1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 4 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 5 */ 6 7 #include <linux/bug.h> 8 #include <linux/cpu_pm.h> 9 #include <linux/entry-kvm.h> 10 #include <linux/errno.h> 11 #include <linux/err.h> 12 #include <linux/kvm_host.h> 13 #include <linux/list.h> 14 #include <linux/module.h> 15 #include <linux/vmalloc.h> 16 #include <linux/fs.h> 17 #include <linux/mman.h> 18 #include <linux/sched.h> 19 #include <linux/kvm.h> 20 #include <linux/kvm_irqfd.h> 21 #include <linux/irqbypass.h> 22 #include <linux/sched/stat.h> 23 #include <linux/psci.h> 24 #include <trace/events/kvm.h> 25 26 #define CREATE_TRACE_POINTS 27 #include "trace_arm.h" 28 29 #include <linux/uaccess.h> 30 #include <asm/ptrace.h> 31 #include <asm/mman.h> 32 #include <asm/tlbflush.h> 33 #include <asm/cacheflush.h> 34 #include <asm/cpufeature.h> 35 #include <asm/virt.h> 36 #include <asm/kvm_arm.h> 37 #include <asm/kvm_asm.h> 38 #include <asm/kvm_emulate.h> 39 #include <asm/kvm_mmu.h> 40 #include <asm/kvm_nested.h> 41 #include <asm/kvm_pkvm.h> 42 #include <asm/kvm_ptrauth.h> 43 #include <asm/sections.h> 44 45 #include <kvm/arm_hypercalls.h> 46 #include <kvm/arm_pmu.h> 47 #include <kvm/arm_psci.h> 48 49 #include "sys_regs.h" 50 51 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT; 52 53 enum kvm_wfx_trap_policy { 54 KVM_WFX_NOTRAP_SINGLE_TASK, /* Default option */ 55 KVM_WFX_NOTRAP, 56 KVM_WFX_TRAP, 57 }; 58 59 static enum kvm_wfx_trap_policy kvm_wfi_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK; 60 static enum kvm_wfx_trap_policy kvm_wfe_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK; 61 62 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector); 63 64 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_base); 65 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params); 66 67 DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt); 68 69 static bool vgic_present, kvm_arm_initialised; 70 71 static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized); 72 73 bool is_kvm_arm_initialised(void) 74 { 75 return kvm_arm_initialised; 76 } 77 78 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 79 { 80 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 81 } 82 83 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 84 struct kvm_enable_cap *cap) 85 { 86 int r = -EINVAL; 87 88 if (cap->flags) 89 return -EINVAL; 90 91 if (kvm_vm_is_protected(kvm) && !kvm_pvm_ext_allowed(cap->cap)) 92 return -EINVAL; 93 94 switch (cap->cap) { 95 case KVM_CAP_ARM_NISV_TO_USER: 96 r = 0; 97 set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER, 98 &kvm->arch.flags); 99 break; 100 case KVM_CAP_ARM_MTE: 101 mutex_lock(&kvm->lock); 102 if (system_supports_mte() && !kvm->created_vcpus) { 103 r = 0; 104 set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags); 105 } 106 mutex_unlock(&kvm->lock); 107 break; 108 case KVM_CAP_ARM_SYSTEM_SUSPEND: 109 r = 0; 110 set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags); 111 break; 112 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE: 113 mutex_lock(&kvm->slots_lock); 114 /* 115 * To keep things simple, allow changing the chunk 116 * size only when no memory slots have been created. 117 */ 118 if (kvm_are_all_memslots_empty(kvm)) { 119 u64 new_cap = cap->args[0]; 120 121 if (!new_cap || kvm_is_block_size_supported(new_cap)) { 122 r = 0; 123 kvm->arch.mmu.split_page_chunk_size = new_cap; 124 } 125 } 126 mutex_unlock(&kvm->slots_lock); 127 break; 128 case KVM_CAP_ARM_WRITABLE_IMP_ID_REGS: 129 mutex_lock(&kvm->lock); 130 if (!kvm->created_vcpus) { 131 r = 0; 132 set_bit(KVM_ARCH_FLAG_WRITABLE_IMP_ID_REGS, &kvm->arch.flags); 133 } 134 mutex_unlock(&kvm->lock); 135 break; 136 default: 137 break; 138 } 139 140 return r; 141 } 142 143 static int kvm_arm_default_max_vcpus(void) 144 { 145 return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS; 146 } 147 148 /** 149 * kvm_arch_init_vm - initializes a VM data structure 150 * @kvm: pointer to the KVM struct 151 * @type: kvm device type 152 */ 153 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 154 { 155 int ret; 156 157 mutex_init(&kvm->arch.config_lock); 158 159 #ifdef CONFIG_LOCKDEP 160 /* Clue in lockdep that the config_lock must be taken inside kvm->lock */ 161 mutex_lock(&kvm->lock); 162 mutex_lock(&kvm->arch.config_lock); 163 mutex_unlock(&kvm->arch.config_lock); 164 mutex_unlock(&kvm->lock); 165 #endif 166 167 kvm_init_nested(kvm); 168 169 ret = kvm_share_hyp(kvm, kvm + 1); 170 if (ret) 171 return ret; 172 173 ret = pkvm_init_host_vm(kvm); 174 if (ret) 175 goto err_unshare_kvm; 176 177 if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) { 178 ret = -ENOMEM; 179 goto err_unshare_kvm; 180 } 181 cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask); 182 183 ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type); 184 if (ret) 185 goto err_free_cpumask; 186 187 kvm_vgic_early_init(kvm); 188 189 kvm_timer_init_vm(kvm); 190 191 /* The maximum number of VCPUs is limited by the host's GIC model */ 192 kvm->max_vcpus = kvm_arm_default_max_vcpus(); 193 194 kvm_arm_init_hypercalls(kvm); 195 196 bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES); 197 198 return 0; 199 200 err_free_cpumask: 201 free_cpumask_var(kvm->arch.supported_cpus); 202 err_unshare_kvm: 203 kvm_unshare_hyp(kvm, kvm + 1); 204 return ret; 205 } 206 207 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 208 { 209 return VM_FAULT_SIGBUS; 210 } 211 212 void kvm_arch_create_vm_debugfs(struct kvm *kvm) 213 { 214 kvm_sys_regs_create_debugfs(kvm); 215 kvm_s2_ptdump_create_debugfs(kvm); 216 } 217 218 static void kvm_destroy_mpidr_data(struct kvm *kvm) 219 { 220 struct kvm_mpidr_data *data; 221 222 mutex_lock(&kvm->arch.config_lock); 223 224 data = rcu_dereference_protected(kvm->arch.mpidr_data, 225 lockdep_is_held(&kvm->arch.config_lock)); 226 if (data) { 227 rcu_assign_pointer(kvm->arch.mpidr_data, NULL); 228 synchronize_rcu(); 229 kfree(data); 230 } 231 232 mutex_unlock(&kvm->arch.config_lock); 233 } 234 235 /** 236 * kvm_arch_destroy_vm - destroy the VM data structure 237 * @kvm: pointer to the KVM struct 238 */ 239 void kvm_arch_destroy_vm(struct kvm *kvm) 240 { 241 bitmap_free(kvm->arch.pmu_filter); 242 free_cpumask_var(kvm->arch.supported_cpus); 243 244 kvm_vgic_destroy(kvm); 245 246 if (is_protected_kvm_enabled()) 247 pkvm_destroy_hyp_vm(kvm); 248 249 kvm_destroy_mpidr_data(kvm); 250 251 kfree(kvm->arch.sysreg_masks); 252 kvm_destroy_vcpus(kvm); 253 254 kvm_unshare_hyp(kvm, kvm + 1); 255 256 kvm_arm_teardown_hypercalls(kvm); 257 } 258 259 static bool kvm_has_full_ptr_auth(void) 260 { 261 bool apa, gpa, api, gpi, apa3, gpa3; 262 u64 isar1, isar2, val; 263 264 /* 265 * Check that: 266 * 267 * - both Address and Generic auth are implemented for a given 268 * algorithm (Q5, IMPDEF or Q3) 269 * - only a single algorithm is implemented. 270 */ 271 if (!system_has_full_ptr_auth()) 272 return false; 273 274 isar1 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1); 275 isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1); 276 277 apa = !!FIELD_GET(ID_AA64ISAR1_EL1_APA_MASK, isar1); 278 val = FIELD_GET(ID_AA64ISAR1_EL1_GPA_MASK, isar1); 279 gpa = (val == ID_AA64ISAR1_EL1_GPA_IMP); 280 281 api = !!FIELD_GET(ID_AA64ISAR1_EL1_API_MASK, isar1); 282 val = FIELD_GET(ID_AA64ISAR1_EL1_GPI_MASK, isar1); 283 gpi = (val == ID_AA64ISAR1_EL1_GPI_IMP); 284 285 apa3 = !!FIELD_GET(ID_AA64ISAR2_EL1_APA3_MASK, isar2); 286 val = FIELD_GET(ID_AA64ISAR2_EL1_GPA3_MASK, isar2); 287 gpa3 = (val == ID_AA64ISAR2_EL1_GPA3_IMP); 288 289 return (apa == gpa && api == gpi && apa3 == gpa3 && 290 (apa + api + apa3) == 1); 291 } 292 293 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 294 { 295 int r; 296 297 if (kvm && kvm_vm_is_protected(kvm) && !kvm_pvm_ext_allowed(ext)) 298 return 0; 299 300 switch (ext) { 301 case KVM_CAP_IRQCHIP: 302 r = vgic_present; 303 break; 304 case KVM_CAP_IOEVENTFD: 305 case KVM_CAP_USER_MEMORY: 306 case KVM_CAP_SYNC_MMU: 307 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 308 case KVM_CAP_ONE_REG: 309 case KVM_CAP_ARM_PSCI: 310 case KVM_CAP_ARM_PSCI_0_2: 311 case KVM_CAP_READONLY_MEM: 312 case KVM_CAP_MP_STATE: 313 case KVM_CAP_IMMEDIATE_EXIT: 314 case KVM_CAP_VCPU_EVENTS: 315 case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2: 316 case KVM_CAP_ARM_NISV_TO_USER: 317 case KVM_CAP_ARM_INJECT_EXT_DABT: 318 case KVM_CAP_SET_GUEST_DEBUG: 319 case KVM_CAP_VCPU_ATTRIBUTES: 320 case KVM_CAP_PTP_KVM: 321 case KVM_CAP_ARM_SYSTEM_SUSPEND: 322 case KVM_CAP_IRQFD_RESAMPLE: 323 case KVM_CAP_COUNTER_OFFSET: 324 case KVM_CAP_ARM_WRITABLE_IMP_ID_REGS: 325 r = 1; 326 break; 327 case KVM_CAP_SET_GUEST_DEBUG2: 328 return KVM_GUESTDBG_VALID_MASK; 329 case KVM_CAP_ARM_SET_DEVICE_ADDR: 330 r = 1; 331 break; 332 case KVM_CAP_NR_VCPUS: 333 /* 334 * ARM64 treats KVM_CAP_NR_CPUS differently from all other 335 * architectures, as it does not always bound it to 336 * KVM_CAP_MAX_VCPUS. It should not matter much because 337 * this is just an advisory value. 