1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 4 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 5 */ 6 7 #include <linux/bug.h> 8 #include <linux/cpu_pm.h> 9 #include <linux/errno.h> 10 #include <linux/err.h> 11 #include <linux/kvm_host.h> 12 #include <linux/list.h> 13 #include <linux/module.h> 14 #include <linux/vmalloc.h> 15 #include <linux/fs.h> 16 #include <linux/mman.h> 17 #include <linux/sched.h> 18 #include <linux/kvm.h> 19 #include <linux/kvm_irqfd.h> 20 #include <linux/irqbypass.h> 21 #include <linux/sched/stat.h> 22 #include <linux/psci.h> 23 #include <trace/events/kvm.h> 24 25 #define CREATE_TRACE_POINTS 26 #include "trace_arm.h" 27 28 #include <linux/uaccess.h> 29 #include <asm/ptrace.h> 30 #include <asm/mman.h> 31 #include <asm/tlbflush.h> 32 #include <asm/cacheflush.h> 33 #include <asm/cpufeature.h> 34 #include <asm/virt.h> 35 #include <asm/kvm_arm.h> 36 #include <asm/kvm_asm.h> 37 #include <asm/kvm_emulate.h> 38 #include <asm/kvm_mmu.h> 39 #include <asm/kvm_nested.h> 40 #include <asm/kvm_pkvm.h> 41 #include <asm/kvm_ptrauth.h> 42 #include <asm/sections.h> 43 44 #include <kvm/arm_hypercalls.h> 45 #include <kvm/arm_pmu.h> 46 #include <kvm/arm_psci.h> 47 48 #include "sys_regs.h" 49 50 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT; 51 52 enum kvm_wfx_trap_policy { 53 KVM_WFX_NOTRAP_SINGLE_TASK, /* Default option */ 54 KVM_WFX_NOTRAP, 55 KVM_WFX_TRAP, 56 }; 57 58 static enum kvm_wfx_trap_policy kvm_wfi_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK; 59 static enum kvm_wfx_trap_policy kvm_wfe_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK; 60 61 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector); 62 63 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_base); 64 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params); 65 66 DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt); 67 68 static bool vgic_present, kvm_arm_initialised; 69 70 static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized); 71 72 bool is_kvm_arm_initialised(void) 73 { 74 return kvm_arm_initialised; 75 } 76 77 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 78 { 79 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 80 } 81 82 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 83 struct kvm_enable_cap *cap) 84 { 85 int r = -EINVAL; 86 87 if (cap->flags) 88 return -EINVAL; 89 90 if (kvm_vm_is_protected(kvm) && !kvm_pvm_ext_allowed(cap->cap)) 91 return -EINVAL; 92 93 switch (cap->cap) { 94 case KVM_CAP_ARM_NISV_TO_USER: 95 r = 0; 96 set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER, 97 &kvm->arch.flags); 98 break; 99 case KVM_CAP_ARM_MTE: 100 mutex_lock(&kvm->lock); 101 if (system_supports_mte() && !kvm->created_vcpus) { 102 r = 0; 103 set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags); 104 } 105 mutex_unlock(&kvm->lock); 106 break; 107 case KVM_CAP_ARM_SYSTEM_SUSPEND: 108 r = 0; 109 set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags); 110 break; 111 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE: 112 mutex_lock(&kvm->slots_lock); 113 /* 114 * To keep things simple, allow changing the chunk 115 * size only when no memory slots have been created. 116 */ 117 if (kvm_are_all_memslots_empty(kvm)) { 118 u64 new_cap = cap->args[0]; 119 120 if (!new_cap || kvm_is_block_size_supported(new_cap)) { 121 r = 0; 122 kvm->arch.mmu.split_page_chunk_size = new_cap; 123 } 124 } 125 mutex_unlock(&kvm->slots_lock); 126 break; 127 case KVM_CAP_ARM_WRITABLE_IMP_ID_REGS: 128 mutex_lock(&kvm->lock); 129 if (!kvm->created_vcpus) { 130 r = 0; 131 set_bit(KVM_ARCH_FLAG_WRITABLE_IMP_ID_REGS, &kvm->arch.flags); 132 } 133 mutex_unlock(&kvm->lock); 134 break; 135 case KVM_CAP_ARM_SEA_TO_USER: 136 r = 0; 137 set_bit(KVM_ARCH_FLAG_EXIT_SEA, &kvm->arch.flags); 138 break; 139 default: 140 break; 141 } 142 143 return r; 144 } 145 146 static int kvm_arm_default_max_vcpus(void) 147 { 148 return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS; 149 } 150 151 /** 152 * kvm_arch_init_vm - initializes a VM data structure 153 * @kvm: pointer to the KVM struct 154 * @type: kvm device type 155 */ 156 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 157 { 158 int ret; 159 160 mutex_init(&kvm->arch.config_lock); 161 162 #ifdef CONFIG_LOCKDEP 163 /* Clue in lockdep that the config_lock must be taken inside kvm->lock */ 164 mutex_lock(&kvm->lock); 165 mutex_lock(&kvm->arch.config_lock); 166 mutex_unlock(&kvm->arch.config_lock); 167 mutex_unlock(&kvm->lock); 168 #endif 169 170 kvm_init_nested(kvm); 171 172 ret = kvm_share_hyp(kvm, kvm + 1); 173 if (ret) 174 return ret; 175 176 if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) { 177 ret = -ENOMEM; 178 goto err_unshare_kvm; 179 } 180 cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask); 181 182 ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type); 183 if (ret) 184 goto err_free_cpumask; 185 186 if (is_protected_kvm_enabled()) { 187 /* 188 * If any failures occur after this is successful, make sure to 189 * call __pkvm_unreserve_vm to unreserve the VM in hyp. 190 */ 191 ret = pkvm_init_host_vm(kvm); 192 if (ret) 193 goto err_free_cpumask; 194 } 195 196 kvm_vgic_early_init(kvm); 197 198 kvm_timer_init_vm(kvm); 199 200 /* The maximum number of VCPUs is limited by the host's GIC model */ 201 kvm->max_vcpus = kvm_arm_default_max_vcpus(); 202 203 kvm_arm_init_hypercalls(kvm); 204 205 bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES); 206 207 return 0; 208 209 err_free_cpumask: 210 free_cpumask_var(kvm->arch.supported_cpus); 211 err_unshare_kvm: 212 kvm_unshare_hyp(kvm, kvm + 1); 213 return ret; 214 } 215 216 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 217 { 218 return VM_FAULT_SIGBUS; 219 } 220 221 void kvm_arch_create_vm_debugfs(struct kvm *kvm) 222 { 223 kvm_sys_regs_create_debugfs(kvm); 224 kvm_s2_ptdump_create_debugfs(kvm); 225 } 226 227 static void kvm_destroy_mpidr_data(struct kvm *kvm) 228 { 229 struct kvm_mpidr_data *data; 230 231 mutex_lock(&kvm->arch.config_lock); 232 233 data = rcu_dereference_protected(kvm->arch.mpidr_data, 234 lockdep_is_held(&kvm->arch.config_lock)); 235 if (data) { 236 rcu_assign_pointer(kvm->arch.mpidr_data, NULL); 237 synchronize_rcu(); 238 kfree(data); 239 } 240 241 mutex_unlock(&kvm->arch.config_lock); 242 } 243 244 /** 245 * kvm_arch_destroy_vm - destroy the VM data structure 246 * @kvm: pointer to the KVM struct 247 */ 248 void kvm_arch_destroy_vm(struct kvm *kvm) 249 { 250 bitmap_free(kvm->arch.pmu_filter); 251 free_cpumask_var(kvm->arch.supported_cpus); 252 253 kvm_vgic_destroy(kvm); 254 255 if (is_protected_kvm_enabled()) 256 pkvm_destroy_hyp_vm(kvm); 257 258 kvm_destroy_mpidr_data(kvm); 259 260 kfree(kvm->arch.sysreg_masks); 261 kvm_destroy_vcpus(kvm); 262 263 kvm_unshare_hyp(kvm, kvm + 1); 264 265 kvm_arm_teardown_hypercalls(kvm); 266 } 267 268 static bool kvm_has_full_ptr_auth(void) 269 { 270 bool apa, gpa, api, gpi, apa3, gpa3; 271 u64 isar1, isar2, val; 272 273 /* 274 * Check that: 275 * 276 * - both Address and Generic auth are implemented for a given 277 * algorithm (Q5, IMPDEF or Q3) 278 * - only a single algorithm is implemented. 279 */ 280 if (!system_has_full_ptr_auth()) 281 return false; 282 283 isar1 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1); 284 isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1); 285 286 apa = !!FIELD_GET(ID_AA64ISAR1_EL1_APA_MASK, isar1); 287 val = FIELD_GET(ID_AA64ISAR1_EL1_GPA_MASK, isar1); 288 gpa = (val == ID_AA64ISAR1_EL1_GPA_IMP); 289 290 api = !!FIELD_GET(ID_AA64ISAR1_EL1_API_MASK, isar1); 291 val = FIELD_GET(ID_AA64ISAR1_EL1_GPI_MASK, isar1); 292 gpi = (val == ID_AA64ISAR1_EL1_GPI_IMP); 293 294 apa3 = !!FIELD_GET(ID_AA64ISAR2_EL1_APA3_MASK, isar2); 295 val = FIELD_GET(ID_AA64ISAR2_EL1_GPA3_MASK, isar2); 296 gpa3 = (val == ID_AA64ISAR2_EL1_GPA3_IMP); 297 298 return (apa == gpa && api == gpi && apa3 == gpa3 && 299 (apa + api + apa3) == 1); 300 } 301 302 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 303 { 304 int r; 305 306 if (kvm && kvm_vm_is_protected(kvm) && !kvm_pvm_ext_allowed(ext)) 307 return 0; 308 309 switch (ext) { 310 case KVM_CAP_IRQCHIP: 311 r = vgic_present; 312 break; 313 case KVM_CAP_IOEVENTFD: 314 case KVM_CAP_USER_MEMORY: 315 case KVM_CAP_SYNC_MMU: 316 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 317 case KVM_CAP_ONE_REG: 318 case KVM_CAP_ARM_PSCI: 319 case KVM_CAP_ARM_PSCI_0_2: 320 case KVM_CAP_READONLY_MEM: 321 case KVM_CAP_MP_STATE: 322 case KVM_CAP_IMMEDIATE_EXIT: 323 case KVM_CAP_VCPU_EVENTS: 324 case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2: 325 case KVM_CAP_ARM_NISV_TO_USER: 326 case KVM_CAP_ARM_INJECT_EXT_DABT: 327 case KVM_CAP_SET_GUEST_DEBUG: 328 case KVM_CAP_VCPU_ATTRIBUTES: 329 case KVM_CAP_PTP_KVM: 330 case KVM_CAP_ARM_SYSTEM_SUSPEND: 331 case KVM_CAP_IRQFD_RESAMPLE: 332 case KVM_CAP_COUNTER_OFFSET: 333 case KVM_CAP_ARM_WRITABLE_IMP_ID_REGS: 334 case KVM_CAP_ARM_SEA_TO_USER: 335 r = 1; 336 break; 337 case KVM_CAP_SET_GUEST_DEBUG2: 338 return KVM_GUESTDBG_VALID_MASK; 339 case KVM_CAP_ARM_SET_DEVICE_ADDR: 340 r = 1; 341 break; 342 case KVM_CAP_NR_VCPUS: 343 /* 344 * ARM64 treats KVM_CAP_NR_CPUS differently from all other 345 * architectures, as it does not always bound it to 346 * KVM_CAP_MAX_VCPUS. It should not matter much because 347 * this is just an advisory value. 