that timer ticks are accounted as
1255 		 * guest time. Transiently unmask interrupts so that any
1256 		 * pending interrupts are taken.
1257 		 *
1258 		 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
1259 		 * context synchronization event) is necessary to ensure that
1260 		 * pending interrupts are taken.
1261 		 */
1262 		if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
1263 			local_irq_enable();
1264 			isb();
1265 			local_irq_disable();
1266 		}
1267 
1268 		guest_timing_exit_irqoff();
1269 
1270 		local_irq_enable();
1271 
1272 		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
1273 
1274 		/* Exit types that need handling before we can be preempted */
1275 		handle_exit_early(vcpu, ret);
1276 
1277 		preempt_enable();
1278 
1279 		/*
1280 		 * The ARMv8 architecture doesn't give the hypervisor
1281 		 * a mechanism to prevent a guest from dropping to AArch32 EL0
1282 		 * if implemented by the CPU. If we spot the guest in such
1283 		 * state and that we decided it wasn't supposed to do so (like
1284 		 * with the asymmetric AArch32 case), return to userspace with
1285 		 * a fatal error.
1286 		 */
1287 		if (vcpu_mode_is_bad_32bit(vcpu)) {
1288 			/*
1289 			 * As we have caught the guest red-handed, decide that
1290 			 * it isn't fit for purpose anymore by making the vcpu
1291 			 * invalid. The VMM can try and fix it by issuing  a
1292 			 * KVM_ARM_VCPU_INIT if it really wants to.
1293 			 */
1294 			vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
1295 			ret = ARM_EXCEPTION_IL;
1296 		}
1297 
1298 		ret = handle_exit(vcpu, ret);
1299 	}
1300 
1301 	/* Tell userspace about in-kernel device output levels */
1302 	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1303 		kvm_timer_update_run(vcpu);
1304 		kvm_pmu_update_run(vcpu);
1305 	}
1306 
1307 	kvm_sigset_deactivate(vcpu);
1308 
1309 out:
1310 	/*
1311 	 * In the unlikely event that we are returning to userspace
1312 	 * with pending exceptions or PC adjustment, commit these
1313 	 * adjustments in order to give userspace a consistent view of
1314 	 * the vcpu state. Note that this relies on __kvm_adjust_pc()
1315 	 * being preempt-safe on VHE.
1316 	 */
1317 	if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) ||
1318 		     vcpu_get_flag(vcpu, INCREMENT_PC)))
1319 		kvm_call_hyp(__kvm_adjust_pc, vcpu);
1320 
1321 	vcpu_put(vcpu);
1322 	return ret;
1323 }
1324 
1325 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
1326 {
1327 	int bit_index;
1328 	bool set;
1329 	unsigned long *hcr;
1330 
1331 	if (number == KVM_ARM_IRQ_CPU_IRQ)
1332 		bit_index = __ffs(HCR_VI);
1333 	else /* KVM_ARM_IRQ_CPU_FIQ */
1334 		bit_index = __ffs(HCR_VF);
1335 
1336 	hcr = vcpu_hcr(vcpu);
1337 	if (level)
1338 		set = test_and_set_bit(bit_index, hcr);
1339 	else
1340 		set = test_and_clear_bit(bit_index, hcr);
1341 
1342 	/*
1343 	 * If we didn't change anything, no need to wake up or kick other CPUs
1344 	 */
1345 	if (set == level)
1346 		return 0;
1347 
1348 	/*
1349 	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1350 	 * trigger a world-switch round on the running physical CPU to set the
1351 	 * virtual IRQ/FIQ fields in the HCR appropriately.
1352 	 */
1353 	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1354 	kvm_vcpu_kick(vcpu);
1355 
1356 	return 0;
1357 }
1358 
1359 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1360 			  bool line_status)
1361 {
1362 	u32 irq = irq_level->irq;
1363 	unsigned int irq_type, vcpu_id, irq_num;
1364 	struct kvm_vcpu *vcpu = NULL;
1365 	bool level = irq_level->level;
1366 
1367 	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1368 	vcpu_id = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1369 	vcpu_id += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1370 	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1371 
1372 	trace_kvm_irq_line(irq_type, vcpu_id, irq_num, irq_level->level);
1373 
1374 	switch (irq_type) {
1375 	case KVM_ARM_IRQ_TYPE_CPU:
1376 		if (irqchip_in_kernel(kvm))
1377 			return -ENXIO;
1378 
1379 		vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1380 		if (!vcpu)
1381 			return -EINVAL;
1382 
1383 		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1384 			return -EINVAL;
1385 
1386 		return vcpu_interrupt_line(vcpu, irq_num, level);
1387 	case KVM_ARM_IRQ_TYPE_PPI:
1388 		if (!irqchip_in_kernel(kvm))
1389 			return -ENXIO;
1390 
1391 		vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1392 		if (!vcpu)
1393 			return -EINVAL;
1394 
1395 		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1396 			return -EINVAL;
1397 
1398 		return kvm_vgic_inject_irq(kvm, vcpu, irq_num, level, NULL);
1399 	case KVM_ARM_IRQ_TYPE_SPI:
1400 		if (!irqchip_in_kernel(kvm))
1401 			return -ENXIO;
1402 
1403 		if (irq_num < VGIC_NR_PRIVATE_IRQS)
1404 			return -EINVAL;
1405 
1406 		return kvm_vgic_inject_irq(kvm, NULL, irq_num, level, NULL);
1407 	}
1408 
1409 	return -EINVAL;
1410 }
1411 
1412 static unsigned long system_supported_vcpu_features(void)
1413 {
1414 	unsigned long features = KVM_VCPU_VALID_FEATURES;
1415 
1416 	if (!cpus_have_final_cap(ARM64_HAS_32BIT_EL1))
1417 		clear_bit(KVM_ARM_VCPU_EL1_32BIT, &features);
1418 
1419 	if (!kvm_arm_support_pmu_v3())
1420 		clear_bit(KVM_ARM_VCPU_PMU_V3, &features);
1421 
1422 	if (!system_supports_sve())
1423 		clear_bit(KVM_ARM_VCPU_SVE, &features);
1424 
1425 	if (!kvm_has_full_ptr_auth()) {
1426 		clear_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features);
1427 		clear_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features);
1428 	}
1429 
1430 	if (!cpus_have_final_cap(ARM64_HAS_NESTED_VIRT))
1431 		clear_bit(KVM_ARM_VCPU_HAS_EL2, &features);
1432 
1433 	return features;
1434 }
1435 
1436 static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu,
1437 					const struct kvm_vcpu_init *init)
1438 {
1439 	unsigned long features = init->features[0];
1440 	int i;
1441 
1442 	if (features & ~KVM_VCPU_VALID_FEATURES)
1443 		return -ENOENT;
1444 
1445 	for (i = 1; i < ARRAY_SIZE(init->features); i++) {
1446 		if (init->features[i])
1447 			return -ENOENT;
1448 	}
1449 
1450 	if (features & ~system_supported_vcpu_features())
1451 		return -EINVAL;
1452 
1453 	/*
1454 	 * For now make sure that both address/generic pointer authentication
1455 	 * features are requested by the userspace together.