338 */ 339 r = min_t(unsigned int, num_online_cpus(), 340 kvm_arm_default_max_vcpus()); 341 break; 342 case KVM_CAP_MAX_VCPUS: 343 case KVM_CAP_MAX_VCPU_ID: 344 if (kvm) 345 r = kvm->max_vcpus; 346 else 347 r = kvm_arm_default_max_vcpus(); 348 break; 349 case KVM_CAP_MSI_DEVID: 350 if (!kvm) 351 r = -EINVAL; 352 else 353 r = kvm->arch.vgic.msis_require_devid; 354 break; 355 case KVM_CAP_ARM_USER_IRQ: 356 /* 357 * 1: EL1_VTIMER, EL1_PTIMER, and PMU. 358 * (bump this number if adding more devices) 359 */ 360 r = 1; 361 break; 362 case KVM_CAP_ARM_MTE: 363 r = system_supports_mte(); 364 break; 365 case KVM_CAP_STEAL_TIME: 366 r = kvm_arm_pvtime_supported(); 367 break; 368 case KVM_CAP_ARM_EL1_32BIT: 369 r = cpus_have_final_cap(ARM64_HAS_32BIT_EL1); 370 break; 371 case KVM_CAP_ARM_EL2: 372 r = cpus_have_final_cap(ARM64_HAS_NESTED_VIRT); 373 break; 374 case KVM_CAP_ARM_EL2_E2H0: 375 r = cpus_have_final_cap(ARM64_HAS_HCR_NV1); 376 break; 377 case KVM_CAP_GUEST_DEBUG_HW_BPS: 378 r = get_num_brps(); 379 break; 380 case KVM_CAP_GUEST_DEBUG_HW_WPS: 381 r = get_num_wrps(); 382 break; 383 case KVM_CAP_ARM_PMU_V3: 384 r = kvm_supports_guest_pmuv3(); 385 break; 386 case KVM_CAP_ARM_INJECT_SERROR_ESR: 387 r = cpus_have_final_cap(ARM64_HAS_RAS_EXTN); 388 break; 389 case KVM_CAP_ARM_VM_IPA_SIZE: 390 r = get_kvm_ipa_limit(); 391 break; 392 case KVM_CAP_ARM_SVE: 393 r = system_supports_sve(); 394 break; 395 case KVM_CAP_ARM_PTRAUTH_ADDRESS: 396 case KVM_CAP_ARM_PTRAUTH_GENERIC: 397 r = kvm_has_full_ptr_auth(); 398 break; 399 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE: 400 if (kvm) 401 r = kvm->arch.mmu.split_page_chunk_size; 402 else 403 r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT; 404 break; 405 case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES: 406 r = kvm_supported_block_sizes(); 407 break; 408 case KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES: 409 r = BIT(0); 410 break; 411 default: 412 r = 0; 413 } 414 415 return r; 416 } 417 418 long kvm_arch_dev_ioctl(struct file *filp, 419 unsigned int ioctl, unsigned long arg) 420 { 421 return -EINVAL; 422 } 423 424 struct kvm *kvm_arch_alloc_vm(void) 425 { 426 size_t sz = sizeof(struct kvm); 427 428 if (!has_vhe()) 429 return kzalloc(sz, GFP_KERNEL_ACCOUNT); 430 431 return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO); 432 } 433 434 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 435 { 436 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) 437 return -EBUSY; 438 439 if (id >= kvm->max_vcpus) 440 return -EINVAL; 441 442 return 0; 443 } 444 445 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 446 { 447 int err; 448 449 spin_lock_init(&vcpu->arch.mp_state_lock); 450 451 #ifdef CONFIG_LOCKDEP 452 /* Inform lockdep that the config_lock is acquired after vcpu->mutex */ 453 mutex_lock(&vcpu->mutex); 454 mutex_lock(&vcpu->kvm->arch.config_lock); 455 mutex_unlock(&vcpu->kvm->arch.config_lock); 456 mutex_unlock(&vcpu->mutex); 457 #endif 458 459 /* Force users to call KVM_ARM_VCPU_INIT */ 460 vcpu_clear_flag(vcpu, VCPU_INITIALIZED); 461 462 vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO; 463 464 /* Set up the timer */ 465 kvm_timer_vcpu_init(vcpu); 466 467 kvm_pmu_vcpu_init(vcpu); 468 469 kvm_arm_pvtime_vcpu_init(&vcpu->arch); 470 471 vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu; 472 473 /* 474 * This vCPU may have been created after mpidr_data was initialized. 475 * Throw out the pre-computed mappings if that is the case which forces 476 * KVM to fall back to iteratively searching the vCPUs. 477 */ 478 kvm_destroy_mpidr_data(vcpu->kvm); 479 480 err = kvm_vgic_vcpu_init(vcpu); 481 if (err) 482 return err; 483 484 err = kvm_share_hyp(vcpu, vcpu + 1); 485 if (err) 486 kvm_vgic_vcpu_destroy(vcpu); 487 488 return err; 489 } 490 491 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 492 { 493 } 494 495 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 496 { 497 if (!is_protected_kvm_enabled()) 498 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); 499 else 500 free_hyp_memcache(&vcpu->arch.pkvm_memcache); 501 kvm_timer_vcpu_terminate(vcpu); 502 kvm_pmu_vcpu_destroy(vcpu); 503 kvm_vgic_vcpu_destroy(vcpu); 504 kvm_arm_vcpu_destroy(vcpu); 505 } 506 507 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 508 { 509 510 } 511 512 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 513 { 514 515 } 516 517 static void vcpu_set_pauth_traps(struct kvm_vcpu *vcpu) 518 { 519 if (vcpu_has_ptrauth(vcpu) && !is_protected_kvm_enabled()) { 520 /* 521 * Either we're running an L2 guest, and the API/APK bits come 522 * from L1's HCR_EL2, or API/APK are both set. 523 */ 524 if (unlikely(vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu))) { 525 u64 val; 526 527 val = __vcpu_sys_reg(vcpu, HCR_EL2); 528 val &= (HCR_API | HCR_APK); 529 vcpu->arch.hcr_el2 &= ~(HCR_API | HCR_APK); 530 vcpu->arch.hcr_el2 |= val; 531 } else { 532 vcpu->arch.hcr_el2 |= (HCR_API | HCR_APK); 533 } 534 535 /* 536 * Save the host keys if there is any chance for the guest 537 * to use pauth, as the entry code will reload the guest 538 * keys in that case. 539 */ 540 if (vcpu->arch.hcr_el2 & (HCR_API | HCR_APK)) { 541 struct kvm_cpu_context *ctxt; 542 543 ctxt = this_cpu_ptr_hyp_sym(kvm_hyp_ctxt); 544 ptrauth_save_keys(ctxt); 545 } 546 } 547 } 548 549 static bool kvm_vcpu_should_clear_twi(struct kvm_vcpu *vcpu) 550 { 551 if (unlikely(kvm_wfi_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK)) 552 return kvm_wfi_trap_policy == KVM_WFX_NOTRAP; 553 554 return single_task_running() && 555 (atomic_read(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count) || 556 vcpu->kvm->arch.vgic.nassgireq); 557 } 558 559 static bool kvm_vcpu_should_clear_twe(struct kvm_vcpu *vcpu) 560 { 561 if (unlikely(kvm_wfe_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK)) 562 return kvm_wfe_trap_policy == KVM_WFX_NOTRAP; 563 564 return single_task_running(); 565 } 566 567 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 568 { 569 struct kvm_s2_mmu *mmu; 570 int *last_ran; 571 572 if (is_protected_kvm_enabled()) 573 goto nommu; 574 575 if (vcpu_has_nv(vcpu)) 576 kvm_vcpu_load_hw_mmu(vcpu); 577 578 mmu = vcpu->arch.hw_mmu; 579 last_ran = this_cpu_ptr(mmu->last_vcpu_ran); 580 581 /* 582 * Ensure a VMID is allocated for the MMU before programming VTTBR_EL2, 583 * which happens eagerly in VHE. 584 * 585 * Also, the VMID allocator only preserves VMIDs that are active at the 586 * time of rollover, so KVM might need to grab a new VMID for the MMU if 587 * this is called from kvm_sched_in(). 588 */ 589 kvm_arm_vmid_update(&mmu->vmid); 590 591 /* 592 * We guarantee that both TLBs and I-cache are private to each 593 * vcpu. If detecting that a vcpu from the same VM has 594 * previously run on the same physical CPU, call into the 595 * hypervisor code to nuke the relevant contexts. 596 * 597 * We might get preempted before the vCPU actually runs, but 598 * over-invalidation doesn't affect correctness. 599 */ 600 if (*last_ran != vcpu->vcpu_idx) { 601 kvm_call_hyp(__kvm_flush_cpu_context, mmu); 602 *last_ran = vcpu->vcpu_idx; 603 } 604 605 nommu: 606 vcpu->cpu = cpu; 607 608 /* 609 * The timer must be loaded before the vgic to correctly set up physical 610 * interrupt deactivation in nested state (e.g. timer interrupt). 611 */ 612 kvm_timer_vcpu_load(vcpu); 613 kvm_vgic_load(vcpu); 614 kvm_vcpu_load_debug(vcpu); 615 if (has_vhe()) 616 kvm_vcpu_load_vhe(vcpu); 617 kvm_arch_vcpu_load_fp(vcpu); 618 kvm_vcpu_pmu_restore_guest(vcpu); 619 if (kvm_arm_is_pvtime_enabled(&vcpu->arch)) 620 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu); 621 622 if (kvm_vcpu_should_clear_twe(vcpu)) 623 vcpu->arch.hcr_el2 &= ~HCR_TWE; 624 else 625 vcpu->arch.hcr_el2 |= HCR_TWE; 626 627 if (kvm_vcpu_should_clear_twi(vcpu)) 628 vcpu->arch.hcr_el2 &= ~HCR_TWI; 629 else 630 vcpu->arch.hcr_el2 |= HCR_TWI; 631 632 vcpu_set_pauth_traps(vcpu); 633 634 if (is_protected_kvm_enabled()) { 635 kvm_call_hyp_nvhe(__pkvm_vcpu_load, 636 vcpu->kvm->arch.pkvm.handle, 637 vcpu->vcpu_idx, vcpu->arch.hcr_el2); 638 kvm_call_hyp(__vgic_v3_restore_vmcr_aprs, 639 &vcpu->arch.vgic_cpu.vgic_v3); 640 } 641 642 if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus)) 643 vcpu_set_on_unsupported_cpu(vcpu); 644 } 645 646 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 647 { 648 if (is_protected_kvm_enabled()) { 649 kvm_call_hyp(__vgic_v3_save_vmcr_aprs, 650 &vcpu->arch.vgic_cpu.vgic_v3); 651 kvm_call_hyp_nvhe(__pkvm_vcpu_put); 652 } 653 654 kvm_vcpu_put_debug(vcpu); 655 kvm_arch_vcpu_put_fp(vcpu); 656 if (has_vhe()) 657 kvm_vcpu_put_vhe(vcpu); 658 kvm_timer_vcpu_put(vcpu); 659 kvm_vgic_put(vcpu); 660 kvm_vcpu_pmu_restore_host(vcpu); 661 if (vcpu_has_nv(vcpu)) 662 kvm_vcpu_put_hw_mmu(vcpu); 663 kvm_arm_vmid_clear_active(); 664 665 vcpu_clear_on_unsupported_cpu(vcpu); 666 vcpu->cpu = -1; 667 } 668 669 static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu) 670 { 671 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED); 672 kvm_make_request(KVM_REQ_SLEEP, vcpu); 673 kvm_vcpu_kick(vcpu); 674 } 675 676 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu) 677 { 678 spin_lock(&vcpu->arch.mp_state_lock); 679 __kvm_arm_vcpu_power_off(vcpu); 680 spin_unlock(&vcpu->arch.mp_state_lock); 681 } 682 683 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu) 684 { 685 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED; 686 } 687 688 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu) 689 { 690 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED); 691 kvm_make_request(KVM_REQ_SUSPEND, vcpu); 692 kvm_vcpu_kick(vcpu); 693 } 694 695 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu) 696 { 697 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED; 698 } 699 700 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 701 struct kvm_mp_state *mp_state) 702 { 703 *mp_state = READ_ONCE(vcpu->arch.mp_state); 704 705 return 0; 706 } 707 708 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 709 struct kvm_mp_state *mp_state) 710 { 711 int ret = 0; 712 713 spin_lock(&vcpu->arch.mp_state_lock); 714 715 switch (mp_state->mp_state) { 716 case KVM_MP_STATE_RUNNABLE: 717 WRITE_ONCE(vcpu->arch.mp_state, *mp_state); 718 break; 719 case KVM_MP_STATE_STOPPED: 720 __kvm_arm_vcpu_power_off(vcpu); 721 break; 722 case KVM_MP_STATE_SUSPENDED: 723 kvm_arm_vcpu_suspend(vcpu); 724 break; 725 default: 726 ret = -EINVAL; 727 } 728 729 spin_unlock(&vcpu->arch.mp_state_lock); 730 731 return ret; 732 } 733 734 /** 735 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled 736 * @v: The VCPU pointer 737 * 738 * If the guest CPU is not waiting for interrupts or an interrupt line is 739 * asserted, the CPU is by definition runnable. 740 */ 741 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 742 { 743 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF); 744 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v)) 745 && !kvm_arm_vcpu_stopped(v) && !v->arch.pause); 746 } 747 748 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 749 { 750 return vcpu_mode_priv(vcpu); 751 } 752 753 #ifdef CONFIG_GUEST_PERF_EVENTS 754 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 755 { 756 return *vcpu_pc(vcpu); 757 } 758 #endif 759 760 static void kvm_init_mpidr_data(struct kvm *kvm) 761 { 762 struct kvm_mpidr_data *data = NULL; 763 unsigned long c, mask, nr_entries; 764 u64 aff_set = 0, aff_clr = ~0UL; 765 struct kvm_vcpu *vcpu; 766 767 mutex_lock(&kvm->arch.config_lock); 768 769 if (rcu_access_pointer(kvm->arch.mpidr_data) || 770 atomic_read(&kvm->online_vcpus) == 1) 771 goto out; 772 773 kvm_for_each_vcpu(c, vcpu, kvm) { 774 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu); 775 aff_set |= aff; 776 aff_clr &= aff; 777 } 778 779 /* 780 * A significant bit can be either 0 or 1, and will only appear in 781 * aff_set. Use aff_clr to weed out the useless stuff. 