348 */ 349 r = min_t(unsigned int, num_online_cpus(), 350 kvm_arm_default_max_vcpus()); 351 break; 352 case KVM_CAP_MAX_VCPUS: 353 case KVM_CAP_MAX_VCPU_ID: 354 if (kvm) 355 r = kvm->max_vcpus; 356 else 357 r = kvm_arm_default_max_vcpus(); 358 break; 359 case KVM_CAP_MSI_DEVID: 360 if (!kvm) 361 r = -EINVAL; 362 else 363 r = kvm->arch.vgic.msis_require_devid; 364 break; 365 case KVM_CAP_ARM_USER_IRQ: 366 /* 367 * 1: EL1_VTIMER, EL1_PTIMER, and PMU. 368 * (bump this number if adding more devices) 369 */ 370 r = 1; 371 break; 372 case KVM_CAP_ARM_MTE: 373 r = system_supports_mte(); 374 break; 375 case KVM_CAP_STEAL_TIME: 376 r = kvm_arm_pvtime_supported(); 377 break; 378 case KVM_CAP_ARM_EL1_32BIT: 379 r = cpus_have_final_cap(ARM64_HAS_32BIT_EL1); 380 break; 381 case KVM_CAP_ARM_EL2: 382 r = cpus_have_final_cap(ARM64_HAS_NESTED_VIRT); 383 break; 384 case KVM_CAP_ARM_EL2_E2H0: 385 r = cpus_have_final_cap(ARM64_HAS_HCR_NV1); 386 break; 387 case KVM_CAP_GUEST_DEBUG_HW_BPS: 388 r = get_num_brps(); 389 break; 390 case KVM_CAP_GUEST_DEBUG_HW_WPS: 391 r = get_num_wrps(); 392 break; 393 case KVM_CAP_ARM_PMU_V3: 394 r = kvm_supports_guest_pmuv3(); 395 break; 396 case KVM_CAP_ARM_INJECT_SERROR_ESR: 397 r = cpus_have_final_cap(ARM64_HAS_RAS_EXTN); 398 break; 399 case KVM_CAP_ARM_VM_IPA_SIZE: 400 r = get_kvm_ipa_limit(); 401 break; 402 case KVM_CAP_ARM_SVE: 403 r = system_supports_sve(); 404 break; 405 case KVM_CAP_ARM_PTRAUTH_ADDRESS: 406 case KVM_CAP_ARM_PTRAUTH_GENERIC: 407 r = kvm_has_full_ptr_auth(); 408 break; 409 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE: 410 if (kvm) 411 r = kvm->arch.mmu.split_page_chunk_size; 412 else 413 r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT; 414 break; 415 case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES: 416 r = kvm_supported_block_sizes(); 417 break; 418 case KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES: 419 r = BIT(0); 420 break; 421 case KVM_CAP_ARM_CACHEABLE_PFNMAP_SUPPORTED: 422 if (!kvm) 423 r = -EINVAL; 424 else 425 r = kvm_supports_cacheable_pfnmap(); 426 break; 427 428 default: 429 r = 0; 430 } 431 432 return r; 433 } 434 435 long kvm_arch_dev_ioctl(struct file *filp, 436 unsigned int ioctl, unsigned long arg) 437 { 438 return -EINVAL; 439 } 440 441 struct kvm *kvm_arch_alloc_vm(void) 442 { 443 size_t sz = sizeof(struct kvm); 444 445 if (!has_vhe()) 446 return kzalloc(sz, GFP_KERNEL_ACCOUNT); 447 448 return kvzalloc(sz, GFP_KERNEL_ACCOUNT); 449 } 450 451 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 452 { 453 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) 454 return -EBUSY; 455 456 if (id >= kvm->max_vcpus) 457 return -EINVAL; 458 459 return 0; 460 } 461 462 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 463 { 464 int err; 465 466 spin_lock_init(&vcpu->arch.mp_state_lock); 467 468 #ifdef CONFIG_LOCKDEP 469 /* Inform lockdep that the config_lock is acquired after vcpu->mutex */ 470 mutex_lock(&vcpu->mutex); 471 mutex_lock(&vcpu->kvm->arch.config_lock); 472 mutex_unlock(&vcpu->kvm->arch.config_lock); 473 mutex_unlock(&vcpu->mutex); 474 #endif 475 476 /* Force users to call KVM_ARM_VCPU_INIT */ 477 vcpu_clear_flag(vcpu, VCPU_INITIALIZED); 478 479 vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO; 480 481 /* Set up the timer */ 482 kvm_timer_vcpu_init(vcpu); 483 484 kvm_pmu_vcpu_init(vcpu); 485 486 kvm_arm_pvtime_vcpu_init(&vcpu->arch); 487 488 vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu; 489 490 /* 491 * This vCPU may have been created after mpidr_data was initialized. 492 * Throw out the pre-computed mappings if that is the case which forces 493 * KVM to fall back to iteratively searching the vCPUs. 494 */ 495 kvm_destroy_mpidr_data(vcpu->kvm); 496 497 err = kvm_vgic_vcpu_init(vcpu); 498 if (err) 499 return err; 500 501 err = kvm_share_hyp(vcpu, vcpu + 1); 502 if (err) 503 kvm_vgic_vcpu_destroy(vcpu); 504 505 return err; 506 } 507 508 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 509 { 510 } 511 512 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 513 { 514 if (!is_protected_kvm_enabled()) 515 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); 516 else 517 free_hyp_memcache(&vcpu->arch.pkvm_memcache); 518 kvm_timer_vcpu_terminate(vcpu); 519 kvm_pmu_vcpu_destroy(vcpu); 520 kvm_vgic_vcpu_destroy(vcpu); 521 kvm_arm_vcpu_destroy(vcpu); 522 } 523 524 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 525 { 526 527 } 528 529 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 530 { 531 532 } 533 534 static void vcpu_set_pauth_traps(struct kvm_vcpu *vcpu) 535 { 536 if (vcpu_has_ptrauth(vcpu) && !is_protected_kvm_enabled()) { 537 /* 538 * Either we're running an L2 guest, and the API/APK bits come 539 * from L1's HCR_EL2, or API/APK are both set. 540 */ 541 if (unlikely(is_nested_ctxt(vcpu))) { 542 u64 val; 543 544 val = __vcpu_sys_reg(vcpu, HCR_EL2); 545 val &= (HCR_API | HCR_APK); 546 vcpu->arch.hcr_el2 &= ~(HCR_API | HCR_APK); 547 vcpu->arch.hcr_el2 |= val; 548 } else { 549 vcpu->arch.hcr_el2 |= (HCR_API | HCR_APK); 550 } 551 552 /* 553 * Save the host keys if there is any chance for the guest 554 * to use pauth, as the entry code will reload the guest 555 * keys in that case. 556 */ 557 if (vcpu->arch.hcr_el2 & (HCR_API | HCR_APK)) { 558 struct kvm_cpu_context *ctxt; 559 560 ctxt = this_cpu_ptr_hyp_sym(kvm_hyp_ctxt); 561 ptrauth_save_keys(ctxt); 562 } 563 } 564 } 565 566 static bool kvm_vcpu_should_clear_twi(struct kvm_vcpu *vcpu) 567 { 568 if (unlikely(kvm_wfi_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK)) 569 return kvm_wfi_trap_policy == KVM_WFX_NOTRAP; 570 571 return single_task_running() && 572 (atomic_read(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count) || 573 vcpu->kvm->arch.vgic.nassgireq); 574 } 575 576 static bool kvm_vcpu_should_clear_twe(struct kvm_vcpu *vcpu) 577 { 578 if (unlikely(kvm_wfe_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK)) 579 return kvm_wfe_trap_policy == KVM_WFX_NOTRAP; 580 581 return single_task_running(); 582 } 583 584 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 585 { 586 struct kvm_s2_mmu *mmu; 587 int *last_ran; 588 589 if (is_protected_kvm_enabled()) 590 goto nommu; 591 592 if (vcpu_has_nv(vcpu)) 593 kvm_vcpu_load_hw_mmu(vcpu); 594 595 mmu = vcpu->arch.hw_mmu; 596 last_ran = this_cpu_ptr(mmu->last_vcpu_ran); 597 598 /* 599 * Ensure a VMID is allocated for the MMU before programming VTTBR_EL2, 600 * which happens eagerly in VHE. 601 * 602 * Also, the VMID allocator only preserves VMIDs that are active at the 603 * time of rollover, so KVM might need to grab a new VMID for the MMU if 604 * this is called from kvm_sched_in(). 605 */ 606 kvm_arm_vmid_update(&mmu->vmid); 607 608 /* 609 * We guarantee that both TLBs and I-cache are private to each 610 * vcpu. If detecting that a vcpu from the same VM has 611 * previously run on the same physical CPU, call into the 612 * hypervisor code to nuke the relevant contexts. 613 * 614 * We might get preempted before the vCPU actually runs, but 615 * over-invalidation doesn't affect correctness. 616 */ 617 if (*last_ran != vcpu->vcpu_idx) { 618 kvm_call_hyp(__kvm_flush_cpu_context, mmu); 619 *last_ran = vcpu->vcpu_idx; 620 } 621 622 nommu: 623 vcpu->cpu = cpu; 624 625 /* 626 * The timer must be loaded before the vgic to correctly set up physical 627 * interrupt deactivation in nested state (e.g. timer interrupt). 628 */ 629 kvm_timer_vcpu_load(vcpu); 630 kvm_vgic_load(vcpu); 631 kvm_vcpu_load_debug(vcpu); 632 kvm_vcpu_load_fgt(vcpu); 633 if (has_vhe()) 634 kvm_vcpu_load_vhe(vcpu); 635 kvm_arch_vcpu_load_fp(vcpu); 636 kvm_vcpu_pmu_restore_guest(vcpu); 637 if (kvm_arm_is_pvtime_enabled(&vcpu->arch)) 638 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu); 639 640 if (kvm_vcpu_should_clear_twe(vcpu)) 641 vcpu->arch.hcr_el2 &= ~HCR_TWE; 642 else 643 vcpu->arch.hcr_el2 |= HCR_TWE; 644 645 if (kvm_vcpu_should_clear_twi(vcpu)) 646 vcpu->arch.hcr_el2 &= ~HCR_TWI; 647 else 648 vcpu->arch.hcr_el2 |= HCR_TWI; 649 650 vcpu_set_pauth_traps(vcpu); 651 652 if (is_protected_kvm_enabled()) { 653 kvm_call_hyp_nvhe(__pkvm_vcpu_load, 654 vcpu->kvm->arch.pkvm.handle, 655 vcpu->vcpu_idx, vcpu->arch.hcr_el2); 656 kvm_call_hyp(__vgic_v3_restore_vmcr_aprs, 657 &vcpu->arch.vgic_cpu.vgic_v3); 658 } 659 660 if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus)) 661 vcpu_set_on_unsupported_cpu(vcpu); 662 } 663 664 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 665 { 666 if (is_protected_kvm_enabled()) { 667 kvm_call_hyp(__vgic_v3_save_aprs, &vcpu->arch.vgic_cpu.vgic_v3); 668 kvm_call_hyp_nvhe(__pkvm_vcpu_put); 669 } 670 671 kvm_vcpu_put_debug(vcpu); 672 kvm_arch_vcpu_put_fp(vcpu); 673 if (has_vhe()) 674 kvm_vcpu_put_vhe(vcpu); 675 kvm_timer_vcpu_put(vcpu); 676 kvm_vgic_put(vcpu); 677 kvm_vcpu_pmu_restore_host(vcpu); 678 if (vcpu_has_nv(vcpu)) 679 kvm_vcpu_put_hw_mmu(vcpu); 680 kvm_arm_vmid_clear_active(); 681 682 vcpu_clear_on_unsupported_cpu(vcpu); 683 vcpu->cpu = -1; 684 } 685 686 static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu) 687 { 688 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED); 689 kvm_make_request(KVM_REQ_SLEEP, vcpu); 690 kvm_vcpu_kick(vcpu); 691 } 692 693 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu) 694 { 695 spin_lock(&vcpu->arch.mp_state_lock); 696 __kvm_arm_vcpu_power_off(vcpu); 697 spin_unlock(&vcpu->arch.mp_state_lock); 698 } 699 700 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu) 701 { 702 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED; 703 } 704 705 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu) 706 { 707 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED); 708 kvm_make_request(KVM_REQ_SUSPEND, vcpu); 709 kvm_vcpu_kick(vcpu); 710 } 711 712 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu) 713 { 714 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED; 715 } 716 717 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 718 struct kvm_mp_state *mp_state) 719 { 720 *mp_state = READ_ONCE(vcpu->arch.mp_state); 721 722 return 0; 723 } 724 725 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 726 struct kvm_mp_state *mp_state) 727 { 728 int ret = 0; 729 730 spin_lock(&vcpu->arch.mp_state_lock); 731 732 switch (mp_state->mp_state) { 733 case KVM_MP_STATE_RUNNABLE: 734 WRITE_ONCE(vcpu->arch.mp_state, *mp_state); 735 break; 736 case KVM_MP_STATE_STOPPED: 737 __kvm_arm_vcpu_power_off(vcpu); 738 break; 739 case KVM_MP_STATE_SUSPENDED: 740 kvm_arm_vcpu_suspend(vcpu); 741 break; 742 default: 743 ret = -EINVAL; 744 } 745 746 spin_unlock(&vcpu->arch.mp_state_lock); 747 748 return ret; 749 } 750 751 /** 752 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled 753 * @v: The VCPU pointer 754 * 755 * If the guest CPU is not waiting for interrupts or an interrupt line is 756 * asserted, the CPU is by definition runnable. 757 */ 758 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 759 { 760 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF | HCR_VSE); 761 762 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v)) 763 && !kvm_arm_vcpu_stopped(v) && !v->arch.pause); 764 } 765 766 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 767 { 768 return vcpu_mode_priv(vcpu); 769 } 770 771 #ifdef CONFIG_GUEST_PERF_EVENTS 772 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 773 { 774 return *vcpu_pc(vcpu); 775 } 776 #endif 777 778 static void kvm_init_mpidr_data(struct kvm *kvm) 779 { 780 struct kvm_mpidr_data *data = NULL; 781 unsigned long c, mask, nr_entries; 782 u64 aff_set = 0, aff_clr = ~0UL; 783 struct kvm_vcpu *vcpu; 784 785 mutex_lock(&kvm->arch.config_lock); 786 787 if (rcu_access_pointer(kvm->arch.mpidr_data) || 788 atomic_read(&kvm->online_vcpus) == 1) 789 goto out; 790 791 kvm_for_each_vcpu(c, vcpu, kvm) { 792 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu); 793 aff_set |= aff; 794 aff_clr &= aff; 795 } 796 797 /* 798 * A significant bit can be either 0 or 1, and will only appear in 799 * aff_set. Use aff_clr to weed out the useless stuff. 