1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 4 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 5 */ 6 7 #include <linux/bug.h> 8 #include <linux/cpu_pm.h> 9 #include <linux/entry-kvm.h> 10 #include <linux/errno.h> 11 #include <linux/err.h> 12 #include <linux/kvm_host.h> 13 #include <linux/list.h> 14 #include <linux/module.h> 15 #include <linux/vmalloc.h> 16 #include <linux/fs.h> 17 #include <linux/mman.h> 18 #include <linux/sched.h> 19 #include <linux/kvm.h> 20 #include <linux/kvm_irqfd.h> 21 #include <linux/irqbypass.h> 22 #include <linux/sched/stat.h> 23 #include <linux/psci.h> 24 #include <trace/events/kvm.h> 25 26 #define CREATE_TRACE_POINTS 27 #include "trace_arm.h" 28 29 #include <linux/uaccess.h> 30 #include <asm/ptrace.h> 31 #include <asm/mman.h> 32 #include <asm/tlbflush.h> 33 #include <asm/cacheflush.h> 34 #include <asm/cpufeature.h> 35 #include <asm/virt.h> 36 #include <asm/kvm_arm.h> 37 #include <asm/kvm_asm.h> 38 #include <asm/kvm_mmu.h> 39 #include <asm/kvm_nested.h> 40 #include <asm/kvm_pkvm.h> 41 #include <asm/kvm_emulate.h> 42 #include <asm/sections.h> 43 44 #include <kvm/arm_hypercalls.h> 45 #include <kvm/arm_pmu.h> 46 #include <kvm/arm_psci.h> 47 48 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT; 49 50 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector); 51 52 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page); 53 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params); 54 55 DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt); 56 57 static bool vgic_present, kvm_arm_initialised; 58 59 static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized); 60 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use); 61 62 bool is_kvm_arm_initialised(void) 63 { 64 return kvm_arm_initialised; 65 } 66 67 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 68 { 69 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 70 } 71 72 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 73 struct kvm_enable_cap *cap) 74 { 75 int r; 76 u64 new_cap; 77 78 if (cap->flags) 79 return -EINVAL; 80 81 switch (cap->cap) { 82 case KVM_CAP_ARM_NISV_TO_USER: 83 r = 0; 84 set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER, 85 &kvm->arch.flags); 86 break; 87 case KVM_CAP_ARM_MTE: 88 mutex_lock(&kvm->lock); 89 if (!system_supports_mte() || kvm->created_vcpus) { 90 r = -EINVAL; 91 } else { 92 r = 0; 93 set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags); 94 } 95 mutex_unlock(&kvm->lock); 96 break; 97 case KVM_CAP_ARM_SYSTEM_SUSPEND: 98 r = 0; 99 set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags); 100 break; 101 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE: 102 new_cap = cap->args[0]; 103 104 mutex_lock(&kvm->slots_lock); 105 /* 106 * To keep things simple, allow changing the chunk 107 * size only when no memory slots have been created. 108 */ 109 if (!kvm_are_all_memslots_empty(kvm)) { 110 r = -EINVAL; 111 } else if (new_cap && !kvm_is_block_size_supported(new_cap)) { 112 r = -EINVAL; 113 } else { 114 r = 0; 115 kvm->arch.mmu.split_page_chunk_size = new_cap; 116 } 117 mutex_unlock(&kvm->slots_lock); 118 break; 119 default: 120 r = -EINVAL; 121 break; 122 } 123 124 return r; 125 } 126 127 static int kvm_arm_default_max_vcpus(void) 128 { 129 return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS; 130 } 131 132 /** 133 * kvm_arch_init_vm - initializes a VM data structure 134 * @kvm: pointer to the KVM struct 135 */ 136 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 137 { 138 int ret; 139 140 mutex_init(&kvm->arch.config_lock); 141 142 #ifdef CONFIG_LOCKDEP 143 /* Clue in lockdep that the config_lock must be taken inside kvm->lock */ 144 mutex_lock(&kvm->lock); 145 mutex_lock(&kvm->arch.config_lock); 146 mutex_unlock(&kvm->arch.config_lock); 147 mutex_unlock(&kvm->lock); 148 #endif 149 150 ret = kvm_share_hyp(kvm, kvm + 1); 151 if (ret) 152 return ret; 153 154 ret = pkvm_init_host_vm(kvm); 155 if (ret) 156 goto err_unshare_kvm; 157 158 if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) { 159 ret = -ENOMEM; 160 goto err_unshare_kvm; 161 } 162 cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask); 163 164 ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type); 165 if (ret) 166 goto err_free_cpumask; 167 168 kvm_vgic_early_init(kvm); 169 170 kvm_timer_init_vm(kvm); 171 172 /* The maximum number of VCPUs is limited by the host's GIC model */ 173 kvm->max_vcpus = kvm_arm_default_max_vcpus(); 174 175 kvm_arm_init_hypercalls(kvm); 176 177 bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES); 178 179 return 0; 180 181 err_free_cpumask: 182 free_cpumask_var(kvm->arch.supported_cpus); 183 err_unshare_kvm: 184 kvm_unshare_hyp(kvm, kvm + 1); 185 return ret; 186 } 187 188 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 189 { 190 return VM_FAULT_SIGBUS; 191 } 192 193 194 /** 195 * kvm_arch_destroy_vm - destroy the VM data structure 196 * @kvm: pointer to the KVM struct 197 */ 198 void kvm_arch_destroy_vm(struct kvm *kvm) 199 { 200 bitmap_free(kvm->arch.pmu_filter); 201 free_cpumask_var(kvm->arch.supported_cpus); 202 203 kvm_vgic_destroy(kvm); 204 205 if (is_protected_kvm_enabled()) 206 pkvm_destroy_hyp_vm(kvm); 207 208 kfree(kvm->arch.mpidr_data); 209 kvm_destroy_vcpus(kvm); 210 211 kvm_unshare_hyp(kvm, kvm + 1); 212 213 kvm_arm_teardown_hypercalls(kvm); 214 } 215 216 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 217 { 218 int r; 219 switch (ext) { 220 case KVM_CAP_IRQCHIP: 221 r = vgic_present; 222 break; 223 case KVM_CAP_IOEVENTFD: 224 case KVM_CAP_USER_MEMORY: 225 case KVM_CAP_SYNC_MMU: 226 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 227 case KVM_CAP_ONE_REG: 228 case KVM_CAP_ARM_PSCI: 229 case KVM_CAP_ARM_PSCI_0_2: 230 case KVM_CAP_READONLY_MEM: 231 case KVM_CAP_MP_STATE: 232 case KVM_CAP_IMMEDIATE_EXIT: 233 case KVM_CAP_VCPU_EVENTS: 234 case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2: 235 case KVM_CAP_ARM_NISV_TO_USER: 236 case KVM_CAP_ARM_INJECT_EXT_DABT: 237 case KVM_CAP_SET_GUEST_DEBUG: 238 case KVM_CAP_VCPU_ATTRIBUTES: 239 case KVM_CAP_PTP_KVM: 240 case KVM_CAP_ARM_SYSTEM_SUSPEND: 241 case KVM_CAP_IRQFD_RESAMPLE: 242 case KVM_CAP_COUNTER_OFFSET: 243 r = 1; 244 break; 245 case KVM_CAP_SET_GUEST_DEBUG2: 246 return KVM_GUESTDBG_VALID_MASK; 247 case KVM_CAP_ARM_SET_DEVICE_ADDR: 248 r = 1; 249 break; 250 case KVM_CAP_NR_VCPUS: 251 /* 252 * ARM64 treats KVM_CAP_NR_CPUS differently from all other 253 * architectures, as it does not always bound it to 254 * KVM_CAP_MAX_VCPUS. It should not matter much because 255 * this is just an advisory value. 256 */ 257 r = min_t(unsigned int, num_online_cpus(), 258 kvm_arm_default_max_vcpus()); 259 break; 260 case KVM_CAP_MAX_VCPUS: 261 case KVM_CAP_MAX_VCPU_ID: 262 if (kvm) 263 r = kvm->max_vcpus; 264 else 265 r = kvm_arm_default_max_vcpus(); 266 break; 267 case KVM_CAP_MSI_DEVID: 268 if (!kvm) 269 r = -EINVAL; 270 else 271 r = kvm->arch.vgic.msis_require_devid; 272 break; 273 case KVM_CAP_ARM_USER_IRQ: 274 /* 275 * 1: EL1_VTIMER, EL1_PTIMER, and PMU. 276 * (bump this number if adding more devices) 277 */ 278 r = 1; 279 break; 280 case KVM_CAP_ARM_MTE: 281 r = system_supports_mte(); 282 break; 283 case KVM_CAP_STEAL_TIME: 284 r = kvm_arm_pvtime_supported(); 285 break; 286 case KVM_CAP_ARM_EL1_32BIT: 287 r = cpus_have_final_cap(ARM64_HAS_32BIT_EL1); 288 break; 289 case KVM_CAP_GUEST_DEBUG_HW_BPS: 290 r = get_num_brps(); 291 break; 292 case KVM_CAP_GUEST_DEBUG_HW_WPS: 293 r = get_num_wrps(); 294 break; 295 case KVM_CAP_ARM_PMU_V3: 296 r = kvm_arm_support_pmu_v3(); 297 break; 298 case KVM_CAP_ARM_INJECT_SERROR_ESR: 299 r = cpus_have_final_cap(ARM64_HAS_RAS_EXTN); 300 break; 301 case KVM_CAP_ARM_VM_IPA_SIZE: 302 r = get_kvm_ipa_limit(); 303 break; 304 case KVM_CAP_ARM_SVE: 305 r = system_supports_sve(); 306 break; 307 case KVM_CAP_ARM_PTRAUTH_ADDRESS: 308 case KVM_CAP_ARM_PTRAUTH_GENERIC: 309 r = system_has_full_ptr_auth(); 310 break; 311 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE: 312 if (kvm) 313 r = kvm->arch.mmu.split_page_chunk_size; 314 else 315 r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT; 316 break; 317 case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES: 318 r = kvm_supported_block_sizes(); 319 break; 320 case KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES: 321 r = BIT(0); 322 break; 323 default: 324 r = 0; 325 } 326 327 return r; 328 } 329 330 long kvm_arch_dev_ioctl(struct file *filp, 331 unsigned int ioctl, unsigned long arg) 332 { 333 return -EINVAL; 334 } 335 336 struct kvm *kvm_arch_alloc_vm(void) 337 { 338 size_t sz = sizeof(struct kvm); 339 340 if (!has_vhe()) 341 return kzalloc(sz, GFP_KERNEL_ACCOUNT); 342 343 return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO); 344 } 345 346 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 347 { 348 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) 349 return -EBUSY; 350 351 if (id >= kvm->max_vcpus) 352 return -EINVAL; 353 354 return 0; 355 } 356 357 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 358 { 359 int err; 360 361 spin_lock_init(&vcpu->arch.mp_state_lock); 362 363 #ifdef CONFIG_LOCKDEP 364 /* Inform lockdep that the config_lock is acquired after vcpu->mutex */ 365 mutex_lock(&vcpu->mutex); 366 mutex_lock(&vcpu->kvm->arch.config_lock); 367 mutex_unlock(&vcpu->kvm->arch.config_lock); 368 mutex_unlock(&vcpu->mutex); 369 #endif 370 371 /* Force users to call KVM_ARM_VCPU_INIT */ 372 vcpu_clear_flag(vcpu, VCPU_INITIALIZED); 373 374 vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO; 375 376 /* 377 * Default value for the FP state, will be overloaded at load 378 * time if we support FP (pretty likely) 379 */ 380 vcpu->arch.fp_state = FP_STATE_FREE; 381 382 /* Set up the timer */ 383 kvm_timer_vcpu_init(vcpu); 384 385 kvm_pmu_vcpu_init(vcpu); 386 387 kvm_arm_reset_debug_ptr(vcpu); 388 389 kvm_arm_pvtime_vcpu_init(&vcpu->arch); 390 391 vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu; 392 393 err = kvm_vgic_vcpu_init(vcpu); 394 if (err) 395 return err; 396 397 return kvm_share_hyp(vcpu, vcpu + 1); 398 } 399 400 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 401 { 402 } 403 404 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 405 { 406 if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm))) 407 static_branch_dec(&userspace_irqchip_in_use); 408 409 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); 410 kvm_timer_vcpu_terminate(vcpu); 411 kvm_pmu_vcpu_destroy(vcpu); 412 kvm_vgic_vcpu_destroy(vcpu); 413 kvm_arm_vcpu_destroy(vcpu); 414 } 415 416 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 417 { 418 419 } 420 421 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 422 { 423 424 } 425 426 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 427 { 428 struct kvm_s2_mmu *mmu; 429 int *last_ran; 430 431 mmu = vcpu->arch.hw_mmu; 432 last_ran = this_cpu_ptr(mmu->last_vcpu_ran); 433 434 /* 435 * We guarantee that both TLBs and I-cache are private to each 436 * vcpu. If detecting that a vcpu from the same VM has 437 * previously run on the same physical CPU, call into the 438 * hypervisor code to nuke the relevant contexts. 439 * 440 * We might get preempted before the vCPU actually runs, but 441 * over-invalidation doesn't affect correctness. 442 */ 443 if (*last_ran != vcpu->vcpu_idx) { 444 kvm_call_hyp(__kvm_flush_cpu_context, mmu); 445 *last_ran = vcpu->vcpu_idx; 446 } 447 448 vcpu->cpu = cpu; 449 450 kvm_vgic_load(vcpu); 451 kvm_timer_vcpu_load(vcpu); 452 if (has_vhe()) 453 kvm_vcpu_load_vhe(vcpu); 454 kvm_arch_vcpu_load_fp(vcpu); 455 kvm_vcpu_pmu_restore_guest(vcpu); 456 if (kvm_arm_is_pvtime_enabled(&vcpu->arch)) 457 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu); 458 459 if (single_task_running()) 460 vcpu_clear_wfx_traps(vcpu); 461 else 462 vcpu_set_wfx_traps(vcpu); 463 464 if (vcpu_has_ptrauth(vcpu)) 465 vcpu_ptrauth_disable(vcpu); 466 kvm_arch_vcpu_load_debug_state_flags(vcpu); 467 468 if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus)) 469 vcpu_set_on_unsupported_cpu(vcpu); 470 } 471 472 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 473 { 474 kvm_arch_vcpu_put_debug_state_flags(vcpu); 475 kvm_arch_vcpu_put_fp(vcpu); 476 if (has_vhe()) 477 kvm_vcpu_put_vhe(vcpu); 478 kvm_timer_vcpu_put(vcpu); 479 kvm_vgic_put(vcpu); 480 kvm_vcpu_pmu_restore_host(vcpu); 481 kvm_arm_vmid_clear_active(); 482 483 vcpu_clear_on_unsupported_cpu(vcpu); 484 vcpu->cpu = -1; 485 } 486 487 static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu) 488 { 489 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED); 490 kvm_make_request(KVM_REQ_SLEEP, vcpu); 491 kvm_vcpu_kick(vcpu); 492 } 493 494 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu) 495 { 496 spin_lock(&vcpu->arch.mp_state_lock); 497 __kvm_arm_vcpu_power_off(vcpu); 498 spin_unlock(&vcpu->arch.mp_state_lock); 499 } 500 501 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu) 502 { 503 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED; 504 } 505 506 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu) 507 { 508 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED); 509 kvm_make_request(KVM_REQ_SUSPEND, vcpu); 510 kvm_vcpu_kick(vcpu); 511 } 512 513 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu) 514 { 515 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED; 516 } 517 518 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 519 struct kvm_mp_state *mp_state) 520 { 521 *mp_state = READ_ONCE(vcpu->arch.mp_state); 522 523 return 0; 524 } 525 526 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 527 struct kvm_mp_state *mp_state) 528 { 529 int ret = 0; 530 531 spin_lock(&vcpu->arch.mp_state_lock); 532 533 switch (mp_state->mp_state) { 534 case KVM_MP_STATE_RUNNABLE: 535 WRITE_ONCE(vcpu->arch.mp_state, *mp_state); 536 break; 537 case KVM_MP_STATE_STOPPED: 538 __kvm_arm_vcpu_power_off(vcpu); 539 break; 540 case KVM_MP_STATE_SUSPENDED: 541 kvm_arm_vcpu_suspend(vcpu); 542 break; 543 default: 544 ret = -EINVAL; 545 } 546 547 spin_unlock(&vcpu->arch.mp_state_lock); 548 549 return ret; 550 } 551 552 /** 553 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled 554 * @v: The VCPU pointer 555 * 556 * If the guest CPU is not waiting for interrupts or an interrupt line is 557 * asserted, the CPU is by definition runnable. 558 */ 559 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 560 { 561 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF); 562 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v)) 563 && !kvm_arm_vcpu_stopped(v) && !v->arch.pause); 564 } 565 566 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 567 { 568 return vcpu_mode_priv(vcpu); 569 } 570 571 #ifdef CONFIG_GUEST_PERF_EVENTS 572 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 573 { 574 return *vcpu_pc(vcpu); 575 } 576 #endif 577 578 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu) 579 { 580 return vcpu_get_flag(vcpu, VCPU_INITIALIZED); 581 } 582 583 static void kvm_init_mpidr_data(struct kvm *kvm) 584 { 585 struct kvm_mpidr_data *data = NULL; 586 unsigned long c, mask, nr_entries; 587 u64 aff_set = 0, aff_clr = ~0UL; 588 struct kvm_vcpu *vcpu; 589 590 mutex_lock(&kvm->arch.config_lock); 591 592 if (kvm->arch.mpidr_data || atomic_read(&kvm->online_vcpus) == 1) 593 goto out; 594 595 kvm_for_each_vcpu(c, vcpu, kvm) { 596 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu); 597 aff_set |= aff; 598 aff_clr &= aff; 599 } 600 601 /* 602 * A significant bit can be either 0 or 1, and will only appear in 603 * aff_set. Use aff_clr to weed out the useless stuff. 604 */ 605 mask = aff_set ^ aff_clr; 606 nr_entries = BIT_ULL(hweight_long(mask)); 607 608 /* 609 * Don't let userspace fool us. If we need more than a single page 610 * to describe the compressed MPIDR array, just fall back to the 611 * iterative method. Single vcpu VMs do not need this either. 612 */ 613 if (struct_size(data, cmpidr_to_idx, nr_entries) <= PAGE_SIZE) 614 data = kzalloc(struct_size(data, cmpidr_to_idx, nr_entries), 615 GFP_KERNEL_ACCOUNT); 616 617 if (!data) 618 goto out; 619 620 data->mpidr_mask = mask; 621 622 kvm_for_each_vcpu(c, vcpu, kvm) { 623 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu); 624 u16 index = kvm_mpidr_index(data, aff); 625 626 data->cmpidr_to_idx[index] = c; 627 } 628 629 kvm->arch.mpidr_data = data; 630 out: 631 mutex_unlock(&kvm->arch.config_lock); 632 } 633 634 /* 635 * Handle both the initialisation that is being done when the vcpu is 636 * run for the first time, as well as the updates that must be 637 * performed each time we get a new thread dealing with this vcpu. 638 */ 639 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 640 { 641 struct kvm *kvm = vcpu->kvm; 642 int ret; 643 644 if (!kvm_vcpu_initialized(vcpu)) 645 return -ENOEXEC; 646 647 if (!kvm_arm_vcpu_is_finalized(vcpu)) 648 return -EPERM; 649 650 ret = kvm_arch_vcpu_run_map_fp(vcpu); 651 if (ret) 652 return ret; 653 654 if (likely(vcpu_has_run_once(vcpu))) 655 return 0; 656 657 kvm_init_mpidr_data(kvm); 658 659 kvm_arm_vcpu_init_debug(vcpu); 660 661 if (likely(irqchip_in_kernel(kvm))) { 662 /* 663 * Map the VGIC hardware resources before running a vcpu the 664 * first time on this VM. 665 */ 666 ret = kvm_vgic_map_resources(kvm); 667 if (ret) 668 return ret; 669 } 670 671 if (vcpu_has_nv(vcpu)) { 672 ret = kvm_init_nv_sysregs(vcpu->kvm); 673 if (ret) 674 return ret; 675 } 676 677 ret = kvm_timer_enable(vcpu); 678 if (ret) 679 return ret; 680 681 ret = kvm_arm_pmu_v3_enable(vcpu); 682 if (ret) 683 return ret; 684 685 if (is_protected_kvm_enabled()) { 686 ret = pkvm_create_hyp_vm(kvm); 687 if (ret) 688 return ret; 689 } 690 691 if (!irqchip_in_kernel(kvm)) { 692 /* 693 * Tell the rest of the code that there are userspace irqchip 694 * VMs in the wild. 695 */ 696 static_branch_inc(&userspace_irqchip_in_use); 697 } 698 699 /* 700 * Initialize traps for protected VMs. 701 * NOTE: Move to run in EL2 directly, rather than via a hypercall, once 702 * the code is in place for first run initialization at EL2. 