782 */ 783 mask = aff_set ^ aff_clr; 784 nr_entries = BIT_ULL(hweight_long(mask)); 785 786 /* 787 * Don't let userspace fool us. If we need more than a single page 788 * to describe the compressed MPIDR array, just fall back to the 789 * iterative method. Single vcpu VMs do not need this either. 790 */ 791 if (struct_size(data, cmpidr_to_idx, nr_entries) <= PAGE_SIZE) 792 data = kzalloc(struct_size(data, cmpidr_to_idx, nr_entries), 793 GFP_KERNEL_ACCOUNT); 794 795 if (!data) 796 goto out; 797 798 data->mpidr_mask = mask; 799 800 kvm_for_each_vcpu(c, vcpu, kvm) { 801 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu); 802 u16 index = kvm_mpidr_index(data, aff); 803 804 data->cmpidr_to_idx[index] = c; 805 } 806 807 rcu_assign_pointer(kvm->arch.mpidr_data, data); 808 out: 809 mutex_unlock(&kvm->arch.config_lock); 810 } 811 812 /* 813 * Handle both the initialisation that is being done when the vcpu is 814 * run for the first time, as well as the updates that must be 815 * performed each time we get a new thread dealing with this vcpu. 816 */ 817 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 818 { 819 struct kvm *kvm = vcpu->kvm; 820 int ret; 821 822 if (!kvm_vcpu_initialized(vcpu)) 823 return -ENOEXEC; 824 825 if (!kvm_arm_vcpu_is_finalized(vcpu)) 826 return -EPERM; 827 828 if (likely(vcpu_has_run_once(vcpu))) 829 return 0; 830 831 kvm_init_mpidr_data(kvm); 832 833 if (likely(irqchip_in_kernel(kvm))) { 834 /* 835 * Map the VGIC hardware resources before running a vcpu the 836 * first time on this VM. 837 */ 838 ret = kvm_vgic_map_resources(kvm); 839 if (ret) 840 return ret; 841 } 842 843 ret = kvm_finalize_sys_regs(vcpu); 844 if (ret) 845 return ret; 846 847 if (vcpu_has_nv(vcpu)) { 848 ret = kvm_vcpu_allocate_vncr_tlb(vcpu); 849 if (ret) 850 return ret; 851 852 ret = kvm_vgic_vcpu_nv_init(vcpu); 853 if (ret) 854 return ret; 855 } 856 857 /* 858 * This needs to happen after any restriction has been applied 859 * to the feature set. 860 */ 861 kvm_calculate_traps(vcpu); 862 863 ret = kvm_timer_enable(vcpu); 864 if (ret) 865 return ret; 866 867 if (kvm_vcpu_has_pmu(vcpu)) { 868 ret = kvm_arm_pmu_v3_enable(vcpu); 869 if (ret) 870 return ret; 871 } 872 873 if (is_protected_kvm_enabled()) { 874 ret = pkvm_create_hyp_vm(kvm); 875 if (ret) 876 return ret; 877 878 ret = pkvm_create_hyp_vcpu(vcpu); 879 if (ret) 880 return ret; 881 } 882 883 mutex_lock(&kvm->arch.config_lock); 884 set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags); 885 mutex_unlock(&kvm->arch.config_lock); 886 887 return ret; 888 } 889 890 bool kvm_arch_intc_initialized(struct kvm *kvm) 891 { 892 return vgic_initialized(kvm); 893 } 894 895 void kvm_arm_halt_guest(struct kvm *kvm) 896 { 897 unsigned long i; 898 struct kvm_vcpu *vcpu; 899 900 kvm_for_each_vcpu(i, vcpu, kvm) 901 vcpu->arch.pause = true; 902 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP); 903 } 904 905 void kvm_arm_resume_guest(struct kvm *kvm) 906 { 907 unsigned long i; 908 struct kvm_vcpu *vcpu; 909 910 kvm_for_each_vcpu(i, vcpu, kvm) { 911 vcpu->arch.pause = false; 912 __kvm_vcpu_wake_up(vcpu); 913 } 914 } 915 916 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu) 917 { 918 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 919 920 rcuwait_wait_event(wait, 921 (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause), 922 TASK_INTERRUPTIBLE); 923 924 if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) { 925 /* Awaken to handle a signal, request we sleep again later. */ 926 kvm_make_request(KVM_REQ_SLEEP, vcpu); 927 } 928 929 /* 930 * Make sure we will observe a potential reset request if we've 931 * observed a change to the power state. Pairs with the smp_wmb() in 932 * kvm_psci_vcpu_on(). 933 */ 934 smp_rmb(); 935 } 936 937 /** 938 * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior 939 * @vcpu: The VCPU pointer 940 * 941 * Suspend execution of a vCPU until a valid wake event is detected, i.e. until 942 * the vCPU is runnable. The vCPU may or may not be scheduled out, depending 943 * on when a wake event arrives, e.g. there may already be a pending wake event. 944 */ 945 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu) 946 { 947 /* 948 * Sync back the state of the GIC CPU interface so that we have 949 * the latest PMR and group enables. This ensures that 950 * kvm_arch_vcpu_runnable has up-to-date data to decide whether 951 * we have pending interrupts, e.g. when determining if the 952 * vCPU should block. 953 * 954 * For the same reason, we want to tell GICv4 that we need 955 * doorbells to be signalled, should an interrupt become pending. 956 */ 957 preempt_disable(); 958 vcpu_set_flag(vcpu, IN_WFI); 959 kvm_vgic_put(vcpu); 960 preempt_enable(); 961 962 kvm_vcpu_halt(vcpu); 963 vcpu_clear_flag(vcpu, IN_WFIT); 964 965 preempt_disable(); 966 vcpu_clear_flag(vcpu, IN_WFI); 967 kvm_vgic_load(vcpu); 968 preempt_enable(); 969 } 970 971 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu) 972 { 973 if (!kvm_arm_vcpu_suspended(vcpu)) 974 return 1; 975 976 kvm_vcpu_wfi(vcpu); 977 978 /* 979 * The suspend state is sticky; we do not leave it until userspace 980 * explicitly marks the vCPU as runnable. Request that we suspend again 981 * later. 982 */ 983 kvm_make_request(KVM_REQ_SUSPEND, vcpu); 984 985 /* 986 * Check to make sure the vCPU is actually runnable. If so, exit to 987 * userspace informing it of the wakeup condition. 988 */ 989 if (kvm_arch_vcpu_runnable(vcpu)) { 990 memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event)); 991 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP; 992 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 993 return 0; 994 } 995 996 /* 997 * Otherwise, we were unblocked to process a different event, such as a 998 * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to 999 * process the event. 1000 */ 1001 return 1; 1002 } 1003 1004 /** 1005 * check_vcpu_requests - check and handle pending vCPU requests 1006 * @vcpu: the VCPU pointer 1007 * 1008 * Return: 1 if we should enter the guest 1009 * 0 if we should exit to userspace 1010 * < 0 if we should exit to userspace, where the return value indicates 1011 * an error 1012 */ 1013 static int check_vcpu_requests(struct kvm_vcpu *vcpu) 1014 { 1015 if (kvm_request_pending(vcpu)) { 1016 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) 1017 return -EIO; 1018 1019 if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) 1020 kvm_vcpu_sleep(vcpu); 1021 1022 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) 1023 kvm_reset_vcpu(vcpu); 1024 1025 /* 1026 * Clear IRQ_PENDING requests that were made to guarantee 1027 * that a VCPU sees new virtual interrupts. 1028 */ 1029 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu); 1030 1031 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu)) 1032 kvm_update_stolen_time(vcpu); 1033 1034 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) { 1035 /* The distributor enable bits were changed */ 1036 preempt_disable(); 1037 vgic_v4_put(vcpu); 1038 vgic_v4_load(vcpu); 1039 preempt_enable(); 1040 } 1041 1042 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu)) 1043 kvm_vcpu_reload_pmu(vcpu); 1044 1045 if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu)) 1046 kvm_vcpu_pmu_restore_guest(vcpu); 1047 1048 if (kvm_check_request(KVM_REQ_SUSPEND, vcpu)) 1049 return kvm_vcpu_suspend(vcpu); 1050 1051 if (kvm_dirty_ring_check_request(vcpu)) 1052 return 0; 1053 1054 check_nested_vcpu_requests(vcpu); 1055 } 1056 1057 return 1; 1058 } 1059 1060 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu) 1061 { 1062 if (likely(!vcpu_mode_is_32bit(vcpu))) 1063 return false; 1064 1065 if (vcpu_has_nv(vcpu)) 1066 return true; 1067 1068 return !kvm_supports_32bit_el0(); 1069 } 1070 1071 /** 1072 * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest 1073 * @vcpu: The VCPU pointer 1074 * @ret: Pointer to write optional return code 1075 * 1076 * Returns: true if the VCPU needs to return to a preemptible + interruptible 1077 * and skip guest entry. 1078 * 1079 * This function disambiguates between two different types of exits: exits to a 1080 * preemptible + interruptible kernel context and exits to userspace. For an 1081 * exit to userspace, this function will write the return code to ret and return 1082 * true. For an exit to preemptible + interruptible kernel context (i.e. check 1083 * for pending work and re-enter), return true without writing to ret. 1084 */ 1085 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret) 1086 { 1087 struct kvm_run *run = vcpu->run; 1088 1089 /* 1090 * If we're using a userspace irqchip, then check if we need 1091 * to tell a userspace irqchip about timer or PMU level 1092 * changes and if so, exit to userspace (the actual level 1093 * state gets updated in kvm_timer_update_run and 1094 * kvm_pmu_update_run below). 1095 */ 1096 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) { 1097 if (kvm_timer_should_notify_user(vcpu) || 1098 kvm_pmu_should_notify_user(vcpu)) { 1099 *ret = -EINTR; 1100 run->exit_reason = KVM_EXIT_INTR; 1101 return true; 1102 } 1103 } 1104 1105 if (unlikely(vcpu_on_unsupported_cpu(vcpu))) { 1106 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 1107 run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED; 1108 run->fail_entry.cpu = smp_processor_id(); 1109 *ret = 0; 1110 return true; 1111 } 1112 1113 return kvm_request_pending(vcpu) || 1114 xfer_to_guest_mode_work_pending(); 1115 } 1116 1117 /* 1118 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while 1119 * the vCPU is running. 1120 * 1121 * This must be noinstr as instrumentation may make use of RCU, and this is not 1122 * safe during the EQS. 1123 */ 1124 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu) 1125 { 1126 int ret; 1127 1128 guest_state_enter_irqoff(); 1129 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu); 1130 guest_state_exit_irqoff(); 1131 1132 return ret; 1133 } 1134 1135 /** 1136 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code 1137 * @vcpu: The VCPU pointer 1138 * 1139 * This function is called through the VCPU_RUN ioctl called from user space. It 1140 * will execute VM code in a loop until the time slice for the process is used 1141 * or some emulation is needed from user space in which case the function will 1142 * return with return value 0 and with the kvm_run structure filled in with the 1143 * required data for the requested emulation. 