1456 	 */
1457 	if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features) !=
1458 	    test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features))
1459 		return -EINVAL;
1460 
1461 	if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features))
1462 		return 0;
1463 
1464 	/* MTE is incompatible with AArch32 */
1465 	if (kvm_has_mte(vcpu->kvm))
1466 		return -EINVAL;
1467 
1468 	/* NV is incompatible with AArch32 */
1469 	if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features))
1470 		return -EINVAL;
1471 
1472 	return 0;
1473 }
1474 
1475 static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu,
1476 				  const struct kvm_vcpu_init *init)
1477 {
1478 	unsigned long features = init->features[0];
1479 
1480 	return !bitmap_equal(vcpu->kvm->arch.vcpu_features, &features,
1481 			     KVM_VCPU_MAX_FEATURES);
1482 }
1483 
1484 static int kvm_setup_vcpu(struct kvm_vcpu *vcpu)
1485 {
1486 	struct kvm *kvm = vcpu->kvm;
1487 	int ret = 0;
1488 
1489 	/*
1490 	 * When the vCPU has a PMU, but no PMU is set for the guest
1491 	 * yet, set the default one.
1492 	 */
1493 	if (kvm_vcpu_has_pmu(vcpu) && !kvm->arch.arm_pmu)
1494 		ret = kvm_arm_set_default_pmu(kvm);
1495 
1496 	/* Prepare for nested if required */
1497 	if (!ret && vcpu_has_nv(vcpu))
1498 		ret = kvm_vcpu_init_nested(vcpu);
1499 
1500 	return ret;
1501 }
1502 
1503 static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1504 				 const struct kvm_vcpu_init *init)
1505 {
1506 	unsigned long features = init->features[0];
1507 	struct kvm *kvm = vcpu->kvm;
1508 	int ret = -EINVAL;
1509 
1510 	mutex_lock(&kvm->arch.config_lock);
1511 
1512 	if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) &&
1513 	    kvm_vcpu_init_changed(vcpu, init))
1514 		goto out_unlock;
1515 
1516 	bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES);
1517 
1518 	ret = kvm_setup_vcpu(vcpu);
1519 	if (ret)
1520 		goto out_unlock;
1521 
1522 	/* Now we know what it is, we can reset it. */
1523 	kvm_reset_vcpu(vcpu);
1524 
1525 	set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags);
1526 	vcpu_set_flag(vcpu, VCPU_INITIALIZED);
1527 	ret = 0;
1528 out_unlock:
1529 	mutex_unlock(&kvm->arch.config_lock);
1530 	return ret;
1531 }
1532 
1533 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1534 			       const struct kvm_vcpu_init *init)
1535 {
1536 	int ret;
1537 
1538 	if (init->target != KVM_ARM_TARGET_GENERIC_V8 &&
1539 	    init->target != kvm_target_cpu())
1540 		return -EINVAL;
1541 
1542 	ret = kvm_vcpu_init_check_features(vcpu, init);
1543 	if (ret)
1544 		return ret;
1545 
1546 	if (!kvm_vcpu_initialized(vcpu))
1547 		return __kvm_vcpu_set_target(vcpu, init);
1548 
1549 	if (kvm_vcpu_init_changed(vcpu, init))
1550 		return -EINVAL;
1551 
1552 	kvm_reset_vcpu(vcpu);
1553 	return 0;
1554 }
1555 
1556 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1557 					 struct kvm_vcpu_init *init)
1558 {
1559 	bool power_off = false;
1560 	int ret;
1561 
1562 	/*
1563 	 * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid
1564 	 * reflecting it in the finalized feature set, thus limiting its scope
1565 	 * to a single KVM_ARM_VCPU_INIT call.
1566 	 */
1567 	if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) {
1568 		init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF);
1569 		power_off = true;
1570 	}
1571 
1572 	ret = kvm_vcpu_set_target(vcpu, init);
1573 	if (ret)
1574 		return ret;
1575 
1576 	/*
1577 	 * Ensure a rebooted VM will fault in RAM pages and detect if the
1578 	 * guest MMU is turned off and flush the caches as needed.
1579 	 *
1580 	 * S2FWB enforces all memory accesses to RAM being cacheable,
1581 	 * ensuring that the data side is always coherent. We still
1582 	 * need to invalidate the I-cache though, as FWB does *not*
1583 	 * imply CTR_EL0.DIC.
1584 	 */
1585 	if (vcpu_has_run_once(vcpu)) {
1586 		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1587 			stage2_unmap_vm(vcpu->kvm);
1588 		else
1589 			icache_inval_all_pou();
1590 	}
1591 
1592 	vcpu_reset_hcr(vcpu);
1593 	vcpu->arch.cptr_el2 = kvm_get_reset_cptr_el2(vcpu);
1594 
1595 	/*
1596 	 * Handle the "start in power-off" case.