703 */ 704 if (kvm_vm_is_protected(kvm)) 705 kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu); 706 707 mutex_lock(&kvm->arch.config_lock); 708 set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags); 709 mutex_unlock(&kvm->arch.config_lock); 710 711 return ret; 712 } 713 714 bool kvm_arch_intc_initialized(struct kvm *kvm) 715 { 716 return vgic_initialized(kvm); 717 } 718 719 void kvm_arm_halt_guest(struct kvm *kvm) 720 { 721 unsigned long i; 722 struct kvm_vcpu *vcpu; 723 724 kvm_for_each_vcpu(i, vcpu, kvm) 725 vcpu->arch.pause = true; 726 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP); 727 } 728 729 void kvm_arm_resume_guest(struct kvm *kvm) 730 { 731 unsigned long i; 732 struct kvm_vcpu *vcpu; 733 734 kvm_for_each_vcpu(i, vcpu, kvm) { 735 vcpu->arch.pause = false; 736 __kvm_vcpu_wake_up(vcpu); 737 } 738 } 739 740 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu) 741 { 742 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 743 744 rcuwait_wait_event(wait, 745 (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause), 746 TASK_INTERRUPTIBLE); 747 748 if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) { 749 /* Awaken to handle a signal, request we sleep again later. */ 750 kvm_make_request(KVM_REQ_SLEEP, vcpu); 751 } 752 753 /* 754 * Make sure we will observe a potential reset request if we've 755 * observed a change to the power state. Pairs with the smp_wmb() in 756 * kvm_psci_vcpu_on(). 757 */ 758 smp_rmb(); 759 } 760 761 /** 762 * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior 763 * @vcpu: The VCPU pointer 764 * 765 * Suspend execution of a vCPU until a valid wake event is detected, i.e. until 766 * the vCPU is runnable. The vCPU may or may not be scheduled out, depending 767 * on when a wake event arrives, e.g. there may already be a pending wake event. 768 */ 769 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu) 770 { 771 /* 772 * Sync back the state of the GIC CPU interface so that we have 773 * the latest PMR and group enables. This ensures that 774 * kvm_arch_vcpu_runnable has up-to-date data to decide whether 775 * we have pending interrupts, e.g. when determining if the 776 * vCPU should block. 777 * 778 * For the same reason, we want to tell GICv4 that we need 779 * doorbells to be signalled, should an interrupt become pending. 780 */ 781 preempt_disable(); 782 kvm_vgic_vmcr_sync(vcpu); 783 vcpu_set_flag(vcpu, IN_WFI); 784 vgic_v4_put(vcpu); 785 preempt_enable(); 786 787 kvm_vcpu_halt(vcpu); 788 vcpu_clear_flag(vcpu, IN_WFIT); 789 790 preempt_disable(); 791 vcpu_clear_flag(vcpu, IN_WFI); 792 vgic_v4_load(vcpu); 793 preempt_enable(); 794 } 795 796 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu) 797 { 798 if (!kvm_arm_vcpu_suspended(vcpu)) 799 return 1; 800 801 kvm_vcpu_wfi(vcpu); 802 803 /* 804 * The suspend state is sticky; we do not leave it until userspace 805 * explicitly marks the vCPU as runnable. Request that we suspend again 806 * later. 807 */ 808 kvm_make_request(KVM_REQ_SUSPEND, vcpu); 809 810 /* 811 * Check to make sure the vCPU is actually runnable. If so, exit to 812 * userspace informing it of the wakeup condition. 813 */ 814 if (kvm_arch_vcpu_runnable(vcpu)) { 815 memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event)); 816 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP; 817 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 818 return 0; 819 } 820 821 /* 822 * Otherwise, we were unblocked to process a different event, such as a 823 * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to 824 * process the event. 825 */ 826 return 1; 827 } 828 829 /** 830 * check_vcpu_requests - check and handle pending vCPU requests 831 * @vcpu: the VCPU pointer 832 * 833 * Return: 1 if we should enter the guest 834 * 0 if we should exit to userspace 835 * < 0 if we should exit to userspace, where the return value indicates 836 * an error 837 */ 838 static int check_vcpu_requests(struct kvm_vcpu *vcpu) 839 { 840 if (kvm_request_pending(vcpu)) { 841 if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) 842 kvm_vcpu_sleep(vcpu); 843 844 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) 845 kvm_reset_vcpu(vcpu); 846 847 /* 848 * Clear IRQ_PENDING requests that were made to guarantee 849 * that a VCPU sees new virtual interrupts. 850 */ 851 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu); 852 853 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu)) 854 kvm_update_stolen_time(vcpu); 855 856 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) { 857 /* The distributor enable bits were changed */ 858 preempt_disable(); 859 vgic_v4_put(vcpu); 860 vgic_v4_load(vcpu); 861 preempt_enable(); 862 } 863 864 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu)) 865 kvm_vcpu_reload_pmu(vcpu); 866 867 if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu)) 868 kvm_vcpu_pmu_restore_guest(vcpu); 869 870 if (kvm_check_request(KVM_REQ_SUSPEND, vcpu)) 871 return kvm_vcpu_suspend(vcpu); 872 873 if (kvm_dirty_ring_check_request(vcpu)) 874 return 0; 875 } 876 877 return 1; 878 } 879 880 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu) 881 { 882 if (likely(!vcpu_mode_is_32bit(vcpu))) 883 return false; 884 885 if (vcpu_has_nv(vcpu)) 886 return true; 887 888 return !kvm_supports_32bit_el0(); 889 } 890 891 /** 892 * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest 893 * @vcpu: The VCPU pointer 894 * @ret: Pointer to write optional return code 895 * 896 * Returns: true if the VCPU needs to return to a preemptible + interruptible 897 * and skip guest entry. 898 * 899 * This function disambiguates between two different types of exits: exits to a 900 * preemptible + interruptible kernel context and exits to userspace. For an 901 * exit to userspace, this function will write the return code to ret and return 902 * true. For an exit to preemptible + interruptible kernel context (i.e. check 903 * for pending work and re-enter), return true without writing to ret. 904 */ 905 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret) 906 { 907 struct kvm_run *run = vcpu->run; 908 909 /* 910 * If we're using a userspace irqchip, then check if we need 911 * to tell a userspace irqchip about timer or PMU level 912 * changes and if so, exit to userspace (the actual level 913 * state gets updated in kvm_timer_update_run and 914 * kvm_pmu_update_run below). 915 */ 916 if (static_branch_unlikely(&userspace_irqchip_in_use)) { 917 if (kvm_timer_should_notify_user(vcpu) || 918 kvm_pmu_should_notify_user(vcpu)) { 919 *ret = -EINTR; 920 run->exit_reason = KVM_EXIT_INTR; 921 return true; 922 } 923 } 924 925 if (unlikely(vcpu_on_unsupported_cpu(vcpu))) { 926 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 927 run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED; 928 run->fail_entry.cpu = smp_processor_id(); 929 *ret = 0; 930 return true; 931 } 932 933 return kvm_request_pending(vcpu) || 934 xfer_to_guest_mode_work_pending(); 935 } 936 937 /* 938 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while 939 * the vCPU is running. 940 * 941 * This must be noinstr as instrumentation may make use of RCU, and this is not 942 * safe during the EQS. 943 */ 944 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu) 945 { 946 int ret; 947 948 guest_state_enter_irqoff(); 949 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu); 950 guest_state_exit_irqoff(); 951 952 return ret; 953 } 954 955 /** 956 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code 957 * @vcpu: The VCPU pointer 958 * 959 * This function is called through the VCPU_RUN ioctl called from user space. It 960 * will execute VM code in a loop until the time slice for the process is used 961 * or some emulation is needed from user space in which case the function will 962 * return with return value 0 and with the kvm_run structure filled in with the 963 * required data for the requested emulation. 964 */ 965 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 966 { 967 struct kvm_run *run = vcpu->run; 968 int ret; 969 970 if (run->exit_reason == KVM_EXIT_MMIO) { 971 ret = kvm_handle_mmio_return(vcpu); 972 if (ret) 973 return ret; 974 } 975 976 vcpu_load(vcpu); 977 978 if (run->immediate_exit) { 979 ret = -EINTR; 980 goto out; 981 } 982 983 kvm_sigset_activate(vcpu); 984 985 ret = 1; 986 run->exit_reason = KVM_EXIT_UNKNOWN; 987 run->flags = 0; 988 while (ret > 0) { 989 /* 990 * Check conditions before entering the guest 991 */ 992 ret = xfer_to_guest_mode_handle_work(vcpu); 993 if (!ret) 994 ret = 1; 995 996 if (ret > 0) 997 ret = check_vcpu_requests(vcpu); 998 999 /* 1000 * Preparing the interrupts to be injected also 1001 * involves poking the GIC, which must be done in a 1002 * non-preemptible context. 1003 */ 1004 preempt_disable(); 1005 1006 /* 1007 * The VMID allocator only tracks active VMIDs per 1008 * physical CPU, and therefore the VMID allocated may not be 1009 * preserved on VMID roll-over if the task was preempted, 1010 * making a thread's VMID inactive. So we need to call 1011 * kvm_arm_vmid_update() in non-premptible context. 1012 */ 1013 if (kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid) && 1014 has_vhe()) 1015 __load_stage2(vcpu->arch.hw_mmu, 1016 vcpu->arch.hw_mmu->arch); 1017 1018 kvm_pmu_flush_hwstate(vcpu); 1019 1020 local_irq_disable(); 1021 1022 kvm_vgic_flush_hwstate(vcpu); 1023 1024 kvm_pmu_update_vcpu_events(vcpu); 1025 1026 /* 1027 * Ensure we set mode to IN_GUEST_MODE after we disable 1028 * interrupts and before the final VCPU requests check. 