1144 */ 1145 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 1146 { 1147 struct kvm_run *run = vcpu->run; 1148 int ret; 1149 1150 if (run->exit_reason == KVM_EXIT_MMIO) { 1151 ret = kvm_handle_mmio_return(vcpu); 1152 if (ret <= 0) 1153 return ret; 1154 } 1155 1156 vcpu_load(vcpu); 1157 1158 if (!vcpu->wants_to_run) { 1159 ret = -EINTR; 1160 goto out; 1161 } 1162 1163 kvm_sigset_activate(vcpu); 1164 1165 ret = 1; 1166 run->exit_reason = KVM_EXIT_UNKNOWN; 1167 run->flags = 0; 1168 while (ret > 0) { 1169 /* 1170 * Check conditions before entering the guest 1171 */ 1172 ret = xfer_to_guest_mode_handle_work(vcpu); 1173 if (!ret) 1174 ret = 1; 1175 1176 if (ret > 0) 1177 ret = check_vcpu_requests(vcpu); 1178 1179 /* 1180 * Preparing the interrupts to be injected also 1181 * involves poking the GIC, which must be done in a 1182 * non-preemptible context. 1183 */ 1184 preempt_disable(); 1185 1186 if (kvm_vcpu_has_pmu(vcpu)) 1187 kvm_pmu_flush_hwstate(vcpu); 1188 1189 local_irq_disable(); 1190 1191 kvm_vgic_flush_hwstate(vcpu); 1192 1193 kvm_pmu_update_vcpu_events(vcpu); 1194 1195 /* 1196 * Ensure we set mode to IN_GUEST_MODE after we disable 1197 * interrupts and before the final VCPU requests check. 1198 * See the comment in kvm_vcpu_exiting_guest_mode() and 1199 * Documentation/virt/kvm/vcpu-requests.rst 1200 */ 1201 smp_store_mb(vcpu->mode, IN_GUEST_MODE); 1202 1203 if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) { 1204 vcpu->mode = OUTSIDE_GUEST_MODE; 1205 isb(); /* Ensure work in x_flush_hwstate is committed */ 1206 if (kvm_vcpu_has_pmu(vcpu)) 1207 kvm_pmu_sync_hwstate(vcpu); 1208 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) 1209 kvm_timer_sync_user(vcpu); 1210 kvm_vgic_sync_hwstate(vcpu); 1211 local_irq_enable(); 1212 preempt_enable(); 1213 continue; 1214 } 1215 1216 kvm_arch_vcpu_ctxflush_fp(vcpu); 1217 1218 /************************************************************** 1219 * Enter the guest 1220 */ 1221 trace_kvm_entry(*vcpu_pc(vcpu)); 1222 guest_timing_enter_irqoff(); 1223 1224 ret = kvm_arm_vcpu_enter_exit(vcpu); 1225 1226 vcpu->mode = OUTSIDE_GUEST_MODE; 1227 vcpu->stat.exits++; 1228 /* 1229 * Back from guest 1230 *************************************************************/ 1231 1232 /* 1233 * We must sync the PMU state before the vgic state so 1234 * that the vgic can properly sample the updated state of the 1235 * interrupt line. 1236 */ 1237 if (kvm_vcpu_has_pmu(vcpu)) 1238 kvm_pmu_sync_hwstate(vcpu); 1239 1240 /* 1241 * Sync the vgic state before syncing the timer state because 1242 * the timer code needs to know if the virtual timer 1243 * interrupts are active. 1244 */ 1245 kvm_vgic_sync_hwstate(vcpu); 1246 1247 /* 1248 * Sync the timer hardware state before enabling interrupts as 1249 * we don't want vtimer interrupts to race with syncing the 1250 * timer virtual interrupt state. 1251 */ 1252 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) 1253 kvm_timer_sync_user(vcpu); 1254 1255 if (is_hyp_ctxt(vcpu)) 1256 kvm_timer_sync_nested(vcpu); 1257 1258 kvm_arch_vcpu_ctxsync_fp(vcpu); 1259 1260 /* 1261 * We must ensure that any pending interrupts are taken before 1262 * we exit guest timing so that timer ticks are accounted as 1263 * guest time. Transiently unmask interrupts so that any 1264 * pending interrupts are taken. 1265 * 1266 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other 1267 * context synchronization event) is necessary to ensure that 1268 * pending interrupts are taken. 1269 */ 1270 if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) { 1271 local_irq_enable(); 1272 isb(); 1273 local_irq_disable(); 1274 } 1275 1276 guest_timing_exit_irqoff(); 1277 1278 local_irq_enable(); 1279 1280 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu)); 1281 1282 /* Exit types that need handling before we can be preempted */ 1283 handle_exit_early(vcpu, ret); 1284 1285 preempt_enable(); 1286 1287 /* 1288 * The ARMv8 architecture doesn't give the hypervisor 1289 * a mechanism to prevent a guest from dropping to AArch32 EL0 1290 * if implemented by the CPU. If we spot the guest in such 1291 * state and that we decided it wasn't supposed to do so (like 1292 * with the asymmetric AArch32 case), return to userspace with 1293 * a fatal error. 1294 */ 1295 if (vcpu_mode_is_bad_32bit(vcpu)) { 1296 /* 1297 * As we have caught the guest red-handed, decide that 1298 * it isn't fit for purpose anymore by making the vcpu 1299 * invalid. The VMM can try and fix it by issuing a 1300 * KVM_ARM_VCPU_INIT if it really wants to. 1301 */ 1302 vcpu_clear_flag(vcpu, VCPU_INITIALIZED); 1303 ret = ARM_EXCEPTION_IL; 1304 } 1305 1306 ret = handle_exit(vcpu, ret); 1307 } 1308 1309 /* Tell userspace about in-kernel device output levels */ 1310 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) { 1311 kvm_timer_update_run(vcpu); 1312 kvm_pmu_update_run(vcpu); 1313 } 1314 1315 kvm_sigset_deactivate(vcpu); 1316 1317 out: 1318 /* 1319 * In the unlikely event that we are returning to userspace 1320 * with pending exceptions or PC adjustment, commit these 1321 * adjustments in order to give userspace a consistent view of 1322 * the vcpu state. Note that this relies on __kvm_adjust_pc() 1323 * being preempt-safe on VHE. 1324 */ 1325 if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) || 1326 vcpu_get_flag(vcpu, INCREMENT_PC))) 1327 kvm_call_hyp(__kvm_adjust_pc, vcpu); 1328 1329 vcpu_put(vcpu); 1330 return ret; 1331 } 1332 1333 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level) 1334 { 1335 int bit_index; 1336 bool set; 1337 unsigned long *hcr; 1338 1339 if (number == KVM_ARM_IRQ_CPU_IRQ) 1340 bit_index = __ffs(HCR_VI); 1341 else /* KVM_ARM_IRQ_CPU_FIQ */ 1342 bit_index = __ffs(HCR_VF); 1343 1344 hcr = vcpu_hcr(vcpu); 1345 if (level) 1346 set = test_and_set_bit(bit_index, hcr); 1347 else 1348 set = test_and_clear_bit(bit_index, hcr); 1349 1350 /* 1351 * If we didn't change anything, no need to wake up or kick other CPUs 1352 */ 1353 if (set == level) 1354 return 0; 1355 1356 /* 1357 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and 1358 * trigger a world-switch round on the running physical CPU to set the 1359 * virtual IRQ/FIQ fields in the HCR appropriately. 1360 */ 1361 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); 1362 kvm_vcpu_kick(vcpu); 1363 1364 return 0; 1365 } 1366 1367 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1368 bool line_status) 1369 { 1370 u32 irq = irq_level->irq; 1371 unsigned int irq_type, vcpu_id, irq_num; 1372 struct kvm_vcpu *vcpu = NULL; 1373 bool level = irq_level->level; 1374 1375 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK; 1376 vcpu_id = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK; 1377 vcpu_id += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1); 1378 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK; 1379 1380 trace_kvm_irq_line(irq_type, vcpu_id, irq_num, irq_level->level); 1381 1382 switch (irq_type) { 1383 case KVM_ARM_IRQ_TYPE_CPU: 1384 if (irqchip_in_kernel(kvm)) 1385 return -ENXIO; 1386 1387 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); 1388 if (!vcpu) 1389 return -EINVAL; 1390 1391 if (irq_num > KVM_ARM_IRQ_CPU_FIQ) 1392 return -EINVAL; 1393 1394 return vcpu_interrupt_line(vcpu, irq_num, level); 1395 case KVM_ARM_IRQ_TYPE_PPI: 1396 if (!irqchip_in_kernel(kvm)) 1397 return -ENXIO; 1398 1399 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); 1400 if (!vcpu) 1401 return -EINVAL; 1402 1403 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS) 1404 return -EINVAL; 1405 1406 return kvm_vgic_inject_irq(kvm, vcpu, irq_num, level, NULL); 1407 case KVM_ARM_IRQ_TYPE_SPI: 1408 if (!irqchip_in_kernel(kvm)) 1409 return -ENXIO; 1410 1411 if (irq_num < VGIC_NR_PRIVATE_IRQS) 1412 return -EINVAL; 1413 1414 return kvm_vgic_inject_irq(kvm, NULL, irq_num, level, NULL); 1415 } 1416 1417 return -EINVAL; 1418 } 1419 1420 static unsigned long system_supported_vcpu_features(void) 1421 { 1422 unsigned long features = KVM_VCPU_VALID_FEATURES; 1423 1424 if (!cpus_have_final_cap(ARM64_HAS_32BIT_EL1)) 1425 clear_bit(KVM_ARM_VCPU_EL1_32BIT, &features); 1426 1427 if (!kvm_supports_guest_pmuv3()) 1428 clear_bit(KVM_ARM_VCPU_PMU_V3, &features); 1429 1430 if (!system_supports_sve()) 1431 clear_bit(KVM_ARM_VCPU_SVE, &features); 1432 1433 if (!kvm_has_full_ptr_auth()) { 1434 clear_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features); 1435 clear_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features); 1436 } 1437 1438 if (!cpus_have_final_cap(ARM64_HAS_NESTED_VIRT)) 1439 clear_bit(KVM_ARM_VCPU_HAS_EL2, &features); 1440 1441 return features; 1442 } 1443 1444 static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu, 1445 const struct kvm_vcpu_init *init) 1446 { 1447 unsigned long features = init->features[0]; 1448 int i; 1449 1450 if (features & ~KVM_VCPU_VALID_FEATURES) 1451 return -ENOENT; 1452 1453 for (i = 1; i < ARRAY_SIZE(init->features); i++) { 1454 if (init->features[i]) 1455 return -ENOENT; 1456 } 1457 1458 if (features & ~system_supported_vcpu_features()) 1459 return -EINVAL; 1460 1461 /* 1462 * For now make sure that both address/generic pointer authentication 1463 * features are requested by the userspace together. 