xref: /linux/arch/arm64/kvm/arm.c (revision ae22a94997b8a03dcb3c922857c203246711f9d4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/entry-kvm.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/vmalloc.h>
16 #include <linux/fs.h>
17 #include <linux/mman.h>
18 #include <linux/sched.h>
19 #include <linux/kvm.h>
20 #include <linux/kvm_irqfd.h>
21 #include <linux/irqbypass.h>
22 #include <linux/sched/stat.h>
23 #include <linux/psci.h>
24 #include <trace/events/kvm.h>
25 
26 #define CREATE_TRACE_POINTS
27 #include "trace_arm.h"
28 
29 #include <linux/uaccess.h>
30 #include <asm/ptrace.h>
31 #include <asm/mman.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpufeature.h>
35 #include <asm/virt.h>
36 #include <asm/kvm_arm.h>
37 #include <asm/kvm_asm.h>
38 #include <asm/kvm_mmu.h>
39 #include <asm/kvm_nested.h>
40 #include <asm/kvm_pkvm.h>
41 #include <asm/kvm_emulate.h>
42 #include <asm/sections.h>
43 
44 #include <kvm/arm_hypercalls.h>
45 #include <kvm/arm_pmu.h>
46 #include <kvm/arm_psci.h>
47 
48 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
49 
50 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
51 
52 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
54 
55 DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
56 
57 static bool vgic_present, kvm_arm_initialised;
58 
59 static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized);
60 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
61 
62 bool is_kvm_arm_initialised(void)
63 {
64 	return kvm_arm_initialised;
65 }
66 
67 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
68 {
69 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
70 }
71 
72 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
73 			    struct kvm_enable_cap *cap)
74 {
75 	int r;
76 	u64 new_cap;
77 
78 	if (cap->flags)
79 		return -EINVAL;
80 
81 	switch (cap->cap) {
82 	case KVM_CAP_ARM_NISV_TO_USER:
83 		r = 0;
84 		set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
85 			&kvm->arch.flags);
86 		break;
87 	case KVM_CAP_ARM_MTE:
88 		mutex_lock(&kvm->lock);
89 		if (!system_supports_mte() || kvm->created_vcpus) {
90 			r = -EINVAL;
91 		} else {
92 			r = 0;
93 			set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
94 		}
95 		mutex_unlock(&kvm->lock);
96 		break;
97 	case KVM_CAP_ARM_SYSTEM_SUSPEND:
98 		r = 0;
99 		set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
100 		break;
101 	case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
102 		new_cap = cap->args[0];
103 
104 		mutex_lock(&kvm->slots_lock);
105 		/*
106 		 * To keep things simple, allow changing the chunk
107 		 * size only when no memory slots have been created.
108 		 */
109 		if (!kvm_are_all_memslots_empty(kvm)) {
110 			r = -EINVAL;
111 		} else if (new_cap && !kvm_is_block_size_supported(new_cap)) {
112 			r = -EINVAL;
113 		} else {
114 			r = 0;
115 			kvm->arch.mmu.split_page_chunk_size = new_cap;
116 		}
117 		mutex_unlock(&kvm->slots_lock);
118 		break;
119 	default:
120 		r = -EINVAL;
121 		break;
122 	}
123 
124 	return r;
125 }
126 
127 static int kvm_arm_default_max_vcpus(void)
128 {
129 	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
130 }
131 
132 /**
133  * kvm_arch_init_vm - initializes a VM data structure
134  * @kvm:	pointer to the KVM struct
135  */
136 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
137 {
138 	int ret;
139 
140 	mutex_init(&kvm->arch.config_lock);
141 
142 #ifdef CONFIG_LOCKDEP
143 	/* Clue in lockdep that the config_lock must be taken inside kvm->lock */
144 	mutex_lock(&kvm->lock);
145 	mutex_lock(&kvm->arch.config_lock);
146 	mutex_unlock(&kvm->arch.config_lock);
147 	mutex_unlock(&kvm->lock);
148 #endif
149 
150 	ret = kvm_share_hyp(kvm, kvm + 1);
151 	if (ret)
152 		return ret;
153 
154 	ret = pkvm_init_host_vm(kvm);
155 	if (ret)
156 		goto err_unshare_kvm;
157 
158 	if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) {
159 		ret = -ENOMEM;
160 		goto err_unshare_kvm;
161 	}
162 	cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
163 
164 	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type);
165 	if (ret)
166 		goto err_free_cpumask;
167 
168 	kvm_vgic_early_init(kvm);
169 
170 	kvm_timer_init_vm(kvm);
171 
172 	/* The maximum number of VCPUs is limited by the host's GIC model */
173 	kvm->max_vcpus = kvm_arm_default_max_vcpus();
174 
175 	kvm_arm_init_hypercalls(kvm);
176 
177 	bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES);
178 
179 	return 0;
180 
181 err_free_cpumask:
182 	free_cpumask_var(kvm->arch.supported_cpus);
183 err_unshare_kvm:
184 	kvm_unshare_hyp(kvm, kvm + 1);
185 	return ret;
186 }
187 
188 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
189 {
190 	return VM_FAULT_SIGBUS;
191 }
192 
193 void kvm_arch_create_vm_debugfs(struct kvm *kvm)
194 {
195 	kvm_sys_regs_create_debugfs(kvm);
196 }
197 
198 /**
199  * kvm_arch_destroy_vm - destroy the VM data structure
200  * @kvm:	pointer to the KVM struct
201  */
202 void kvm_arch_destroy_vm(struct kvm *kvm)
203 {
204 	bitmap_free(kvm->arch.pmu_filter);
205 	free_cpumask_var(kvm->arch.supported_cpus);
206 
207 	kvm_vgic_destroy(kvm);
208 
209 	if (is_protected_kvm_enabled())
210 		pkvm_destroy_hyp_vm(kvm);
211 
212 	kfree(kvm->arch.mpidr_data);
213 	kfree(kvm->arch.sysreg_masks);
214 	kvm_destroy_vcpus(kvm);
215 
216 	kvm_unshare_hyp(kvm, kvm + 1);
217 
218 	kvm_arm_teardown_hypercalls(kvm);
219 }
220 
221 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
222 {
223 	int r;
224 	switch (ext) {
225 	case KVM_CAP_IRQCHIP:
226 		r = vgic_present;
227 		break;
228 	case KVM_CAP_IOEVENTFD:
229 	case KVM_CAP_USER_MEMORY:
230 	case KVM_CAP_SYNC_MMU:
231 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
232 	case KVM_CAP_ONE_REG:
233 	case KVM_CAP_ARM_PSCI:
234 	case KVM_CAP_ARM_PSCI_0_2:
235 	case KVM_CAP_READONLY_MEM:
236 	case KVM_CAP_MP_STATE:
237 	case KVM_CAP_IMMEDIATE_EXIT:
238 	case KVM_CAP_VCPU_EVENTS:
239 	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
240 	case KVM_CAP_ARM_NISV_TO_USER:
241 	case KVM_CAP_ARM_INJECT_EXT_DABT:
242 	case KVM_CAP_SET_GUEST_DEBUG:
243 	case KVM_CAP_VCPU_ATTRIBUTES:
244 	case KVM_CAP_PTP_KVM:
245 	case KVM_CAP_ARM_SYSTEM_SUSPEND:
246 	case KVM_CAP_IRQFD_RESAMPLE:
247 	case KVM_CAP_COUNTER_OFFSET:
248 		r = 1;
249 		break;
250 	case KVM_CAP_SET_GUEST_DEBUG2:
251 		return KVM_GUESTDBG_VALID_MASK;
252 	case KVM_CAP_ARM_SET_DEVICE_ADDR:
253 		r = 1;
254 		break;
255 	case KVM_CAP_NR_VCPUS:
256 		/*
257 		 * ARM64 treats KVM_CAP_NR_CPUS differently from all other
258 		 * architectures, as it does not always bound it to
259 		 * KVM_CAP_MAX_VCPUS. It should not matter much because
260 		 * this is just an advisory value.