1597 	 */
1598 	spin_lock(&vcpu->arch.mp_state_lock);
1599 
1600 	if (power_off)
1601 		__kvm_arm_vcpu_power_off(vcpu);
1602 	else
1603 		WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
1604 
1605 	spin_unlock(&vcpu->arch.mp_state_lock);
1606 
1607 	return 0;
1608 }
1609 
1610 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1611 				 struct kvm_device_attr *attr)
1612 {
1613 	int ret = -ENXIO;
1614 
1615 	switch (attr->group) {
1616 	default:
1617 		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1618 		break;
1619 	}
1620 
1621 	return ret;
1622 }
1623 
1624 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1625 				 struct kvm_device_attr *attr)
1626 {
1627 	int ret = -ENXIO;
1628 
1629 	switch (attr->group) {
1630 	default:
1631 		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1632 		break;
1633 	}
1634 
1635 	return ret;
1636 }
1637 
1638 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1639 				 struct kvm_device_attr *attr)
1640 {
1641 	int ret = -ENXIO;
1642 
1643 	switch (attr->group) {
1644 	default:
1645 		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1646 		break;
1647 	}
1648 
1649 	return ret;
1650 }
1651 
1652 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1653 				   struct kvm_vcpu_events *events)
1654 {
1655 	memset(events, 0, sizeof(*events));
1656 
1657 	return __kvm_arm_vcpu_get_events(vcpu, events);
1658 }
1659 
1660 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1661 				   struct kvm_vcpu_events *events)
1662 {
1663 	int i;
1664 
1665 	/* check whether the reserved field is zero */
1666 	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1667 		if (events->reserved[i])
1668 			return -EINVAL;
1669 
1670 	/* check whether the pad field is zero */
1671 	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1672 		if (events->exception.pad[i])
1673 			return -EINVAL;
1674 
1675 	return __kvm_arm_vcpu_set_events(vcpu, events);
1676 }
1677 
1678 long kvm_arch_vcpu_ioctl(struct file *filp,
1679 			 unsigned int ioctl, unsigned long arg)
1680 {
1681 	struct kvm_vcpu *vcpu = filp->private_data;
1682 	void __user *argp = (void __user *)arg;
1683 	struct kvm_device_attr attr;
1684 	long r;
1685 
1686 	switch (ioctl) {
1687 	case KVM_ARM_VCPU_INIT: {
1688 		struct kvm_vcpu_init init;
1689 
1690 		r = -EFAULT;
1691 		if (copy_from_user(&init, argp, sizeof(init)))
1692 			break;
1693 
1694 		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1695 		break;
1696 	}
1697 	case KVM_SET_ONE_REG:
1698 	case KVM_GET_ONE_REG: {
1699 		struct kvm_one_reg reg;
1700 
1701 		r = -ENOEXEC;
1702 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1703 			break;
1704 
1705 		r = -EFAULT;
1706 		if (copy_from_user(&reg, argp, sizeof(reg)))
1707 			break;
1708 
1709 		/*
1710 		 * We could owe a reset due to PSCI. Handle the pending reset
1711 		 * here to ensure userspace register accesses are ordered after
1712 		 * the reset.
1713 		 */
1714 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1715 			kvm_reset_vcpu(vcpu);
1716 
1717 		if (ioctl == KVM_SET_ONE_REG)
1718 			r = kvm_arm_set_reg(vcpu, &reg);
1719 		else
1720 			r = kvm_arm_get_reg(vcpu, &reg);
1721 		break;
1722 	}
1723 	case KVM_GET_REG_LIST: {
1724 		struct kvm_reg_list __user *user_list = argp;
1725 		struct kvm_reg_list reg_list;
1726 		unsigned n;
1727 
1728 		r = -ENOEXEC;
1729 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1730 			break;
1731 
1732 		r = -EPERM;
1733 		if (!kvm_arm_vcpu_is_finalized(vcpu))
1734 			break;
1735 
1736 		r = -EFAULT;
1737 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1738 			break;
1739 		n = reg_list.n;
1740 		reg_list.n = kvm_arm_num_regs(vcpu);
1741 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1742 			break;
1743 		r = -E2BIG;
1744 		if (n < reg_list.n)
1745 			break;
1746 		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1747 		break;
1748 	}
1749 	case KVM_SET_DEVICE_ATTR: {
1750 		r = -EFAULT;
1751 		if (copy_from_user(&attr, argp, sizeof(attr)))
1752 			break;
1753 		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1754 		break;
1755 	}
1756 	case KVM_GET_DEVICE_ATTR: {
1757 		r = -EFAULT;
1758 		if (copy_from_user(&attr, argp, sizeof(attr)))
1759 			break;
1760 		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1761 		break;
1762 	}
1763 	case KVM_HAS_DEVICE_ATTR: {
1764 		r = -EFAULT;
1765 		if (copy_from_user(&attr, argp, sizeof(attr)))
1766 			break;
1767 		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1768 		break;
1769 	}
1770 	case KVM_GET_VCPU_EVENTS: {
1771 		struct kvm_vcpu_events events;
1772 
1773 		if (kvm_arm_vcpu_get_events(vcpu, &events))
1774 			return -EINVAL;
1775 
1776 		if (copy_to_user(argp, &events, sizeof(events)))
1777 			return -EFAULT;
1778 
1779 		return 0;
1780 	}
1781 	case KVM_SET_VCPU_EVENTS: {
1782 		struct kvm_vcpu_events events;
1783 
1784 		if (copy_from_user(&events, argp, sizeof(events)))
1785 			return -EFAULT;
1786 
1787 		return kvm_arm_vcpu_set_events(vcpu, &events);
1788 	}
1789 	case KVM_ARM_VCPU_FINALIZE: {
1790 		int what;
1791 
1792 		if (!kvm_vcpu_initialized(vcpu))
1793 			return -ENOEXEC;
1794 
1795 		if (get_user(what, (const int __user *)argp))
1796 			return -EFAULT;
1797 
1798 		return kvm_arm_vcpu_finalize(vcpu, what);
1799 	}
1800 	default:
1801 		r = -EINVAL;
1802 	}
1803 
1804 	return r;
1805 }
1806 
1807 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1808 {
1809 
1810 }
1811 
1812 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1813 					struct kvm_arm_device_addr *dev_addr)
1814 {
1815 	switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) {
1816 	case KVM_ARM_DEVICE_VGIC_V2:
1817 		if (!vgic_present)
1818 			return -ENXIO;
1819 		return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr);
1820 	default:
1821 		return -ENODEV;
1822 	}
1823 }
1824 
1825 static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1826 {
1827 	switch (attr->group) {
1828 	case KVM_ARM_VM_SMCCC_CTRL:
1829 		return kvm_vm_smccc_has_attr(kvm, attr);
1830 	default:
1831 		return -ENXIO;
1832 	}
1833 }
1834 
1835 static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1836 {
1837 	switch (attr->group) {
1838 	case KVM_ARM_VM_SMCCC_CTRL:
1839 		return kvm_vm_smccc_set_attr(kvm, attr);
1840 	default:
1841 		return -ENXIO;
1842 	}
1843 }
1844 
1845 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1846 {
1847 	struct kvm *kvm = filp->private_data;
1848 	void __user *argp = (void __user *)arg;
1849 	struct kvm_device_attr attr;
1850 
1851 	switch (ioctl) {
1852 	case KVM_CREATE_IRQCHIP: {
1853 		int ret;