1464 */ 1465 if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features) != 1466 test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features)) 1467 return -EINVAL; 1468 1469 if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features)) 1470 return 0; 1471 1472 /* MTE is incompatible with AArch32 */ 1473 if (kvm_has_mte(vcpu->kvm)) 1474 return -EINVAL; 1475 1476 /* NV is incompatible with AArch32 */ 1477 if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features)) 1478 return -EINVAL; 1479 1480 return 0; 1481 } 1482 1483 static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu, 1484 const struct kvm_vcpu_init *init) 1485 { 1486 unsigned long features = init->features[0]; 1487 1488 return !bitmap_equal(vcpu->kvm->arch.vcpu_features, &features, 1489 KVM_VCPU_MAX_FEATURES); 1490 } 1491 1492 static int kvm_setup_vcpu(struct kvm_vcpu *vcpu) 1493 { 1494 struct kvm *kvm = vcpu->kvm; 1495 int ret = 0; 1496 1497 /* 1498 * When the vCPU has a PMU, but no PMU is set for the guest 1499 * yet, set the default one. 1500 */ 1501 if (kvm_vcpu_has_pmu(vcpu) && !kvm->arch.arm_pmu) 1502 ret = kvm_arm_set_default_pmu(kvm); 1503 1504 /* Prepare for nested if required */ 1505 if (!ret && vcpu_has_nv(vcpu)) 1506 ret = kvm_vcpu_init_nested(vcpu); 1507 1508 return ret; 1509 } 1510 1511 static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu, 1512 const struct kvm_vcpu_init *init) 1513 { 1514 unsigned long features = init->features[0]; 1515 struct kvm *kvm = vcpu->kvm; 1516 int ret = -EINVAL; 1517 1518 mutex_lock(&kvm->arch.config_lock); 1519 1520 if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) && 1521 kvm_vcpu_init_changed(vcpu, init)) 1522 goto out_unlock; 1523 1524 bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES); 1525 1526 ret = kvm_setup_vcpu(vcpu); 1527 if (ret) 1528 goto out_unlock; 1529 1530 /* Now we know what it is, we can reset it. */ 1531 kvm_reset_vcpu(vcpu); 1532 1533 set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags); 1534 vcpu_set_flag(vcpu, VCPU_INITIALIZED); 1535 ret = 0; 1536 out_unlock: 1537 mutex_unlock(&kvm->arch.config_lock); 1538 return ret; 1539 } 1540 1541 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu, 1542 const struct kvm_vcpu_init *init) 1543 { 1544 int ret; 1545 1546 if (init->target != KVM_ARM_TARGET_GENERIC_V8 && 1547 init->target != kvm_target_cpu()) 1548 return -EINVAL; 1549 1550 ret = kvm_vcpu_init_check_features(vcpu, init); 1551 if (ret) 1552 return ret; 1553 1554 if (!kvm_vcpu_initialized(vcpu)) 1555 return __kvm_vcpu_set_target(vcpu, init); 1556 1557 if (kvm_vcpu_init_changed(vcpu, init)) 1558 return -EINVAL; 1559 1560 kvm_reset_vcpu(vcpu); 1561 return 0; 1562 } 1563 1564 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu, 1565 struct kvm_vcpu_init *init) 1566 { 1567 bool power_off = false; 1568 int ret; 1569 1570 /* 1571 * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid 1572 * reflecting it in the finalized feature set, thus limiting its scope 1573 * to a single KVM_ARM_VCPU_INIT call. 1574 */ 1575 if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) { 1576 init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF); 1577 power_off = true; 1578 } 1579 1580 ret = kvm_vcpu_set_target(vcpu, init); 1581 if (ret) 1582 return ret; 1583 1584 /* 1585 * Ensure a rebooted VM will fault in RAM pages and detect if the 1586 * guest MMU is turned off and flush the caches as needed. 1587 * 1588 * S2FWB enforces all memory accesses to RAM being cacheable, 1589 * ensuring that the data side is always coherent. We still 1590 * need to invalidate the I-cache though, as FWB does *not* 1591 * imply CTR_EL0.DIC. 1592 */ 1593 if (vcpu_has_run_once(vcpu)) { 1594 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) 1595 stage2_unmap_vm(vcpu->kvm); 1596 else 1597 icache_inval_all_pou(); 1598 } 1599 1600 vcpu_reset_hcr(vcpu); 1601 1602 /* 1603 * Handle the "start in power-off" case. 1604 */ 1605 spin_lock(&vcpu->arch.mp_state_lock); 1606 1607 if (power_off) 1608 __kvm_arm_vcpu_power_off(vcpu); 1609 else 1610 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE); 1611 1612 spin_unlock(&vcpu->arch.mp_state_lock); 1613 1614 return 0; 1615 } 1616 1617 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu, 1618 struct kvm_device_attr *attr) 1619 { 1620 int ret = -ENXIO; 1621 1622 switch (attr->group) { 1623 default: 1624 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr); 1625 break; 1626 } 1627 1628 return ret; 1629 } 1630 1631 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu, 1632 struct kvm_device_attr *attr) 1633 { 1634 int ret = -ENXIO; 1635 1636 switch (attr->group) { 1637 default: 1638 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr); 1639 break; 1640 } 1641 1642 return ret; 1643 } 1644 1645 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu, 1646 struct kvm_device_attr *attr) 1647 { 1648 int ret = -ENXIO; 1649 1650 switch (attr->group) { 1651 default: 1652 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr); 1653 break; 1654 } 1655 1656 return ret; 1657 } 1658 1659 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, 1660 struct kvm_vcpu_events *events) 1661 { 1662 memset(events, 0, sizeof(*events)); 1663 1664 return __kvm_arm_vcpu_get_events(vcpu, events); 1665 } 1666 1667 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, 1668 struct kvm_vcpu_events *events) 1669 { 1670 int i; 1671 1672 /* check whether the reserved field is zero */ 1673 for (i = 0; i < ARRAY_SIZE(events->reserved); i++) 1674 if (events->reserved[i]) 1675 return -EINVAL; 1676 1677 /* check whether the pad field is zero */ 1678 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++) 1679 if (events->exception.pad[i]) 1680 return -EINVAL; 1681 1682 return __kvm_arm_vcpu_set_events(vcpu, events); 1683 } 1684 1685 long kvm_arch_vcpu_ioctl(struct file *filp, 1686 unsigned int ioctl, unsigned long arg) 1687 { 1688 struct kvm_vcpu *vcpu = filp->private_data; 1689 void __user *argp = (void __user *)arg; 1690 struct kvm_device_attr attr; 1691 long r; 1692 1693 switch (ioctl) { 1694 case KVM_ARM_VCPU_INIT: { 1695 struct kvm_vcpu_init init; 1696 1697 r = -EFAULT; 1698 if (copy_from_user(&init, argp, sizeof(init))) 1699 break; 1700 1701 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init); 1702 break; 1703 } 1704 case KVM_SET_ONE_REG: 1705 case KVM_GET_ONE_REG: { 1706 struct kvm_one_reg reg; 1707 1708 r = -ENOEXEC; 1709 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1710 break; 1711 1712 r = -EFAULT; 1713 if (copy_from_user(®, argp, sizeof(reg))) 1714 break; 1715 1716 /* 1717 * We could owe a reset due to PSCI. Handle the pending reset 1718 * here to ensure userspace register accesses are ordered after 1719 * the reset. 1720 */ 1721 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) 1722 kvm_reset_vcpu(vcpu); 1723 1724 if (ioctl == KVM_SET_ONE_REG) 1725 r = kvm_arm_set_reg(vcpu, ®); 1726 else 1727 r = kvm_arm_get_reg(vcpu, ®); 1728 break; 1729 } 1730 case KVM_GET_REG_LIST: { 1731 struct kvm_reg_list __user *user_list = argp; 1732 struct kvm_reg_list reg_list; 1733 unsigned n; 1734 1735 r = -ENOEXEC; 1736 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1737 break; 1738 1739 r = -EPERM; 1740 if (!kvm_arm_vcpu_is_finalized(vcpu)) 1741 break; 1742 1743 r = -EFAULT; 1744 if (copy_from_user(®_list, user_list, sizeof(reg_list))) 1745 break; 1746 n = reg_list.n; 1747 reg_list.n = kvm_arm_num_regs(vcpu); 1748 if (copy_to_user(user_list, ®_list, sizeof(reg_list))) 1749 break; 1750 r = -E2BIG; 1751 if (n < reg_list.n) 1752 break; 1753 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg); 1754 break; 1755 } 1756 case KVM_SET_DEVICE_ATTR: { 1757 r = -EFAULT; 1758 if (copy_from_user(&attr, argp, sizeof(attr))) 1759 break; 1760 r = kvm_arm_vcpu_set_attr(vcpu, &attr); 1761 break; 1762 } 1763 case KVM_GET_DEVICE_ATTR: { 1764 r = -EFAULT; 1765 if (copy_from_user(&attr, argp, sizeof(attr))) 1766 break; 1767 r = kvm_arm_vcpu_get_attr(vcpu, &attr); 1768 break; 1769 } 1770 case KVM_HAS_DEVICE_ATTR: { 1771 r = -EFAULT; 1772 if (copy_from_user(&attr, argp, sizeof(attr))) 1773 break; 1774 r = kvm_arm_vcpu_has_attr(vcpu, &attr); 1775 break; 1776 } 1777 case KVM_GET_VCPU_EVENTS: { 1778 struct kvm_vcpu_events events; 1779 1780 if (kvm_arm_vcpu_get_events(vcpu, &events)) 1781 return -EINVAL; 1782 1783 if (copy_to_user(argp, &events, sizeof(events))) 1784 return -EFAULT; 1785 1786 return 0; 1787 } 1788 case KVM_SET_VCPU_EVENTS: { 1789 struct kvm_vcpu_events events; 1790 1791 if (copy_from_user(&events, argp, sizeof(events))) 1792 return -EFAULT; 1793 1794 return kvm_arm_vcpu_set_events(vcpu, &events); 1795 } 1796 case KVM_ARM_VCPU_FINALIZE: { 1797 int what; 1798 1799 if (!kvm_vcpu_initialized(vcpu)) 1800 return -ENOEXEC; 1801 1802 if (get_user(what, (const int __user *)argp)) 1803 return -EFAULT; 1804 1805 return kvm_arm_vcpu_finalize(vcpu, what); 1806 } 1807 default: 1808 r = -EINVAL; 1809 } 1810 1811 return r; 1812 } 1813 1814 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 1815 { 1816 1817 } 1818 1819 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm, 1820 struct kvm_arm_device_addr *dev_addr) 1821 { 1822 switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) { 1823 case KVM_ARM_DEVICE_VGIC_V2: 1824 if (!vgic_present) 1825 return -ENXIO; 1826 return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr); 1827 default: 1828 return -ENODEV; 1829 } 1830 } 1831 1832 static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1833 { 1834 switch (attr->group) { 1835 case KVM_ARM_VM_SMCCC_CTRL: 1836 return kvm_vm_smccc_has_attr(kvm, attr); 1837 default: 1838 return -ENXIO; 1839 } 1840 } 1841 1842 static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1843 { 1844 switch (attr->group) { 1845 case KVM_ARM_VM_SMCCC_CTRL: 1846 return kvm_vm_smccc_set_attr(kvm, attr); 1847 default: 1848 return -ENXIO; 1849 } 1850 } 1851 1852 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 1853 { 1854 struct kvm *kvm = filp->private_data; 1855 void __user *argp = (void __user *)arg; 1856 struct kvm_device_attr attr; 1857 1858 switch (ioctl) { 1859 case KVM_CREATE_IRQCHIP: { 1860 int ret; 1861 if (!vgic_present) 1862 return -ENXIO; 1863 mutex_lock(&kvm->lock); 1864 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2); 1865 mutex_unlock(&kvm->lock); 1866 return ret; 1867 } 1868 case KVM_ARM_SET_DEVICE_ADDR: { 1869 struct kvm_arm_device_addr dev_addr; 1870 1871 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr))) 1872 return -EFAULT; 1873 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr); 1874 } 1875 case KVM_ARM_PREFERRED_TARGET: { 1876 struct kvm_vcpu_init init = { 1877 .target = KVM_ARM_TARGET_GENERIC_V8, 1878 }; 1879 1880 if (copy_to_user(argp, &init, sizeof(init))) 1881 return -EFAULT; 1882 1883 return 0; 1884 } 1885 case KVM_ARM_MTE_COPY_TAGS: { 1886 struct kvm_arm_copy_mte_tags copy_tags; 1887 1888 if (copy_from_user(©_tags, argp, sizeof(copy_tags))) 1889 return -EFAULT; 1890 return kvm_vm_ioctl_mte_copy_tags(kvm, ©_tags); 