800 */ 801 mask = aff_set ^ aff_clr; 802 nr_entries = BIT_ULL(hweight_long(mask)); 803 804 /* 805 * Don't let userspace fool us. If we need more than a single page 806 * to describe the compressed MPIDR array, just fall back to the 807 * iterative method. Single vcpu VMs do not need this either. 808 */ 809 if (struct_size(data, cmpidr_to_idx, nr_entries) <= PAGE_SIZE) 810 data = kzalloc(struct_size(data, cmpidr_to_idx, nr_entries), 811 GFP_KERNEL_ACCOUNT); 812 813 if (!data) 814 goto out; 815 816 data->mpidr_mask = mask; 817 818 kvm_for_each_vcpu(c, vcpu, kvm) { 819 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu); 820 u16 index = kvm_mpidr_index(data, aff); 821 822 data->cmpidr_to_idx[index] = c; 823 } 824 825 rcu_assign_pointer(kvm->arch.mpidr_data, data); 826 out: 827 mutex_unlock(&kvm->arch.config_lock); 828 } 829 830 /* 831 * Handle both the initialisation that is being done when the vcpu is 832 * run for the first time, as well as the updates that must be 833 * performed each time we get a new thread dealing with this vcpu. 834 */ 835 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 836 { 837 struct kvm *kvm = vcpu->kvm; 838 int ret; 839 840 if (!kvm_vcpu_initialized(vcpu)) 841 return -ENOEXEC; 842 843 if (!kvm_arm_vcpu_is_finalized(vcpu)) 844 return -EPERM; 845 846 if (likely(vcpu_has_run_once(vcpu))) 847 return 0; 848 849 kvm_init_mpidr_data(kvm); 850 851 if (likely(irqchip_in_kernel(kvm))) { 852 /* 853 * Map the VGIC hardware resources before running a vcpu the 854 * first time on this VM. 855 */ 856 ret = kvm_vgic_map_resources(kvm); 857 if (ret) 858 return ret; 859 } 860 861 ret = kvm_finalize_sys_regs(vcpu); 862 if (ret) 863 return ret; 864 865 if (vcpu_has_nv(vcpu)) { 866 ret = kvm_vcpu_allocate_vncr_tlb(vcpu); 867 if (ret) 868 return ret; 869 870 ret = kvm_vgic_vcpu_nv_init(vcpu); 871 if (ret) 872 return ret; 873 } 874 875 /* 876 * This needs to happen after any restriction has been applied 877 * to the feature set. 878 */ 879 kvm_calculate_traps(vcpu); 880 881 ret = kvm_timer_enable(vcpu); 882 if (ret) 883 return ret; 884 885 if (kvm_vcpu_has_pmu(vcpu)) { 886 ret = kvm_arm_pmu_v3_enable(vcpu); 887 if (ret) 888 return ret; 889 } 890 891 if (is_protected_kvm_enabled()) { 892 ret = pkvm_create_hyp_vm(kvm); 893 if (ret) 894 return ret; 895 896 ret = pkvm_create_hyp_vcpu(vcpu); 897 if (ret) 898 return ret; 899 } 900 901 mutex_lock(&kvm->arch.config_lock); 902 set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags); 903 mutex_unlock(&kvm->arch.config_lock); 904 905 return ret; 906 } 907 908 bool kvm_arch_intc_initialized(struct kvm *kvm) 909 { 910 return vgic_initialized(kvm); 911 } 912 913 void kvm_arm_halt_guest(struct kvm *kvm) 914 { 915 unsigned long i; 916 struct kvm_vcpu *vcpu; 917 918 kvm_for_each_vcpu(i, vcpu, kvm) 919 vcpu->arch.pause = true; 920 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP); 921 } 922 923 void kvm_arm_resume_guest(struct kvm *kvm) 924 { 925 unsigned long i; 926 struct kvm_vcpu *vcpu; 927 928 kvm_for_each_vcpu(i, vcpu, kvm) { 929 vcpu->arch.pause = false; 930 __kvm_vcpu_wake_up(vcpu); 931 } 932 } 933 934 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu) 935 { 936 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 937 938 rcuwait_wait_event(wait, 939 (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause), 940 TASK_INTERRUPTIBLE); 941 942 if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) { 943 /* Awaken to handle a signal, request we sleep again later. */ 944 kvm_make_request(KVM_REQ_SLEEP, vcpu); 945 } 946 947 /* 948 * Make sure we will observe a potential reset request if we've 949 * observed a change to the power state. Pairs with the smp_wmb() in 950 * kvm_psci_vcpu_on(). 951 */ 952 smp_rmb(); 953 } 954 955 /** 956 * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior 957 * @vcpu: The VCPU pointer 958 * 959 * Suspend execution of a vCPU until a valid wake event is detected, i.e. until 960 * the vCPU is runnable. The vCPU may or may not be scheduled out, depending 961 * on when a wake event arrives, e.g. there may already be a pending wake event. 962 */ 963 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu) 964 { 965 /* 966 * Sync back the state of the GIC CPU interface so that we have 967 * the latest PMR and group enables. This ensures that 968 * kvm_arch_vcpu_runnable has up-to-date data to decide whether 969 * we have pending interrupts, e.g. when determining if the 970 * vCPU should block. 971 * 972 * For the same reason, we want to tell GICv4 that we need 973 * doorbells to be signalled, should an interrupt become pending. 974 */ 975 preempt_disable(); 976 vcpu_set_flag(vcpu, IN_WFI); 977 kvm_vgic_put(vcpu); 978 preempt_enable(); 979 980 kvm_vcpu_halt(vcpu); 981 vcpu_clear_flag(vcpu, IN_WFIT); 982 983 preempt_disable(); 984 vcpu_clear_flag(vcpu, IN_WFI); 985 kvm_vgic_load(vcpu); 986 preempt_enable(); 987 } 988 989 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu) 990 { 991 if (!kvm_arm_vcpu_suspended(vcpu)) 992 return 1; 993 994 kvm_vcpu_wfi(vcpu); 995 996 /* 997 * The suspend state is sticky; we do not leave it until userspace 998 * explicitly marks the vCPU as runnable. Request that we suspend again 999 * later. 1000 */ 1001 kvm_make_request(KVM_REQ_SUSPEND, vcpu); 1002 1003 /* 1004 * Check to make sure the vCPU is actually runnable. If so, exit to 1005 * userspace informing it of the wakeup condition. 1006 */ 1007 if (kvm_arch_vcpu_runnable(vcpu)) { 1008 memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event)); 1009 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP; 1010 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 1011 return 0; 1012 } 1013 1014 /* 1015 * Otherwise, we were unblocked to process a different event, such as a 1016 * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to 1017 * process the event. 1018 */ 1019 return 1; 1020 } 1021 1022 /** 1023 * check_vcpu_requests - check and handle pending vCPU requests 1024 * @vcpu: the VCPU pointer 1025 * 1026 * Return: 1 if we should enter the guest 1027 * 0 if we should exit to userspace 1028 * < 0 if we should exit to userspace, where the return value indicates 1029 * an error 1030 */ 1031 static int check_vcpu_requests(struct kvm_vcpu *vcpu) 1032 { 1033 if (kvm_request_pending(vcpu)) { 1034 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) 1035 return -EIO; 1036 1037 if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) 1038 kvm_vcpu_sleep(vcpu); 1039 1040 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) 1041 kvm_reset_vcpu(vcpu); 1042 1043 /* 1044 * Clear IRQ_PENDING requests that were made to guarantee 1045 * that a VCPU sees new virtual interrupts. 1046 */ 1047 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu); 1048 1049 /* Process interrupts deactivated through a trap */ 1050 if (kvm_check_request(KVM_REQ_VGIC_PROCESS_UPDATE, vcpu)) 1051 kvm_vgic_process_async_update(vcpu); 1052 1053 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu)) 1054 kvm_update_stolen_time(vcpu); 1055 1056 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) { 1057 /* The distributor enable bits were changed */ 1058 preempt_disable(); 1059 vgic_v4_put(vcpu); 1060 vgic_v4_load(vcpu); 1061 preempt_enable(); 1062 } 1063 1064 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu)) 1065 kvm_vcpu_reload_pmu(vcpu); 1066 1067 if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu)) 1068 kvm_vcpu_pmu_restore_guest(vcpu); 1069 1070 if (kvm_check_request(KVM_REQ_SUSPEND, vcpu)) 1071 return kvm_vcpu_suspend(vcpu); 1072 1073 if (kvm_dirty_ring_check_request(vcpu)) 1074 return 0; 1075 1076 check_nested_vcpu_requests(vcpu); 1077 } 1078 1079 return 1; 1080 } 1081 1082 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu) 1083 { 1084 if (likely(!vcpu_mode_is_32bit(vcpu))) 1085 return false; 1086 1087 if (vcpu_has_nv(vcpu)) 1088 return true; 1089 1090 return !kvm_supports_32bit_el0(); 1091 } 1092 1093 /** 1094 * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest 1095 * @vcpu: The VCPU pointer 1096 * @ret: Pointer to write optional return code 1097 * 1098 * Returns: true if the VCPU needs to return to a preemptible + interruptible 1099 * and skip guest entry. 1100 * 1101 * This function disambiguates between two different types of exits: exits to a 1102 * preemptible + interruptible kernel context and exits to userspace. For an 1103 * exit to userspace, this function will write the return code to ret and return 1104 * true. For an exit to preemptible + interruptible kernel context (i.e. check 1105 * for pending work and re-enter), return true without writing to ret. 1106 */ 1107 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret) 1108 { 1109 struct kvm_run *run = vcpu->run; 1110 1111 /* 1112 * If we're using a userspace irqchip, then check if we need 1113 * to tell a userspace irqchip about timer or PMU level 1114 * changes and if so, exit to userspace (the actual level 1115 * state gets updated in kvm_timer_update_run and 1116 * kvm_pmu_update_run below). 1117 */ 1118 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) { 1119 if (kvm_timer_should_notify_user(vcpu) || 1120 kvm_pmu_should_notify_user(vcpu)) { 1121 *ret = -EINTR; 1122 run->exit_reason = KVM_EXIT_INTR; 1123 return true; 1124 } 1125 } 1126 1127 if (unlikely(vcpu_on_unsupported_cpu(vcpu))) { 1128 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 1129 run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED; 1130 run->fail_entry.cpu = smp_processor_id(); 1131 *ret = 0; 1132 return true; 1133 } 1134 1135 return kvm_request_pending(vcpu) || 1136 xfer_to_guest_mode_work_pending(); 1137 } 1138 1139 /* 1140 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while 1141 * the vCPU is running. 