1854 		if (!vgic_present)
1855 			return -ENXIO;
1856 		mutex_lock(&kvm->lock);
1857 		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1858 		mutex_unlock(&kvm->lock);
1859 		return ret;
1860 	}
1861 	case KVM_ARM_SET_DEVICE_ADDR: {
1862 		struct kvm_arm_device_addr dev_addr;
1863 
1864 		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1865 			return -EFAULT;
1866 		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1867 	}
1868 	case KVM_ARM_PREFERRED_TARGET: {
1869 		struct kvm_vcpu_init init = {
1870 			.target = KVM_ARM_TARGET_GENERIC_V8,
1871 		};
1872 
1873 		if (copy_to_user(argp, &init, sizeof(init)))
1874 			return -EFAULT;
1875 
1876 		return 0;
1877 	}
1878 	case KVM_ARM_MTE_COPY_TAGS: {
1879 		struct kvm_arm_copy_mte_tags copy_tags;
1880 
1881 		if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1882 			return -EFAULT;
1883 		return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1884 	}
1885 	case KVM_ARM_SET_COUNTER_OFFSET: {
1886 		struct kvm_arm_counter_offset offset;
1887 
1888 		if (copy_from_user(&offset, argp, sizeof(offset)))
1889 			return -EFAULT;
1890 		return kvm_vm_ioctl_set_counter_offset(kvm, &offset);
1891 	}
1892 	case KVM_HAS_DEVICE_ATTR: {
1893 		if (copy_from_user(&attr, argp, sizeof(attr)))
1894 			return -EFAULT;
1895 
1896 		return kvm_vm_has_attr(kvm, &attr);
1897 	}
1898 	case KVM_SET_DEVICE_ATTR: {
1899 		if (copy_from_user(&attr, argp, sizeof(attr)))
1900 			return -EFAULT;
1901 
1902 		return kvm_vm_set_attr(kvm, &attr);
1903 	}
1904 	case KVM_ARM_GET_REG_WRITABLE_MASKS: {
1905 		struct reg_mask_range range;
1906 
1907 		if (copy_from_user(&range, argp, sizeof(range)))
1908 			return -EFAULT;
1909 		return kvm_vm_ioctl_get_reg_writable_masks(kvm, &range);
1910 	}
1911 	default:
1912 		return -EINVAL;
1913 	}
1914 }
1915 
1916 /* unlocks vcpus from @vcpu_lock_idx and smaller */
1917 static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx)
1918 {
1919 	struct kvm_vcpu *tmp_vcpu;
1920 
1921 	for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1922 		tmp_vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1923 		mutex_unlock(&tmp_vcpu->mutex);
1924 	}
1925 }
1926 
1927 void unlock_all_vcpus(struct kvm *kvm)
1928 {
1929 	lockdep_assert_held(&kvm->lock);
1930 
1931 	unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1);
1932 }
1933 
1934 /* Returns true if all vcpus were locked, false otherwise */
1935 bool lock_all_vcpus(struct kvm *kvm)
1936 {
1937 	struct kvm_vcpu *tmp_vcpu;
1938 	unsigned long c;
1939 
1940 	lockdep_assert_held(&kvm->lock);
1941 
1942 	/*
1943 	 * Any time a vcpu is in an ioctl (including running), the
1944 	 * core KVM code tries to grab the vcpu->mutex.
1945 	 *
1946 	 * By grabbing the vcpu->mutex of all VCPUs we ensure that no
1947 	 * other VCPUs can fiddle with the state while we access it.
1948 	 */
1949 	kvm_for_each_vcpu(c, tmp_vcpu, kvm) {
1950 		if (!mutex_trylock(&tmp_vcpu->mutex)) {
1951 			unlock_vcpus(kvm, c - 1);
1952 			return false;
1953 		}
1954 	}
1955 
1956 	return true;
1957 }
1958 
1959 static unsigned long nvhe_percpu_size(void)
1960 {
1961 	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1962 		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1963 }
1964 
1965 static unsigned long nvhe_percpu_order(void)
1966 {
1967 	unsigned long size = nvhe_percpu_size();
1968 
1969 	return size ? get_order(size) : 0;
1970 }
1971 
1972 static size_t pkvm_host_sve_state_order(void)
1973 {
1974 	return get_order(pkvm_host_sve_state_size());
1975 }
1976 
1977 /* A lookup table holding the hypervisor VA for each vector slot */
1978 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1979 
1980 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1981 {
1982 	hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1983 }
1984 
1985 static int kvm_init_vector_slots(void)
1986 {
1987 	int err;
1988 	void *base;
1989 
1990 	base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1991 	kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1992 
1993 	base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1994 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1995 
1996 	if (kvm_system_needs_idmapped_vectors() &&
1997 	    !is_protected_kvm_enabled()) {
1998 		err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1999 					       __BP_HARDEN_HYP_VECS_SZ, &base);
2000 		if (err)
2001 			return err;
2002 	}
2003 
2004 	kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
2005 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
2006 	return 0;
2007 }
2008 
2009 static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits)
2010 {
2011 	struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2012 	u64 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
2013 	unsigned long tcr;
2014 
2015 	/*
2016 	 * Calculate the raw per-cpu offset without a translation from the
2017 	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
2018 	 * so that we can use adr_l to access per-cpu variables in EL2.
2019 	 * Also drop the KASAN tag which gets in the way...
2020 	 */
2021 	params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
2022 			    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
2023 
2024 	params->mair_el2 = read_sysreg(mair_el1);
2025 
2026 	tcr = read_sysreg(tcr_el1);
2027 	if (cpus_have_final_cap(ARM64_KVM_HVHE)) {
2028 		tcr |= TCR_EPD1_MASK;
2029 	} else {
2030 		tcr &= TCR_EL2_MASK;
2031 		tcr |= TCR_EL2_RES1;
2032 	}
2033 	tcr &= ~TCR_T0SZ_MASK;
2034 	tcr |= TCR_T0SZ(hyp_va_bits);
2035 	tcr &= ~TCR_EL2_PS_MASK;
2036 	tcr |= FIELD_PREP(TCR_EL2_PS_MASK, kvm_get_parange(mmfr0));
2037 	if (kvm_lpa2_is_enabled())
2038 		tcr |= TCR_EL2_DS;
2039 	params->tcr_el2 = tcr;
2040 
2041 	params->pgd_pa = kvm_mmu_get_httbr();
2042 	if (is_protected_kvm_enabled())
2043 		params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
2044 	else
2045 		params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
2046 	if (cpus_have_final_cap(ARM64_KVM_HVHE))
2047 		params->hcr_el2 |= HCR_E2H;
2048 	params->vttbr = params->vtcr = 0;
2049 
2050 	/*
2051 	 * Flush the init params from the data cache because the struct will
2052 	 * be read while the MMU is off.
2053 	 */
2054 	kvm_flush_dcache_to_poc(params, sizeof(*params));
2055 }
2056 
2057 static void hyp_install_host_vector(void)
2058 {
2059 	struct kvm_nvhe_init_params *params;
2060 	struct arm_smccc_res res;
2061 
2062 	/* Switch from the HYP stub to our own HYP init vector */
2063 	__hyp_set_vectors(kvm_get_idmap_vector());
2064 
2065 	/*
2066 	 * Call initialization code, and switch to the full blown HYP code.