261 		 */
262 		r = min_t(unsigned int, num_online_cpus(),
263 			  kvm_arm_default_max_vcpus());
264 		break;
265 	case KVM_CAP_MAX_VCPUS:
266 	case KVM_CAP_MAX_VCPU_ID:
267 		if (kvm)
268 			r = kvm->max_vcpus;
269 		else
270 			r = kvm_arm_default_max_vcpus();
271 		break;
272 	case KVM_CAP_MSI_DEVID:
273 		if (!kvm)
274 			r = -EINVAL;
275 		else
276 			r = kvm->arch.vgic.msis_require_devid;
277 		break;
278 	case KVM_CAP_ARM_USER_IRQ:
279 		/*
280 		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
281 		 * (bump this number if adding more devices)
282 		 */
283 		r = 1;
284 		break;
285 	case KVM_CAP_ARM_MTE:
286 		r = system_supports_mte();
287 		break;
288 	case KVM_CAP_STEAL_TIME:
289 		r = kvm_arm_pvtime_supported();
290 		break;
291 	case KVM_CAP_ARM_EL1_32BIT:
292 		r = cpus_have_final_cap(ARM64_HAS_32BIT_EL1);
293 		break;
294 	case KVM_CAP_GUEST_DEBUG_HW_BPS:
295 		r = get_num_brps();
296 		break;
297 	case KVM_CAP_GUEST_DEBUG_HW_WPS:
298 		r = get_num_wrps();
299 		break;
300 	case KVM_CAP_ARM_PMU_V3:
301 		r = kvm_arm_support_pmu_v3();
302 		break;
303 	case KVM_CAP_ARM_INJECT_SERROR_ESR:
304 		r = cpus_have_final_cap(ARM64_HAS_RAS_EXTN);
305 		break;
306 	case KVM_CAP_ARM_VM_IPA_SIZE:
307 		r = get_kvm_ipa_limit();
308 		break;
309 	case KVM_CAP_ARM_SVE:
310 		r = system_supports_sve();
311 		break;
312 	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
313 	case KVM_CAP_ARM_PTRAUTH_GENERIC:
314 		r = system_has_full_ptr_auth();
315 		break;
316 	case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
317 		if (kvm)
318 			r = kvm->arch.mmu.split_page_chunk_size;
319 		else
320 			r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
321 		break;
322 	case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES:
323 		r = kvm_supported_block_sizes();
324 		break;
325 	case KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES:
326 		r = BIT(0);
327 		break;
328 	default:
329 		r = 0;
330 	}
331 
332 	return r;
333 }
334 
335 long kvm_arch_dev_ioctl(struct file *filp,
336 			unsigned int ioctl, unsigned long arg)
337 {
338 	return -EINVAL;
339 }
340 
341 struct kvm *kvm_arch_alloc_vm(void)
342 {
343 	size_t sz = sizeof(struct kvm);
344 
345 	if (!has_vhe())
346 		return kzalloc(sz, GFP_KERNEL_ACCOUNT);
347 
348 	return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
349 }
350 
351 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
352 {
353 	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
354 		return -EBUSY;
355 
356 	if (id >= kvm->max_vcpus)
357 		return -EINVAL;
358 
359 	return 0;
360 }
361 
362 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
363 {
364 	int err;
365 
366 	spin_lock_init(&vcpu->arch.mp_state_lock);
367 
368 #ifdef CONFIG_LOCKDEP
369 	/* Inform lockdep that the config_lock is acquired after vcpu->mutex */
370 	mutex_lock(&vcpu->mutex);
371 	mutex_lock(&vcpu->kvm->arch.config_lock);
372 	mutex_unlock(&vcpu->kvm->arch.config_lock);
373 	mutex_unlock(&vcpu->mutex);
374 #endif
375 
376 	/* Force users to call KVM_ARM_VCPU_INIT */
377 	vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
378 
379 	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
380 
381 	/*
382 	 * Default value for the FP state, will be overloaded at load
383 	 * time if we support FP (pretty likely)
384 	 */
385 	vcpu->arch.fp_state = FP_STATE_FREE;
386 
387 	/* Set up the timer */
388 	kvm_timer_vcpu_init(vcpu);
389 
390 	kvm_pmu_vcpu_init(vcpu);
391 
392 	kvm_arm_reset_debug_ptr(vcpu);
393 
394 	kvm_arm_pvtime_vcpu_init(&vcpu->arch);
395 
396 	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
397 
398 	err = kvm_vgic_vcpu_init(vcpu);
399 	if (err)
400 		return err;
401 
402 	return kvm_share_hyp(vcpu, vcpu + 1);
403 }
404 
405 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
406 {
407 }
408 
409 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
410 {
411 	if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm)))
412 		static_branch_dec(&userspace_irqchip_in_use);
413 
414 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
415 	kvm_timer_vcpu_terminate(vcpu);
416 	kvm_pmu_vcpu_destroy(vcpu);
417 	kvm_vgic_vcpu_destroy(vcpu);
418 	kvm_arm_vcpu_destroy(vcpu);
419 }
420 
421 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
422 {
423 
424 }
425 
426 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
427 {
428 
429 }
430 
431 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
432 {
433 	struct kvm_s2_mmu *mmu;
434 	int *last_ran;
435 
436 	mmu = vcpu->arch.hw_mmu;
437 	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
438 
439 	/*
440 	 * We guarantee that both TLBs and I-cache are private to each
441 	 * vcpu. If detecting that a vcpu from the same VM has
442 	 * previously run on the same physical CPU, call into the
443 	 * hypervisor code to nuke the relevant contexts.
444 	 *
445 	 * We might get preempted before the vCPU actually runs, but
446 	 * over-invalidation doesn't affect correctness.
447 	 */
448 	if (*last_ran != vcpu->vcpu_idx) {
449 		kvm_call_hyp(__kvm_flush_cpu_context, mmu);
450 		*last_ran = vcpu->vcpu_idx;
451 	}
452 
453 	vcpu->cpu = cpu;
454 
455 	kvm_vgic_load(vcpu);
456 	kvm_timer_vcpu_load(vcpu);
457 	if (has_vhe())
458 		kvm_vcpu_load_vhe(vcpu);
459 	kvm_arch_vcpu_load_fp(vcpu);
460 	kvm_vcpu_pmu_restore_guest(vcpu);
461 	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
462 		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
463 
464 	if (single_task_running())
465 		vcpu_clear_wfx_traps(vcpu);
466 	else
467 		vcpu_set_wfx_traps(vcpu);
468 
469 	if (vcpu_has_ptrauth(vcpu))
470 		vcpu_ptrauth_disable(vcpu);
471 	kvm_arch_vcpu_load_debug_state_flags(vcpu);
472 
473 	if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus))
474 		vcpu_set_on_unsupported_cpu(vcpu);
475 }
476 
477 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
478 {
479 	kvm_arch_vcpu_put_debug_state_flags(vcpu);
480 	kvm_arch_vcpu_put_fp(vcpu);
481 	if (has_vhe())
482 		kvm_vcpu_put_vhe(vcpu);
483 	kvm_timer_vcpu_put(vcpu);
484 	kvm_vgic_put(vcpu);
485 	kvm_vcpu_pmu_restore_host(vcpu);
486 	kvm_arm_vmid_clear_active();
487 
488 	vcpu_clear_on_unsupported_cpu(vcpu);
489 	vcpu->cpu = -1;
490 }
491 
492 static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
493 {
494 	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
495 	kvm_make_request(KVM_REQ_SLEEP, vcpu);
496 	kvm_vcpu_kick(vcpu);
497 }
498 
499 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
500 {
501 	spin_lock(&vcpu->arch.mp_state_lock);
502 	__kvm_arm_vcpu_power_off(vcpu);
503 	spin_unlock(&vcpu->arch.mp_state_lock);
504 }
505 
506 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
507 {
508 	return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED;
509 }
510 
511 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
512 {
513 	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED);
514 	kvm_make_request(KVM_REQ_SUSPEND, vcpu);
515 	kvm_vcpu_kick(vcpu);
516 }
517 
518 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
519 {
520 	return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED;
521 }
522 
523 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
524 				    struct kvm_mp_state *mp_state)
525 {
526 	*mp_state = READ_ONCE(vcpu->arch.mp_state);
527 
528 	return 0;
529 }
530 
531 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
532 				    struct kvm_mp_state *mp_state)
533 {
534 	int ret = 0;
535 
536 	spin_lock(&vcpu->arch.mp_state_lock);
537 
538 	switch (mp_state->mp_state) {
539 	case KVM_MP_STATE_RUNNABLE:
540 		WRITE_ONCE(vcpu->arch.mp_state, *mp_state);
541 		break;
542 	case KVM_MP_STATE_STOPPED:
543 		__kvm_arm_vcpu_power_off(vcpu);
544 		break;
545 	case KVM_MP_STATE_SUSPENDED:
546 		kvm_arm_vcpu_suspend(vcpu);
547 		break;
548 	default:
549 		ret = -EINVAL;
550 	}
551 
552 	spin_unlock(&vcpu->arch.mp_state_lock);
553 
554 	return ret;
555 }
556 
557 /**
558  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
559  * @v:		The VCPU pointer
560  *
561  * If the guest CPU is not waiting for interrupts or an interrupt line is
562  * asserted, the CPU is by definition runnable.
563  */
564 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
565 {
566 	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
567 	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
568 		&& !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
569 }
570 
571 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
572 {
573 	return vcpu_mode_priv(vcpu);
574 }
575 
576 #ifdef CONFIG_GUEST_PERF_EVENTS
577 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
578 {
579 	return *vcpu_pc(vcpu);
580 }
581 #endif
582 
583 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
584 {
585 	return vcpu_get_flag(vcpu, VCPU_INITIALIZED);
586 }
587 
588 static void kvm_init_mpidr_data(struct kvm *kvm)
589 {
590 	struct kvm_mpidr_data *data = NULL;
591 	unsigned long c, mask, nr_entries;
592 	u64 aff_set = 0, aff_clr = ~0UL;
593 	struct kvm_vcpu *vcpu;
594 
595 	mutex_lock(&kvm->arch.config_lock);
596 
597 	if (kvm->arch.mpidr_data || atomic_read(&kvm->online_vcpus) == 1)
598 		goto out;
599 
600 	kvm_for_each_vcpu(c, vcpu, kvm) {
601 		u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
602 		aff_set |= aff;
603 		aff_clr &= aff;
604 	}
605 
606 	/*
607 	 * A significant bit can be either 0 or 1, and will only appear in
608 	 * aff_set. Use aff_clr to weed out the useless stuff.
609 	 */
610 	mask = aff_set ^ aff_clr;
611 	nr_entries = BIT_ULL(hweight_long(mask));
612 
613 	/*
614 	 * Don't let userspace fool us. If we need more than a single page
615 	 * to describe the compressed MPIDR array, just fall back to the
616 	 * iterative method. Single vcpu VMs do not need this either.
617 	 */
618 	if (struct_size(data, cmpidr_to_idx, nr_entries) <= PAGE_SIZE)
619 		data = kzalloc(struct_size(data, cmpidr_to_idx, nr_entries),
620 			       GFP_KERNEL_ACCOUNT);
621 
622 	if (!data)
623 		goto out;
624 
625 	data->mpidr_mask = mask;
626 
627 	kvm_for_each_vcpu(c, vcpu, kvm) {
628 		u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
629 		u16 index = kvm_mpidr_index(data, aff);
630 
631 		data->cmpidr_to_idx[index] = c;
632 	}
633 
634 	kvm->arch.mpidr_data = data;
635 out:
636 	mutex_unlock(&kvm->arch.config_lock);
637 }
638 
639 /*
640  * Handle both the initialisation that is being done when the vcpu is
641  * run for the first time, as well as the updates that must be
642  * performed each time we get a new thread dealing with this vcpu.