1142 * 1143 * This must be noinstr as instrumentation may make use of RCU, and this is not 1144 * safe during the EQS. 1145 */ 1146 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu) 1147 { 1148 int ret; 1149 1150 guest_state_enter_irqoff(); 1151 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu); 1152 guest_state_exit_irqoff(); 1153 1154 return ret; 1155 } 1156 1157 /** 1158 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code 1159 * @vcpu: The VCPU pointer 1160 * 1161 * This function is called through the VCPU_RUN ioctl called from user space. It 1162 * will execute VM code in a loop until the time slice for the process is used 1163 * or some emulation is needed from user space in which case the function will 1164 * return with return value 0 and with the kvm_run structure filled in with the 1165 * required data for the requested emulation. 1166 */ 1167 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 1168 { 1169 struct kvm_run *run = vcpu->run; 1170 int ret; 1171 1172 if (run->exit_reason == KVM_EXIT_MMIO) { 1173 ret = kvm_handle_mmio_return(vcpu); 1174 if (ret <= 0) 1175 return ret; 1176 } 1177 1178 vcpu_load(vcpu); 1179 1180 if (!vcpu->wants_to_run) { 1181 ret = -EINTR; 1182 goto out; 1183 } 1184 1185 kvm_sigset_activate(vcpu); 1186 1187 ret = 1; 1188 run->exit_reason = KVM_EXIT_UNKNOWN; 1189 run->flags = 0; 1190 while (ret > 0) { 1191 /* 1192 * Check conditions before entering the guest 1193 */ 1194 ret = kvm_xfer_to_guest_mode_handle_work(vcpu); 1195 if (!ret) 1196 ret = 1; 1197 1198 if (ret > 0) 1199 ret = check_vcpu_requests(vcpu); 1200 1201 /* 1202 * Preparing the interrupts to be injected also 1203 * involves poking the GIC, which must be done in a 1204 * non-preemptible context. 1205 */ 1206 preempt_disable(); 1207 1208 kvm_nested_flush_hwstate(vcpu); 1209 1210 if (kvm_vcpu_has_pmu(vcpu)) 1211 kvm_pmu_flush_hwstate(vcpu); 1212 1213 local_irq_disable(); 1214 1215 kvm_vgic_flush_hwstate(vcpu); 1216 1217 kvm_pmu_update_vcpu_events(vcpu); 1218 1219 /* 1220 * Ensure we set mode to IN_GUEST_MODE after we disable 1221 * interrupts and before the final VCPU requests check. 1222 * See the comment in kvm_vcpu_exiting_guest_mode() and 1223 * Documentation/virt/kvm/vcpu-requests.rst 1224 */ 1225 smp_store_mb(vcpu->mode, IN_GUEST_MODE); 1226 1227 if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) { 1228 vcpu->mode = OUTSIDE_GUEST_MODE; 1229 isb(); /* Ensure work in x_flush_hwstate is committed */ 1230 if (kvm_vcpu_has_pmu(vcpu)) 1231 kvm_pmu_sync_hwstate(vcpu); 1232 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) 1233 kvm_timer_sync_user(vcpu); 1234 kvm_vgic_sync_hwstate(vcpu); 1235 local_irq_enable(); 1236 preempt_enable(); 1237 continue; 1238 } 1239 1240 kvm_arch_vcpu_ctxflush_fp(vcpu); 1241 1242 /************************************************************** 1243 * Enter the guest 1244 */ 1245 trace_kvm_entry(*vcpu_pc(vcpu)); 1246 guest_timing_enter_irqoff(); 1247 1248 ret = kvm_arm_vcpu_enter_exit(vcpu); 1249 1250 vcpu->mode = OUTSIDE_GUEST_MODE; 1251 vcpu->stat.exits++; 1252 /* 1253 * Back from guest 1254 *************************************************************/ 1255 1256 /* 1257 * We must sync the PMU state before the vgic state so 1258 * that the vgic can properly sample the updated state of the 1259 * interrupt line. 1260 */ 1261 if (kvm_vcpu_has_pmu(vcpu)) 1262 kvm_pmu_sync_hwstate(vcpu); 1263 1264 /* 1265 * Sync the vgic state before syncing the timer state because 1266 * the timer code needs to know if the virtual timer 1267 * interrupts are active. 1268 */ 1269 kvm_vgic_sync_hwstate(vcpu); 1270 1271 /* 1272 * Sync the timer hardware state before enabling interrupts as 1273 * we don't want vtimer interrupts to race with syncing the 1274 * timer virtual interrupt state. 1275 */ 1276 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) 1277 kvm_timer_sync_user(vcpu); 1278 1279 if (is_hyp_ctxt(vcpu)) 1280 kvm_timer_sync_nested(vcpu); 1281 1282 kvm_arch_vcpu_ctxsync_fp(vcpu); 1283 1284 /* 1285 * We must ensure that any pending interrupts are taken before 1286 * we exit guest timing so that timer ticks are accounted as 1287 * guest time. Transiently unmask interrupts so that any 1288 * pending interrupts are taken. 1289 * 1290 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other 1291 * context synchronization event) is necessary to ensure that 1292 * pending interrupts are taken. 1293 */ 1294 if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) { 1295 local_irq_enable(); 1296 isb(); 1297 local_irq_disable(); 1298 } 1299 1300 guest_timing_exit_irqoff(); 1301 1302 local_irq_enable(); 1303 1304 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu)); 1305 1306 /* Exit types that need handling before we can be preempted */ 1307 handle_exit_early(vcpu, ret); 1308 1309 kvm_nested_sync_hwstate(vcpu); 1310 1311 preempt_enable(); 1312 1313 /* 1314 * The ARMv8 architecture doesn't give the hypervisor 1315 * a mechanism to prevent a guest from dropping to AArch32 EL0 1316 * if implemented by the CPU. If we spot the guest in such 1317 * state and that we decided it wasn't supposed to do so (like 1318 * with the asymmetric AArch32 case), return to userspace with 1319 * a fatal error. 1320 */ 1321 if (vcpu_mode_is_bad_32bit(vcpu)) { 1322 /* 1323 * As we have caught the guest red-handed, decide that 1324 * it isn't fit for purpose anymore by making the vcpu 1325 * invalid. The VMM can try and fix it by issuing a 1326 * KVM_ARM_VCPU_INIT if it really wants to. 1327 */ 1328 vcpu_clear_flag(vcpu, VCPU_INITIALIZED); 1329 ret = ARM_EXCEPTION_IL; 1330 } 1331 1332 ret = handle_exit(vcpu, ret); 1333 } 1334 1335 /* Tell userspace about in-kernel device output levels */ 1336 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) { 1337 kvm_timer_update_run(vcpu); 1338 kvm_pmu_update_run(vcpu); 1339 } 1340 1341 kvm_sigset_deactivate(vcpu); 1342 1343 out: 1344 /* 1345 * In the unlikely event that we are returning to userspace 1346 * with pending exceptions or PC adjustment, commit these 1347 * adjustments in order to give userspace a consistent view of 1348 * the vcpu state. Note that this relies on __kvm_adjust_pc() 1349 * being preempt-safe on VHE. 1350 */ 1351 if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) || 1352 vcpu_get_flag(vcpu, INCREMENT_PC))) 1353 kvm_call_hyp(__kvm_adjust_pc, vcpu); 1354 1355 vcpu_put(vcpu); 1356 return ret; 1357 } 1358 1359 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level) 1360 { 1361 int bit_index; 1362 bool set; 1363 unsigned long *hcr; 1364 1365 if (number == KVM_ARM_IRQ_CPU_IRQ) 1366 bit_index = __ffs(HCR_VI); 1367 else /* KVM_ARM_IRQ_CPU_FIQ */ 1368 bit_index = __ffs(HCR_VF); 1369 1370 hcr = vcpu_hcr(vcpu); 1371 if (level) 1372 set = test_and_set_bit(bit_index, hcr); 1373 else 1374 set = test_and_clear_bit(bit_index, hcr); 1375 1376 /* 1377 * If we didn't change anything, no need to wake up or kick other CPUs 1378 */ 1379 if (set == level) 1380 return 0; 1381 1382 /* 1383 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and 1384 * trigger a world-switch round on the running physical CPU to set the 1385 * virtual IRQ/FIQ fields in the HCR appropriately. 1386 */ 1387 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); 1388 kvm_vcpu_kick(vcpu); 1389 1390 return 0; 1391 } 1392 1393 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1394 bool line_status) 1395 { 1396 u32 irq = irq_level->irq; 1397 unsigned int irq_type, vcpu_id, irq_num; 1398 struct kvm_vcpu *vcpu = NULL; 1399 bool level = irq_level->level; 1400 1401 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK; 1402 vcpu_id = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK; 1403 vcpu_id += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1); 1404 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK; 1405 1406 trace_kvm_irq_line(irq_type, vcpu_id, irq_num, irq_level->level); 1407 1408 switch (irq_type) { 1409 case KVM_ARM_IRQ_TYPE_CPU: 1410 if (irqchip_in_kernel(kvm)) 1411 return -ENXIO; 1412 1413 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); 1414 if (!vcpu) 1415 return -EINVAL; 1416 1417 if (irq_num > KVM_ARM_IRQ_CPU_FIQ) 1418 return -EINVAL; 1419 1420 return vcpu_interrupt_line(vcpu, irq_num, level); 1421 case KVM_ARM_IRQ_TYPE_PPI: 1422 if (!irqchip_in_kernel(kvm)) 1423 return -ENXIO; 1424 1425 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); 1426 if (!vcpu) 1427 return -EINVAL; 1428 1429 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS) 1430 return -EINVAL; 1431 1432 return kvm_vgic_inject_irq(kvm, vcpu, irq_num, level, NULL); 1433 case KVM_ARM_IRQ_TYPE_SPI: 1434 if (!irqchip_in_kernel(kvm)) 1435 return -ENXIO; 1436 1437 if (irq_num < VGIC_NR_PRIVATE_IRQS) 1438 return -EINVAL; 1439 1440 return kvm_vgic_inject_irq(kvm, NULL, irq_num, level, NULL); 1441 } 1442 1443 return -EINVAL; 1444 } 1445 1446 static unsigned long system_supported_vcpu_features(void) 1447 { 1448 unsigned long features = KVM_VCPU_VALID_FEATURES; 1449 1450 if (!cpus_have_final_cap(ARM64_HAS_32BIT_EL1)) 1451 clear_bit(KVM_ARM_VCPU_EL1_32BIT, &features); 1452 1453 if (!kvm_supports_guest_pmuv3()) 1454 clear_bit(KVM_ARM_VCPU_PMU_V3, &features); 1455 1456 if (!system_supports_sve()) 1457 clear_bit(KVM_ARM_VCPU_SVE, &features); 1458 1459 if (!kvm_has_full_ptr_auth()) { 1460 clear_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features); 1461 clear_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features); 1462 } 1463 1464 if (!cpus_have_final_cap(ARM64_HAS_NESTED_VIRT)) 1465 clear_bit(KVM_ARM_VCPU_HAS_EL2, &features); 1466 1467 return features; 1468 } 1469 1470 static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu, 1471 const struct kvm_vcpu_init *init) 1472 { 1473 unsigned long features = init->features[0]; 1474 int i; 1475 1476 if (features & ~KVM_VCPU_VALID_FEATURES) 1477 return -ENOENT; 1478 1479 for (i = 1; i < ARRAY_SIZE(init->features); i++) { 1480 if (init->features[i]) 1481 return -ENOENT; 1482 } 1483 1484 if (features & ~system_supported_vcpu_features()) 1485 return -EINVAL; 1486 1487 /* 1488 * For now make sure that both address/generic pointer authentication 1489 * features are requested by the userspace together. 