1891 } 1892 case KVM_ARM_SET_COUNTER_OFFSET: { 1893 struct kvm_arm_counter_offset offset; 1894 1895 if (copy_from_user(&offset, argp, sizeof(offset))) 1896 return -EFAULT; 1897 return kvm_vm_ioctl_set_counter_offset(kvm, &offset); 1898 } 1899 case KVM_HAS_DEVICE_ATTR: { 1900 if (copy_from_user(&attr, argp, sizeof(attr))) 1901 return -EFAULT; 1902 1903 return kvm_vm_has_attr(kvm, &attr); 1904 } 1905 case KVM_SET_DEVICE_ATTR: { 1906 if (copy_from_user(&attr, argp, sizeof(attr))) 1907 return -EFAULT; 1908 1909 return kvm_vm_set_attr(kvm, &attr); 1910 } 1911 case KVM_ARM_GET_REG_WRITABLE_MASKS: { 1912 struct reg_mask_range range; 1913 1914 if (copy_from_user(&range, argp, sizeof(range))) 1915 return -EFAULT; 1916 return kvm_vm_ioctl_get_reg_writable_masks(kvm, &range); 1917 } 1918 default: 1919 return -EINVAL; 1920 } 1921 } 1922 1923 static unsigned long nvhe_percpu_size(void) 1924 { 1925 return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) - 1926 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start); 1927 } 1928 1929 static unsigned long nvhe_percpu_order(void) 1930 { 1931 unsigned long size = nvhe_percpu_size(); 1932 1933 return size ? get_order(size) : 0; 1934 } 1935 1936 static size_t pkvm_host_sve_state_order(void) 1937 { 1938 return get_order(pkvm_host_sve_state_size()); 1939 } 1940 1941 /* A lookup table holding the hypervisor VA for each vector slot */ 1942 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS]; 1943 1944 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot) 1945 { 1946 hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot); 1947 } 1948 1949 static int kvm_init_vector_slots(void) 1950 { 1951 int err; 1952 void *base; 1953 1954 base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector)); 1955 kvm_init_vector_slot(base, HYP_VECTOR_DIRECT); 1956 1957 base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs)); 1958 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT); 1959 1960 if (kvm_system_needs_idmapped_vectors() && 1961 !is_protected_kvm_enabled()) { 1962 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs), 1963 __BP_HARDEN_HYP_VECS_SZ, &base); 1964 if (err) 1965 return err; 1966 } 1967 1968 kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT); 1969 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT); 1970 return 0; 1971 } 1972 1973 static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits) 1974 { 1975 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu); 1976 unsigned long tcr; 1977 1978 /* 1979 * Calculate the raw per-cpu offset without a translation from the 1980 * kernel's mapping to the linear mapping, and store it in tpidr_el2 1981 * so that we can use adr_l to access per-cpu variables in EL2. 1982 * Also drop the KASAN tag which gets in the way... 1983 */ 1984 params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) - 1985 (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start)); 1986 1987 params->mair_el2 = read_sysreg(mair_el1); 1988 1989 tcr = read_sysreg(tcr_el1); 1990 if (cpus_have_final_cap(ARM64_KVM_HVHE)) { 1991 tcr &= ~(TCR_HD | TCR_HA | TCR_A1 | TCR_T0SZ_MASK); 1992 tcr |= TCR_EPD1_MASK; 1993 } else { 1994 unsigned long ips = FIELD_GET(TCR_IPS_MASK, tcr); 1995 1996 tcr &= TCR_EL2_MASK; 1997 tcr |= TCR_EL2_RES1 | FIELD_PREP(TCR_EL2_PS_MASK, ips); 1998 if (lpa2_is_enabled()) 1999 tcr |= TCR_EL2_DS; 2000 } 2001 tcr |= TCR_T0SZ(hyp_va_bits); 2002 params->tcr_el2 = tcr; 2003 2004 params->pgd_pa = kvm_mmu_get_httbr(); 2005 if (is_protected_kvm_enabled()) 2006 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS; 2007 else 2008 params->hcr_el2 = HCR_HOST_NVHE_FLAGS; 2009 if (cpus_have_final_cap(ARM64_KVM_HVHE)) 2010 params->hcr_el2 |= HCR_E2H; 2011 params->vttbr = params->vtcr = 0; 2012 2013 /* 2014 * Flush the init params from the data cache because the struct will 2015 * be read while the MMU is off. 2016 */ 2017 kvm_flush_dcache_to_poc(params, sizeof(*params)); 2018 } 2019 2020 static void hyp_install_host_vector(void) 2021 { 2022 struct kvm_nvhe_init_params *params; 2023 struct arm_smccc_res res; 2024 2025 /* Switch from the HYP stub to our own HYP init vector */ 2026 __hyp_set_vectors(kvm_get_idmap_vector()); 2027 2028 /* 2029 * Call initialization code, and switch to the full blown HYP code. 2030 * If the cpucaps haven't been finalized yet, something has gone very 2031 * wrong, and hyp will crash and burn when it uses any 2032 * cpus_have_*_cap() wrapper. 2033 */ 2034 BUG_ON(!system_capabilities_finalized()); 2035 params = this_cpu_ptr_nvhe_sym(kvm_init_params); 2036 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res); 2037 WARN_ON(res.a0 != SMCCC_RET_SUCCESS); 2038 } 2039 2040 static void cpu_init_hyp_mode(void) 2041 { 2042 hyp_install_host_vector(); 2043 2044 /* 2045 * Disabling SSBD on a non-VHE system requires us to enable SSBS 2046 * at EL2. 2047 */ 2048 if (this_cpu_has_cap(ARM64_SSBS) && 2049 arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) { 2050 kvm_call_hyp_nvhe(__kvm_enable_ssbs); 2051 } 2052 } 2053 2054 static void cpu_hyp_reset(void) 2055 { 2056 if (!is_kernel_in_hyp_mode()) 2057 __hyp_reset_vectors(); 2058 } 2059 2060 /* 2061 * EL2 vectors can be mapped and rerouted in a number of ways, 2062 * depending on the kernel configuration and CPU present: 2063 * 2064 * - If the CPU is affected by Spectre-v2, the hardening sequence is 2065 * placed in one of the vector slots, which is executed before jumping 2066 * to the real vectors. 2067 * 2068 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot 2069 * containing the hardening sequence is mapped next to the idmap page, 2070 * and executed before jumping to the real vectors. 2071 * 2072 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an 2073 * empty slot is selected, mapped next to the idmap page, and 2074 * executed before jumping to the real vectors. 2075 * 2076 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with 2077 * VHE, as we don't have hypervisor-specific mappings. If the system 2078 * is VHE and yet selects this capability, it will be ignored. 2079 */ 2080 static void cpu_set_hyp_vector(void) 2081 { 2082 struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data); 2083 void *vector = hyp_spectre_vector_selector[data->slot]; 2084 2085 if (!is_protected_kvm_enabled()) 2086 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector; 2087 else 2088 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot); 2089 } 2090 2091 static void cpu_hyp_init_context(void) 2092 { 2093 kvm_init_host_cpu_context(host_data_ptr(host_ctxt)); 2094 kvm_init_host_debug_data(); 2095 2096 if (!is_kernel_in_hyp_mode()) 2097 cpu_init_hyp_mode(); 2098 } 2099 2100 static void cpu_hyp_init_features(void) 2101 { 2102 cpu_set_hyp_vector(); 2103 2104 if (is_kernel_in_hyp_mode()) 2105 kvm_timer_init_vhe(); 2106 2107 if (vgic_present) 2108 kvm_vgic_init_cpu_hardware(); 2109 } 2110 2111 static void cpu_hyp_reinit(void) 2112 { 2113 cpu_hyp_reset(); 2114 cpu_hyp_init_context(); 2115 cpu_hyp_init_features(); 2116 } 2117 2118 static void cpu_hyp_init(void *discard) 2119 { 2120 if (!__this_cpu_read(kvm_hyp_initialized)) { 2121 cpu_hyp_reinit(); 2122 __this_cpu_write(kvm_hyp_initialized, 1); 2123 } 2124 } 2125 2126 static void cpu_hyp_uninit(void *discard) 2127 { 2128 if (!is_protected_kvm_enabled() && __this_cpu_read(kvm_hyp_initialized)) { 2129 cpu_hyp_reset(); 2130 __this_cpu_write(kvm_hyp_initialized, 0); 2131 } 2132 } 2133 2134 int kvm_arch_enable_virtualization_cpu(void) 2135 { 2136 /* 2137 * Most calls to this function are made with migration 2138 * disabled, but not with preemption disabled. The former is 2139 * enough to ensure correctness, but most of the helpers 2140 * expect the later and will throw a tantrum otherwise. 2141 */ 2142 preempt_disable(); 2143 2144 cpu_hyp_init(NULL); 2145 2146 kvm_vgic_cpu_up(); 2147 kvm_timer_cpu_up(); 2148 2149 preempt_enable(); 2150 2151 return 0; 2152 } 2153 2154 void kvm_arch_disable_virtualization_cpu(void) 2155 { 2156 kvm_timer_cpu_down(); 2157 kvm_vgic_cpu_down(); 2158 2159 if (!is_protected_kvm_enabled()) 2160 cpu_hyp_uninit(NULL); 2161 } 2162 2163 #ifdef CONFIG_CPU_PM 2164 static int hyp_init_cpu_pm_notifier(struct notifier_block *self, 2165 unsigned long cmd, 2166 void *v) 2167 { 2168 /* 2169 * kvm_hyp_initialized is left with its old value over 2170 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should 2171 * re-enable hyp. 2172 */ 2173 switch (cmd) { 2174 case CPU_PM_ENTER: 2175 if (__this_cpu_read(kvm_hyp_initialized)) 2176 /* 2177 * don't update kvm_hyp_initialized here 2178 * so that the hyp will be re-enabled 2179 * when we resume. See below. 2180 */ 2181 cpu_hyp_reset(); 2182 2183 return NOTIFY_OK; 2184 case CPU_PM_ENTER_FAILED: 2185 case CPU_PM_EXIT: 2186 if (__this_cpu_read(kvm_hyp_initialized)) 2187 /* The hyp was enabled before suspend. */ 2188 cpu_hyp_reinit(); 2189 2190 return NOTIFY_OK; 2191 2192 default: 2193 return NOTIFY_DONE; 2194 } 2195 } 2196 2197 static struct notifier_block hyp_init_cpu_pm_nb = { 2198 .notifier_call = hyp_init_cpu_pm_notifier, 2199 }; 2200 2201 static void __init hyp_cpu_pm_init(void) 2202 { 2203 if (!is_protected_kvm_enabled()) 2204 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb); 2205 } 2206 static void __init hyp_cpu_pm_exit(void) 2207 { 2208 if (!is_protected_kvm_enabled()) 2209 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb); 2210 } 2211 #else 2212 static inline void __init hyp_cpu_pm_init(void) 2213 { 2214 } 2215 static inline void __init hyp_cpu_pm_exit(void) 2216 { 2217 } 2218 #endif 2219 2220 static void __init init_cpu_logical_map(void) 2221 { 2222 unsigned int cpu; 2223 2224 /* 2225 * Copy the MPIDR <-> logical CPU ID mapping to hyp. 2226 * Only copy the set of online CPUs whose features have been checked 2227 * against the finalized system capabilities. The hypervisor will not 2228 * allow any other CPUs from the `possible` set to boot. 2229 */ 2230 for_each_online_cpu(cpu) 2231 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu); 2232 } 2233 2234 #define init_psci_0_1_impl_state(config, what) \ 2235 config.psci_0_1_ ## what ## _implemented = psci_ops.what 2236 2237 static bool __init init_psci_relay(void) 2238 { 2239 /* 2240 * If PSCI has not been initialized, protected KVM cannot install 2241 * itself on newly booted CPUs. 2242 */ 2243 if (!psci_ops.get_version) { 2244 kvm_err("Cannot initialize protected mode without PSCI\n"); 2245 return false; 2246 } 2247 2248 kvm_host_psci_config.version = psci_ops.get_version(); 2249 kvm_host_psci_config.smccc_version = arm_smccc_get_version(); 2250 2251 if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) { 2252 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids(); 2253 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend); 2254 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on); 2255 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off); 2256 init_psci_0_1_impl_state(kvm_host_psci_config, migrate); 2257 } 2258 return true; 2259 } 2260 2261 static int __init init_subsystems(void) 2262 { 2263 int err = 0; 2264 2265 /* 2266 * Enable hardware so that subsystem initialisation can access EL2. 