643  */
644 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
645 {
646 	struct kvm *kvm = vcpu->kvm;
647 	int ret;
648 
649 	if (!kvm_vcpu_initialized(vcpu))
650 		return -ENOEXEC;
651 
652 	if (!kvm_arm_vcpu_is_finalized(vcpu))
653 		return -EPERM;
654 
655 	ret = kvm_arch_vcpu_run_map_fp(vcpu);
656 	if (ret)
657 		return ret;
658 
659 	if (likely(vcpu_has_run_once(vcpu)))
660 		return 0;
661 
662 	kvm_init_mpidr_data(kvm);
663 
664 	kvm_arm_vcpu_init_debug(vcpu);
665 
666 	if (likely(irqchip_in_kernel(kvm))) {
667 		/*
668 		 * Map the VGIC hardware resources before running a vcpu the
669 		 * first time on this VM.
670 		 */
671 		ret = kvm_vgic_map_resources(kvm);
672 		if (ret)
673 			return ret;
674 	}
675 
676 	if (vcpu_has_nv(vcpu)) {
677 		ret = kvm_init_nv_sysregs(vcpu->kvm);
678 		if (ret)
679 			return ret;
680 	}
681 
682 	/*
683 	 * This needs to happen after NV has imposed its own restrictions on
684 	 * the feature set
685 	 */
686 	kvm_init_sysreg(vcpu);
687 
688 	ret = kvm_timer_enable(vcpu);
689 	if (ret)
690 		return ret;
691 
692 	ret = kvm_arm_pmu_v3_enable(vcpu);
693 	if (ret)
694 		return ret;
695 
696 	if (is_protected_kvm_enabled()) {
697 		ret = pkvm_create_hyp_vm(kvm);
698 		if (ret)
699 			return ret;
700 	}
701 
702 	if (!irqchip_in_kernel(kvm)) {
703 		/*
704 		 * Tell the rest of the code that there are userspace irqchip
705 		 * VMs in the wild.
706 		 */
707 		static_branch_inc(&userspace_irqchip_in_use);
708 	}
709 
710 	/*
711 	 * Initialize traps for protected VMs.
712 	 * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
713 	 * the code is in place for first run initialization at EL2.
714 	 */
715 	if (kvm_vm_is_protected(kvm))
716 		kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);
717 
718 	mutex_lock(&kvm->arch.config_lock);
719 	set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
720 	mutex_unlock(&kvm->arch.config_lock);
721 
722 	return ret;
723 }
724 
725 bool kvm_arch_intc_initialized(struct kvm *kvm)
726 {
727 	return vgic_initialized(kvm);
728 }
729 
730 void kvm_arm_halt_guest(struct kvm *kvm)
731 {
732 	unsigned long i;
733 	struct kvm_vcpu *vcpu;
734 
735 	kvm_for_each_vcpu(i, vcpu, kvm)
736 		vcpu->arch.pause = true;
737 	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
738 }
739 
740 void kvm_arm_resume_guest(struct kvm *kvm)
741 {
742 	unsigned long i;
743 	struct kvm_vcpu *vcpu;
744 
745 	kvm_for_each_vcpu(i, vcpu, kvm) {
746 		vcpu->arch.pause = false;
747 		__kvm_vcpu_wake_up(vcpu);
748 	}
749 }
750 
751 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
752 {
753 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
754 
755 	rcuwait_wait_event(wait,
756 			   (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
757 			   TASK_INTERRUPTIBLE);
758 
759 	if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
760 		/* Awaken to handle a signal, request we sleep again later. */
761 		kvm_make_request(KVM_REQ_SLEEP, vcpu);
762 	}
763 
764 	/*
765 	 * Make sure we will observe a potential reset request if we've
766 	 * observed a change to the power state. Pairs with the smp_wmb() in
767 	 * kvm_psci_vcpu_on().
768 	 */
769 	smp_rmb();
770 }
771 
772 /**
773  * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
774  * @vcpu:	The VCPU pointer
775  *
776  * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
777  * the vCPU is runnable.  The vCPU may or may not be scheduled out, depending
778  * on when a wake event arrives, e.g. there may already be a pending wake event.
779  */
780 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
781 {
782 	/*
783 	 * Sync back the state of the GIC CPU interface so that we have
784 	 * the latest PMR and group enables. This ensures that
785 	 * kvm_arch_vcpu_runnable has up-to-date data to decide whether
786 	 * we have pending interrupts, e.g. when determining if the
787 	 * vCPU should block.
788 	 *
789 	 * For the same reason, we want to tell GICv4 that we need
790 	 * doorbells to be signalled, should an interrupt become pending.
791 	 */
792 	preempt_disable();
793 	kvm_vgic_vmcr_sync(vcpu);
794 	vcpu_set_flag(vcpu, IN_WFI);
795 	vgic_v4_put(vcpu);
796 	preempt_enable();
797 
798 	kvm_vcpu_halt(vcpu);
799 	vcpu_clear_flag(vcpu, IN_WFIT);
800 
801 	preempt_disable();
802 	vcpu_clear_flag(vcpu, IN_WFI);
803 	vgic_v4_load(vcpu);
804 	preempt_enable();
805 }
806 
807 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
808 {
809 	if (!kvm_arm_vcpu_suspended(vcpu))
810 		return 1;
811 
812 	kvm_vcpu_wfi(vcpu);
813 
814 	/*
815 	 * The suspend state is sticky; we do not leave it until userspace
816 	 * explicitly marks the vCPU as runnable. Request that we suspend again
817 	 * later.
818 	 */
819 	kvm_make_request(KVM_REQ_SUSPEND, vcpu);
820 
821 	/*
822 	 * Check to make sure the vCPU is actually runnable. If so, exit to
823 	 * userspace informing it of the wakeup condition.
824 	 */
825 	if (kvm_arch_vcpu_runnable(vcpu)) {
826 		memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
827 		vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
828 		vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
829 		return 0;
830 	}
831 
832 	/*
833 	 * Otherwise, we were unblocked to process a different event, such as a
834 	 * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
835 	 * process the event.
836 	 */
837 	return 1;
838 }
839 
840 /**
841  * check_vcpu_requests - check and handle pending vCPU requests
842  * @vcpu:	the VCPU pointer
843  *
844  * Return: 1 if we should enter the guest
845  *	   0 if we should exit to userspace
846  *	   < 0 if we should exit to userspace, where the return value indicates
847  *	   an error
848  */
849 static int check_vcpu_requests(struct kvm_vcpu *vcpu)
850 {
851 	if (kvm_request_pending(vcpu)) {
852 		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
853 			kvm_vcpu_sleep(vcpu);
854 
855 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
856 			kvm_reset_vcpu(vcpu);
857 
858 		/*
859 		 * Clear IRQ_PENDING requests that were made to guarantee
860 		 * that a VCPU sees new virtual interrupts.
861 		 */
862 		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
863 
864 		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
865 			kvm_update_stolen_time(vcpu);
866 
867 		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
868 			/* The distributor enable bits were changed */
869 			preempt_disable();
870 			vgic_v4_put(vcpu);
871 			vgic_v4_load(vcpu);
872 			preempt_enable();
873 		}
874 
875 		if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
876 			kvm_vcpu_reload_pmu(vcpu);
877 
878 		if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu))
879 			kvm_vcpu_pmu_restore_guest(vcpu);
880 
881 		if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
882 			return kvm_vcpu_suspend(vcpu);
883 
884 		if (kvm_dirty_ring_check_request(vcpu))
885 			return 0;
886 	}
887 
888 	return 1;
889 }
890 
891 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
892 {
893 	if (likely(!vcpu_mode_is_32bit(vcpu)))
894 		return false;
895 
896 	if (vcpu_has_nv(vcpu))
897 		return true;
898 
899 	return !kvm_supports_32bit_el0();
900 }
901 
902 /**
903  * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
904  * @vcpu:	The VCPU pointer
905  * @ret:	Pointer to write optional return code
906  *
907  * Returns: true if the VCPU needs to return to a preemptible + interruptible
908  *	    and skip guest entry.
909  *
910  * This function disambiguates between two different types of exits: exits to a
911  * preemptible + interruptible kernel context and exits to userspace. For an
912  * exit to userspace, this function will write the return code to ret and return
913  * true. For an exit to preemptible + interruptible kernel context (i.e. check
914  * for pending work and re-enter), return true without writing to ret.
915  */
916 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
917 {
918 	struct kvm_run *run = vcpu->run;
919 
920 	/*
921 	 * If we're using a userspace irqchip, then check if we need
922 	 * to tell a userspace irqchip about timer or PMU level
923 	 * changes and if so, exit to userspace (the actual level
924 	 * state gets updated in kvm_timer_update_run and
925 	 * kvm_pmu_update_run below).
926 	 */
927 	if (static_branch_unlikely(&userspace_irqchip_in_use)) {
928 		if (kvm_timer_should_notify_user(vcpu) ||
929 		    kvm_pmu_should_notify_user(vcpu)) {
930 			*ret = -EINTR;
931 			run->exit_reason = KVM_EXIT_INTR;
932 			return true;
933 		}
934 	}
935 
936 	if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
937 		run->exit_reason = KVM_EXIT_FAIL_ENTRY;
938 		run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
939 		run->fail_entry.cpu = smp_processor_id();
940 		*ret = 0;
941 		return true;
942 	}
943 
944 	return kvm_request_pending(vcpu) ||
945 			xfer_to_guest_mode_work_pending();
946 }
947 
948 /*
949  * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
950  * the vCPU is running.