1490 */ 1491 if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features) != 1492 test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features)) 1493 return -EINVAL; 1494 1495 if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features)) 1496 return 0; 1497 1498 /* MTE is incompatible with AArch32 */ 1499 if (kvm_has_mte(vcpu->kvm)) 1500 return -EINVAL; 1501 1502 /* NV is incompatible with AArch32 */ 1503 if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features)) 1504 return -EINVAL; 1505 1506 return 0; 1507 } 1508 1509 static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu, 1510 const struct kvm_vcpu_init *init) 1511 { 1512 unsigned long features = init->features[0]; 1513 1514 return !bitmap_equal(vcpu->kvm->arch.vcpu_features, &features, 1515 KVM_VCPU_MAX_FEATURES); 1516 } 1517 1518 static int kvm_setup_vcpu(struct kvm_vcpu *vcpu) 1519 { 1520 struct kvm *kvm = vcpu->kvm; 1521 int ret = 0; 1522 1523 /* 1524 * When the vCPU has a PMU, but no PMU is set for the guest 1525 * yet, set the default one. 1526 */ 1527 if (kvm_vcpu_has_pmu(vcpu) && !kvm->arch.arm_pmu) 1528 ret = kvm_arm_set_default_pmu(kvm); 1529 1530 /* Prepare for nested if required */ 1531 if (!ret && vcpu_has_nv(vcpu)) 1532 ret = kvm_vcpu_init_nested(vcpu); 1533 1534 return ret; 1535 } 1536 1537 static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu, 1538 const struct kvm_vcpu_init *init) 1539 { 1540 unsigned long features = init->features[0]; 1541 struct kvm *kvm = vcpu->kvm; 1542 int ret = -EINVAL; 1543 1544 mutex_lock(&kvm->arch.config_lock); 1545 1546 if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) && 1547 kvm_vcpu_init_changed(vcpu, init)) 1548 goto out_unlock; 1549 1550 bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES); 1551 1552 ret = kvm_setup_vcpu(vcpu); 1553 if (ret) 1554 goto out_unlock; 1555 1556 /* Now we know what it is, we can reset it. */ 1557 kvm_reset_vcpu(vcpu); 1558 1559 set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags); 1560 vcpu_set_flag(vcpu, VCPU_INITIALIZED); 1561 ret = 0; 1562 out_unlock: 1563 mutex_unlock(&kvm->arch.config_lock); 1564 return ret; 1565 } 1566 1567 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu, 1568 const struct kvm_vcpu_init *init) 1569 { 1570 int ret; 1571 1572 if (init->target != KVM_ARM_TARGET_GENERIC_V8 && 1573 init->target != kvm_target_cpu()) 1574 return -EINVAL; 1575 1576 ret = kvm_vcpu_init_check_features(vcpu, init); 1577 if (ret) 1578 return ret; 1579 1580 if (!kvm_vcpu_initialized(vcpu)) 1581 return __kvm_vcpu_set_target(vcpu, init); 1582 1583 if (kvm_vcpu_init_changed(vcpu, init)) 1584 return -EINVAL; 1585 1586 kvm_reset_vcpu(vcpu); 1587 return 0; 1588 } 1589 1590 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu, 1591 struct kvm_vcpu_init *init) 1592 { 1593 bool power_off = false; 1594 int ret; 1595 1596 /* 1597 * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid 1598 * reflecting it in the finalized feature set, thus limiting its scope 1599 * to a single KVM_ARM_VCPU_INIT call. 1600 */ 1601 if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) { 1602 init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF); 1603 power_off = true; 1604 } 1605 1606 ret = kvm_vcpu_set_target(vcpu, init); 1607 if (ret) 1608 return ret; 1609 1610 /* 1611 * Ensure a rebooted VM will fault in RAM pages and detect if the 1612 * guest MMU is turned off and flush the caches as needed. 1613 * 1614 * S2FWB enforces all memory accesses to RAM being cacheable, 1615 * ensuring that the data side is always coherent. We still 1616 * need to invalidate the I-cache though, as FWB does *not* 1617 * imply CTR_EL0.DIC. 1618 */ 1619 if (vcpu_has_run_once(vcpu)) { 1620 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) 1621 stage2_unmap_vm(vcpu->kvm); 1622 else 1623 icache_inval_all_pou(); 1624 } 1625 1626 vcpu_reset_hcr(vcpu); 1627 1628 /* 1629 * Handle the "start in power-off" case. 1630 */ 1631 spin_lock(&vcpu->arch.mp_state_lock); 1632 1633 if (power_off) 1634 __kvm_arm_vcpu_power_off(vcpu); 1635 else 1636 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE); 1637 1638 spin_unlock(&vcpu->arch.mp_state_lock); 1639 1640 return 0; 1641 } 1642 1643 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu, 1644 struct kvm_device_attr *attr) 1645 { 1646 int ret = -ENXIO; 1647 1648 switch (attr->group) { 1649 default: 1650 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr); 1651 break; 1652 } 1653 1654 return ret; 1655 } 1656 1657 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu, 1658 struct kvm_device_attr *attr) 1659 { 1660 int ret = -ENXIO; 1661 1662 switch (attr->group) { 1663 default: 1664 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr); 1665 break; 1666 } 1667 1668 return ret; 1669 } 1670 1671 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu, 1672 struct kvm_device_attr *attr) 1673 { 1674 int ret = -ENXIO; 1675 1676 switch (attr->group) { 1677 default: 1678 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr); 1679 break; 1680 } 1681 1682 return ret; 1683 } 1684 1685 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, 1686 struct kvm_vcpu_events *events) 1687 { 1688 memset(events, 0, sizeof(*events)); 1689 1690 return __kvm_arm_vcpu_get_events(vcpu, events); 1691 } 1692 1693 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, 1694 struct kvm_vcpu_events *events) 1695 { 1696 int i; 1697 1698 /* check whether the reserved field is zero */ 1699 for (i = 0; i < ARRAY_SIZE(events->reserved); i++) 1700 if (events->reserved[i]) 1701 return -EINVAL; 1702 1703 /* check whether the pad field is zero */ 1704 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++) 1705 if (events->exception.pad[i]) 1706 return -EINVAL; 1707 1708 return __kvm_arm_vcpu_set_events(vcpu, events); 1709 } 1710 1711 long kvm_arch_vcpu_ioctl(struct file *filp, 1712 unsigned int ioctl, unsigned long arg) 1713 { 1714 struct kvm_vcpu *vcpu = filp->private_data; 1715 void __user *argp = (void __user *)arg; 1716 struct kvm_device_attr attr; 1717 long r; 1718 1719 switch (ioctl) { 1720 case KVM_ARM_VCPU_INIT: { 1721 struct kvm_vcpu_init init; 1722 1723 r = -EFAULT; 1724 if (copy_from_user(&init, argp, sizeof(init))) 1725 break; 1726 1727 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init); 1728 break; 1729 } 1730 case KVM_SET_ONE_REG: 1731 case KVM_GET_ONE_REG: { 1732 struct kvm_one_reg reg; 1733 1734 r = -ENOEXEC; 1735 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1736 break; 1737 1738 r = -EFAULT; 1739 if (copy_from_user(®, argp, sizeof(reg))) 1740 break; 1741 1742 /* 1743 * We could owe a reset due to PSCI. Handle the pending reset 1744 * here to ensure userspace register accesses are ordered after 1745 * the reset. 1746 */ 1747 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) 1748 kvm_reset_vcpu(vcpu); 1749 1750 if (ioctl == KVM_SET_ONE_REG) 1751 r = kvm_arm_set_reg(vcpu, ®); 1752 else 1753 r = kvm_arm_get_reg(vcpu, ®); 1754 break; 1755 } 1756 case KVM_GET_REG_LIST: { 1757 struct kvm_reg_list __user *user_list = argp; 1758 struct kvm_reg_list reg_list; 1759 unsigned n; 1760 1761 r = -ENOEXEC; 1762 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1763 break; 1764 1765 r = -EPERM; 1766 if (!kvm_arm_vcpu_is_finalized(vcpu)) 1767 break; 1768 1769 r = -EFAULT; 1770 if (copy_from_user(®_list, user_list, sizeof(reg_list))) 1771 break; 1772 n = reg_list.n; 1773 reg_list.n = kvm_arm_num_regs(vcpu); 1774 if (copy_to_user(user_list, ®_list, sizeof(reg_list))) 1775 break; 1776 r = -E2BIG; 1777 if (n < reg_list.n) 1778 break; 1779 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg); 1780 break; 1781 } 1782 case KVM_SET_DEVICE_ATTR: { 1783 r = -EFAULT; 1784 if (copy_from_user(&attr, argp, sizeof(attr))) 1785 break; 1786 r = kvm_arm_vcpu_set_attr(vcpu, &attr); 1787 break; 1788 } 1789 case KVM_GET_DEVICE_ATTR: { 1790 r = -EFAULT; 1791 if (copy_from_user(&attr, argp, sizeof(attr))) 1792 break; 1793 r = kvm_arm_vcpu_get_attr(vcpu, &attr); 1794 break; 1795 } 1796 case KVM_HAS_DEVICE_ATTR: { 1797 r = -EFAULT; 1798 if (copy_from_user(&attr, argp, sizeof(attr))) 1799 break; 1800 r = kvm_arm_vcpu_has_attr(vcpu, &attr); 1801 break; 1802 } 1803 case KVM_GET_VCPU_EVENTS: { 1804 struct kvm_vcpu_events events; 1805 1806 if (!kvm_vcpu_initialized(vcpu)) 1807 return -ENOEXEC; 1808 1809 if (kvm_arm_vcpu_get_events(vcpu, &events)) 1810 return -EINVAL; 1811 1812 if (copy_to_user(argp, &events, sizeof(events))) 1813 return -EFAULT; 1814 1815 return 0; 1816 } 1817 case KVM_SET_VCPU_EVENTS: { 1818 struct kvm_vcpu_events events; 1819 1820 if (!kvm_vcpu_initialized(vcpu)) 1821 return -ENOEXEC; 1822 1823 if (copy_from_user(&events, argp, sizeof(events))) 1824 return -EFAULT; 1825 1826 return kvm_arm_vcpu_set_events(vcpu, &events); 1827 } 1828 case KVM_ARM_VCPU_FINALIZE: { 1829 int what; 1830 1831 if (!kvm_vcpu_initialized(vcpu)) 1832 return -ENOEXEC; 1833 1834 if (get_user(what, (const int __user *)argp)) 1835 return -EFAULT; 1836 1837 return kvm_arm_vcpu_finalize(vcpu, what); 1838 } 1839 default: 1840 r = -EINVAL; 1841 } 1842 1843 return r; 1844 } 1845 1846 long kvm_arch_vcpu_unlocked_ioctl(struct file *filp, unsigned int ioctl, 1847 unsigned long arg) 1848 { 1849 return -ENOIOCTLCMD; 1850 } 1851 1852 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 1853 { 1854 1855 } 1856 1857 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm, 1858 struct kvm_arm_device_addr *dev_addr) 1859 { 1860 switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) { 1861 case KVM_ARM_DEVICE_VGIC_V2: 1862 if (!vgic_present) 1863 return -ENXIO; 1864 return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr); 1865 default: 1866 return -ENODEV; 1867 } 1868 } 1869 1870 static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1871 { 1872 switch (attr->group) { 1873 case KVM_ARM_VM_SMCCC_CTRL: 1874 return kvm_vm_smccc_has_attr(kvm, attr); 1875 default: 1876 return -ENXIO; 1877 } 1878 } 1879 1880 static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1881 { 1882 switch (attr->group) { 1883 case KVM_ARM_VM_SMCCC_CTRL: 1884 return kvm_vm_smccc_set_attr(kvm, attr); 1885 default: 1886 return -ENXIO; 1887 } 1888 } 1889 1890 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 1891 { 1892 struct kvm *kvm = filp->private_data; 1893 void __user *argp = (void __user *)arg; 1894 struct kvm_device_attr attr; 1895 1896 switch (ioctl) { 1897 case KVM_CREATE_IRQCHIP: { 1898 int ret; 1899 if (!vgic_present) 1900 return -ENXIO; 1901 mutex_lock(&kvm->lock); 1902 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2); 1903 mutex_unlock(&kvm->lock); 1904 return ret; 1905 } 1906 case KVM_ARM_SET_DEVICE_ADDR: { 1907 struct kvm_arm_device_addr dev_addr; 1908 1909 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr))) 1910 return -EFAULT; 1911 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr); 1912 } 1913 case KVM_ARM_PREFERRED_TARGET: { 1914 struct kvm_vcpu_init