1029 * See the comment in kvm_vcpu_exiting_guest_mode() and 1030 * Documentation/virt/kvm/vcpu-requests.rst 1031 */ 1032 smp_store_mb(vcpu->mode, IN_GUEST_MODE); 1033 1034 if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) { 1035 vcpu->mode = OUTSIDE_GUEST_MODE; 1036 isb(); /* Ensure work in x_flush_hwstate is committed */ 1037 kvm_pmu_sync_hwstate(vcpu); 1038 if (static_branch_unlikely(&userspace_irqchip_in_use)) 1039 kvm_timer_sync_user(vcpu); 1040 kvm_vgic_sync_hwstate(vcpu); 1041 local_irq_enable(); 1042 preempt_enable(); 1043 continue; 1044 } 1045 1046 kvm_arm_setup_debug(vcpu); 1047 kvm_arch_vcpu_ctxflush_fp(vcpu); 1048 1049 /************************************************************** 1050 * Enter the guest 1051 */ 1052 trace_kvm_entry(*vcpu_pc(vcpu)); 1053 guest_timing_enter_irqoff(); 1054 1055 ret = kvm_arm_vcpu_enter_exit(vcpu); 1056 1057 vcpu->mode = OUTSIDE_GUEST_MODE; 1058 vcpu->stat.exits++; 1059 /* 1060 * Back from guest 1061 *************************************************************/ 1062 1063 kvm_arm_clear_debug(vcpu); 1064 1065 /* 1066 * We must sync the PMU state before the vgic state so 1067 * that the vgic can properly sample the updated state of the 1068 * interrupt line. 1069 */ 1070 kvm_pmu_sync_hwstate(vcpu); 1071 1072 /* 1073 * Sync the vgic state before syncing the timer state because 1074 * the timer code needs to know if the virtual timer 1075 * interrupts are active. 1076 */ 1077 kvm_vgic_sync_hwstate(vcpu); 1078 1079 /* 1080 * Sync the timer hardware state before enabling interrupts as 1081 * we don't want vtimer interrupts to race with syncing the 1082 * timer virtual interrupt state. 1083 */ 1084 if (static_branch_unlikely(&userspace_irqchip_in_use)) 1085 kvm_timer_sync_user(vcpu); 1086 1087 kvm_arch_vcpu_ctxsync_fp(vcpu); 1088 1089 /* 1090 * We must ensure that any pending interrupts are taken before 1091 * we exit guest timing so that timer ticks are accounted as 1092 * guest time. Transiently unmask interrupts so that any 1093 * pending interrupts are taken. 1094 * 1095 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other 1096 * context synchronization event) is necessary to ensure that 1097 * pending interrupts are taken. 1098 */ 1099 if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) { 1100 local_irq_enable(); 1101 isb(); 1102 local_irq_disable(); 1103 } 1104 1105 guest_timing_exit_irqoff(); 1106 1107 local_irq_enable(); 1108 1109 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu)); 1110 1111 /* Exit types that need handling before we can be preempted */ 1112 handle_exit_early(vcpu, ret); 1113 1114 preempt_enable(); 1115 1116 /* 1117 * The ARMv8 architecture doesn't give the hypervisor 1118 * a mechanism to prevent a guest from dropping to AArch32 EL0 1119 * if implemented by the CPU. If we spot the guest in such 1120 * state and that we decided it wasn't supposed to do so (like 1121 * with the asymmetric AArch32 case), return to userspace with 1122 * a fatal error. 1123 */ 1124 if (vcpu_mode_is_bad_32bit(vcpu)) { 1125 /* 1126 * As we have caught the guest red-handed, decide that 1127 * it isn't fit for purpose anymore by making the vcpu 1128 * invalid. The VMM can try and fix it by issuing a 1129 * KVM_ARM_VCPU_INIT if it really wants to. 1130 */ 1131 vcpu_clear_flag(vcpu, VCPU_INITIALIZED); 1132 ret = ARM_EXCEPTION_IL; 1133 } 1134 1135 ret = handle_exit(vcpu, ret); 1136 } 1137 1138 /* Tell userspace about in-kernel device output levels */ 1139 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) { 1140 kvm_timer_update_run(vcpu); 1141 kvm_pmu_update_run(vcpu); 1142 } 1143 1144 kvm_sigset_deactivate(vcpu); 1145 1146 out: 1147 /* 1148 * In the unlikely event that we are returning to userspace 1149 * with pending exceptions or PC adjustment, commit these 1150 * adjustments in order to give userspace a consistent view of 1151 * the vcpu state. Note that this relies on __kvm_adjust_pc() 1152 * being preempt-safe on VHE. 1153 */ 1154 if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) || 1155 vcpu_get_flag(vcpu, INCREMENT_PC))) 1156 kvm_call_hyp(__kvm_adjust_pc, vcpu); 1157 1158 vcpu_put(vcpu); 1159 return ret; 1160 } 1161 1162 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level) 1163 { 1164 int bit_index; 1165 bool set; 1166 unsigned long *hcr; 1167 1168 if (number == KVM_ARM_IRQ_CPU_IRQ) 1169 bit_index = __ffs(HCR_VI); 1170 else /* KVM_ARM_IRQ_CPU_FIQ */ 1171 bit_index = __ffs(HCR_VF); 1172 1173 hcr = vcpu_hcr(vcpu); 1174 if (level) 1175 set = test_and_set_bit(bit_index, hcr); 1176 else 1177 set = test_and_clear_bit(bit_index, hcr); 1178 1179 /* 1180 * If we didn't change anything, no need to wake up or kick other CPUs 1181 */ 1182 if (set == level) 1183 return 0; 1184 1185 /* 1186 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and 1187 * trigger a world-switch round on the running physical CPU to set the 1188 * virtual IRQ/FIQ fields in the HCR appropriately. 1189 */ 1190 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); 1191 kvm_vcpu_kick(vcpu); 1192 1193 return 0; 1194 } 1195 1196 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1197 bool line_status) 1198 { 1199 u32 irq = irq_level->irq; 1200 unsigned int irq_type, vcpu_id, irq_num; 1201 struct kvm_vcpu *vcpu = NULL; 1202 bool level = irq_level->level; 1203 1204 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK; 1205 vcpu_id = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK; 1206 vcpu_id += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1); 1207 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK; 1208 1209 trace_kvm_irq_line(irq_type, vcpu_id, irq_num, irq_level->level); 1210 1211 switch (irq_type) { 1212 case KVM_ARM_IRQ_TYPE_CPU: 1213 if (irqchip_in_kernel(kvm)) 1214 return -ENXIO; 1215 1216 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); 1217 if (!vcpu) 1218 return -EINVAL; 1219 1220 if (irq_num > KVM_ARM_IRQ_CPU_FIQ) 1221 return -EINVAL; 1222 1223 return vcpu_interrupt_line(vcpu, irq_num, level); 1224 case KVM_ARM_IRQ_TYPE_PPI: 1225 if (!irqchip_in_kernel(kvm)) 1226 return -ENXIO; 1227 1228 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); 1229 if (!vcpu) 1230 return -EINVAL; 1231 1232 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS) 1233 return -EINVAL; 1234 1235 return kvm_vgic_inject_irq(kvm, vcpu, irq_num, level, NULL); 1236 case KVM_ARM_IRQ_TYPE_SPI: 1237 if (!irqchip_in_kernel(kvm)) 1238 return -ENXIO; 1239 1240 if (irq_num < VGIC_NR_PRIVATE_IRQS) 1241 return -EINVAL; 1242 1243 return kvm_vgic_inject_irq(kvm, NULL, irq_num, level, NULL); 1244 } 1245 1246 return -EINVAL; 1247 } 1248 1249 static unsigned long system_supported_vcpu_features(void) 1250 { 1251 unsigned long features = KVM_VCPU_VALID_FEATURES; 1252 1253 if (!cpus_have_final_cap(ARM64_HAS_32BIT_EL1)) 1254 clear_bit(KVM_ARM_VCPU_EL1_32BIT, &features); 1255 1256 if (!kvm_arm_support_pmu_v3()) 1257 clear_bit(KVM_ARM_VCPU_PMU_V3, &features); 1258 1259 if (!system_supports_sve()) 1260 clear_bit(KVM_ARM_VCPU_SVE, &features); 1261 1262 if (!system_has_full_ptr_auth()) { 1263 clear_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features); 1264 clear_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features); 1265 } 1266 1267 if (!cpus_have_final_cap(ARM64_HAS_NESTED_VIRT)) 1268 clear_bit(KVM_ARM_VCPU_HAS_EL2, &features); 1269 1270 return features; 1271 } 1272 1273 static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu, 1274 const struct kvm_vcpu_init *init) 1275 { 1276 unsigned long features = init->features[0]; 1277 int i; 1278 1279 if (features & ~KVM_VCPU_VALID_FEATURES) 1280 return -ENOENT; 1281 1282 for (i = 1; i < ARRAY_SIZE(init->features); i++) { 1283 if (init->features[i]) 1284 return -ENOENT; 1285 } 1286 1287 if (features & ~system_supported_vcpu_features()) 1288 return -EINVAL; 1289 1290 /* 1291 * For now make sure that both address/generic pointer authentication 1292 * features are requested by the userspace together. 