951  *
952  * This must be noinstr as instrumentation may make use of RCU, and this is not
953  * safe during the EQS.
954  */
955 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
956 {
957 	int ret;
958 
959 	guest_state_enter_irqoff();
960 	ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
961 	guest_state_exit_irqoff();
962 
963 	return ret;
964 }
965 
966 /**
967  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
968  * @vcpu:	The VCPU pointer
969  *
970  * This function is called through the VCPU_RUN ioctl called from user space. It
971  * will execute VM code in a loop until the time slice for the process is used
972  * or some emulation is needed from user space in which case the function will
973  * return with return value 0 and with the kvm_run structure filled in with the
974  * required data for the requested emulation.
975  */
976 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
977 {
978 	struct kvm_run *run = vcpu->run;
979 	int ret;
980 
981 	if (run->exit_reason == KVM_EXIT_MMIO) {
982 		ret = kvm_handle_mmio_return(vcpu);
983 		if (ret)
984 			return ret;
985 	}
986 
987 	vcpu_load(vcpu);
988 
989 	if (run->immediate_exit) {
990 		ret = -EINTR;
991 		goto out;
992 	}
993 
994 	kvm_sigset_activate(vcpu);
995 
996 	ret = 1;
997 	run->exit_reason = KVM_EXIT_UNKNOWN;
998 	run->flags = 0;
999 	while (ret > 0) {
1000 		/*
1001 		 * Check conditions before entering the guest
1002 		 */
1003 		ret = xfer_to_guest_mode_handle_work(vcpu);
1004 		if (!ret)
1005 			ret = 1;
1006 
1007 		if (ret > 0)
1008 			ret = check_vcpu_requests(vcpu);
1009 
1010 		/*
1011 		 * Preparing the interrupts to be injected also
1012 		 * involves poking the GIC, which must be done in a
1013 		 * non-preemptible context.
1014 		 */
1015 		preempt_disable();
1016 
1017 		/*
1018 		 * The VMID allocator only tracks active VMIDs per
1019 		 * physical CPU, and therefore the VMID allocated may not be
1020 		 * preserved on VMID roll-over if the task was preempted,
1021 		 * making a thread's VMID inactive. So we need to call
1022 		 * kvm_arm_vmid_update() in non-premptible context.
1023 		 */
1024 		if (kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid) &&
1025 		    has_vhe())
1026 			__load_stage2(vcpu->arch.hw_mmu,
1027 				      vcpu->arch.hw_mmu->arch);
1028 
1029 		kvm_pmu_flush_hwstate(vcpu);
1030 
1031 		local_irq_disable();
1032 
1033 		kvm_vgic_flush_hwstate(vcpu);
1034 
1035 		kvm_pmu_update_vcpu_events(vcpu);
1036 
1037 		/*
1038 		 * Ensure we set mode to IN_GUEST_MODE after we disable
1039 		 * interrupts and before the final VCPU requests check.
1040 		 * See the comment in kvm_vcpu_exiting_guest_mode() and
1041 		 * Documentation/virt/kvm/vcpu-requests.rst
1042 		 */
1043 		smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1044 
1045 		if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
1046 			vcpu->mode = OUTSIDE_GUEST_MODE;
1047 			isb(); /* Ensure work in x_flush_hwstate is committed */
1048 			kvm_pmu_sync_hwstate(vcpu);
1049 			if (static_branch_unlikely(&userspace_irqchip_in_use))
1050 				kvm_timer_sync_user(vcpu);
1051 			kvm_vgic_sync_hwstate(vcpu);
1052 			local_irq_enable();
1053 			preempt_enable();
1054 			continue;
1055 		}
1056 
1057 		kvm_arm_setup_debug(vcpu);
1058 		kvm_arch_vcpu_ctxflush_fp(vcpu);
1059 
1060 		/**************************************************************
1061 		 * Enter the guest
1062 		 */
1063 		trace_kvm_entry(*vcpu_pc(vcpu));
1064 		guest_timing_enter_irqoff();
1065 
1066 		ret = kvm_arm_vcpu_enter_exit(vcpu);
1067 
1068 		vcpu->mode = OUTSIDE_GUEST_MODE;
1069 		vcpu->stat.exits++;
1070 		/*
1071 		 * Back from guest
1072 		 *************************************************************/
1073 
1074 		kvm_arm_clear_debug(vcpu);
1075 
1076 		/*
1077 		 * We must sync the PMU state before the vgic state so
1078 		 * that the vgic can properly sample the updated state of the
1079 		 * interrupt line.
1080 		 */
1081 		kvm_pmu_sync_hwstate(vcpu);
1082 
1083 		/*
1084 		 * Sync the vgic state before syncing the timer state because
1085 		 * the timer code needs to know if the virtual timer
1086 		 * interrupts are active.
1087 		 */
1088 		kvm_vgic_sync_hwstate(vcpu);
1089 
1090 		/*
1091 		 * Sync the timer hardware state before enabling interrupts as
1092 		 * we don't want vtimer interrupts to race with syncing the
1093 		 * timer virtual interrupt state.
1094 		 */
1095 		if (static_branch_unlikely(&userspace_irqchip_in_use))
1096 			kvm_timer_sync_user(vcpu);
1097 
1098 		kvm_arch_vcpu_ctxsync_fp(vcpu);
1099 
1100 		/*
1101 		 * We must ensure that any pending interrupts are taken before
1102 		 * we exit guest timing so that timer ticks are accounted as
1103 		 * guest time. Transiently unmask interrupts so that any
1104 		 * pending interrupts are taken.
1105 		 *
1106 		 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
1107 		 * context synchronization event) is necessary to ensure that
1108 		 * pending interrupts are taken.
1109 		 */
1110 		if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
1111 			local_irq_enable();
1112 			isb();
1113 			local_irq_disable();
1114 		}
1115 
1116 		guest_timing_exit_irqoff();
1117 
1118 		local_irq_enable();
1119 
1120 		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
1121 
1122 		/* Exit types that need handling before we can be preempted */
1123 		handle_exit_early(vcpu, ret);
1124 
1125 		preempt_enable();
1126 
1127 		/*
1128 		 * The ARMv8 architecture doesn't give the hypervisor
1129 		 * a mechanism to prevent a guest from dropping to AArch32 EL0
1130 		 * if implemented by the CPU. If we spot the guest in such
1131 		 * state and that we decided it wasn't supposed to do so (like
1132 		 * with the asymmetric AArch32 case), return to userspace with
1133 		 * a fatal error.
1134 		 */
1135 		if (vcpu_mode_is_bad_32bit(vcpu)) {
1136 			/*
1137 			 * As we have caught the guest red-handed, decide that
1138 			 * it isn't fit for purpose anymore by making the vcpu
1139 			 * invalid. The VMM can try and fix it by issuing  a
1140 			 * KVM_ARM_VCPU_INIT if it really wants to.
1141 			 */
1142 			vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
1143 			ret = ARM_EXCEPTION_IL;
1144 		}
1145 
1146 		ret = handle_exit(vcpu, ret);
1147 	}
1148 
1149 	/* Tell userspace about in-kernel device output levels */
1150 	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1151 		kvm_timer_update_run(vcpu);
1152 		kvm_pmu_update_run(vcpu);
1153 	}
1154 
1155 	kvm_sigset_deactivate(vcpu);
1156 
1157 out:
1158 	/*
1159 	 * In the unlikely event that we are returning to userspace
1160 	 * with pending exceptions or PC adjustment, commit these
1161 	 * adjustments in order to give userspace a consistent view of
1162 	 * the vcpu state. Note that this relies on __kvm_adjust_pc()
1163 	 * being preempt-safe on VHE.
1164 	 */
1165 	if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) ||
1166 		     vcpu_get_flag(vcpu, INCREMENT_PC)))
1167 		kvm_call_hyp(__kvm_adjust_pc, vcpu);
1168 
1169 	vcpu_put(vcpu);
1170 	return ret;
1171 }
1172 
1173 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
1174 {
1175 	int bit_index;
1176 	bool set;
1177 	unsigned long *hcr;
1178 
1179 	if (number == KVM_ARM_IRQ_CPU_IRQ)
1180 		bit_index = __ffs(HCR_VI);
1181 	else /* KVM_ARM_IRQ_CPU_FIQ */
1182 		bit_index = __ffs(HCR_VF);
1183 
1184 	hcr = vcpu_hcr(vcpu);
1185 	if (level)
1186 		set = test_and_set_bit(bit_index, hcr);
1187 	else
1188 		set = test_and_clear_bit(bit_index, hcr);
1189 
1190 	/*
1191 	 * If we didn't change anything, no need to wake up or kick other CPUs
1192 	 */
1193 	if (set == level)
1194 		return 0;
1195 
1196 	/*
1197 	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1198 	 * trigger a world-switch round on the running physical CPU to set the
1199 	 * virtual IRQ/FIQ fields in the HCR appropriately.