2067 	 * If the cpucaps haven't been finalized yet, something has gone very
2068 	 * wrong, and hyp will crash and burn when it uses any
2069 	 * cpus_have_*_cap() wrapper.
2070 	 */
2071 	BUG_ON(!system_capabilities_finalized());
2072 	params = this_cpu_ptr_nvhe_sym(kvm_init_params);
2073 	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
2074 	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
2075 }
2076 
2077 static void cpu_init_hyp_mode(void)
2078 {
2079 	hyp_install_host_vector();
2080 
2081 	/*
2082 	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
2083 	 * at EL2.
2084 	 */
2085 	if (this_cpu_has_cap(ARM64_SSBS) &&
2086 	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
2087 		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
2088 	}
2089 }
2090 
2091 static void cpu_hyp_reset(void)
2092 {
2093 	if (!is_kernel_in_hyp_mode())
2094 		__hyp_reset_vectors();
2095 }
2096 
2097 /*
2098  * EL2 vectors can be mapped and rerouted in a number of ways,
2099  * depending on the kernel configuration and CPU present:
2100  *
2101  * - If the CPU is affected by Spectre-v2, the hardening sequence is
2102  *   placed in one of the vector slots, which is executed before jumping
2103  *   to the real vectors.
2104  *
2105  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
2106  *   containing the hardening sequence is mapped next to the idmap page,
2107  *   and executed before jumping to the real vectors.
2108  *
2109  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
2110  *   empty slot is selected, mapped next to the idmap page, and
2111  *   executed before jumping to the real vectors.
2112  *
2113  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
2114  * VHE, as we don't have hypervisor-specific mappings. If the system
2115  * is VHE and yet selects this capability, it will be ignored.
2116  */
2117 static void cpu_set_hyp_vector(void)
2118 {
2119 	struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
2120 	void *vector = hyp_spectre_vector_selector[data->slot];
2121 
2122 	if (!is_protected_kvm_enabled())
2123 		*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
2124 	else
2125 		kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
2126 }
2127 
2128 static void cpu_hyp_init_context(void)
2129 {
2130 	kvm_init_host_cpu_context(host_data_ptr(host_ctxt));
2131 
2132 	if (!is_kernel_in_hyp_mode())
2133 		cpu_init_hyp_mode();
2134 }
2135 
2136 static void cpu_hyp_init_features(void)
2137 {
2138 	cpu_set_hyp_vector();
2139 	kvm_arm_init_debug();
2140 
2141 	if (is_kernel_in_hyp_mode())
2142 		kvm_timer_init_vhe();
2143 
2144 	if (vgic_present)
2145 		kvm_vgic_init_cpu_hardware();
2146 }
2147 
2148 static void cpu_hyp_reinit(void)
2149 {
2150 	cpu_hyp_reset();
2151 	cpu_hyp_init_context();
2152 	cpu_hyp_init_features();
2153 }
2154 
2155 static void cpu_hyp_init(void *discard)
2156 {
2157 	if (!__this_cpu_read(kvm_hyp_initialized)) {
2158 		cpu_hyp_reinit();
2159 		__this_cpu_write(kvm_hyp_initialized, 1);
2160 	}
2161 }
2162 
2163 static void cpu_hyp_uninit(void *discard)
2164 {
2165 	if (__this_cpu_read(kvm_hyp_initialized)) {
2166 		cpu_hyp_reset();
2167 		__this_cpu_write(kvm_hyp_initialized, 0);
2168 	}
2169 }
2170 
2171 int kvm_arch_hardware_enable(void)
2172 {
2173 	/*
2174 	 * Most calls to this function are made with migration
2175 	 * disabled, but not with preemption disabled. The former is
2176 	 * enough to ensure correctness, but most of the helpers
2177 	 * expect the later and will throw a tantrum otherwise.
2178 	 */
2179 	preempt_disable();
2180 
2181 	cpu_hyp_init(NULL);
2182 
2183 	kvm_vgic_cpu_up();
2184 	kvm_timer_cpu_up();
2185 
2186 	preempt_enable();
2187 
2188 	return 0;
2189 }
2190 
2191 void kvm_arch_hardware_disable(void)
2192 {
2193 	kvm_timer_cpu_down();
2194 	kvm_vgic_cpu_down();
2195 
2196 	if (!is_protected_kvm_enabled())
2197 		cpu_hyp_uninit(NULL);
2198 }
2199 
2200 #ifdef CONFIG_CPU_PM
2201 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
2202 				    unsigned long cmd,
2203 				    void *v)
2204 {
2205 	/*
2206 	 * kvm_hyp_initialized is left with its old value over
2207 	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
2208 	 * re-enable hyp.
2209 	 */
2210 	switch (cmd) {
2211 	case CPU_PM_ENTER:
2212 		if (__this_cpu_read(kvm_hyp_initialized))
2213 			/*
2214 			 * don't update kvm_hyp_initialized here
2215 			 * so that the hyp will be re-enabled
2216 			 * when we resume. See below.
2217 			 */
2218 			cpu_hyp_reset();
2219 
2220 		return NOTIFY_OK;
2221 	case CPU_PM_ENTER_FAILED:
2222 	case CPU_PM_EXIT:
2223 		if (__this_cpu_read(kvm_hyp_initialized))
2224 			/* The hyp was enabled before suspend. */
2225 			cpu_hyp_reinit();
2226 
2227 		return NOTIFY_OK;
2228 
2229 	default:
2230 		return NOTIFY_DONE;
2231 	}
2232 }
2233 
2234 static struct notifier_block hyp_init_cpu_pm_nb = {
2235 	.notifier_call = hyp_init_cpu_pm_notifier,
2236 };
2237 
2238 static void __init hyp_cpu_pm_init(void)
2239 {
2240 	if (!is_protected_kvm_enabled())
2241 		cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
2242 }
2243 static void __init hyp_cpu_pm_exit(void)
2244 {
2245 	if (!is_protected_kvm_enabled())
2246 		cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
2247 }
2248 #else
2249 static inline void __init hyp_cpu_pm_init(void)
2250 {
2251 }
2252 static inline void __init hyp_cpu_pm_exit(void)
2253 {
2254 }
2255 #endif
2256 
2257 static void __init init_cpu_logical_map(void)
2258 {
2259 	unsigned int cpu;
2260 
2261 	/*
2262 	 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
2263 	 * Only copy the set of online CPUs whose features have been checked
2264 	 * against the finalized system capabilities. The hypervisor will not
2265 	 * allow any other CPUs from the `possible` set to boot.