1293 */ 1294 if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features) != 1295 test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features)) 1296 return -EINVAL; 1297 1298 /* Disallow NV+SVE for the time being */ 1299 if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features) && 1300 test_bit(KVM_ARM_VCPU_SVE, &features)) 1301 return -EINVAL; 1302 1303 if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features)) 1304 return 0; 1305 1306 /* MTE is incompatible with AArch32 */ 1307 if (kvm_has_mte(vcpu->kvm)) 1308 return -EINVAL; 1309 1310 /* NV is incompatible with AArch32 */ 1311 if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features)) 1312 return -EINVAL; 1313 1314 return 0; 1315 } 1316 1317 static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu, 1318 const struct kvm_vcpu_init *init) 1319 { 1320 unsigned long features = init->features[0]; 1321 1322 return !bitmap_equal(vcpu->kvm->arch.vcpu_features, &features, 1323 KVM_VCPU_MAX_FEATURES); 1324 } 1325 1326 static int kvm_setup_vcpu(struct kvm_vcpu *vcpu) 1327 { 1328 struct kvm *kvm = vcpu->kvm; 1329 int ret = 0; 1330 1331 /* 1332 * When the vCPU has a PMU, but no PMU is set for the guest 1333 * yet, set the default one. 1334 */ 1335 if (kvm_vcpu_has_pmu(vcpu) && !kvm->arch.arm_pmu) 1336 ret = kvm_arm_set_default_pmu(kvm); 1337 1338 return ret; 1339 } 1340 1341 static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu, 1342 const struct kvm_vcpu_init *init) 1343 { 1344 unsigned long features = init->features[0]; 1345 struct kvm *kvm = vcpu->kvm; 1346 int ret = -EINVAL; 1347 1348 mutex_lock(&kvm->arch.config_lock); 1349 1350 if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) && 1351 kvm_vcpu_init_changed(vcpu, init)) 1352 goto out_unlock; 1353 1354 bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES); 1355 1356 ret = kvm_setup_vcpu(vcpu); 1357 if (ret) 1358 goto out_unlock; 1359 1360 /* Now we know what it is, we can reset it. */ 1361 kvm_reset_vcpu(vcpu); 1362 1363 set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags); 1364 vcpu_set_flag(vcpu, VCPU_INITIALIZED); 1365 ret = 0; 1366 out_unlock: 1367 mutex_unlock(&kvm->arch.config_lock); 1368 return ret; 1369 } 1370 1371 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu, 1372 const struct kvm_vcpu_init *init) 1373 { 1374 int ret; 1375 1376 if (init->target != KVM_ARM_TARGET_GENERIC_V8 && 1377 init->target != kvm_target_cpu()) 1378 return -EINVAL; 1379 1380 ret = kvm_vcpu_init_check_features(vcpu, init); 1381 if (ret) 1382 return ret; 1383 1384 if (!kvm_vcpu_initialized(vcpu)) 1385 return __kvm_vcpu_set_target(vcpu, init); 1386 1387 if (kvm_vcpu_init_changed(vcpu, init)) 1388 return -EINVAL; 1389 1390 kvm_reset_vcpu(vcpu); 1391 return 0; 1392 } 1393 1394 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu, 1395 struct kvm_vcpu_init *init) 1396 { 1397 bool power_off = false; 1398 int ret; 1399 1400 /* 1401 * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid 1402 * reflecting it in the finalized feature set, thus limiting its scope 1403 * to a single KVM_ARM_VCPU_INIT call. 1404 */ 1405 if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) { 1406 init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF); 1407 power_off = true; 1408 } 1409 1410 ret = kvm_vcpu_set_target(vcpu, init); 1411 if (ret) 1412 return ret; 1413 1414 /* 1415 * Ensure a rebooted VM will fault in RAM pages and detect if the 1416 * guest MMU is turned off and flush the caches as needed. 1417 * 1418 * S2FWB enforces all memory accesses to RAM being cacheable, 1419 * ensuring that the data side is always coherent. We still 1420 * need to invalidate the I-cache though, as FWB does *not* 1421 * imply CTR_EL0.DIC. 1422 */ 1423 if (vcpu_has_run_once(vcpu)) { 1424 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) 1425 stage2_unmap_vm(vcpu->kvm); 1426 else 1427 icache_inval_all_pou(); 1428 } 1429 1430 vcpu_reset_hcr(vcpu); 1431 vcpu->arch.cptr_el2 = kvm_get_reset_cptr_el2(vcpu); 1432 1433 /* 1434 * Handle the "start in power-off" case. 1435 */ 1436 spin_lock(&vcpu->arch.mp_state_lock); 1437 1438 if (power_off) 1439 __kvm_arm_vcpu_power_off(vcpu); 1440 else 1441 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE); 1442 1443 spin_unlock(&vcpu->arch.mp_state_lock); 1444 1445 return 0; 1446 } 1447 1448 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu, 1449 struct kvm_device_attr *attr) 1450 { 1451 int ret = -ENXIO; 1452 1453 switch (attr->group) { 1454 default: 1455 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr); 1456 break; 1457 } 1458 1459 return ret; 1460 } 1461 1462 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu, 1463 struct kvm_device_attr *attr) 1464 { 1465 int ret = -ENXIO; 1466 1467 switch (attr->group) { 1468 default: 1469 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr); 1470 break; 1471 } 1472 1473 return ret; 1474 } 1475 1476 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu, 1477 struct kvm_device_attr *attr) 1478 { 1479 int ret = -ENXIO; 1480 1481 switch (attr->group) { 1482 default: 1483 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr); 1484 break; 1485 } 1486 1487 return ret; 1488 } 1489 1490 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, 1491 struct kvm_vcpu_events *events) 1492 { 1493 memset(events, 0, sizeof(*events)); 1494 1495 return __kvm_arm_vcpu_get_events(vcpu, events); 1496 } 1497 1498 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, 1499 struct kvm_vcpu_events *events) 1500 { 1501 int i; 1502 1503 /* check whether the reserved field is zero */ 1504 for (i = 0; i < ARRAY_SIZE(events->reserved); i++) 1505 if (events->reserved[i]) 1506 return -EINVAL; 1507 1508 /* check whether the pad field is zero */ 1509 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++) 1510 if (events->exception.pad[i]) 1511 return -EINVAL; 1512 1513 return __kvm_arm_vcpu_set_events(vcpu, events); 1514 } 1515 1516 long kvm_arch_vcpu_ioctl(struct file *filp, 1517 unsigned int ioctl, unsigned long arg) 1518 { 1519 struct kvm_vcpu *vcpu = filp->private_data; 1520 void __user *argp = (void __user *)arg; 1521 struct kvm_device_attr attr; 1522 long r; 1523 1524 switch (ioctl) { 1525 case KVM_ARM_VCPU_INIT: { 1526 struct kvm_vcpu_init init; 1527 1528 r = -EFAULT; 1529 if (copy_from_user(&init, argp, sizeof(init))) 1530 break; 1531 1532 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init); 1533 break; 1534 } 1535 case KVM_SET_ONE_REG: 1536 case KVM_GET_ONE_REG: { 1537 struct kvm_one_reg reg; 1538 1539 r = -ENOEXEC; 1540 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1541 break; 1542 1543 r = -EFAULT; 1544 if (copy_from_user(®, argp, sizeof(reg))) 1545 break; 1546 1547 /* 1548 * We could owe a reset due to PSCI. Handle the pending reset 1549 * here to ensure userspace register accesses are ordered after 1550 * the reset. 1551 */ 1552 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) 1553 kvm_reset_vcpu(vcpu); 1554 1555 if (ioctl == KVM_SET_ONE_REG) 1556 r = kvm_arm_set_reg(vcpu, ®); 1557 else 1558 r = kvm_arm_get_reg(vcpu, ®); 1559 break; 1560 } 1561 case KVM_GET_REG_LIST: { 1562 struct kvm_reg_list __user *user_list = argp; 1563 struct kvm_reg_list reg_list; 1564 unsigned n; 1565 1566 r = -ENOEXEC; 1567 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1568 break; 1569 1570 r = -EPERM; 1571 if (!kvm_arm_vcpu_is_finalized(vcpu)) 1572 break; 1573 1574 r = -EFAULT; 1575 if (copy_from_user(®_list, user_list, sizeof(reg_list))) 1576 break; 1577 n = reg_list.n; 1578 reg_list.n = kvm_arm_num_regs(vcpu); 1579 if (copy_to_user(user_list, ®_list, sizeof(reg_list))) 1580 break; 1581 r = -E2BIG; 1582 if (n < reg_list.n) 1583 break; 1584 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg); 1585 break; 1586 } 1587 case KVM_SET_DEVICE_ATTR: { 1588 r = -EFAULT; 1589 if (copy_from_user(&attr, argp, sizeof(attr))) 1590 break; 1591 r = kvm_arm_vcpu_set_attr(vcpu, &attr); 1592 break; 1593 } 1594 case KVM_GET_DEVICE_ATTR: { 1595 r = -EFAULT; 1596 if (copy_from_user(&attr, argp, sizeof(attr))) 1597 break; 1598 r = kvm_arm_vcpu_get_attr(vcpu, &attr); 1599 break; 1600 } 1601 case KVM_HAS_DEVICE_ATTR: { 1602 r = -EFAULT; 1603 if (copy_from_user(&attr, argp, sizeof(attr))) 1604 break; 1605 r = kvm_arm_vcpu_has_attr(vcpu, &attr); 1606 break; 1607 } 1608 case KVM_GET_VCPU_EVENTS: { 1609 struct kvm_vcpu_events events; 1610 1611 if (kvm_arm_vcpu_get_events(vcpu, &events)) 1612 return -EINVAL; 1613 1614 if (copy_to_user(argp, &events, sizeof(events))) 1615 return -EFAULT; 1616 1617 return 0; 1618 } 1619 case KVM_SET_VCPU_EVENTS: { 1620 struct kvm_vcpu_events events; 1621 1622 if (copy_from_user(&events, argp, sizeof(events))) 1623 return -EFAULT; 1624 1625 return kvm_arm_vcpu_set_events(vcpu, &events); 1626 } 1627 case KVM_ARM_VCPU_FINALIZE: { 1628 int what; 1629 1630 if (!kvm_vcpu_initialized(vcpu)) 1631 return -ENOEXEC; 1632 1633 if (get_user(what, (const int __user *)argp)) 1634 return -EFAULT; 1635 1636 return kvm_arm_vcpu_finalize(vcpu, what); 1637 } 1638 default: 1639 r = -EINVAL; 1640 } 1641 1642 return r; 1643 } 1644 1645 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 1646 { 1647 1648 } 1649 1650 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm, 1651 struct kvm_arm_device_addr *dev_addr) 1652 { 1653 switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) { 1654 case KVM_ARM_DEVICE_VGIC_V2: 1655 if (!vgic_present) 1656 return -ENXIO; 1657 return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr); 1658 default: 1659 return -ENODEV; 1660 } 1661 } 1662 1663 static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1664 { 1665 switch (attr->group) { 1666 case KVM_ARM_VM_SMCCC_CTRL: 1667 return kvm_vm_smccc_has_attr(kvm, attr); 1668 default: 1669 return -ENXIO; 1670 } 1671 } 1672 1673 static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1674 { 1675 switch (attr->group) { 1676 case KVM_ARM_VM_SMCCC_CTRL: 1677 return kvm_vm_smccc_set_attr(kvm, attr); 1678 default: 1679 return -ENXIO; 1680 } 1681 } 1682 1683 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 1684 { 1685 struct kvm *kvm = filp->private_data; 1686 void __user *argp = (void __user *)arg; 1687 struct kvm_device_attr attr; 1688 1689 switch (ioctl) { 1690 case KVM_CREATE_IRQCHIP: { 1691 int ret; 1692 if (!vgic_present) 1693 return -ENXIO; 1694 mutex_lock(&kvm->lock); 1695 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2); 1696 mutex_unlock(&kvm->lock); 1697 return ret; 1698 } 1699 case KVM_ARM_SET_DEVICE_ADDR: { 1700 struct kvm_arm_device_addr dev_addr; 1701 1702 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr))) 1703 return -EFAULT; 1704 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr); 1705 } 1706 case KVM_ARM_PREFERRED_TARGET: { 1707 struct kvm_vcpu_init init = { 1708 .target = KVM_ARM_TARGET_GENERIC_V8, 1709 }; 1710 1711 if (copy_to_user(argp, &init, sizeof(init))) 1712 return -EFAULT; 1713 1714 return 0; 1715 } 1716 case KVM_ARM_MTE_COPY_TAGS: { 1717 struct kvm_arm_copy_mte_tags copy_tags; 1718 1719 if (copy_from_user(©_tags, argp, sizeof(copy_tags))) 1720 return -EFAULT; 1721 return kvm_vm_ioctl_mte_copy_tags(kvm, ©_tags); 1722 } 1723 case KVM_ARM_SET_COUNTER_OFFSET: { 1724 struct kvm_arm_counter_offset offset; 1725 1726 if (copy_from_user(&offset, argp, sizeof(offset))) 1727 return -EFAULT; 1728 return kvm_vm_ioctl_set_counter_offset(kvm, &offset); 1729 } 1730 case KVM_HAS_DEVICE_ATTR: { 1731 if (copy_from_user(&attr, argp, sizeof(attr))) 1732 return -EFAULT; 1733 1734 return kvm_vm_has_attr(kvm, &attr); 1735 } 1736 case KVM_SET_DEVICE_ATTR: { 1737 if (copy_from_user(&attr, argp, sizeof(attr))) 1738 return -EFAULT; 1739 1740 return kvm_vm_set_attr(kvm, &attr); 1741 } 1742 case KVM_ARM_GET_REG_WRITABLE_MASKS: { 1743 struct reg_mask_range range; 1744 1745 if (copy_from_user(&range, argp, sizeof(range))) 1746 return -EFAULT; 1747 return kvm_vm_ioctl_get_reg_writable_masks(kvm, &range); 1748 } 1749 default: 1750 return -EINVAL; 1751 } 1752 } 1753 1754 /* unlocks vcpus from @vcpu_lock_idx and smaller */ 1755 static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx) 1756 { 1757 struct kvm_vcpu *tmp_vcpu; 1758 1759 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) { 1760 tmp_vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx); 1761 mutex_unlock(&tmp_vcpu->mutex); 1762 } 1763 } 1764 1765 void unlock_all_vcpus(struct kvm *kvm) 1766 { 1767 lockdep_assert_held(&kvm->lock); 1768 1769 unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1); 1770 } 1771 1772 /* Returns true if all vcpus were locked, false otherwise */ 1773 bool lock_all_vcpus(struct kvm *kvm) 1774 { 1775 struct kvm_vcpu *tmp_vcpu; 1776 unsigned long c; 1777 1778 lockdep_assert_held(&kvm->lock); 1779 1780 /* 1781 * Any time a vcpu is in an ioctl (including running), the 1782 * core KVM code tries to grab the vcpu->mutex. 1783 * 1784 * By grabbing the vcpu->mutex of all VCPUs we ensure that no 1785 * other VCPUs can fiddle with the state while we access it. 1786 */ 1787 kvm_for_each_vcpu(c, tmp_vcpu, kvm) { 1788 if (!mutex_trylock(&tmp_vcpu->mutex)) { 1789 unlock_vcpus(kvm, c - 1); 1790 return false; 1791 } 1792 } 1793 1794 return true; 1795 } 1796 1797 static unsigned long nvhe_percpu_size(void) 1798 { 1799 return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) - 1800 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start); 1801 } 1802 1803 static unsigned long nvhe_percpu_order(void) 1804 { 1805 unsigned long size = nvhe_percpu_size(); 1806 1807 return size ? get_order(size) : 0; 1808 } 1809 1810 /* A lookup table holding the hypervisor VA for each vector slot */ 1811 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS]; 1812 1813 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot) 1814 { 1815 hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot); 1816 } 1817 1818 static int kvm_init_vector_slots(void) 1819 { 1820 int err; 1821 void *base; 1822 1823 base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector)); 1824 kvm_init_vector_slot(base, HYP_VECTOR_DIRECT); 1825 1826 base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs)); 1827 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT); 1828 1829 if (kvm_system_needs_idmapped_vectors() && 1830 !is_protected_kvm_enabled()) { 1831 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs), 1832 __BP_HARDEN_HYP_VECS_SZ, &base); 1833 if (err) 1834 return err; 1835 } 1836 1837 kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT); 1838 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT); 1839 return 0; 1840 } 1841 1842 static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits) 1843 { 1844 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu); 1845 u64 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 1846 unsigned long tcr; 1847 1848 /* 1849 * Calculate the raw per-cpu offset without a translation from the 1850 * kernel's mapping to the linear mapping, and store it in tpidr_el2 1851 * so that we can use adr_l to access per-cpu variables in EL2. 1852 * Also drop the KASAN tag which gets in the way... 1853 */ 1854 params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) - 1855 (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start)); 1856 1857 params->mair_el2 = read_sysreg(mair_el1); 1858 1859 tcr = read_sysreg(tcr_el1); 1860 if (cpus_have_final_cap(ARM64_KVM_HVHE)) { 1861 tcr |= TCR_EPD1_MASK; 1862 } else { 1863 tcr &= TCR_EL2_MASK; 1864 tcr |= TCR_EL2_RES1; 1865 } 1866 tcr &= ~TCR_T0SZ_MASK; 1867 tcr |= TCR_T0SZ(hyp_va_bits); 1868 tcr &= ~TCR_EL2_PS_MASK; 1869 tcr |= FIELD_PREP(TCR_EL2_PS_MASK, kvm_get_parange(mmfr0)); 1870 if (kvm_lpa2_is_enabled()) 1871 tcr |= TCR_EL2_DS; 1872 params->tcr_el2 = tcr; 1873 1874 params->pgd_pa = kvm_mmu_get_httbr(); 1875 if (is_protected_kvm_enabled()) 1876 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS; 1877 else 1878 params->hcr_el2 = HCR_HOST_NVHE_FLAGS; 1879 if (cpus_have_final_cap(ARM64_KVM_HVHE)) 1880 params->hcr_el2 |= HCR_E2H; 1881 params->vttbr = params->vtcr = 0; 1882 1883 /* 1884 * Flush the init params from the data cache because the struct will 1885 * be read while the MMU is off. 1886 */ 1887 kvm_flush_dcache_to_poc(params, sizeof(*params)); 1888 } 1889 1890 static void hyp_install_host_vector(void) 1891 { 1892 struct kvm_nvhe_init_params *params; 1893 struct arm_smccc_res res; 1894 1895 /* Switch from the HYP stub to our own HYP init vector */ 1896 __hyp_set_vectors(kvm_get_idmap_vector()); 1897 1898 /* 1899 * Call initialization code, and switch to the full blown HYP code. 1900 * If the cpucaps haven't been finalized yet, something has gone very 1901 * wrong, and hyp will crash and burn when it uses any 1902 * cpus_have_*_cap() wrapper. 1903 */ 1904 BUG_ON(!system_capabilities_finalized()); 1905 params = this_cpu_ptr_nvhe_sym(kvm_init_params); 1906 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res); 1907 WARN_ON(res.a0 != SMCCC_RET_SUCCESS); 1908 } 1909 1910 static void cpu_init_hyp_mode(void) 1911 { 1912 hyp_install_host_vector(); 1913 1914 /* 1915 * Disabling SSBD on a non-VHE system requires us to enable SSBS 1916 * at EL2. 1917 */ 1918 if (this_cpu_has_cap(ARM64_SSBS) && 1919 arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) { 1920 kvm_call_hyp_nvhe(__kvm_enable_ssbs); 1921 } 1922 } 1923 1924 static void cpu_hyp_reset(void) 1925 { 1926 if (!is_kernel_in_hyp_mode()) 1927 __hyp_reset_vectors(); 1928 } 1929 1930 /* 1931 * EL2 vectors can be mapped and rerouted in a number of ways, 1932 * depending on the kernel configuration and CPU present: 1933 * 1934 * - If the CPU is affected by Spectre-v2, the hardening sequence is 1935 * placed in one of the vector slots, which is executed before jumping 1936 * to the real vectors. 1937 * 1938 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot 1939 * containing the hardening sequence is mapped next to the idmap page, 1940 * and executed before jumping to the real vectors. 1941 * 1942 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an 1943 * empty slot is selected, mapped next to the idmap page, and 1944 * executed before jumping to the real vectors. 1945 * 1946 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with 1947 * VHE, as we don't have hypervisor-specific mappings. If the system 1948 * is VHE and yet selects this capability, it will be ignored. 1949 */ 1950 static void cpu_set_hyp_vector(void) 1951 { 1952 struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data); 1953 void *vector = hyp_spectre_vector_selector[data->slot]; 1954 1955 if (!is_protected_kvm_enabled()) 1956 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector; 1957 else 1958 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot); 1959 } 1960 1961 static void cpu_hyp_init_context(void) 1962 { 1963 kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt); 1964 1965 if (!is_kernel_in_hyp_mode()) 1966 cpu_init_hyp_mode(); 1967 } 1968 1969 static void cpu_hyp_init_features(void) 1970 { 1971 cpu_set_hyp_vector(); 1972 kvm_arm_init_debug(); 1973 1974 if (is_kernel_in_hyp_mode()) 1975 kvm_timer_init_vhe(); 1976 1977 if (vgic_present) 1978 kvm_vgic_init_cpu_hardware(); 1979 } 1980 1981 static void cpu_hyp_reinit(void) 1982 { 1983 cpu_hyp_reset(); 1984 cpu_hyp_init_context(); 1985 cpu_hyp_init_features(); 1986 } 1987 1988 static void cpu_hyp_init(void *discard) 1989 { 1990 if (!