2267 */ 2268 on_each_cpu(cpu_hyp_init, NULL, 1); 2269 2270 /* 2271 * Register CPU lower-power notifier 2272 */ 2273 hyp_cpu_pm_init(); 2274 2275 /* 2276 * Init HYP view of VGIC 2277 */ 2278 err = kvm_vgic_hyp_init(); 2279 switch (err) { 2280 case 0: 2281 vgic_present = true; 2282 break; 2283 case -ENODEV: 2284 case -ENXIO: 2285 /* 2286 * No VGIC? No pKVM for you. 2287 * 2288 * Protected mode assumes that VGICv3 is present, so no point 2289 * in trying to hobble along if vgic initialization fails. 2290 */ 2291 if (is_protected_kvm_enabled()) 2292 goto out; 2293 2294 /* 2295 * Otherwise, userspace could choose to implement a GIC for its 2296 * guest on non-cooperative hardware. 2297 */ 2298 vgic_present = false; 2299 err = 0; 2300 break; 2301 default: 2302 goto out; 2303 } 2304 2305 if (kvm_mode == KVM_MODE_NV && 2306 !(vgic_present && kvm_vgic_global_state.type == VGIC_V3)) { 2307 kvm_err("NV support requires GICv3, giving up\n"); 2308 err = -EINVAL; 2309 goto out; 2310 } 2311 2312 /* 2313 * Init HYP architected timer support 2314 */ 2315 err = kvm_timer_hyp_init(vgic_present); 2316 if (err) 2317 goto out; 2318 2319 kvm_register_perf_callbacks(NULL); 2320 2321 out: 2322 if (err) 2323 hyp_cpu_pm_exit(); 2324 2325 if (err || !is_protected_kvm_enabled()) 2326 on_each_cpu(cpu_hyp_uninit, NULL, 1); 2327 2328 return err; 2329 } 2330 2331 static void __init teardown_subsystems(void) 2332 { 2333 kvm_unregister_perf_callbacks(); 2334 hyp_cpu_pm_exit(); 2335 } 2336 2337 static void __init teardown_hyp_mode(void) 2338 { 2339 bool free_sve = system_supports_sve() && is_protected_kvm_enabled(); 2340 int cpu; 2341 2342 free_hyp_pgds(); 2343 for_each_possible_cpu(cpu) { 2344 if (per_cpu(kvm_hyp_initialized, cpu)) 2345 continue; 2346 2347 free_pages(per_cpu(kvm_arm_hyp_stack_base, cpu), NVHE_STACK_SHIFT - PAGE_SHIFT); 2348 2349 if (!kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu]) 2350 continue; 2351 2352 if (free_sve) { 2353 struct cpu_sve_state *sve_state; 2354 2355 sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state; 2356 free_pages((unsigned long) sve_state, pkvm_host_sve_state_order()); 2357 } 2358 2359 free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order()); 2360 2361 } 2362 } 2363 2364 static int __init do_pkvm_init(u32 hyp_va_bits) 2365 { 2366 void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)); 2367 int ret; 2368 2369 preempt_disable(); 2370 cpu_hyp_init_context(); 2371 ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size, 2372 num_possible_cpus(), kern_hyp_va(per_cpu_base), 2373 hyp_va_bits); 2374 cpu_hyp_init_features(); 2375 2376 /* 2377 * The stub hypercalls are now disabled, so set our local flag to 2378 * prevent a later re-init attempt in kvm_arch_enable_virtualization_cpu(). 2379 */ 2380 __this_cpu_write(kvm_hyp_initialized, 1); 2381 preempt_enable(); 2382 2383 return ret; 2384 } 2385 2386 static u64 get_hyp_id_aa64pfr0_el1(void) 2387 { 2388 /* 2389 * Track whether the system isn't affected by spectre/meltdown in the 2390 * hypervisor's view of id_aa64pfr0_el1, used for protected VMs. 2391 * Although this is per-CPU, we make it global for simplicity, e.g., not 2392 * to have to worry about vcpu migration. 2393 * 2394 * Unlike for non-protected VMs, userspace cannot override this for 2395 * protected VMs. 2396 */ 2397 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); 2398 2399 val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) | 2400 ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3)); 2401 2402 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2), 2403 arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED); 2404 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3), 2405 arm64_get_meltdown_state() == SPECTRE_UNAFFECTED); 2406 2407 return val; 2408 } 2409 2410 static void kvm_hyp_init_symbols(void) 2411 { 2412 kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1(); 2413 kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1); 2414 kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1); 2415 kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1); 2416 kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1); 2417 kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 2418 kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 2419 kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1); 2420 kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1); 2421 kvm_nvhe_sym(__icache_flags) = __icache_flags; 2422 kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits; 2423 2424 /* Propagate the FGT state to the the nVHE side */ 2425 kvm_nvhe_sym(hfgrtr_masks) = hfgrtr_masks; 2426 kvm_nvhe_sym(hfgwtr_masks) = hfgwtr_masks; 2427 kvm_nvhe_sym(hfgitr_masks) = hfgitr_masks; 2428 kvm_nvhe_sym(hdfgrtr_masks) = hdfgrtr_masks; 2429 kvm_nvhe_sym(hdfgwtr_masks) = hdfgwtr_masks; 2430 kvm_nvhe_sym(hafgrtr_masks) = hafgrtr_masks; 2431 kvm_nvhe_sym(hfgrtr2_masks) = hfgrtr2_masks; 2432 kvm_nvhe_sym(hfgwtr2_masks) = hfgwtr2_masks; 2433 kvm_nvhe_sym(hfgitr2_masks) = hfgitr2_masks; 2434 kvm_nvhe_sym(hdfgrtr2_masks)= hdfgrtr2_masks; 2435 kvm_nvhe_sym(hdfgwtr2_masks)= hdfgwtr2_masks; 2436 2437 /* 2438 * Flush entire BSS since part of its data containing init symbols is read 2439 * while the MMU is off. 2440 */ 2441 kvm_flush_dcache_to_poc(kvm_ksym_ref(__hyp_bss_start), 2442 kvm_ksym_ref(__hyp_bss_end) - kvm_ksym_ref(__hyp_bss_start)); 2443 } 2444 2445 static int __init kvm_hyp_init_protection(u32 hyp_va_bits) 2446 { 2447 void *addr = phys_to_virt(hyp_mem_base); 2448 int ret; 2449 2450 ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP); 2451 if (ret) 2452 return ret; 2453 2454 ret = do_pkvm_init(hyp_va_bits); 2455 if (ret) 2456 return ret; 2457 2458 free_hyp_pgds(); 2459 2460 return 0; 2461 } 2462 2463 static int init_pkvm_host_sve_state(void) 2464 { 2465 int cpu; 2466 2467 if (!system_supports_sve()) 2468 return 0; 2469 2470 /* Allocate pages for host sve state in protected mode. */ 2471 for_each_possible_cpu(cpu) { 2472 struct page *page = alloc_pages(GFP_KERNEL, pkvm_host_sve_state_order()); 2473 2474 if (!page) 2475 return -ENOMEM; 2476 2477 per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state = page_address(page); 2478 } 2479 2480 /* 2481 * Don't map the pages in hyp since these are only used in protected 2482 * mode, which will (re)create its own mapping when initialized. 2483 */ 2484 2485 return 0; 2486 } 2487 2488 /* 2489 * Finalizes the initialization of hyp mode, once everything else is initialized 2490 * and the initialziation process cannot fail. 2491 */ 2492 static void finalize_init_hyp_mode(void) 2493 { 2494 int cpu; 2495 2496 if (system_supports_sve() && is_protected_kvm_enabled()) { 2497 for_each_possible_cpu(cpu) { 2498 struct cpu_sve_state *sve_state; 2499 2500 sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state; 2501 per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state = 2502 kern_hyp_va(sve_state); 2503 } 2504 } 2505 } 2506 2507 static void pkvm_hyp_init_ptrauth(void) 2508 { 2509 struct kvm_cpu_context *hyp_ctxt; 2510 int cpu; 2511 2512 for_each_possible_cpu(cpu) { 2513 hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu); 2514 hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long(); 2515 hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long(); 2516 hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long(); 2517 hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long(); 2518 hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long(); 2519 hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long(); 2520 hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long(); 2521 hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long(); 2522 hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long(); 2523 hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long(); 2524 } 2525 } 2526 2527 /* Inits Hyp-mode on all online CPUs */ 2528 static int __init init_hyp_mode(void) 2529 { 2530 u32 hyp_va_bits; 2531 int cpu; 2532 int err = -ENOMEM; 2533 2534 /* 2535 * The protected Hyp-mode cannot be initialized if the memory pool 2536 * allocation has failed. 2537 */ 2538 if (is_protected_kvm_enabled() && !hyp_mem_base) 2539 goto out_err; 2540 2541 /* 2542 * Allocate Hyp PGD and setup Hyp identity mapping 2543 */ 2544 err = kvm_mmu_init(&hyp_va_bits); 2545 if (err) 2546 goto out_err; 2547 2548 /* 2549 * Allocate stack pages for Hypervisor-mode 2550 */ 2551 for_each_possible_cpu(cpu) { 2552 unsigned long stack_base; 2553 2554 stack_base = __get_free_pages(GFP_KERNEL, NVHE_STACK_SHIFT - PAGE_SHIFT); 2555 if (!stack_base) { 2556 err = -ENOMEM; 2557 goto out_err; 2558 } 2559 2560 per_cpu(kvm_arm_hyp_stack_base, cpu) = stack_base; 2561 } 2562 2563 /* 2564 * Allocate and initialize pages for Hypervisor-mode percpu regions. 