1200 	 */
1201 	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1202 	kvm_vcpu_kick(vcpu);
1203 
1204 	return 0;
1205 }
1206 
1207 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1208 			  bool line_status)
1209 {
1210 	u32 irq = irq_level->irq;
1211 	unsigned int irq_type, vcpu_id, irq_num;
1212 	struct kvm_vcpu *vcpu = NULL;
1213 	bool level = irq_level->level;
1214 
1215 	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1216 	vcpu_id = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1217 	vcpu_id += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1218 	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1219 
1220 	trace_kvm_irq_line(irq_type, vcpu_id, irq_num, irq_level->level);
1221 
1222 	switch (irq_type) {
1223 	case KVM_ARM_IRQ_TYPE_CPU:
1224 		if (irqchip_in_kernel(kvm))
1225 			return -ENXIO;
1226 
1227 		vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1228 		if (!vcpu)
1229 			return -EINVAL;
1230 
1231 		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1232 			return -EINVAL;
1233 
1234 		return vcpu_interrupt_line(vcpu, irq_num, level);
1235 	case KVM_ARM_IRQ_TYPE_PPI:
1236 		if (!irqchip_in_kernel(kvm))
1237 			return -ENXIO;
1238 
1239 		vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1240 		if (!vcpu)
1241 			return -EINVAL;
1242 
1243 		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1244 			return -EINVAL;
1245 
1246 		return kvm_vgic_inject_irq(kvm, vcpu, irq_num, level, NULL);
1247 	case KVM_ARM_IRQ_TYPE_SPI:
1248 		if (!irqchip_in_kernel(kvm))
1249 			return -ENXIO;
1250 
1251 		if (irq_num < VGIC_NR_PRIVATE_IRQS)
1252 			return -EINVAL;
1253 
1254 		return kvm_vgic_inject_irq(kvm, NULL, irq_num, level, NULL);
1255 	}
1256 
1257 	return -EINVAL;
1258 }
1259 
1260 static unsigned long system_supported_vcpu_features(void)
1261 {
1262 	unsigned long features = KVM_VCPU_VALID_FEATURES;
1263 
1264 	if (!cpus_have_final_cap(ARM64_HAS_32BIT_EL1))
1265 		clear_bit(KVM_ARM_VCPU_EL1_32BIT, &features);
1266 
1267 	if (!kvm_arm_support_pmu_v3())
1268 		clear_bit(KVM_ARM_VCPU_PMU_V3, &features);
1269 
1270 	if (!system_supports_sve())
1271 		clear_bit(KVM_ARM_VCPU_SVE, &features);
1272 
1273 	if (!system_has_full_ptr_auth()) {
1274 		clear_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features);
1275 		clear_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features);
1276 	}
1277 
1278 	if (!cpus_have_final_cap(ARM64_HAS_NESTED_VIRT))
1279 		clear_bit(KVM_ARM_VCPU_HAS_EL2, &features);
1280 
1281 	return features;
1282 }
1283 
1284 static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu,
1285 					const struct kvm_vcpu_init *init)
1286 {
1287 	unsigned long features = init->features[0];
1288 	int i;
1289 
1290 	if (features & ~KVM_VCPU_VALID_FEATURES)
1291 		return -ENOENT;
1292 
1293 	for (i = 1; i < ARRAY_SIZE(init->features); i++) {
1294 		if (init->features[i])
1295 			return -ENOENT;
1296 	}
1297 
1298 	if (features & ~system_supported_vcpu_features())
1299 		return -EINVAL;
1300 
1301 	/*
1302 	 * For now make sure that both address/generic pointer authentication
1303 	 * features are requested by the userspace together.
1304 	 */
1305 	if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features) !=
1306 	    test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features))
1307 		return -EINVAL;
1308 
1309 	/* Disallow NV+SVE for the time being */
1310 	if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features) &&
1311 	    test_bit(KVM_ARM_VCPU_SVE, &features))
1312 		return -EINVAL;
1313 
1314 	if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features))
1315 		return 0;
1316 
1317 	/* MTE is incompatible with AArch32 */
1318 	if (kvm_has_mte(vcpu->kvm))
1319 		return -EINVAL;
1320 
1321 	/* NV is incompatible with AArch32 */
1322 	if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features))
1323 		return -EINVAL;
1324 
1325 	return 0;
1326 }
1327 
1328 static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu,
1329 				  const struct kvm_vcpu_init *init)
1330 {
1331 	unsigned long features = init->features[0];
1332 
1333 	return !bitmap_equal(vcpu->kvm->arch.vcpu_features, &features,
1334 			     KVM_VCPU_MAX_FEATURES);
1335 }
1336 
1337 static int kvm_setup_vcpu(struct kvm_vcpu *vcpu)
1338 {
1339 	struct kvm *kvm = vcpu->kvm;
1340 	int ret = 0;
1341 
1342 	/*
1343 	 * When the vCPU has a PMU, but no PMU is set for the guest
1344 	 * yet, set the default one.
1345 	 */
1346 	if (kvm_vcpu_has_pmu(vcpu) && !kvm->arch.arm_pmu)
1347 		ret = kvm_arm_set_default_pmu(kvm);
1348 
1349 	return ret;
1350 }
1351 
1352 static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1353 				 const struct kvm_vcpu_init *init)
1354 {
1355 	unsigned long features = init->features[0];
1356 	struct kvm *kvm = vcpu->kvm;
1357 	int ret = -EINVAL;
1358 
1359 	mutex_lock(&kvm->arch.config_lock);
1360 
1361 	if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) &&
1362 	    kvm_vcpu_init_changed(vcpu, init))
1363 		goto out_unlock;
1364 
1365 	bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES);
1366 
1367 	ret = kvm_setup_vcpu(vcpu);
1368 	if (ret)
1369 		goto out_unlock;
1370 
1371 	/* Now we know what it is, we can reset it. */
1372 	kvm_reset_vcpu(vcpu);
1373 
1374 	set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags);
1375 	vcpu_set_flag(vcpu, VCPU_INITIALIZED);
1376 	ret = 0;
1377 out_unlock:
1378 	mutex_unlock(&kvm->arch.config_lock);
1379 	return ret;
1380 }
1381 
1382 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1383 			       const struct kvm_vcpu_init *init)
1384 {
1385 	int ret;
1386 
1387 	if (init->target != KVM_ARM_TARGET_GENERIC_V8 &&
1388 	    init->target != kvm_target_cpu())
1389 		return -EINVAL;
1390 
1391 	ret = kvm_vcpu_init_check_features(vcpu, init);
1392 	if (ret)
1393 		return ret;
1394 
1395 	if (!kvm_vcpu_initialized(vcpu))
1396 		return __kvm_vcpu_set_target(vcpu, init);
1397 
1398 	if (kvm_vcpu_init_changed(vcpu, init))
1399 		return -EINVAL;
1400 
1401 	kvm_reset_vcpu(vcpu);
1402 	return 0;
1403 }
1404 
1405 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1406 					 struct kvm_vcpu_init *init)
1407 {
1408 	bool power_off = false;
1409 	int ret;
1410 
1411 	/*
1412 	 * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid
1413 	 * reflecting it in the finalized feature set, thus limiting its scope
1414 	 * to a single KVM_ARM_VCPU_INIT call.
1415 	 */
1416 	if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) {
1417 		init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF);
1418 		power_off = true;
1419 	}
1420 
1421 	ret = kvm_vcpu_set_target(vcpu, init);
1422 	if (ret)
1423 		return ret;
1424 
1425 	/*
1426 	 * Ensure a rebooted VM will fault in RAM pages and detect if the
1427 	 * guest MMU is turned off and flush the caches as needed.
1428 	 *
1429 	 * S2FWB enforces all memory accesses to RAM being cacheable,
1430 	 * ensuring that the data side is always coherent. We still
1431 	 * need to invalidate the I-cache though, as FWB does *not*
1432 	 * imply CTR_EL0.DIC.
1433 	 */
1434 	if (vcpu_has_run_once(vcpu)) {
1435 		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1436 			stage2_unmap_vm(vcpu->kvm);
1437 		else
1438 			icache_inval_all_pou();
1439 	}
1440 
1441 	vcpu_reset_hcr(vcpu);
1442 	vcpu->arch.cptr_el2 = kvm_get_reset_cptr_el2(vcpu);
1443 
1444 	/*
1445 	 * Handle the "start in power-off" case.
1446 	 */
1447 	spin_lock(&vcpu->arch.mp_state_lock);
1448 
1449 	if (power_off)
1450 		__kvm_arm_vcpu_power_off(vcpu);
1451 	else
1452 		WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
1453 
1454 	spin_unlock(&vcpu->arch.mp_state_lock);
1455 
1456 	return 0;
1457 }
1458 
1459 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1460 				 struct kvm_device_attr *attr)
1461 {
1462 	int ret = -ENXIO;
1463 
1464 	switch (attr->group) {
1465 	default:
1466 		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1467 		break;
1468 	}
1469 
1470 	return ret;
1471 }
1472 
1473 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1474 				 struct kvm_device_attr *attr)
1475 {
1476 	int ret = -ENXIO;
1477 
1478 	switch (attr->group) {
1479 	default:
1480 		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1481 		break;
1482 	}
1483 
1484 	return ret;
1485 }
1486 
1487 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1488 				 struct kvm_device_attr *attr)
1489 {
1490 	int ret = -ENXIO;
1491 
1492 	switch (attr->group) {
1493 	default:
1494 		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1495 		break;
1496 	}
1497 
1498 	return ret;
1499 }
1500 
1501 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1502 				   struct kvm_vcpu_events *events)
1503 {
1504 	memset(events, 0, sizeof(*events));
1505 
1506 	return __kvm_arm_vcpu_get_events(vcpu, events);
1507 }
1508 
1509 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1510 				   struct kvm_vcpu_events *events)
1511 {
1512 	int i;
1513 
1514 	/* check whether the reserved field is zero */
1515 	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1516 		if (events->reserved[i])
1517 			return -EINVAL;
1518 
1519 	/* check whether the pad field is zero */
1520 	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1521 		if (events->exception.pad[i])
1522 			return -EINVAL;
1523 
1524 	return __kvm_arm_vcpu_set_events(vcpu, events);
1525 }
1526 
1527 long kvm_arch_vcpu_ioctl(struct file *filp,
1528 			 unsigned int ioctl, unsigned long arg)
1529 {
1530 	struct kvm_vcpu *vcpu = filp->private_data;
1531 	void __user *argp = (void __user *)arg;
1532 	struct kvm_device_attr attr;
1533 	long r;
1534 
1535 	switch (ioctl) {
1536 	case KVM_ARM_VCPU_INIT: {
1537 		struct kvm_vcpu_init init;
1538 
1539 		r = -EFAULT;
1540 		if (copy_from_user(&init, argp, sizeof(init)))
1541 			break;
1542 
1543 		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1544 		break;
1545 	}
1546 	case KVM_SET_ONE_REG:
1547 	case KVM_GET_ONE_REG: {
1548 		struct kvm_one_reg reg;
1549 
1550 		r = -ENOEXEC;
1551 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1552 			break;
1553 
1554 		r = -EFAULT;
1555 		if (copy_from_user(&reg, argp, sizeof(reg)))
1556 			break;
1557 
1558 		/*
1559 		 * We could owe a reset due to PSCI. Handle the pending reset
1560 		 * here to ensure userspace register accesses are ordered after
1561 		 * the reset.