__this_cpu_read(kvm_hyp_initialized)) { 1991 cpu_hyp_reinit(); 1992 __this_cpu_write(kvm_hyp_initialized, 1); 1993 } 1994 } 1995 1996 static void cpu_hyp_uninit(void *discard) 1997 { 1998 if (__this_cpu_read(kvm_hyp_initialized)) { 1999 cpu_hyp_reset(); 2000 __this_cpu_write(kvm_hyp_initialized, 0); 2001 } 2002 } 2003 2004 int kvm_arch_hardware_enable(void) 2005 { 2006 /* 2007 * Most calls to this function are made with migration 2008 * disabled, but not with preemption disabled. The former is 2009 * enough to ensure correctness, but most of the helpers 2010 * expect the later and will throw a tantrum otherwise. 2011 */ 2012 preempt_disable(); 2013 2014 cpu_hyp_init(NULL); 2015 2016 kvm_vgic_cpu_up(); 2017 kvm_timer_cpu_up(); 2018 2019 preempt_enable(); 2020 2021 return 0; 2022 } 2023 2024 void kvm_arch_hardware_disable(void) 2025 { 2026 kvm_timer_cpu_down(); 2027 kvm_vgic_cpu_down(); 2028 2029 if (!is_protected_kvm_enabled()) 2030 cpu_hyp_uninit(NULL); 2031 } 2032 2033 #ifdef CONFIG_CPU_PM 2034 static int hyp_init_cpu_pm_notifier(struct notifier_block *self, 2035 unsigned long cmd, 2036 void *v) 2037 { 2038 /* 2039 * kvm_hyp_initialized is left with its old value over 2040 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should 2041 * re-enable hyp. 2042 */ 2043 switch (cmd) { 2044 case CPU_PM_ENTER: 2045 if (__this_cpu_read(kvm_hyp_initialized)) 2046 /* 2047 * don't update kvm_hyp_initialized here 2048 * so that the hyp will be re-enabled 2049 * when we resume. See below. 2050 */ 2051 cpu_hyp_reset(); 2052 2053 return NOTIFY_OK; 2054 case CPU_PM_ENTER_FAILED: 2055 case CPU_PM_EXIT: 2056 if (__this_cpu_read(kvm_hyp_initialized)) 2057 /* The hyp was enabled before suspend. */ 2058 cpu_hyp_reinit(); 2059 2060 return NOTIFY_OK; 2061 2062 default: 2063 return NOTIFY_DONE; 2064 } 2065 } 2066 2067 static struct notifier_block hyp_init_cpu_pm_nb = { 2068 .notifier_call = hyp_init_cpu_pm_notifier, 2069 }; 2070 2071 static void __init hyp_cpu_pm_init(void) 2072 { 2073 if (!is_protected_kvm_enabled()) 2074 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb); 2075 } 2076 static void __init hyp_cpu_pm_exit(void) 2077 { 2078 if (!is_protected_kvm_enabled()) 2079 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb); 2080 } 2081 #else 2082 static inline void __init hyp_cpu_pm_init(void) 2083 { 2084 } 2085 static inline void __init hyp_cpu_pm_exit(void) 2086 { 2087 } 2088 #endif 2089 2090 static void __init init_cpu_logical_map(void) 2091 { 2092 unsigned int cpu; 2093 2094 /* 2095 * Copy the MPIDR <-> logical CPU ID mapping to hyp. 2096 * Only copy the set of online CPUs whose features have been checked 2097 * against the finalized system capabilities. The hypervisor will not 2098 * allow any other CPUs from the `possible` set to boot. 2099 */ 2100 for_each_online_cpu(cpu) 2101 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu); 2102 } 2103 2104 #define init_psci_0_1_impl_state(config, what) \ 2105 config.psci_0_1_ ## what ## _implemented = psci_ops.what 2106 2107 static bool __init init_psci_relay(void) 2108 { 2109 /* 2110 * If PSCI has not been initialized, protected KVM cannot install 2111 * itself on newly booted CPUs. 2112 */ 2113 if (!psci_ops.get_version) { 2114 kvm_err("Cannot initialize protected mode without PSCI\n"); 2115 return false; 2116 } 2117 2118 kvm_host_psci_config.version = psci_ops.get_version(); 2119 kvm_host_psci_config.smccc_version = arm_smccc_get_version(); 2120 2121 if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) { 2122 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids(); 2123 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend); 2124 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on); 2125 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off); 2126 init_psci_0_1_impl_state(kvm_host_psci_config, migrate); 2127 } 2128 return true; 2129 } 2130 2131 static int __init init_subsystems(void) 2132 { 2133 int err = 0; 2134 2135 /* 2136 * Enable hardware so that subsystem initialisation can access EL2. 2137 */ 2138 on_each_cpu(cpu_hyp_init, NULL, 1); 2139 2140 /* 2141 * Register CPU lower-power notifier 2142 */ 2143 hyp_cpu_pm_init(); 2144 2145 /* 2146 * Init HYP view of VGIC 2147 */ 2148 err = kvm_vgic_hyp_init(); 2149 switch (err) { 2150 case 0: 2151 vgic_present = true; 2152 break; 2153 case -ENODEV: 2154 case -ENXIO: 2155 vgic_present = false; 2156 err = 0; 2157 break; 2158 default: 2159 goto out; 2160 } 2161 2162 /* 2163 * Init HYP architected timer support 2164 */ 2165 err = kvm_timer_hyp_init(vgic_present); 2166 if (err) 2167 goto out; 2168 2169 kvm_register_perf_callbacks(NULL); 2170 2171 out: 2172 if (err) 2173 hyp_cpu_pm_exit(); 2174 2175 if (err || !is_protected_kvm_enabled()) 2176 on_each_cpu(cpu_hyp_uninit, NULL, 1); 2177 2178 return err; 2179 } 2180 2181 static void __init teardown_subsystems(void) 2182 { 2183 kvm_unregister_perf_callbacks(); 2184 hyp_cpu_pm_exit(); 2185 } 2186 2187 static void __init teardown_hyp_mode(void) 2188 { 2189 int cpu; 2190 2191 free_hyp_pgds(); 2192 for_each_possible_cpu(cpu) { 2193 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu)); 2194 free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order()); 2195 } 2196 } 2197 2198 static int __init do_pkvm_init(u32 hyp_va_bits) 2199 { 2200 void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)); 2201 int ret; 2202 2203 preempt_disable(); 2204 cpu_hyp_init_context(); 2205 ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size, 2206 num_possible_cpus(), kern_hyp_va(per_cpu_base), 2207 hyp_va_bits); 2208 cpu_hyp_init_features(); 2209 2210 /* 2211 * The stub hypercalls are now disabled, so set our local flag to 2212 * prevent a later re-init attempt in kvm_arch_hardware_enable(). 2213 */ 2214 __this_cpu_write(kvm_hyp_initialized, 1); 2215 preempt_enable(); 2216 2217 return ret; 2218 } 2219 2220 static u64 get_hyp_id_aa64pfr0_el1(void) 2221 { 2222 /* 2223 * Track whether the system isn't affected by spectre/meltdown in the 2224 * hypervisor's view of id_aa64pfr0_el1, used for protected VMs. 2225 * Although this is per-CPU, we make it global for simplicity, e.g., not 2226 * to have to worry about vcpu migration. 2227 * 2228 * Unlike for non-protected VMs, userspace cannot override this for 2229 * protected VMs. 2230 */ 2231 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); 2232 2233 val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) | 2234 ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3)); 2235 2236 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2), 2237 arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED); 2238 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3), 2239 arm64_get_meltdown_state() == SPECTRE_UNAFFECTED); 2240 2241 return val; 2242 } 2243 2244 static void kvm_hyp_init_symbols(void) 2245 { 2246 kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1(); 2247 kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1); 2248 kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1); 2249 kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1); 2250 kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1); 2251 kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 2252 kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 2253 kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1); 2254 kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1); 2255 kvm_nvhe_sym(__icache_flags) = __icache_flags; 2256 kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits; 2257 } 2258 2259 static int __init kvm_hyp_init_protection(u32 hyp_va_bits) 2260 { 2261 void *addr = phys_to_virt(hyp_mem_base); 2262 int ret; 2263 2264 ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP); 2265 if (ret) 2266 return ret; 2267 2268 ret = do_pkvm_init(hyp_va_bits); 2269 if (ret) 2270 return ret; 2271 2272 free_hyp_pgds(); 2273 2274 return 0; 2275 } 2276 2277 static void pkvm_hyp_init_ptrauth(void) 2278 { 2279 struct kvm_cpu_context *hyp_ctxt; 2280 int cpu; 2281 2282 for_each_possible_cpu(cpu) { 2283 hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu); 2284 hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long(); 2285 hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long(); 2286 hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long(); 2287 hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long(); 2288 hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long(); 2289 hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long(); 2290 hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long(); 2291 hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long(); 2292 hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long(); 2293 hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long(); 2294 } 2295 } 2296 2297 /* Inits Hyp-mode on all online CPUs */ 2298 static int __init init_hyp_mode(void) 2299 { 2300 u32 hyp_va_bits; 2301 int cpu; 2302 int err = -ENOMEM; 2303 2304 /* 2305 * The protected Hyp-mode cannot be initialized if the memory pool 2306 * allocation has failed. 