2565 */ 2566 for_each_possible_cpu(cpu) { 2567 struct page *page; 2568 void *page_addr; 2569 2570 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order()); 2571 if (!page) { 2572 err = -ENOMEM; 2573 goto out_err; 2574 } 2575 2576 page_addr = page_address(page); 2577 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size()); 2578 kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr; 2579 } 2580 2581 /* 2582 * Map the Hyp-code called directly from the host 2583 */ 2584 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start), 2585 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC); 2586 if (err) { 2587 kvm_err("Cannot map world-switch code\n"); 2588 goto out_err; 2589 } 2590 2591 err = create_hyp_mappings(kvm_ksym_ref(__hyp_data_start), 2592 kvm_ksym_ref(__hyp_data_end), PAGE_HYP); 2593 if (err) { 2594 kvm_err("Cannot map .hyp.data section\n"); 2595 goto out_err; 2596 } 2597 2598 err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start), 2599 kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO); 2600 if (err) { 2601 kvm_err("Cannot map .hyp.rodata section\n"); 2602 goto out_err; 2603 } 2604 2605 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata), 2606 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO); 2607 if (err) { 2608 kvm_err("Cannot map rodata section\n"); 2609 goto out_err; 2610 } 2611 2612 /* 2613 * .hyp.bss is guaranteed to be placed at the beginning of the .bss 2614 * section thanks to an assertion in the linker script. Map it RW and 2615 * the rest of .bss RO. 2616 */ 2617 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start), 2618 kvm_ksym_ref(__hyp_bss_end), PAGE_HYP); 2619 if (err) { 2620 kvm_err("Cannot map hyp bss section: %d\n", err); 2621 goto out_err; 2622 } 2623 2624 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end), 2625 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO); 2626 if (err) { 2627 kvm_err("Cannot map bss section\n"); 2628 goto out_err; 2629 } 2630 2631 /* 2632 * Map the Hyp stack pages 2633 */ 2634 for_each_possible_cpu(cpu) { 2635 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu); 2636 char *stack_base = (char *)per_cpu(kvm_arm_hyp_stack_base, cpu); 2637 2638 err = create_hyp_stack(__pa(stack_base), ¶ms->stack_hyp_va); 2639 if (err) { 2640 kvm_err("Cannot map hyp stack\n"); 2641 goto out_err; 2642 } 2643 2644 /* 2645 * Save the stack PA in nvhe_init_params. This will be needed 2646 * to recreate the stack mapping in protected nVHE mode. 2647 * __hyp_pa() won't do the right thing there, since the stack 2648 * has been mapped in the flexible private VA space. 2649 */ 2650 params->stack_pa = __pa(stack_base); 2651 } 2652 2653 for_each_possible_cpu(cpu) { 2654 char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu]; 2655 char *percpu_end = percpu_begin + nvhe_percpu_size(); 2656 2657 /* Map Hyp percpu pages */ 2658 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP); 2659 if (err) { 2660 kvm_err("Cannot map hyp percpu region\n"); 2661 goto out_err; 2662 } 2663 2664 /* Prepare the CPU initialization parameters */ 2665 cpu_prepare_hyp_mode(cpu, hyp_va_bits); 2666 } 2667 2668 kvm_hyp_init_symbols(); 2669 2670 if (is_protected_kvm_enabled()) { 2671 if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) && 2672 cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH)) 2673 pkvm_hyp_init_ptrauth(); 2674 2675 init_cpu_logical_map(); 2676 2677 if (!init_psci_relay()) { 2678 err = -ENODEV; 2679 goto out_err; 2680 } 2681 2682 err = init_pkvm_host_sve_state(); 2683 if (err) 2684 goto out_err; 2685 2686 err = kvm_hyp_init_protection(hyp_va_bits); 2687 if (err) { 2688 kvm_err("Failed to init hyp memory protection\n"); 2689 goto out_err; 2690 } 2691 } 2692 2693 return 0; 2694 2695 out_err: 2696 teardown_hyp_mode(); 2697 kvm_err("error initializing Hyp mode: %d\n", err); 2698 return err; 2699 } 2700 2701 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr) 2702 { 2703 struct kvm_vcpu *vcpu = NULL; 2704 struct kvm_mpidr_data *data; 2705 unsigned long i; 2706 2707 mpidr &= MPIDR_HWID_BITMASK; 2708 2709 rcu_read_lock(); 2710 data = rcu_dereference(kvm->arch.mpidr_data); 2711 2712 if (data) { 2713 u16 idx = kvm_mpidr_index(data, mpidr); 2714 2715 vcpu = kvm_get_vcpu(kvm, data->cmpidr_to_idx[idx]); 2716 if (mpidr != kvm_vcpu_get_mpidr_aff(vcpu)) 2717 vcpu = NULL; 2718 } 2719 2720 rcu_read_unlock(); 2721 2722 if (vcpu) 2723 return vcpu; 2724 2725 kvm_for_each_vcpu(i, vcpu, kvm) { 2726 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu)) 2727 return vcpu; 2728 } 2729 return NULL; 2730 } 2731 2732 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm) 2733 { 2734 return irqchip_in_kernel(kvm); 2735 } 2736 2737 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 2738 struct irq_bypass_producer *prod) 2739 { 2740 struct kvm_kernel_irqfd *irqfd = 2741 container_of(cons, struct kvm_kernel_irqfd, consumer); 2742 struct kvm_kernel_irq_routing_entry *irq_entry = &irqfd->irq_entry; 2743 2744 /* 2745 * The only thing we have a chance of directly-injecting is LPIs. Maybe 2746 * one day... 2747 */ 2748 if (irq_entry->type != KVM_IRQ_ROUTING_MSI) 2749 return 0; 2750 2751 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq, 2752 &irqfd->irq_entry); 2753 } 2754 2755 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 2756 struct irq_bypass_producer *prod) 2757 { 2758 struct kvm_kernel_irqfd *irqfd = 2759 container_of(cons, struct kvm_kernel_irqfd, consumer); 2760 struct kvm_kernel_irq_routing_entry *irq_entry = &irqfd->irq_entry; 2761 2762 if (irq_entry->type != KVM_IRQ_ROUTING_MSI) 2763 return; 2764 2765 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq); 2766 } 2767 2768 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 2769 struct kvm_kernel_irq_routing_entry *new) 2770 { 2771 if (old->type != KVM_IRQ_ROUTING_MSI || 2772 new->type != KVM_IRQ_ROUTING_MSI) 2773 return true; 2774 2775 return memcmp(&old->msi, &new->msi, sizeof(new->msi)); 2776 } 2777 2778 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 2779 uint32_t guest_irq, bool set) 2780 { 2781 /* 2782 * Remapping the vLPI requires taking the its_lock mutex to resolve 2783 * the new translation. We're in spinlock land at this point, so no 2784 * chance of resolving the translation. 2785 * 2786 * Unmap the vLPI and fall back to software LPI injection. 2787 */ 2788 return kvm_vgic_v4_unset_forwarding(kvm, host_irq); 2789 } 2790 2791 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons) 2792 { 2793 struct kvm_kernel_irqfd *irqfd = 2794 container_of(cons, struct kvm_kernel_irqfd, consumer); 2795 2796 kvm_arm_halt_guest(irqfd->kvm); 2797 } 2798 2799 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons) 2800 { 2801 struct kvm_kernel_irqfd *irqfd = 2802 container_of(cons, struct kvm_kernel_irqfd, consumer); 2803 2804 kvm_arm_resume_guest(irqfd->kvm); 2805 } 2806 2807 /* Initialize Hyp-mode and memory mappings on all CPUs */ 2808 static __init int kvm_arm_init(void) 2809 { 2810 int err; 2811 bool in_hyp_mode; 2812 2813 if (!is_hyp_mode_available()) { 2814 kvm_info("HYP mode not available\n"); 2815 return -ENODEV; 2816 } 2817 2818 if (kvm_get_mode() == KVM_MODE_NONE) { 2819 kvm_info("KVM disabled from command line\n"); 2820 return -ENODEV; 2821 } 2822 2823 err = kvm_sys_reg_table_init(); 2824 if (err) { 2825 kvm_info("Error initializing system register tables"); 2826 return err; 2827 } 2828 2829 in_hyp_mode = is_kernel_in_hyp_mode(); 2830 2831 if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) || 2832 cpus_have_final_cap(ARM64_WORKAROUND_1508412)) 2833 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \ 2834 "Only trusted guests should be used on this system.\n"); 2835 2836 err = kvm_set_ipa_limit(); 2837 if (err) 2838 return err; 2839 2840 err = kvm_arm_init_sve(); 2841 if (err) 2842 return err; 2843 2844 err = kvm_arm_vmid_alloc_init(); 2845 if (err) { 2846 kvm_err("Failed to initialize VMID allocator.\n"); 2847 return err; 2848 } 2849 2850 if (!in_hyp_mode) { 2851 err = init_hyp_mode(); 2852 if (err) 2853 goto out_err; 2854 } 2855 2856 err = kvm_init_vector_slots(); 2857 if (err) { 2858 kvm_err("Cannot initialise vector slots\n"); 2859 goto out_hyp; 2860 } 2861 2862 err = init_subsystems(); 2863 if (err) 2864 goto out_hyp; 2865 2866 kvm_info("%s%sVHE%s mode initialized successfully\n", 2867 in_hyp_mode ? "" : (is_protected_kvm_enabled() ? 2868 "Protected " : "Hyp "), 2869 in_hyp_mode ? "" : (cpus_have_final_cap(ARM64_KVM_HVHE) ? 2870 "h" : "n"), 2871 cpus_have_final_cap(ARM64_HAS_NESTED_VIRT) ? "+NV2": ""); 2872 2873 /* 2874 * FIXME: Do something reasonable if kvm_init() fails after pKVM 2875 * hypervisor protection is finalized. 2876 */ 2877 err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE); 2878 if (err) 2879 goto out_subs; 2880 2881 /* 2882 * This should be called after initialization is done and failure isn't 2883 * possible anymore. 2884 */ 2885 if (!in_hyp_mode) 2886 finalize_init_hyp_mode(); 2887 2888 kvm_arm_initialised = true; 2889 2890 return 0; 2891 2892 out_subs: 2893 teardown_subsystems(); 2894 out_hyp: 2895 if (!in_hyp_mode) 2896 teardown_hyp_mode(); 2897 out_err: 2898 kvm_arm_vmid_alloc_free(); 2899 return err; 2900 } 2901 2902 static int __init early_kvm_mode_cfg(char *arg) 2903 { 2904 if (!arg) 2905 return -EINVAL; 2906 2907 if (strcmp(arg, "none") == 0) { 2908 kvm_mode = KVM_MODE_NONE; 2909 return 0; 2910 } 2911 2912 if (!is_hyp_mode_available()) { 2913 pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n"); 2914 return 0; 2915 } 2916 2917 if (strcmp(arg, "protected") == 0) { 2918 if (!is_kernel_in_hyp_mode()) 2919 kvm_mode = KVM_MODE_PROTECTED; 2920 else 2921 pr_warn_once("Protected KVM not available with VHE\n"); 2922 2923 return 0; 2924 } 2925 2926 if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) { 2927 kvm_mode = KVM_MODE_DEFAULT; 2928 return 0; 2929 } 2930 2931 if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) { 2932 kvm_mode = KVM_MODE_NV; 2933 return 0; 2934 } 2935 2936 return -EINVAL; 2937 } 2938 early_param("kvm-arm.mode", early_kvm_mode_cfg); 2939 2940 static int __init early_kvm_wfx_trap_policy_cfg(char *arg, enum kvm_wfx_trap_policy *p) 2941 { 2942 if (!arg) 2943 return -EINVAL; 2944 2945 if (strcmp(arg, "trap") == 0) { 2946 *p = KVM_WFX_TRAP; 2947 return 0; 2948 } 2949 2950 if (strcmp(arg, "notrap") == 0) { 2951 *p = KVM_WFX_NOTRAP; 2952 return 0; 2953 } 2954 2955 return -EINVAL; 2956 } 2957 2958 static int __init early_kvm_wfi_trap_policy_cfg(char *arg) 2959 { 2960 return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfi_trap_policy); 2961 } 2962 early_param("kvm-arm.wfi_trap_policy", early_kvm_wfi_trap_policy_cfg); 2963 2964 static int __init early_kvm_wfe_trap_policy_cfg(char *arg) 2965 { 2966 return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfe_trap_policy); 2967 } 2968 early_param("kvm-arm.wfe_trap_policy", early_kvm_wfe_trap_policy_cfg); 2969 2970 enum kvm_mode kvm_get_mode(void) 2971 { 2972 return kvm_mode; 2973 } 2974 2975 module_init(kvm_arm_init); 2976