1562 		 */
1563 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1564 			kvm_reset_vcpu(vcpu);
1565 
1566 		if (ioctl == KVM_SET_ONE_REG)
1567 			r = kvm_arm_set_reg(vcpu, &reg);
1568 		else
1569 			r = kvm_arm_get_reg(vcpu, &reg);
1570 		break;
1571 	}
1572 	case KVM_GET_REG_LIST: {
1573 		struct kvm_reg_list __user *user_list = argp;
1574 		struct kvm_reg_list reg_list;
1575 		unsigned n;
1576 
1577 		r = -ENOEXEC;
1578 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1579 			break;
1580 
1581 		r = -EPERM;
1582 		if (!kvm_arm_vcpu_is_finalized(vcpu))
1583 			break;
1584 
1585 		r = -EFAULT;
1586 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1587 			break;
1588 		n = reg_list.n;
1589 		reg_list.n = kvm_arm_num_regs(vcpu);
1590 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1591 			break;
1592 		r = -E2BIG;
1593 		if (n < reg_list.n)
1594 			break;
1595 		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1596 		break;
1597 	}
1598 	case KVM_SET_DEVICE_ATTR: {
1599 		r = -EFAULT;
1600 		if (copy_from_user(&attr, argp, sizeof(attr)))
1601 			break;
1602 		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1603 		break;
1604 	}
1605 	case KVM_GET_DEVICE_ATTR: {
1606 		r = -EFAULT;
1607 		if (copy_from_user(&attr, argp, sizeof(attr)))
1608 			break;
1609 		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1610 		break;
1611 	}
1612 	case KVM_HAS_DEVICE_ATTR: {
1613 		r = -EFAULT;
1614 		if (copy_from_user(&attr, argp, sizeof(attr)))
1615 			break;
1616 		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1617 		break;
1618 	}
1619 	case KVM_GET_VCPU_EVENTS: {
1620 		struct kvm_vcpu_events events;
1621 
1622 		if (kvm_arm_vcpu_get_events(vcpu, &events))
1623 			return -EINVAL;
1624 
1625 		if (copy_to_user(argp, &events, sizeof(events)))
1626 			return -EFAULT;
1627 
1628 		return 0;
1629 	}
1630 	case KVM_SET_VCPU_EVENTS: {
1631 		struct kvm_vcpu_events events;
1632 
1633 		if (copy_from_user(&events, argp, sizeof(events)))
1634 			return -EFAULT;
1635 
1636 		return kvm_arm_vcpu_set_events(vcpu, &events);
1637 	}
1638 	case KVM_ARM_VCPU_FINALIZE: {
1639 		int what;
1640 
1641 		if (!kvm_vcpu_initialized(vcpu))
1642 			return -ENOEXEC;
1643 
1644 		if (get_user(what, (const int __user *)argp))
1645 			return -EFAULT;
1646 
1647 		return kvm_arm_vcpu_finalize(vcpu, what);
1648 	}
1649 	default:
1650 		r = -EINVAL;
1651 	}
1652 
1653 	return r;
1654 }
1655 
1656 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1657 {
1658 
1659 }
1660 
1661 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1662 					struct kvm_arm_device_addr *dev_addr)
1663 {
1664 	switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) {
1665 	case KVM_ARM_DEVICE_VGIC_V2:
1666 		if (!vgic_present)
1667 			return -ENXIO;
1668 		return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr);
1669 	default:
1670 		return -ENODEV;
1671 	}
1672 }
1673 
1674 static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1675 {
1676 	switch (attr->group) {
1677 	case KVM_ARM_VM_SMCCC_CTRL:
1678 		return kvm_vm_smccc_has_attr(kvm, attr);
1679 	default:
1680 		return -ENXIO;
1681 	}
1682 }
1683 
1684 static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1685 {
1686 	switch (attr->group) {
1687 	case KVM_ARM_VM_SMCCC_CTRL:
1688 		return kvm_vm_smccc_set_attr(kvm, attr);
1689 	default:
1690 		return -ENXIO;
1691 	}
1692 }
1693 
1694 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1695 {
1696 	struct kvm *kvm = filp->private_data;
1697 	void __user *argp = (void __user *)arg;
1698 	struct kvm_device_attr attr;
1699 
1700 	switch (ioctl) {
1701 	case KVM_CREATE_IRQCHIP: {
1702 		int ret;
1703 		if (!vgic_present)
1704 			return -ENXIO;
1705 		mutex_lock(&kvm->lock);
1706 		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1707 		mutex_unlock(&kvm->lock);
1708 		return ret;
1709 	}
1710 	case KVM_ARM_SET_DEVICE_ADDR: {
1711 		struct kvm_arm_device_addr dev_addr;
1712 
1713 		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1714 			return -EFAULT;
1715 		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1716 	}
1717 	case KVM_ARM_PREFERRED_TARGET: {
1718 		struct kvm_vcpu_init init = {
1719 			.target = KVM_ARM_TARGET_GENERIC_V8,
1720 		};
1721 
1722 		if (copy_to_user(argp, &init, sizeof(init)))
1723 			return -EFAULT;
1724 
1725 		return 0;
1726 	}
1727 	case KVM_ARM_MTE_COPY_TAGS: {
1728 		struct kvm_arm_copy_mte_tags copy_tags;
1729 
1730 		if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1731 			return -EFAULT;
1732 		return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1733 	}
1734 	case KVM_ARM_SET_COUNTER_OFFSET: {
1735 		struct kvm_arm_counter_offset offset;
1736 
1737 		if (copy_from_user(&offset, argp, sizeof(offset)))
1738 			return -EFAULT;
1739 		return kvm_vm_ioctl_set_counter_offset(kvm, &offset);
1740 	}
1741 	case KVM_HAS_DEVICE_ATTR: {
1742 		if (copy_from_user(&attr, argp, sizeof(attr)))
1743 			return -EFAULT;
1744 
1745 		return kvm_vm_has_attr(kvm, &attr);
1746 	}
1747 	case KVM_SET_DEVICE_ATTR: {
1748 		if (copy_from_user(&attr, argp, sizeof(attr)))
1749 			return -EFAULT;
1750 
1751 		return kvm_vm_set_attr(kvm, &attr);
1752 	}
1753 	case KVM_ARM_GET_REG_WRITABLE_MASKS: {
1754 		struct reg_mask_range range;
1755 
1756 		if (copy_from_user(&range, argp, sizeof(range)))
1757 			return -EFAULT;
1758 		return kvm_vm_ioctl_get_reg_writable_masks(kvm, &range);
1759 	}
1760 	default:
1761 		return -EINVAL;
1762 	}
1763 }
1764 
1765 /* unlocks vcpus from @vcpu_lock_idx and smaller */
1766 static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx)
1767 {
1768 	struct kvm_vcpu *tmp_vcpu;
1769 
1770 	for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1771 		tmp_vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1772 		mutex_unlock(&tmp_vcpu->mutex);
1773 	}
1774 }
1775 
1776 void unlock_all_vcpus(struct kvm *kvm)
1777 {
1778 	lockdep_assert_held(&kvm->lock);
1779 
1780 	unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1);
1781 }
1782 
1783 /* Returns true if all vcpus were locked, false otherwise */
1784 bool lock_all_vcpus(struct kvm *kvm)
1785 {
1786 	struct kvm_vcpu *tmp_vcpu;
1787 	unsigned long c;
1788 
1789 	lockdep_assert_held(&kvm->lock);
1790 
1791 	/*
1792 	 * Any time a vcpu is in an ioctl (including running), the
1793 	 * core KVM code tries to grab the vcpu->mutex.
1794 	 *
1795 	 * By grabbing the vcpu->mutex of all VCPUs we ensure that no
1796 	 * other VCPUs can fiddle with the state while we access it.
1797 	 */
1798 	kvm_for_each_vcpu(c, tmp_vcpu, kvm) {
1799 		if (!mutex_trylock(&tmp_vcpu->mutex)) {
1800 			unlock_vcpus(kvm, c - 1);
1801 			return false;
1802 		}
1803 	}
1804 
1805 	return true;
1806 }
1807 
1808 static unsigned long nvhe_percpu_size(void)
1809 {
1810 	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1811 		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1812 }
1813 
1814 static unsigned long nvhe_percpu_order(void)
1815 {
1816 	unsigned long size = nvhe_percpu_size();
1817 
1818 	return size ? get_order(size) : 0;
1819 }
1820 
1821 /* A lookup table holding the hypervisor VA for each vector slot */
1822 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1823 
1824 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1825 {
1826 	hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1827 }
1828 
1829 static int kvm_init_vector_slots(void)
1830 {
1831 	int err;
1832 	void *base;
1833 
1834 	base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1835 	kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1836 
1837 	base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1838 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1839 
1840 	if (kvm_system_needs_idmapped_vectors() &&
1841 	    !is_protected_kvm_enabled()) {
1842 		err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1843 					       __BP_HARDEN_HYP_VECS_SZ, &base);
1844 		if (err)
1845 			return err;
1846 	}
1847 
1848 	kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1849 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1850 	return 0;
1851 }
1852 
1853 static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits)
1854 {
1855 	struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1856 	u64 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1857 	unsigned long tcr;
1858 
1859 	/*
1860 	 * Calculate the raw per-cpu offset without a translation from the
1861 	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
1862 	 * so that we can use adr_l to access per-cpu variables in EL2.