2307 */ 2308 if (is_protected_kvm_enabled() && !hyp_mem_base) 2309 goto out_err; 2310 2311 /* 2312 * Allocate Hyp PGD and setup Hyp identity mapping 2313 */ 2314 err = kvm_mmu_init(&hyp_va_bits); 2315 if (err) 2316 goto out_err; 2317 2318 /* 2319 * Allocate stack pages for Hypervisor-mode 2320 */ 2321 for_each_possible_cpu(cpu) { 2322 unsigned long stack_page; 2323 2324 stack_page = __get_free_page(GFP_KERNEL); 2325 if (!stack_page) { 2326 err = -ENOMEM; 2327 goto out_err; 2328 } 2329 2330 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page; 2331 } 2332 2333 /* 2334 * Allocate and initialize pages for Hypervisor-mode percpu regions. 2335 */ 2336 for_each_possible_cpu(cpu) { 2337 struct page *page; 2338 void *page_addr; 2339 2340 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order()); 2341 if (!page) { 2342 err = -ENOMEM; 2343 goto out_err; 2344 } 2345 2346 page_addr = page_address(page); 2347 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size()); 2348 kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr; 2349 } 2350 2351 /* 2352 * Map the Hyp-code called directly from the host 2353 */ 2354 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start), 2355 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC); 2356 if (err) { 2357 kvm_err("Cannot map world-switch code\n"); 2358 goto out_err; 2359 } 2360 2361 err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start), 2362 kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO); 2363 if (err) { 2364 kvm_err("Cannot map .hyp.rodata section\n"); 2365 goto out_err; 2366 } 2367 2368 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata), 2369 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO); 2370 if (err) { 2371 kvm_err("Cannot map rodata section\n"); 2372 goto out_err; 2373 } 2374 2375 /* 2376 * .hyp.bss is guaranteed to be placed at the beginning of the .bss 2377 * section thanks to an assertion in the linker script. Map it RW and 2378 * the rest of .bss RO. 2379 */ 2380 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start), 2381 kvm_ksym_ref(__hyp_bss_end), PAGE_HYP); 2382 if (err) { 2383 kvm_err("Cannot map hyp bss section: %d\n", err); 2384 goto out_err; 2385 } 2386 2387 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end), 2388 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO); 2389 if (err) { 2390 kvm_err("Cannot map bss section\n"); 2391 goto out_err; 2392 } 2393 2394 /* 2395 * Map the Hyp stack pages 2396 */ 2397 for_each_possible_cpu(cpu) { 2398 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu); 2399 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu); 2400 2401 err = create_hyp_stack(__pa(stack_page), ¶ms->stack_hyp_va); 2402 if (err) { 2403 kvm_err("Cannot map hyp stack\n"); 2404 goto out_err; 2405 } 2406 2407 /* 2408 * Save the stack PA in nvhe_init_params. This will be needed 2409 * to recreate the stack mapping in protected nVHE mode. 2410 * __hyp_pa() won't do the right thing there, since the stack 2411 * has been mapped in the flexible private VA space. 2412 */ 2413 params->stack_pa = __pa(stack_page); 2414 } 2415 2416 for_each_possible_cpu(cpu) { 2417 char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu]; 2418 char *percpu_end = percpu_begin + nvhe_percpu_size(); 2419 2420 /* Map Hyp percpu pages */ 2421 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP); 2422 if (err) { 2423 kvm_err("Cannot map hyp percpu region\n"); 2424 goto out_err; 2425 } 2426 2427 /* Prepare the CPU initialization parameters */ 2428 cpu_prepare_hyp_mode(cpu, hyp_va_bits); 2429 } 2430 2431 kvm_hyp_init_symbols(); 2432 2433 if (is_protected_kvm_enabled()) { 2434 if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) && 2435 cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH)) 2436 pkvm_hyp_init_ptrauth(); 2437 2438 init_cpu_logical_map(); 2439 2440 if (!init_psci_relay()) { 2441 err = -ENODEV; 2442 goto out_err; 2443 } 2444 2445 err = kvm_hyp_init_protection(hyp_va_bits); 2446 if (err) { 2447 kvm_err("Failed to init hyp memory protection\n"); 2448 goto out_err; 2449 } 2450 } 2451 2452 return 0; 2453 2454 out_err: 2455 teardown_hyp_mode(); 2456 kvm_err("error initializing Hyp mode: %d\n", err); 2457 return err; 2458 } 2459 2460 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr) 2461 { 2462 struct kvm_vcpu *vcpu; 2463 unsigned long i; 2464 2465 mpidr &= MPIDR_HWID_BITMASK; 2466 2467 if (kvm->arch.mpidr_data) { 2468 u16 idx = kvm_mpidr_index(kvm->arch.mpidr_data, mpidr); 2469 2470 vcpu = kvm_get_vcpu(kvm, 2471 kvm->arch.mpidr_data->cmpidr_to_idx[idx]); 2472 if (mpidr != kvm_vcpu_get_mpidr_aff(vcpu)) 2473 vcpu = NULL; 2474 2475 return vcpu; 2476 } 2477 2478 kvm_for_each_vcpu(i, vcpu, kvm) { 2479 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu)) 2480 return vcpu; 2481 } 2482 return NULL; 2483 } 2484 2485 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm) 2486 { 2487 return irqchip_in_kernel(kvm); 2488 } 2489 2490 bool kvm_arch_has_irq_bypass(void) 2491 { 2492 return true; 2493 } 2494 2495 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 2496 struct irq_bypass_producer *prod) 2497 { 2498 struct kvm_kernel_irqfd *irqfd = 2499 container_of(cons, struct kvm_kernel_irqfd, consumer); 2500 2501 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq, 2502 &irqfd->irq_entry); 2503 } 2504 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 2505 struct irq_bypass_producer *prod) 2506 { 2507 struct kvm_kernel_irqfd *irqfd = 2508 container_of(cons, struct kvm_kernel_irqfd, consumer); 2509 2510 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq, 2511 &irqfd->irq_entry); 2512 } 2513 2514 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons) 2515 { 2516 struct kvm_kernel_irqfd *irqfd = 2517 container_of(cons, struct kvm_kernel_irqfd, consumer); 2518 2519 kvm_arm_halt_guest(irqfd->kvm); 2520 } 2521 2522 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons) 2523 { 2524 struct kvm_kernel_irqfd *irqfd = 2525 container_of(cons, struct kvm_kernel_irqfd, consumer); 2526 2527 kvm_arm_resume_guest(irqfd->kvm); 2528 } 2529 2530 /* Initialize Hyp-mode and memory mappings on all CPUs */ 2531 static __init int kvm_arm_init(void) 2532 { 2533 int err; 2534 bool in_hyp_mode; 2535 2536 if (!is_hyp_mode_available()) { 2537 kvm_info("HYP mode not available\n"); 2538 return -ENODEV; 2539 } 2540 2541 if (kvm_get_mode() == KVM_MODE_NONE) { 2542 kvm_info("KVM disabled from command line\n"); 2543 return -ENODEV; 2544 } 2545 2546 err = kvm_sys_reg_table_init(); 2547 if (err) { 2548 kvm_info("Error initializing system register tables"); 2549 return err; 2550 } 2551 2552 in_hyp_mode = is_kernel_in_hyp_mode(); 2553 2554 if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) || 2555 cpus_have_final_cap(ARM64_WORKAROUND_1508412)) 2556 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \ 2557 "Only trusted guests should be used on this system.\n"); 2558 2559 err = kvm_set_ipa_limit(); 2560 if (err) 2561 return err; 2562 2563 err = kvm_arm_init_sve(); 2564 if (err) 2565 return err; 2566 2567 err = kvm_arm_vmid_alloc_init(); 2568 if (err) { 2569 kvm_err("Failed to initialize VMID allocator.\n"); 2570 return err; 2571 } 2572 2573 if (!in_hyp_mode) { 2574 err = init_hyp_mode(); 2575 if (err) 2576 goto out_err; 2577 } 2578 2579 err = kvm_init_vector_slots(); 2580 if (err) { 2581 kvm_err("Cannot initialise vector slots\n"); 2582 goto out_hyp; 2583 } 2584 2585 err = init_subsystems(); 2586 if (err) 2587 goto out_hyp; 2588 2589 if (is_protected_kvm_enabled()) { 2590 kvm_info("Protected nVHE mode initialized successfully\n"); 2591 } else if (in_hyp_mode) { 2592 kvm_info("VHE mode initialized successfully\n"); 2593 } else { 2594 kvm_info("Hyp mode initialized successfully\n"); 2595 } 2596 2597 /* 2598 * FIXME: Do something reasonable if kvm_init() fails after pKVM 2599 * hypervisor protection is finalized. 2600 */ 2601 err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE); 2602 if (err) 2603 goto out_subs; 2604 2605 kvm_arm_initialised = true; 2606 2607 return 0; 2608 2609 out_subs: 2610 teardown_subsystems(); 2611 out_hyp: 2612 if (!in_hyp_mode) 2613 teardown_hyp_mode(); 2614 out_err: 2615 kvm_arm_vmid_alloc_free(); 2616 return err; 2617 } 2618 2619 static int __init early_kvm_mode_cfg(char *arg) 2620 { 2621 if (!arg) 2622 return -EINVAL; 2623 2624 if (strcmp(arg, "none") == 0) { 2625 kvm_mode = KVM_MODE_NONE; 2626 return 0; 2627 } 2628 2629 if (!is_hyp_mode_available()) { 2630 pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n"); 2631 return 0; 2632 } 2633 2634 if (strcmp(arg, "protected") == 0) { 2635 if (!is_kernel_in_hyp_mode()) 2636 kvm_mode = KVM_MODE_PROTECTED; 2637 else 2638 pr_warn_once("Protected KVM not available with VHE\n"); 2639 2640 return 0; 2641 } 2642 2643 if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) { 2644 kvm_mode = KVM_MODE_DEFAULT; 2645 return 0; 2646 } 2647 2648 if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) { 2649 kvm_mode = KVM_MODE_NV; 2650 return 0; 2651 } 2652 2653 return -EINVAL; 2654 } 2655 early_param("kvm-arm.mode", early_kvm_mode_cfg); 2656 2657 enum kvm_mode kvm_get_mode(void) 2658 { 2659 return kvm_mode; 2660 } 2661 2662 module_init(kvm_arm_init); 2663