init = { 1915 .target = KVM_ARM_TARGET_GENERIC_V8, 1916 }; 1917 1918 if (copy_to_user(argp, &init, sizeof(init))) 1919 return -EFAULT; 1920 1921 return 0; 1922 } 1923 case KVM_ARM_MTE_COPY_TAGS: { 1924 struct kvm_arm_copy_mte_tags copy_tags; 1925 1926 if (copy_from_user(©_tags, argp, sizeof(copy_tags))) 1927 return -EFAULT; 1928 return kvm_vm_ioctl_mte_copy_tags(kvm, ©_tags); 1929 } 1930 case KVM_ARM_SET_COUNTER_OFFSET: { 1931 struct kvm_arm_counter_offset offset; 1932 1933 if (copy_from_user(&offset, argp, sizeof(offset))) 1934 return -EFAULT; 1935 return kvm_vm_ioctl_set_counter_offset(kvm, &offset); 1936 } 1937 case KVM_HAS_DEVICE_ATTR: { 1938 if (copy_from_user(&attr, argp, sizeof(attr))) 1939 return -EFAULT; 1940 1941 return kvm_vm_has_attr(kvm, &attr); 1942 } 1943 case KVM_SET_DEVICE_ATTR: { 1944 if (copy_from_user(&attr, argp, sizeof(attr))) 1945 return -EFAULT; 1946 1947 return kvm_vm_set_attr(kvm, &attr); 1948 } 1949 case KVM_ARM_GET_REG_WRITABLE_MASKS: { 1950 struct reg_mask_range range; 1951 1952 if (copy_from_user(&range, argp, sizeof(range))) 1953 return -EFAULT; 1954 return kvm_vm_ioctl_get_reg_writable_masks(kvm, &range); 1955 } 1956 default: 1957 return -EINVAL; 1958 } 1959 } 1960 1961 static unsigned long nvhe_percpu_size(void) 1962 { 1963 return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) - 1964 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start); 1965 } 1966 1967 static unsigned long nvhe_percpu_order(void) 1968 { 1969 unsigned long size = nvhe_percpu_size(); 1970 1971 return size ? get_order(size) : 0; 1972 } 1973 1974 static size_t pkvm_host_sve_state_order(void) 1975 { 1976 return get_order(pkvm_host_sve_state_size()); 1977 } 1978 1979 /* A lookup table holding the hypervisor VA for each vector slot */ 1980 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS]; 1981 1982 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot) 1983 { 1984 hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot); 1985 } 1986 1987 static int kvm_init_vector_slots(void) 1988 { 1989 int err; 1990 void *base; 1991 1992 base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector)); 1993 kvm_init_vector_slot(base, HYP_VECTOR_DIRECT); 1994 1995 base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs)); 1996 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT); 1997 1998 if (kvm_system_needs_idmapped_vectors() && 1999 !is_protected_kvm_enabled()) { 2000 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs), 2001 __BP_HARDEN_HYP_VECS_SZ, &base); 2002 if (err) 2003 return err; 2004 } 2005 2006 kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT); 2007 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT); 2008 return 0; 2009 } 2010 2011 static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits) 2012 { 2013 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu); 2014 unsigned long tcr; 2015 2016 /* 2017 * Calculate the raw per-cpu offset without a translation from the 2018 * kernel's mapping to the linear mapping, and store it in tpidr_el2 2019 * so that we can use adr_l to access per-cpu variables in EL2. 2020 * Also drop the KASAN tag which gets in the way... 2021 */ 2022 params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) - 2023 (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start)); 2024 2025 params->mair_el2 = read_sysreg(mair_el1); 2026 2027 tcr = read_sysreg(tcr_el1); 2028 if (cpus_have_final_cap(ARM64_KVM_HVHE)) { 2029 tcr &= ~(TCR_HD | TCR_HA | TCR_A1 | TCR_T0SZ_MASK); 2030 tcr |= TCR_EPD1_MASK; 2031 } else { 2032 unsigned long ips = FIELD_GET(TCR_IPS_MASK, tcr); 2033 2034 tcr &= TCR_EL2_MASK; 2035 tcr |= TCR_EL2_RES1 | FIELD_PREP(TCR_EL2_PS_MASK, ips); 2036 if (lpa2_is_enabled()) 2037 tcr |= TCR_EL2_DS; 2038 } 2039 tcr |= TCR_T0SZ(hyp_va_bits); 2040 params->tcr_el2 = tcr; 2041 2042 params->pgd_pa = kvm_mmu_get_httbr(); 2043 if (is_protected_kvm_enabled()) 2044 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS; 2045 else 2046 params->hcr_el2 = HCR_HOST_NVHE_FLAGS; 2047 if (cpus_have_final_cap(ARM64_KVM_HVHE)) 2048 params->hcr_el2 |= HCR_E2H; 2049 params->vttbr = params->vtcr = 0; 2050 2051 /* 2052 * Flush the init params from the data cache because the struct will 2053 * be read while the MMU is off. 2054 */ 2055 kvm_flush_dcache_to_poc(params, sizeof(*params)); 2056 } 2057 2058 static void hyp_install_host_vector(void) 2059 { 2060 struct kvm_nvhe_init_params *params; 2061 struct arm_smccc_res res; 2062 2063 /* Switch from the HYP stub to our own HYP init vector */ 2064 __hyp_set_vectors(kvm_get_idmap_vector()); 2065 2066 /* 2067 * Call initialization code, and switch to the full blown HYP code. 2068 * If the cpucaps haven't been finalized yet, something has gone very 2069 * wrong, and hyp will crash and burn when it uses any 2070 * cpus_have_*_cap() wrapper. 2071 */ 2072 BUG_ON(!system_capabilities_finalized()); 2073 params = this_cpu_ptr_nvhe_sym(kvm_init_params); 2074 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res); 2075 WARN_ON(res.a0 != SMCCC_RET_SUCCESS); 2076 } 2077 2078 static void cpu_init_hyp_mode(void) 2079 { 2080 hyp_install_host_vector(); 2081 2082 /* 2083 * Disabling SSBD on a non-VHE system requires us to enable SSBS 2084 * at EL2. 2085 */ 2086 if (this_cpu_has_cap(ARM64_SSBS) && 2087 arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) { 2088 kvm_call_hyp_nvhe(__kvm_enable_ssbs); 2089 } 2090 } 2091 2092 static void cpu_hyp_reset(void) 2093 { 2094 if (!is_kernel_in_hyp_mode()) 2095 __hyp_reset_vectors(); 2096 } 2097 2098 /* 2099 * EL2 vectors can be mapped and rerouted in a number of ways, 2100 * depending on the kernel configuration and CPU present: 2101 * 2102 * - If the CPU is affected by Spectre-v2, the hardening sequence is 2103 * placed in one of the vector slots, which is executed before jumping 2104 * to the real vectors. 2105 * 2106 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot 2107 * containing the hardening sequence is mapped next to the idmap page, 2108 * and executed before jumping to the real vectors. 2109 * 2110 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an 2111 * empty slot is selected, mapped next to the idmap page, and 2112 * executed before jumping to the real vectors. 2113 * 2114 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with 2115 * VHE, as we don't have hypervisor-specific mappings. If the system 2116 * is VHE and yet selects this capability, it will be ignored. 2117 */ 2118 static void cpu_set_hyp_vector(void) 2119 { 2120 struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data); 2121 void *vector = hyp_spectre_vector_selector[data->slot]; 2122 2123 if (!is_protected_kvm_enabled()) 2124 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector; 2125 else 2126 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot); 2127 } 2128 2129 static void cpu_hyp_init_context(void) 2130 { 2131 kvm_init_host_cpu_context(host_data_ptr(host_ctxt)); 2132 kvm_init_host_debug_data(); 2133 2134 if (!is_kernel_in_hyp_mode()) 2135 cpu_init_hyp_mode(); 2136 } 2137 2138 static void cpu_hyp_init_features(void) 2139 { 2140 cpu_set_hyp_vector(); 2141 2142 if (is_kernel_in_hyp_mode()) { 2143 kvm_timer_init_vhe(); 2144 kvm_debug_init_vhe(); 2145 } 2146 2147 if (vgic_present) 2148 kvm_vgic_init_cpu_hardware(); 2149 } 2150 2151 static void cpu_hyp_reinit(void) 2152 { 2153 cpu_hyp_reset(); 2154 cpu_hyp_init_context(); 2155 cpu_hyp_init_features(); 2156 } 2157 2158 static void cpu_hyp_init(void *discard) 2159 { 2160 if (!__this_cpu_read(kvm_hyp_initialized)) { 2161 cpu_hyp_reinit(); 2162 __this_cpu_write(kvm_hyp_initialized, 1); 2163 } 2164 } 2165 2166 static void cpu_hyp_uninit(void *discard) 2167 { 2168 if (!is_protected_kvm_enabled() && __this_cpu_read(kvm_hyp_initialized)) { 2169 cpu_hyp_reset(); 2170 __this_cpu_write(kvm_hyp_initialized, 0); 2171 } 2172 } 2173 2174 int kvm_arch_enable_virtualization_cpu(void) 2175 { 2176 /* 2177 * Most calls to this function are made with migration 2178 * disabled, but not with preemption disabled. The former is 2179 * enough to ensure correctness, but most of the helpers 2180 * expect the later and will throw a tantrum otherwise. 2181 */ 2182 preempt_disable(); 2183 2184 cpu_hyp_init(NULL); 2185 2186 kvm_vgic_cpu_up(); 2187 kvm_timer_cpu_up(); 2188 2189 preempt_enable(); 2190 2191 return 0; 2192 } 2193 2194 void kvm_arch_disable_virtualization_cpu(void) 2195 { 2196 kvm_timer_cpu_down(); 2197 kvm_vgic_cpu_down(); 2198 2199 if (!is_protected_kvm_enabled()) 2200 cpu_hyp_uninit(NULL); 2201 } 2202 2203 #ifdef CONFIG_CPU_PM 2204 static int hyp_init_cpu_pm_notifier(struct notifier_block *self, 2205 unsigned long cmd, 2206 void *v) 2207 { 2208 /* 2209 * kvm_hyp_initialized is left with its old value over 2210 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should 2211 * re-enable hyp. 2212 */ 2213 switch (cmd) { 2214 case CPU_PM_ENTER: 2215 if (__this_cpu_read(kvm_hyp_initialized)) 2216 /* 2217 * don't update kvm_hyp_initialized here 2218 * so that the hyp will be re-enabled 2219 * when we resume. See below. 2220 */ 2221 cpu_hyp_reset(); 2222 2223 return NOTIFY_OK; 2224 case CPU_PM_ENTER_FAILED: 2225 case CPU_PM_EXIT: 2226 if (__this_cpu_read(kvm_hyp_initialized)) 2227 /* The hyp was enabled before suspend. */ 2228 cpu_hyp_reinit(); 2229 2230 return NOTIFY_OK; 2231 2232 default: 2233 return NOTIFY_DONE; 2234 } 2235 } 2236 2237 static struct notifier_block hyp_init_cpu_pm_nb = { 2238 .notifier_call = hyp_init_cpu_pm_notifier, 2239 }; 2240 2241 static void __init hyp_cpu_pm_init(void) 2242 { 2243 if (!is_protected_kvm_enabled()) 2244 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb); 2245 } 2246 static void __init hyp_cpu_pm_exit(void) 2247 { 2248 if (!is_protected_kvm_enabled()) 2249 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb); 2250 } 2251 #else 2252 static inline void __init hyp_cpu_pm_init(void) 2253 { 2254 } 2255 static inline void __init hyp_cpu_pm_exit(void) 2256 { 2257 } 2258 #endif 2259 2260 static void __init init_cpu_logical_map(void) 2261 { 2262 unsigned int cpu; 2263 2264 /* 2265 * Copy the MPIDR <-> logical CPU ID mapping to hyp. 2266 * Only copy the set of online CPUs whose features have been checked 2267 * against the finalized system capabilities. The hypervisor will not 2268 * allow any other CPUs from the `possible` set to boot. 2269 */ 2270 for_each_online_cpu(cpu) 2271 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu); 2272 } 2273 2274 #define init_psci_0_1_impl_state(config, what) \ 2275 config.psci_0_1_ ## what ## _implemented = psci_ops.what 2276 2277 static bool __init init_psci_relay(void) 2278 { 2279 /* 2280 * If PSCI has not been initialized, protected KVM cannot install 2281 * itself on newly booted CPUs. 2282 */ 2283 if (!psci_ops.get_version) { 2284 kvm_err("Cannot initialize protected mode without PSCI\n"); 2285 return false; 2286 } 2287 2288 kvm_host_psci_config.version = psci_ops.get_version(); 2289 kvm_host_psci_config.smccc_version = arm_smccc_get_version(); 2290 2291 if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) { 2292 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids(); 2293 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend); 2294 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on); 2295 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off); 2296 init_psci_0_1_impl_state(kvm_host_psci_config, migrate); 2297 } 2298 return true; 2299 } 2300 2301 static int __init init_subsystems(void) 2302 { 2303 int err = 0; 2304 2305 /* 2306 * Enable hardware so that subsystem initialisation can access EL2. 