2266 	 */
2267 	for_each_online_cpu(cpu)
2268 		hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
2269 }
2270 
2271 #define init_psci_0_1_impl_state(config, what)	\
2272 	config.psci_0_1_ ## what ## _implemented = psci_ops.what
2273 
2274 static bool __init init_psci_relay(void)
2275 {
2276 	/*
2277 	 * If PSCI has not been initialized, protected KVM cannot install
2278 	 * itself on newly booted CPUs.
2279 	 */
2280 	if (!psci_ops.get_version) {
2281 		kvm_err("Cannot initialize protected mode without PSCI\n");
2282 		return false;
2283 	}
2284 
2285 	kvm_host_psci_config.version = psci_ops.get_version();
2286 	kvm_host_psci_config.smccc_version = arm_smccc_get_version();
2287 
2288 	if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
2289 		kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
2290 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
2291 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
2292 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
2293 		init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
2294 	}
2295 	return true;
2296 }
2297 
2298 static int __init init_subsystems(void)
2299 {
2300 	int err = 0;
2301 
2302 	/*
2303 	 * Enable hardware so that subsystem initialisation can access EL2.
2304 	 */
2305 	on_each_cpu(cpu_hyp_init, NULL, 1);
2306 
2307 	/*
2308 	 * Register CPU lower-power notifier
2309 	 */
2310 	hyp_cpu_pm_init();
2311 
2312 	/*
2313 	 * Init HYP view of VGIC
2314 	 */
2315 	err = kvm_vgic_hyp_init();
2316 	switch (err) {
2317 	case 0:
2318 		vgic_present = true;
2319 		break;
2320 	case -ENODEV:
2321 	case -ENXIO:
2322 		vgic_present = false;
2323 		err = 0;
2324 		break;
2325 	default:
2326 		goto out;
2327 	}
2328 
2329 	/*
2330 	 * Init HYP architected timer support
2331 	 */
2332 	err = kvm_timer_hyp_init(vgic_present);
2333 	if (err)
2334 		goto out;
2335 
2336 	kvm_register_perf_callbacks(NULL);
2337 
2338 out:
2339 	if (err)
2340 		hyp_cpu_pm_exit();
2341 
2342 	if (err || !is_protected_kvm_enabled())
2343 		on_each_cpu(cpu_hyp_uninit, NULL, 1);
2344 
2345 	return err;
2346 }
2347 
2348 static void __init teardown_subsystems(void)
2349 {
2350 	kvm_unregister_perf_callbacks();
2351 	hyp_cpu_pm_exit();
2352 }
2353 
2354 static void __init teardown_hyp_mode(void)
2355 {
2356 	bool free_sve = system_supports_sve() && is_protected_kvm_enabled();
2357 	int cpu;
2358 
2359 	free_hyp_pgds();
2360 	for_each_possible_cpu(cpu) {
2361 		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
2362 		free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order());
2363 
2364 		if (free_sve) {
2365 			struct cpu_sve_state *sve_state;
2366 
2367 			sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state;
2368 			free_pages((unsigned long) sve_state, pkvm_host_sve_state_order());
2369 		}
2370 	}
2371 }
2372 
2373 static int __init do_pkvm_init(u32 hyp_va_bits)
2374 {
2375 	void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base));
2376 	int ret;
2377 
2378 	preempt_disable();
2379 	cpu_hyp_init_context();
2380 	ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
2381 				num_possible_cpus(), kern_hyp_va(per_cpu_base),
2382 				hyp_va_bits);
2383 	cpu_hyp_init_features();
2384 
2385 	/*
2386 	 * The stub hypercalls are now disabled, so set our local flag to
2387 	 * prevent a later re-init attempt in kvm_arch_hardware_enable().
2388 	 */
2389 	__this_cpu_write(kvm_hyp_initialized, 1);
2390 	preempt_enable();
2391 
2392 	return ret;
2393 }
2394 
2395 static u64 get_hyp_id_aa64pfr0_el1(void)
2396 {
2397 	/*
2398 	 * Track whether the system isn't affected by spectre/meltdown in the
2399 	 * hypervisor's view of id_aa64pfr0_el1, used for protected VMs.
2400 	 * Although this is per-CPU, we make it global for simplicity, e.g., not
2401 	 * to have to worry about vcpu migration.
2402 	 *
2403 	 * Unlike for non-protected VMs, userspace cannot override this for
2404 	 * protected VMs.
2405 	 */
2406 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2407 
2408 	val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) |
2409 		 ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3));
2410 
2411 	val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2),
2412 			  arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED);
2413 	val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3),
2414 			  arm64_get_meltdown_state() == SPECTRE_UNAFFECTED);
2415 
2416 	return val;
2417 }
2418 
2419 static void kvm_hyp_init_symbols(void)
2420 {
2421 	kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1();
2422 	kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
2423 	kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
2424 	kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2425 	kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
2426 	kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
2427 	kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2428 	kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
2429 	kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1);
2430 	kvm_nvhe_sym(__icache_flags) = __icache_flags;
2431 	kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits;
2432 }
2433 
2434 static int __init kvm_hyp_init_protection(u32 hyp_va_bits)
2435 {
2436 	void *addr = phys_to_virt(hyp_mem_base);
2437 	int ret;
2438 
2439 	ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
2440 	if (ret)
2441 		return ret;
2442 
2443 	ret = do_pkvm_init(hyp_va_bits);
2444 	if (ret)
2445 		return ret;
2446 
2447 	free_hyp_pgds();
2448 
2449 	return 0;
2450 }
2451 
2452 static int init_pkvm_host_sve_state(void)
2453 {
2454 	int cpu;
2455 
2456 	if (!system_supports_sve())
2457 		return 0;
2458 
2459 	/* Allocate pages for host sve state in protected mode. */
2460 	for_each_possible_cpu(cpu) {
2461 		struct page *page = alloc_pages(GFP_KERNEL, pkvm_host_sve_state_order());
2462 
2463 		if (!page)
2464 			return -ENOMEM;
2465 
2466 		per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state = page_address(page);
2467 	}
2468 
2469 	/*
2470 	 * Don't map the pages in hyp since these are only used in protected
2471 	 * mode, which will (re)create its own mapping when initialized.
2472 	 */
2473 
2474 	return 0;
2475 }
2476 
2477 /*
2478  * Finalizes the initialization of hyp mode, once everything else is initialized
2479  * and the initialziation process cannot fail.