1863 	 * Also drop the KASAN tag which gets in the way...
1864 	 */
1865 	params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1866 			    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1867 
1868 	params->mair_el2 = read_sysreg(mair_el1);
1869 
1870 	tcr = read_sysreg(tcr_el1);
1871 	if (cpus_have_final_cap(ARM64_KVM_HVHE)) {
1872 		tcr |= TCR_EPD1_MASK;
1873 	} else {
1874 		tcr &= TCR_EL2_MASK;
1875 		tcr |= TCR_EL2_RES1;
1876 	}
1877 	tcr &= ~TCR_T0SZ_MASK;
1878 	tcr |= TCR_T0SZ(hyp_va_bits);
1879 	tcr &= ~TCR_EL2_PS_MASK;
1880 	tcr |= FIELD_PREP(TCR_EL2_PS_MASK, kvm_get_parange(mmfr0));
1881 	if (kvm_lpa2_is_enabled())
1882 		tcr |= TCR_EL2_DS;
1883 	params->tcr_el2 = tcr;
1884 
1885 	params->pgd_pa = kvm_mmu_get_httbr();
1886 	if (is_protected_kvm_enabled())
1887 		params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1888 	else
1889 		params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1890 	if (cpus_have_final_cap(ARM64_KVM_HVHE))
1891 		params->hcr_el2 |= HCR_E2H;
1892 	params->vttbr = params->vtcr = 0;
1893 
1894 	/*
1895 	 * Flush the init params from the data cache because the struct will
1896 	 * be read while the MMU is off.
1897 	 */
1898 	kvm_flush_dcache_to_poc(params, sizeof(*params));
1899 }
1900 
1901 static void hyp_install_host_vector(void)
1902 {
1903 	struct kvm_nvhe_init_params *params;
1904 	struct arm_smccc_res res;
1905 
1906 	/* Switch from the HYP stub to our own HYP init vector */
1907 	__hyp_set_vectors(kvm_get_idmap_vector());
1908 
1909 	/*
1910 	 * Call initialization code, and switch to the full blown HYP code.
1911 	 * If the cpucaps haven't been finalized yet, something has gone very
1912 	 * wrong, and hyp will crash and burn when it uses any
1913 	 * cpus_have_*_cap() wrapper.
1914 	 */
1915 	BUG_ON(!system_capabilities_finalized());
1916 	params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1917 	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1918 	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1919 }
1920 
1921 static void cpu_init_hyp_mode(void)
1922 {
1923 	hyp_install_host_vector();
1924 
1925 	/*
1926 	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
1927 	 * at EL2.
1928 	 */
1929 	if (this_cpu_has_cap(ARM64_SSBS) &&
1930 	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1931 		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1932 	}
1933 }
1934 
1935 static void cpu_hyp_reset(void)
1936 {
1937 	if (!is_kernel_in_hyp_mode())
1938 		__hyp_reset_vectors();
1939 }
1940 
1941 /*
1942  * EL2 vectors can be mapped and rerouted in a number of ways,
1943  * depending on the kernel configuration and CPU present:
1944  *
1945  * - If the CPU is affected by Spectre-v2, the hardening sequence is
1946  *   placed in one of the vector slots, which is executed before jumping
1947  *   to the real vectors.
1948  *
1949  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1950  *   containing the hardening sequence is mapped next to the idmap page,
1951  *   and executed before jumping to the real vectors.
1952  *
1953  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1954  *   empty slot is selected, mapped next to the idmap page, and
1955  *   executed before jumping to the real vectors.
1956  *
1957  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1958  * VHE, as we don't have hypervisor-specific mappings. If the system
1959  * is VHE and yet selects this capability, it will be ignored.
1960  */
1961 static void cpu_set_hyp_vector(void)
1962 {
1963 	struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1964 	void *vector = hyp_spectre_vector_selector[data->slot];
1965 
1966 	if (!is_protected_kvm_enabled())
1967 		*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1968 	else
1969 		kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1970 }
1971 
1972 static void cpu_hyp_init_context(void)
1973 {
1974 	kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1975 
1976 	if (!is_kernel_in_hyp_mode())
1977 		cpu_init_hyp_mode();
1978 }
1979 
1980 static void cpu_hyp_init_features(void)
1981 {
1982 	cpu_set_hyp_vector();
1983 	kvm_arm_init_debug();
1984 
1985 	if (is_kernel_in_hyp_mode())
1986 		kvm_timer_init_vhe();
1987 
1988 	if (vgic_present)
1989 		kvm_vgic_init_cpu_hardware();
1990 }
1991 
1992 static void cpu_hyp_reinit(void)
1993 {
1994 	cpu_hyp_reset();
1995 	cpu_hyp_init_context();
1996 	cpu_hyp_init_features();
1997 }
1998 
1999 static void cpu_hyp_init(void *discard)
2000 {
2001 	if (!__this_cpu_read(kvm_hyp_initialized)) {
2002 		cpu_hyp_reinit();
2003 		__this_cpu_write(kvm_hyp_initialized, 1);
2004 	}
2005 }
2006 
2007 static void cpu_hyp_uninit(void *discard)
2008 {
2009 	if (__this_cpu_read(kvm_hyp_initialized)) {
2010 		cpu_hyp_reset();
2011 		__this_cpu_write(kvm_hyp_initialized, 0);
2012 	}
2013 }
2014 
2015 int kvm_arch_hardware_enable(void)
2016 {
2017 	/*
2018 	 * Most calls to this function are made with migration
2019 	 * disabled, but not with preemption disabled. The former is
2020 	 * enough to ensure correctness, but most of the helpers
2021 	 * expect the later and will throw a tantrum otherwise.
2022 	 */
2023 	preempt_disable();
2024 
2025 	cpu_hyp_init(NULL);
2026 
2027 	kvm_vgic_cpu_up();
2028 	kvm_timer_cpu_up();
2029 
2030 	preempt_enable();
2031 
2032 	return 0;
2033 }
2034 
2035 void kvm_arch_hardware_disable(void)
2036 {
2037 	kvm_timer_cpu_down();
2038 	kvm_vgic_cpu_down();
2039 
2040 	if (!is_protected_kvm_enabled())
2041 		cpu_hyp_uninit(NULL);
2042 }
2043 
2044 #ifdef CONFIG_CPU_PM
2045 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
2046 				    unsigned long cmd,
2047 				    void *v)
2048 {
2049 	/*
2050 	 * kvm_hyp_initialized is left with its old value over
2051 	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
2052 	 * re-enable hyp.
2053 	 */
2054 	switch (cmd) {
2055 	case CPU_PM_ENTER:
2056 		if (__this_cpu_read(kvm_hyp_initialized))
2057 			/*
2058 			 * don't update kvm_hyp_initialized here
2059 			 * so that the hyp will be re-enabled
2060 			 * when we resume. See below.
2061 			 */
2062 			cpu_hyp_reset();
2063 
2064 		return NOTIFY_OK;
2065 	case CPU_PM_ENTER_FAILED:
2066 	case CPU_PM_EXIT:
2067 		if (__this_cpu_read(kvm_hyp_initialized))
2068 			/* The hyp was enabled before suspend. */
2069 			cpu_hyp_reinit();
2070 
2071 		return NOTIFY_OK;
2072 
2073 	default:
2074 		return NOTIFY_DONE;
2075 	}
2076 }
2077 
2078 static struct notifier_block hyp_init_cpu_pm_nb = {
2079 	.notifier_call = hyp_init_cpu_pm_notifier,
2080 };
2081 
2082 static void __init hyp_cpu_pm_init(void)
2083 {
2084 	if (!is_protected_kvm_enabled())
2085 		cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
2086 }
2087 static void __init hyp_cpu_pm_exit(void)
2088 {
2089 	if (!is_protected_kvm_enabled())
2090 		cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
2091 }
2092 #else
2093 static inline void __init hyp_cpu_pm_init(void)
2094 {
2095 }
2096 static inline void __init hyp_cpu_pm_exit(void)
2097 {
2098 }
2099 #endif
2100 
2101 static void __init init_cpu_logical_map(void)
2102 {
2103 	unsigned int cpu;
2104 
2105 	/*
2106 	 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
2107 	 * Only copy the set of online CPUs whose features have been checked
2108 	 * against the finalized system capabilities. The hypervisor will not
2109 	 * allow any other CPUs from the `possible` set to boot.
2110 	 */
2111 	for_each_online_cpu(cpu)
2112 		hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
2113 }
2114 
2115 #define init_psci_0_1_impl_state(config, what)	\
2116 	config.psci_0_1_ ## what ## _implemented = psci_ops.what
2117 
2118 static bool __init init_psci_relay(void)
2119 {
2120 	/*
2121 	 * If PSCI has not been initialized, protected KVM cannot install
2122 	 * itself on newly booted CPUs.
2123 	 */
2124 	if (!psci_ops.get_version) {
2125 		kvm_err("Cannot initialize protected mode without PSCI\n");
2126 		return false;
2127 	}
2128 
2129 	kvm_host_psci_config.version = psci_ops.get_version();
2130 	kvm_host_psci_config.smccc_version = arm_smccc_get_version();
2131 
2132 	if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
2133 		kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
2134 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
2135 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
2136 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
2137 		init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
2138 	}
2139 	return true;
2140 }
2141 
2142 static int __init init_subsystems(void)
2143 {
2144 	int err = 0;
2145 
2146 	/*
2147 	 * Enable hardware so that subsystem initialisation can access EL2.