2307 */ 2308 on_each_cpu(cpu_hyp_init, NULL, 1); 2309 2310 /* 2311 * Register CPU lower-power notifier 2312 */ 2313 hyp_cpu_pm_init(); 2314 2315 /* 2316 * Init HYP view of VGIC 2317 */ 2318 err = kvm_vgic_hyp_init(); 2319 switch (err) { 2320 case 0: 2321 vgic_present = true; 2322 break; 2323 case -ENODEV: 2324 case -ENXIO: 2325 /* 2326 * No VGIC? No pKVM for you. 2327 * 2328 * Protected mode assumes that VGICv3 is present, so no point 2329 * in trying to hobble along if vgic initialization fails. 2330 */ 2331 if (is_protected_kvm_enabled()) 2332 goto out; 2333 2334 /* 2335 * Otherwise, userspace could choose to implement a GIC for its 2336 * guest on non-cooperative hardware. 2337 */ 2338 vgic_present = false; 2339 err = 0; 2340 break; 2341 default: 2342 goto out; 2343 } 2344 2345 if (kvm_mode == KVM_MODE_NV && 2346 !(vgic_present && (kvm_vgic_global_state.type == VGIC_V3 || 2347 kvm_vgic_global_state.has_gcie_v3_compat))) { 2348 kvm_err("NV support requires GICv3 or GICv5 with legacy support, giving up\n"); 2349 err = -EINVAL; 2350 goto out; 2351 } 2352 2353 /* 2354 * Init HYP architected timer support 2355 */ 2356 err = kvm_timer_hyp_init(vgic_present); 2357 if (err) 2358 goto out; 2359 2360 kvm_register_perf_callbacks(NULL); 2361 2362 out: 2363 if (err) 2364 hyp_cpu_pm_exit(); 2365 2366 if (err || !is_protected_kvm_enabled()) 2367 on_each_cpu(cpu_hyp_uninit, NULL, 1); 2368 2369 return err; 2370 } 2371 2372 static void __init teardown_subsystems(void) 2373 { 2374 kvm_unregister_perf_callbacks(); 2375 hyp_cpu_pm_exit(); 2376 } 2377 2378 static void __init teardown_hyp_mode(void) 2379 { 2380 bool free_sve = system_supports_sve() && is_protected_kvm_enabled(); 2381 int cpu; 2382 2383 free_hyp_pgds(); 2384 for_each_possible_cpu(cpu) { 2385 if (per_cpu(kvm_hyp_initialized, cpu)) 2386 continue; 2387 2388 free_pages(per_cpu(kvm_arm_hyp_stack_base, cpu), NVHE_STACK_SHIFT - PAGE_SHIFT); 2389 2390 if (!kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu]) 2391 continue; 2392 2393 if (free_sve) { 2394 struct cpu_sve_state *sve_state; 2395 2396 sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state; 2397 free_pages((unsigned long) sve_state, pkvm_host_sve_state_order()); 2398 } 2399 2400 free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order()); 2401 2402 } 2403 } 2404 2405 static int __init do_pkvm_init(u32 hyp_va_bits) 2406 { 2407 void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)); 2408 int ret; 2409 2410 preempt_disable(); 2411 cpu_hyp_init_context(); 2412 ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size, 2413 num_possible_cpus(), kern_hyp_va(per_cpu_base), 2414 hyp_va_bits); 2415 cpu_hyp_init_features(); 2416 2417 /* 2418 * The stub hypercalls are now disabled, so set our local flag to 2419 * prevent a later re-init attempt in kvm_arch_enable_virtualization_cpu(). 2420 */ 2421 __this_cpu_write(kvm_hyp_initialized, 1); 2422 preempt_enable(); 2423 2424 return ret; 2425 } 2426 2427 static u64 get_hyp_id_aa64pfr0_el1(void) 2428 { 2429 /* 2430 * Track whether the system isn't affected by spectre/meltdown in the 2431 * hypervisor's view of id_aa64pfr0_el1, used for protected VMs. 2432 * Although this is per-CPU, we make it global for simplicity, e.g., not 2433 * to have to worry about vcpu migration. 2434 * 2435 * Unlike for non-protected VMs, userspace cannot override this for 2436 * protected VMs. 2437 */ 2438 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); 2439 2440 val &= ~(ID_AA64PFR0_EL1_CSV2 | 2441 ID_AA64PFR0_EL1_CSV3); 2442 2443 val |= FIELD_PREP(ID_AA64PFR0_EL1_CSV2, 2444 arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED); 2445 val |= FIELD_PREP(ID_AA64PFR0_EL1_CSV3, 2446 arm64_get_meltdown_state() == SPECTRE_UNAFFECTED); 2447 2448 return val; 2449 } 2450 2451 static void kvm_hyp_init_symbols(void) 2452 { 2453 kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1(); 2454 kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1); 2455 kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1); 2456 kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1); 2457 kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1); 2458 kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 2459 kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 2460 kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1); 2461 kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1); 2462 kvm_nvhe_sym(__icache_flags) = __icache_flags; 2463 kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits; 2464 2465 /* Propagate the FGT state to the nVHE side */ 2466 kvm_nvhe_sym(hfgrtr_masks) = hfgrtr_masks; 2467 kvm_nvhe_sym(hfgwtr_masks) = hfgwtr_masks; 2468 kvm_nvhe_sym(hfgitr_masks) = hfgitr_masks; 2469 kvm_nvhe_sym(hdfgrtr_masks) = hdfgrtr_masks; 2470 kvm_nvhe_sym(hdfgwtr_masks) = hdfgwtr_masks; 2471 kvm_nvhe_sym(hafgrtr_masks) = hafgrtr_masks; 2472 kvm_nvhe_sym(hfgrtr2_masks) = hfgrtr2_masks; 2473 kvm_nvhe_sym(hfgwtr2_masks) = hfgwtr2_masks; 2474 kvm_nvhe_sym(hfgitr2_masks) = hfgitr2_masks; 2475 kvm_nvhe_sym(hdfgrtr2_masks)= hdfgrtr2_masks; 2476 kvm_nvhe_sym(hdfgwtr2_masks)= hdfgwtr2_masks; 2477 2478 /* 2479 * Flush entire BSS since part of its data containing init symbols is read 2480 * while the MMU is off. 2481 */ 2482 kvm_flush_dcache_to_poc(kvm_ksym_ref(__hyp_bss_start), 2483 kvm_ksym_ref(__hyp_bss_end) - kvm_ksym_ref(__hyp_bss_start)); 2484 } 2485 2486 static int __init kvm_hyp_init_protection(u32 hyp_va_bits) 2487 { 2488 void *addr = phys_to_virt(hyp_mem_base); 2489 int ret; 2490 2491 ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP); 2492 if (ret) 2493 return ret; 2494 2495 ret = do_pkvm_init(hyp_va_bits); 2496 if (ret) 2497 return ret; 2498 2499 free_hyp_pgds(); 2500 2501 return 0; 2502 } 2503 2504 static int init_pkvm_host_sve_state(void) 2505 { 2506 int cpu; 2507 2508 if (!system_supports_sve()) 2509 return 0; 2510 2511 /* Allocate pages for host sve state in protected mode. */ 2512 for_each_possible_cpu(cpu) { 2513 struct page *page = alloc_pages(GFP_KERNEL, pkvm_host_sve_state_order()); 2514 2515 if (!page) 2516 return -ENOMEM; 2517 2518 per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state = page_address(page); 2519 } 2520 2521 /* 2522 * Don't map the pages in hyp since these are only used in protected 2523 * mode, which will (re)create its own mapping when initialized. 2524 */ 2525 2526 return 0; 2527 } 2528 2529 /* 2530 * Finalizes the initialization of hyp mode, once everything else is initialized 2531 * and the initialziation process cannot fail. 2532 */ 2533 static void finalize_init_hyp_mode(void) 2534 { 2535 int cpu; 2536 2537 if (system_supports_sve() && is_protected_kvm_enabled()) { 2538 for_each_possible_cpu(cpu) { 2539 struct cpu_sve_state *sve_state; 2540 2541 sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state; 2542 per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state = 2543 kern_hyp_va(sve_state); 2544 } 2545 } 2546 } 2547 2548 static void pkvm_hyp_init_ptrauth(void) 2549 { 2550 struct kvm_cpu_context *hyp_ctxt; 2551 int cpu; 2552 2553 for_each_possible_cpu(cpu) { 2554 hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu); 2555 hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long(); 2556 hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long(); 2557 hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long(); 2558 hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long(); 2559 hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long(); 2560 hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long(); 2561 hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long(); 2562 hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long(); 2563 hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long(); 2564 hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long(); 2565 } 2566 } 2567 2568 /* Inits Hyp-mode on all online CPUs */ 2569 static int __init init_hyp_mode(void) 2570 { 2571 u32 hyp_va_bits; 2572 int cpu; 2573 int err = -ENOMEM; 2574 2575 /* 2576 * The protected Hyp-mode cannot be initialized if the memory pool 2577 * allocation has failed. 2578 */ 2579 if (is_protected_kvm_enabled() && !hyp_mem_base) 2580 goto out_err; 2581 2582 /* 2583 * Allocate Hyp PGD and setup Hyp identity mapping 2584 */ 2585 err = kvm_mmu_init(&hyp_va_bits); 2586 if (err) 2587 goto out_err; 2588 2589 /* 2590 * Allocate stack pages for Hypervisor-mode 2591 */ 2592 for_each_possible_cpu(cpu) { 2593 unsigned long stack_base; 2594 2595 stack_base = __get_free_pages(GFP_KERNEL, NVHE_STACK_SHIFT - PAGE_SHIFT); 2596 if (!stack_base) { 2597 err = -ENOMEM; 2598 goto out_err; 2599 } 2600 2601 per_cpu(kvm_arm_hyp_stack_base, cpu) = stack_base; 2602 } 2603 2604 /* 2605 * Allocate and initialize pages for Hypervisor-mode percpu regions. 