2480  */
2481 static void finalize_init_hyp_mode(void)
2482 {
2483 	int cpu;
2484 
2485 	if (system_supports_sve() && is_protected_kvm_enabled()) {
2486 		for_each_possible_cpu(cpu) {
2487 			struct cpu_sve_state *sve_state;
2488 
2489 			sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state;
2490 			per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state =
2491 				kern_hyp_va(sve_state);
2492 		}
2493 	} else {
2494 		for_each_possible_cpu(cpu) {
2495 			struct user_fpsimd_state *fpsimd_state;
2496 
2497 			fpsimd_state = &per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->host_ctxt.fp_regs;
2498 			per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->fpsimd_state =
2499 				kern_hyp_va(fpsimd_state);
2500 		}
2501 	}
2502 }
2503 
2504 static void pkvm_hyp_init_ptrauth(void)
2505 {
2506 	struct kvm_cpu_context *hyp_ctxt;
2507 	int cpu;
2508 
2509 	for_each_possible_cpu(cpu) {
2510 		hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu);
2511 		hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long();
2512 		hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long();
2513 		hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long();
2514 		hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long();
2515 		hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long();
2516 		hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long();
2517 		hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long();
2518 		hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long();
2519 		hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long();
2520 		hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long();
2521 	}
2522 }
2523 
2524 /* Inits Hyp-mode on all online CPUs */
2525 static int __init init_hyp_mode(void)
2526 {
2527 	u32 hyp_va_bits;
2528 	int cpu;
2529 	int err = -ENOMEM;
2530 
2531 	/*
2532 	 * The protected Hyp-mode cannot be initialized if the memory pool
2533 	 * allocation has failed.
2534 	 */
2535 	if (is_protected_kvm_enabled() && !hyp_mem_base)
2536 		goto out_err;
2537 
2538 	/*
2539 	 * Allocate Hyp PGD and setup Hyp identity mapping
2540 	 */
2541 	err = kvm_mmu_init(&hyp_va_bits);
2542 	if (err)
2543 		goto out_err;
2544 
2545 	/*
2546 	 * Allocate stack pages for Hypervisor-mode
2547 	 */
2548 	for_each_possible_cpu(cpu) {
2549 		unsigned long stack_page;
2550 
2551 		stack_page = __get_free_page(GFP_KERNEL);
2552 		if (!stack_page) {
2553 			err = -ENOMEM;
2554 			goto out_err;
2555 		}
2556 
2557 		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
2558 	}
2559 
2560 	/*
2561 	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
2562 	 */
2563 	for_each_possible_cpu(cpu) {
2564 		struct page *page;
2565 		void *page_addr;
2566 
2567 		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
2568 		if (!page) {
2569 			err = -ENOMEM;
2570 			goto out_err;
2571 		}
2572 
2573 		page_addr = page_address(page);
2574 		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
2575 		kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr;
2576 	}
2577 
2578 	/*
2579 	 * Map the Hyp-code called directly from the host
2580 	 */
2581 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
2582 				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
2583 	if (err) {
2584 		kvm_err("Cannot map world-switch code\n");
2585 		goto out_err;
2586 	}
2587 
2588 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
2589 				  kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
2590 	if (err) {
2591 		kvm_err("Cannot map .hyp.rodata section\n");
2592 		goto out_err;
2593 	}
2594 
2595 	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
2596 				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
2597 	if (err) {
2598 		kvm_err("Cannot map rodata section\n");
2599 		goto out_err;
2600 	}
2601 
2602 	/*
2603 	 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
2604 	 * section thanks to an assertion in the linker script. Map it RW and
2605 	 * the rest of .bss RO.
2606 	 */
2607 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
2608 				  kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
2609 	if (err) {
2610 		kvm_err("Cannot map hyp bss section: %d\n", err);
2611 		goto out_err;
2612 	}
2613 
2614 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
2615 				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
2616 	if (err) {
2617 		kvm_err("Cannot map bss section\n");
2618 		goto out_err;
2619 	}
2620 
2621 	/*
2622 	 * Map the Hyp stack pages
2623 	 */
2624 	for_each_possible_cpu(cpu) {
2625 		struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2626 		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
2627 
2628 		err = create_hyp_stack(__pa(stack_page), &params->stack_hyp_va);
2629 		if (err) {
2630 			kvm_err("Cannot map hyp stack\n");
2631 			goto out_err;
2632 		}
2633 
2634 		/*
2635 		 * Save the stack PA in nvhe_init_params. This will be needed
2636 		 * to recreate the stack mapping in protected nVHE mode.
2637 		 * __hyp_pa() won't do the right thing there, since the stack
2638 		 * has been mapped in the flexible private VA space.
2639 		 */
2640 		params->stack_pa = __pa(stack_page);
2641 	}
2642 
2643 	for_each_possible_cpu(cpu) {
2644 		char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu];
2645 		char *percpu_end = percpu_begin + nvhe_percpu_size();
2646 
2647 		/* Map Hyp percpu pages */
2648 		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
2649 		if (err) {
2650 			kvm_err("Cannot map hyp percpu region\n");
2651 			goto out_err;
2652 		}
2653 
2654 		/* Prepare the CPU initialization parameters */
2655 		cpu_prepare_hyp_mode(cpu, hyp_va_bits);
2656 	}
2657 
2658 	kvm_hyp_init_symbols();
2659 
2660 	if (is_protected_kvm_enabled()) {
2661 		if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) &&
2662 		    cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH))
2663 			pkvm_hyp_init_ptrauth();
2664 
2665 		init_cpu_logical_map();
2666 
2667 		if (!init_psci_relay()) {
2668 			err = -ENODEV;
2669 			goto out_err;
2670 		}
2671 
2672 		err = init_pkvm_host_sve_state();
2673 		if (err)
2674 			goto out_err;
2675 
2676 		err = kvm_hyp_init_protection(hyp_va_bits);
2677 		if (err) {
2678 			kvm_err("Failed to init hyp memory protection\n");
2679 			goto out_err;
2680 		}
2681 	}
2682 
2683 	return 0;
2684 
2685 out_err:
2686 	teardown_hyp_mode();
2687 	kvm_err("error initializing Hyp mode: %d\n", err);
2688 	return err;
2689 }
2690 
2691 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2692 {
2693 	struct kvm_vcpu *vcpu = NULL;
2694 	struct kvm_mpidr_data *data;
2695 	unsigned long i;
2696 
2697 	mpidr &= MPIDR_HWID_BITMASK;
2698 
2699 	rcu_read_lock();
2700 	data = rcu_dereference(kvm->arch.mpidr_data);
2701 
2702 	if (data) {
2703 		u16 idx = kvm_mpidr_index(data, mpidr);
2704 
2705 		vcpu = kvm_get_vcpu(kvm, data->cmpidr_to_idx[idx]);
2706 		if (mpidr != kvm_vcpu_get_mpidr_aff(vcpu))
2707 			vcpu = NULL;
2708 	}
2709 
2710 	rcu_read_unlock();
2711 
2712 	if (vcpu)
2713 		return vcpu;
2714 
2715 	kvm_for_each_vcpu(i, vcpu, kvm) {
2716 		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2717 			return vcpu;
2718 	}
2719 	return NULL;
2720 }
2721 
2722 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2723 {
2724 	return irqchip_in_kernel(kvm);
2725 }
2726 
2727 bool kvm_arch_has_irq_bypass(void)
2728 {
2729 	return true;
2730 }
2731 
2732 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2733 				      struct irq_bypass_producer *prod)
2734 {
2735 	struct kvm_kernel_irqfd *irqfd =
2736 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2737 
2738 	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2739 					  &irqfd->irq_entry);
2740 }
2741 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2742 				      struct irq_bypass_producer *prod)
2743 {
2744 	struct kvm_kernel_irqfd *irqfd =
2745 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2746 
2747 	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2748 				     &irqfd->irq_entry);
2749 }
2750 
2751 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2752 {
2753 	struct kvm_kernel_irqfd *irqfd =
2754 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2755 
2756 	kvm_arm_halt_guest(irqfd->kvm);
2757 }
2758 
2759 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2760 {
2761 	struct kvm_kernel_irqfd *irqfd =
2762 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2763 
2764 	kvm_arm_resume_guest(irqfd->kvm);
2765 }
2766 
2767 /* Initialize Hyp-mode and memory mappings on all CPUs */
2768 static __init int kvm_arm_init(void)
2769 {
2770 	int err;
2771 	bool in_hyp_mode;
2772 
2773 	if (!is_hyp_mode_available()) {
2774 		kvm_info("HYP mode not available\n");
2775 		return -ENODEV;
2776 	}
2777 
2778 	if (kvm_get_mode() == KVM_MODE_NONE) {
2779 		kvm_info("KVM disabled from command line\n");
2780 		return -ENODEV;
2781 	}
2782 
2783 	err = kvm_sys_reg_table_init();
2784 	if (err) {
2785 		kvm_info("Error initializing system register tables");
2786 		return err;
2787 	}
2788 
2789 	in_hyp_mode = is_kernel_in_hyp_mode();
2790 
2791 	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2792 	    cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2793 		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2794 			 "Only trusted guests should be used on this system.\n");
2795 
2796 	err = kvm_set_ipa_limit();
2797 	if (err)
2798 		return err;
2799 
2800 	err = kvm_arm_init_sve();
2801 	if (err)
2802 		return err;
2803 
2804 	err = kvm_arm_vmid_alloc_init();
2805 	if (err) {
2806 		kvm_err("Failed to initialize VMID allocator.\n");
2807 		return err;
2808 	}
2809 
2810 	if (!in_hyp_mode) {
2811 		err = init_hyp_mode();
2812 		if (err)
2813 			goto out_err;
2814 	}
2815 
2816 	err = kvm_init_vector_slots();
2817 	if (err) {
2818 		kvm_err("Cannot initialise vector slots\n");
2819 		goto out_hyp;
2820 	}
2821 
2822 	err = init_subsystems();
2823 	if (err)
2824 		goto out_hyp;
2825 
2826 	kvm_info("%s%sVHE mode initialized successfully\n",
2827 		 in_hyp_mode ? "" : (is_protected_kvm_enabled() ?
2828 				     "Protected " : "Hyp "),
2829 		 in_hyp_mode ? "" : (cpus_have_final_cap(ARM64_KVM_HVHE) ?
2830 				     "h" : "n"));
2831 
2832 	/*
2833 	 * FIXME: Do something reasonable if kvm_init() fails after pKVM
2834 	 * hypervisor protection is finalized.
2835 	 */
2836 	err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2837 	if (err)
2838 		goto out_subs;
2839 
2840 	/*
2841 	 * This should be called after initialization is done and failure isn't
2842 	 * possible anymore.
2843 	 */
2844 	if (!in_hyp_mode)
2845 		finalize_init_hyp_mode();
2846 
2847 	kvm_arm_initialised = true;
2848 
2849 	return 0;
2850 
2851 out_subs:
2852 	teardown_subsystems();
2853 out_hyp:
2854 	if (!in_hyp_mode)
2855 		teardown_hyp_mode();
2856 out_err:
2857 	kvm_arm_vmid_alloc_free();
2858 	return err;
2859 }
2860 
2861 static int __init early_kvm_mode_cfg(char *arg)
2862 {
2863 	if (!arg)
2864 		return -EINVAL;
2865 
2866 	if (strcmp(arg, "none") == 0) {
2867 		kvm_mode = KVM_MODE_NONE;
2868 		return 0;
2869 	}
2870 
2871 	if (!is_hyp_mode_available()) {
2872 		pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n");
2873 		return 0;
2874 	}
2875 
2876 	if (strcmp(arg, "protected") == 0) {
2877 		if (!is_kernel_in_hyp_mode())
2878 			kvm_mode = KVM_MODE_PROTECTED;
2879 		else
2880 			pr_warn_once("Protected KVM not available with VHE\n");
2881 
2882 		return 0;
2883 	}
2884 
2885 	if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2886 		kvm_mode = KVM_MODE_DEFAULT;
2887 		return 0;
2888 	}
2889 
2890 	if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) {
2891 		kvm_mode = KVM_MODE_NV;
2892 		return 0;
2893 	}
2894 
2895 	return -EINVAL;
2896 }
2897 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2898 
2899 static int __init early_kvm_wfx_trap_policy_cfg(char *arg, enum kvm_wfx_trap_policy *p)
2900 {
2901 	if (!arg)
2902 		return -EINVAL;
2903 
2904 	if (strcmp(arg, "trap") == 0) {
2905 		*p = KVM_WFX_TRAP;
2906 		return 0;
2907 	}
2908 
2909 	if (strcmp(arg, "notrap") == 0) {
2910 		*p = KVM_WFX_NOTRAP;
2911 		return 0;
2912 	}
2913 
2914 	return -EINVAL;
2915 }
2916 
2917 static int __init early_kvm_wfi_trap_policy_cfg(char *arg)
2918 {
2919 	return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfi_trap_policy);
2920 }
2921 early_param("kvm-arm.wfi_trap_policy", early_kvm_wfi_trap_policy_cfg);
2922 
2923 static int __init early_kvm_wfe_trap_policy_cfg(char *arg)
2924 {
2925 	return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfe_trap_policy);
2926 }
2927 early_param("kvm-arm.wfe_trap_policy", early_kvm_wfe_trap_policy_cfg);
2928 
2929 enum kvm_mode kvm_get_mode(void)
2930 {
2931 	return kvm_mode;
2932 }
2933 
2934 module_init(kvm_arm_init);
2935