2606 */ 2607 for_each_possible_cpu(cpu) { 2608 struct page *page; 2609 void *page_addr; 2610 2611 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order()); 2612 if (!page) { 2613 err = -ENOMEM; 2614 goto out_err; 2615 } 2616 2617 page_addr = page_address(page); 2618 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size()); 2619 kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr; 2620 } 2621 2622 /* 2623 * Map the Hyp-code called directly from the host 2624 */ 2625 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start), 2626 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC); 2627 if (err) { 2628 kvm_err("Cannot map world-switch code\n"); 2629 goto out_err; 2630 } 2631 2632 err = create_hyp_mappings(kvm_ksym_ref(__hyp_data_start), 2633 kvm_ksym_ref(__hyp_data_end), PAGE_HYP); 2634 if (err) { 2635 kvm_err("Cannot map .hyp.data section\n"); 2636 goto out_err; 2637 } 2638 2639 err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start), 2640 kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO); 2641 if (err) { 2642 kvm_err("Cannot map .hyp.rodata section\n"); 2643 goto out_err; 2644 } 2645 2646 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata), 2647 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO); 2648 if (err) { 2649 kvm_err("Cannot map rodata section\n"); 2650 goto out_err; 2651 } 2652 2653 /* 2654 * .hyp.bss is guaranteed to be placed at the beginning of the .bss 2655 * section thanks to an assertion in the linker script. Map it RW and 2656 * the rest of .bss RO. 2657 */ 2658 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start), 2659 kvm_ksym_ref(__hyp_bss_end), PAGE_HYP); 2660 if (err) { 2661 kvm_err("Cannot map hyp bss section: %d\n", err); 2662 goto out_err; 2663 } 2664 2665 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end), 2666 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO); 2667 if (err) { 2668 kvm_err("Cannot map bss section\n"); 2669 goto out_err; 2670 } 2671 2672 /* 2673 * Map the Hyp stack pages 2674 */ 2675 for_each_possible_cpu(cpu) { 2676 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu); 2677 char *stack_base = (char *)per_cpu(kvm_arm_hyp_stack_base, cpu); 2678 2679 err = create_hyp_stack(__pa(stack_base), ¶ms->stack_hyp_va); 2680 if (err) { 2681 kvm_err("Cannot map hyp stack\n"); 2682 goto out_err; 2683 } 2684 2685 /* 2686 * Save the stack PA in nvhe_init_params. This will be needed 2687 * to recreate the stack mapping in protected nVHE mode. 2688 * __hyp_pa() won't do the right thing there, since the stack 2689 * has been mapped in the flexible private VA space. 2690 */ 2691 params->stack_pa = __pa(stack_base); 2692 } 2693 2694 for_each_possible_cpu(cpu) { 2695 char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu]; 2696 char *percpu_end = percpu_begin + nvhe_percpu_size(); 2697 2698 /* Map Hyp percpu pages */ 2699 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP); 2700 if (err) { 2701 kvm_err("Cannot map hyp percpu region\n"); 2702 goto out_err; 2703 } 2704 2705 /* Prepare the CPU initialization parameters */ 2706 cpu_prepare_hyp_mode(cpu, hyp_va_bits); 2707 } 2708 2709 kvm_hyp_init_symbols(); 2710 2711 if (is_protected_kvm_enabled()) { 2712 if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) && 2713 cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH)) 2714 pkvm_hyp_init_ptrauth(); 2715 2716 init_cpu_logical_map(); 2717 2718 if (!init_psci_relay()) { 2719 err = -ENODEV; 2720 goto out_err; 2721 } 2722 2723 err = init_pkvm_host_sve_state(); 2724 if (err) 2725 goto out_err; 2726 2727 err = kvm_hyp_init_protection(hyp_va_bits); 2728 if (err) { 2729 kvm_err("Failed to init hyp memory protection\n"); 2730 goto out_err; 2731 } 2732 } 2733 2734 return 0; 2735 2736 out_err: 2737 teardown_hyp_mode(); 2738 kvm_err("error initializing Hyp mode: %d\n", err); 2739 return err; 2740 } 2741 2742 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr) 2743 { 2744 struct kvm_vcpu *vcpu = NULL; 2745 struct kvm_mpidr_data *data; 2746 unsigned long i; 2747 2748 mpidr &= MPIDR_HWID_BITMASK; 2749 2750 rcu_read_lock(); 2751 data = rcu_dereference(kvm->arch.mpidr_data); 2752 2753 if (data) { 2754 u16 idx = kvm_mpidr_index(data, mpidr); 2755 2756 vcpu = kvm_get_vcpu(kvm, data->cmpidr_to_idx[idx]); 2757 if (mpidr != kvm_vcpu_get_mpidr_aff(vcpu)) 2758 vcpu = NULL; 2759 } 2760 2761 rcu_read_unlock(); 2762 2763 if (vcpu) 2764 return vcpu; 2765 2766 kvm_for_each_vcpu(i, vcpu, kvm) { 2767 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu)) 2768 return vcpu; 2769 } 2770 return NULL; 2771 } 2772 2773 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm) 2774 { 2775 return irqchip_in_kernel(kvm); 2776 } 2777 2778 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 2779 struct irq_bypass_producer *prod) 2780 { 2781 struct kvm_kernel_irqfd *irqfd = 2782 container_of(cons, struct kvm_kernel_irqfd, consumer); 2783 struct kvm_kernel_irq_routing_entry *irq_entry = &irqfd->irq_entry; 2784 2785 /* 2786 * The only thing we have a chance of directly-injecting is LPIs. Maybe 2787 * one day... 2788 */ 2789 if (irq_entry->type != KVM_IRQ_ROUTING_MSI) 2790 return 0; 2791 2792 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq, 2793 &irqfd->irq_entry); 2794 } 2795 2796 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 2797 struct irq_bypass_producer *prod) 2798 { 2799 struct kvm_kernel_irqfd *irqfd = 2800 container_of(cons, struct kvm_kernel_irqfd, consumer); 2801 struct kvm_kernel_irq_routing_entry *irq_entry = &irqfd->irq_entry; 2802 2803 if (irq_entry->type != KVM_IRQ_ROUTING_MSI) 2804 return; 2805 2806 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq); 2807 } 2808 2809 void kvm_arch_update_irqfd_routing(struct kvm_kernel_irqfd *irqfd, 2810 struct kvm_kernel_irq_routing_entry *old, 2811 struct kvm_kernel_irq_routing_entry *new) 2812 { 2813 if (old->type == KVM_IRQ_ROUTING_MSI && 2814 new->type == KVM_IRQ_ROUTING_MSI && 2815 !memcmp(&old->msi, &new->msi, sizeof(new->msi))) 2816 return; 2817 2818 /* 2819 * Remapping the vLPI requires taking the its_lock mutex to resolve 2820 * the new translation. We're in spinlock land at this point, so no 2821 * chance of resolving the translation. 2822 * 2823 * Unmap the vLPI and fall back to software LPI injection. 2824 */ 2825 return kvm_vgic_v4_unset_forwarding(irqfd->kvm, irqfd->producer->irq); 2826 } 2827 2828 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons) 2829 { 2830 struct kvm_kernel_irqfd *irqfd = 2831 container_of(cons, struct kvm_kernel_irqfd, consumer); 2832 2833 kvm_arm_halt_guest(irqfd->kvm); 2834 } 2835 2836 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons) 2837 { 2838 struct kvm_kernel_irqfd *irqfd = 2839 container_of(cons, struct kvm_kernel_irqfd, consumer); 2840 2841 kvm_arm_resume_guest(irqfd->kvm); 2842 } 2843 2844 /* Initialize Hyp-mode and memory mappings on all CPUs */ 2845 static __init int kvm_arm_init(void) 2846 { 2847 int err; 2848 bool in_hyp_mode; 2849 2850 if (!is_hyp_mode_available()) { 2851 kvm_info("HYP mode not available\n"); 2852 return -ENODEV; 2853 } 2854 2855 if (kvm_get_mode() == KVM_MODE_NONE) { 2856 kvm_info("KVM disabled from command line\n"); 2857 return -ENODEV; 2858 } 2859 2860 err = kvm_sys_reg_table_init(); 2861 if (err) { 2862 kvm_info("Error initializing system register tables"); 2863 return err; 2864 } 2865 2866 in_hyp_mode = is_kernel_in_hyp_mode(); 2867 2868 if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) || 2869 cpus_have_final_cap(ARM64_WORKAROUND_1508412)) 2870 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \ 2871 "Only trusted guests should be used on this system.\n"); 2872 2873 err = kvm_set_ipa_limit(); 2874 if (err) 2875 return err; 2876 2877 err = kvm_arm_init_sve(); 2878 if (err) 2879 return err; 2880 2881 err = kvm_arm_vmid_alloc_init(); 2882 if (err) { 2883 kvm_err("Failed to initialize VMID allocator.\n"); 2884 return err; 2885 } 2886 2887 if (!in_hyp_mode) { 2888 err = init_hyp_mode(); 2889 if (err) 2890 goto out_err; 2891 } 2892 2893 err = kvm_init_vector_slots(); 2894 if (err) { 2895 kvm_err("Cannot initialise vector slots\n"); 2896 goto out_hyp; 2897 } 2898 2899 err = init_subsystems(); 2900 if (err) 2901 goto out_hyp; 2902 2903 kvm_info("%s%sVHE%s mode initialized successfully\n", 2904 in_hyp_mode ? "" : (is_protected_kvm_enabled() ? 2905 "Protected " : "Hyp "), 2906 in_hyp_mode ? "" : (cpus_have_final_cap(ARM64_KVM_HVHE) ? 2907 "h" : "n"), 2908 cpus_have_final_cap(ARM64_HAS_NESTED_VIRT) ? "+NV2": ""); 2909 2910 /* 2911 * FIXME: Do something reasonable if kvm_init() fails after pKVM 2912 * hypervisor protection is finalized. 2913 */ 2914 err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE); 2915 if (err) 2916 goto out_subs; 2917 2918 /* 2919 * This should be called after initialization is done and failure isn't 2920 * possible anymore. 2921 */ 2922 if (!in_hyp_mode) 2923 finalize_init_hyp_mode(); 2924 2925 kvm_arm_initialised = true; 2926 2927 return 0; 2928 2929 out_subs: 2930 teardown_subsystems(); 2931 out_hyp: 2932 if (!in_hyp_mode) 2933 teardown_hyp_mode(); 2934 out_err: 2935 kvm_arm_vmid_alloc_free(); 2936 return err; 2937 } 2938 2939 static int __init early_kvm_mode_cfg(char *arg) 2940 { 2941 if (!arg) 2942 return -EINVAL; 2943 2944 if (strcmp(arg, "none") == 0) { 2945 kvm_mode = KVM_MODE_NONE; 2946 return 0; 2947 } 2948 2949 if (!is_hyp_mode_available()) { 2950 pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n"); 2951 return 0; 2952 } 2953 2954 if (strcmp(arg, "protected") == 0) { 2955 if (!is_kernel_in_hyp_mode()) 2956 kvm_mode = KVM_MODE_PROTECTED; 2957 else 2958 pr_warn_once("Protected KVM not available with VHE\n"); 2959 2960 return 0; 2961 } 2962 2963 if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) { 2964 kvm_mode = KVM_MODE_DEFAULT; 2965 return 0; 2966 } 2967 2968 if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) { 2969 kvm_mode = KVM_MODE_NV; 2970 return 0; 2971 } 2972 2973 return -EINVAL; 2974 } 2975 early_param("kvm-arm.mode", early_kvm_mode_cfg); 2976 2977 static int __init early_kvm_wfx_trap_policy_cfg(char *arg, enum kvm_wfx_trap_policy *p) 2978 { 2979 if (!arg) 2980 return -EINVAL; 2981 2982 if (strcmp(arg, "trap") == 0) { 2983 *p = KVM_WFX_TRAP; 2984 return 0; 2985 } 2986 2987 if (strcmp(arg, "notrap") == 0) { 2988 *p = KVM_WFX_NOTRAP; 2989 return 0; 2990 } 2991 2992 return -EINVAL; 2993 } 2994 2995 static int __init early_kvm_wfi_trap_policy_cfg(char *arg) 2996 { 2997 return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfi_trap_policy); 2998 } 2999 early_param("kvm-arm.wfi_trap_policy", early_kvm_wfi_trap_policy_cfg); 3000 3001 static int __init early_kvm_wfe_trap_policy_cfg(char *arg) 3002 { 3003 return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfe_trap_policy); 3004 } 3005 early_param("kvm-arm.wfe_trap_policy", early_kvm_wfe_trap_policy_cfg); 3006 3007 enum kvm_mode kvm_get_mode(void) 3008 { 3009 return kvm_mode; 3010 } 3011 3012 module_init(kvm_arm_init); 3013