2148 	 */
2149 	on_each_cpu(cpu_hyp_init, NULL, 1);
2150 
2151 	/*
2152 	 * Register CPU lower-power notifier
2153 	 */
2154 	hyp_cpu_pm_init();
2155 
2156 	/*
2157 	 * Init HYP view of VGIC
2158 	 */
2159 	err = kvm_vgic_hyp_init();
2160 	switch (err) {
2161 	case 0:
2162 		vgic_present = true;
2163 		break;
2164 	case -ENODEV:
2165 	case -ENXIO:
2166 		vgic_present = false;
2167 		err = 0;
2168 		break;
2169 	default:
2170 		goto out;
2171 	}
2172 
2173 	/*
2174 	 * Init HYP architected timer support
2175 	 */
2176 	err = kvm_timer_hyp_init(vgic_present);
2177 	if (err)
2178 		goto out;
2179 
2180 	kvm_register_perf_callbacks(NULL);
2181 
2182 out:
2183 	if (err)
2184 		hyp_cpu_pm_exit();
2185 
2186 	if (err || !is_protected_kvm_enabled())
2187 		on_each_cpu(cpu_hyp_uninit, NULL, 1);
2188 
2189 	return err;
2190 }
2191 
2192 static void __init teardown_subsystems(void)
2193 {
2194 	kvm_unregister_perf_callbacks();
2195 	hyp_cpu_pm_exit();
2196 }
2197 
2198 static void __init teardown_hyp_mode(void)
2199 {
2200 	int cpu;
2201 
2202 	free_hyp_pgds();
2203 	for_each_possible_cpu(cpu) {
2204 		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
2205 		free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order());
2206 	}
2207 }
2208 
2209 static int __init do_pkvm_init(u32 hyp_va_bits)
2210 {
2211 	void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base));
2212 	int ret;
2213 
2214 	preempt_disable();
2215 	cpu_hyp_init_context();
2216 	ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
2217 				num_possible_cpus(), kern_hyp_va(per_cpu_base),
2218 				hyp_va_bits);
2219 	cpu_hyp_init_features();
2220 
2221 	/*
2222 	 * The stub hypercalls are now disabled, so set our local flag to
2223 	 * prevent a later re-init attempt in kvm_arch_hardware_enable().
2224 	 */
2225 	__this_cpu_write(kvm_hyp_initialized, 1);
2226 	preempt_enable();
2227 
2228 	return ret;
2229 }
2230 
2231 static u64 get_hyp_id_aa64pfr0_el1(void)
2232 {
2233 	/*
2234 	 * Track whether the system isn't affected by spectre/meltdown in the
2235 	 * hypervisor's view of id_aa64pfr0_el1, used for protected VMs.
2236 	 * Although this is per-CPU, we make it global for simplicity, e.g., not
2237 	 * to have to worry about vcpu migration.
2238 	 *
2239 	 * Unlike for non-protected VMs, userspace cannot override this for
2240 	 * protected VMs.
2241 	 */
2242 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2243 
2244 	val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) |
2245 		 ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3));
2246 
2247 	val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2),
2248 			  arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED);
2249 	val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3),
2250 			  arm64_get_meltdown_state() == SPECTRE_UNAFFECTED);
2251 
2252 	return val;
2253 }
2254 
2255 static void kvm_hyp_init_symbols(void)
2256 {
2257 	kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1();
2258 	kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
2259 	kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
2260 	kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2261 	kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
2262 	kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
2263 	kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2264 	kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
2265 	kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1);
2266 	kvm_nvhe_sym(__icache_flags) = __icache_flags;
2267 	kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits;
2268 }
2269 
2270 static int __init kvm_hyp_init_protection(u32 hyp_va_bits)
2271 {
2272 	void *addr = phys_to_virt(hyp_mem_base);
2273 	int ret;
2274 
2275 	ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
2276 	if (ret)
2277 		return ret;
2278 
2279 	ret = do_pkvm_init(hyp_va_bits);
2280 	if (ret)
2281 		return ret;
2282 
2283 	free_hyp_pgds();
2284 
2285 	return 0;
2286 }
2287 
2288 static void pkvm_hyp_init_ptrauth(void)
2289 {
2290 	struct kvm_cpu_context *hyp_ctxt;
2291 	int cpu;
2292 
2293 	for_each_possible_cpu(cpu) {
2294 		hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu);
2295 		hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long();
2296 		hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long();
2297 		hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long();
2298 		hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long();
2299 		hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long();
2300 		hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long();
2301 		hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long();
2302 		hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long();
2303 		hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long();
2304 		hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long();
2305 	}
2306 }
2307 
2308 /* Inits Hyp-mode on all online CPUs */
2309 static int __init init_hyp_mode(void)
2310 {
2311 	u32 hyp_va_bits;
2312 	int cpu;
2313 	int err = -ENOMEM;
2314 
2315 	/*
2316 	 * The protected Hyp-mode cannot be initialized if the memory pool
2317 	 * allocation has failed.
2318 	 */
2319 	if (is_protected_kvm_enabled() && !hyp_mem_base)
2320 		goto out_err;
2321 
2322 	/*
2323 	 * Allocate Hyp PGD and setup Hyp identity mapping
2324 	 */
2325 	err = kvm_mmu_init(&hyp_va_bits);
2326 	if (err)
2327 		goto out_err;
2328 
2329 	/*
2330 	 * Allocate stack pages for Hypervisor-mode
2331 	 */
2332 	for_each_possible_cpu(cpu) {
2333 		unsigned long stack_page;
2334 
2335 		stack_page = __get_free_page(GFP_KERNEL);
2336 		if (!stack_page) {
2337 			err = -ENOMEM;
2338 			goto out_err;
2339 		}
2340 
2341 		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
2342 	}
2343 
2344 	/*
2345 	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
2346 	 */
2347 	for_each_possible_cpu(cpu) {
2348 		struct page *page;
2349 		void *page_addr;
2350 
2351 		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
2352 		if (!page) {
2353 			err = -ENOMEM;
2354 			goto out_err;
2355 		}
2356 
2357 		page_addr = page_address(page);
2358 		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
2359 		kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr;
2360 	}
2361 
2362 	/*
2363 	 * Map the Hyp-code called directly from the host
2364 	 */
2365 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
2366 				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
2367 	if (err) {
2368 		kvm_err("Cannot map world-switch code\n");
2369 		goto out_err;
2370 	}
2371 
2372 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
2373 				  kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
2374 	if (err) {
2375 		kvm_err("Cannot map .hyp.rodata section\n");
2376 		goto out_err;
2377 	}
2378 
2379 	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
2380 				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
2381 	if (err) {
2382 		kvm_err("Cannot map rodata section\n");
2383 		goto out_err;
2384 	}
2385 
2386 	/*
2387 	 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
2388 	 * section thanks to an assertion in the linker script. Map it RW and
2389 	 * the rest of .bss RO.
2390 	 */
2391 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
2392 				  kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
2393 	if (err) {
2394 		kvm_err("Cannot map hyp bss section: %d\n", err);
2395 		goto out_err;
2396 	}
2397 
2398 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
2399 				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
2400 	if (err) {
2401 		kvm_err("Cannot map bss section\n");
2402 		goto out_err;
2403 	}
2404 
2405 	/*
2406 	 * Map the Hyp stack pages
2407 	 */
2408 	for_each_possible_cpu(cpu) {
2409 		struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2410 		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
2411 
2412 		err = create_hyp_stack(__pa(stack_page), &params->stack_hyp_va);
2413 		if (err) {
2414 			kvm_err("Cannot map hyp stack\n");
2415 			goto out_err;
2416 		}
2417 
2418 		/*
2419 		 * Save the stack PA in nvhe_init_params. This will be needed
2420 		 * to recreate the stack mapping in protected nVHE mode.
2421 		 * __hyp_pa() won't do the right thing there, since the stack
2422 		 * has been mapped in the flexible private VA space.
2423 		 */
2424 		params->stack_pa = __pa(stack_page);
2425 	}
2426 
2427 	for_each_possible_cpu(cpu) {
2428 		char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu];
2429 		char *percpu_end = percpu_begin + nvhe_percpu_size();
2430 
2431 		/* Map Hyp percpu pages */
2432 		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
2433 		if (err) {
2434 			kvm_err("Cannot map hyp percpu region\n");
2435 			goto out_err;
2436 		}
2437 
2438 		/* Prepare the CPU initialization parameters */
2439 		cpu_prepare_hyp_mode(cpu, hyp_va_bits);
2440 	}
2441 
2442 	kvm_hyp_init_symbols();
2443 
2444 	if (is_protected_kvm_enabled()) {
2445 		if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) &&
2446 		    cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH))
2447 			pkvm_hyp_init_ptrauth();
2448 
2449 		init_cpu_logical_map();
2450 
2451 		if (!init_psci_relay()) {
2452 			err = -ENODEV;
2453 			goto out_err;
2454 		}
2455 
2456 		err = kvm_hyp_init_protection(hyp_va_bits);
2457 		if (err) {
2458 			kvm_err("Failed to init hyp memory protection\n");
2459 			goto out_err;
2460 		}
2461 	}
2462 
2463 	return 0;
2464 
2465 out_err:
2466 	teardown_hyp_mode();
2467 	kvm_err("error initializing Hyp mode: %d\n", err);
2468 	return err;
2469 }
2470 
2471 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2472 {
2473 	struct kvm_vcpu *vcpu;
2474 	unsigned long i;
2475 
2476 	mpidr &= MPIDR_HWID_BITMASK;
2477 
2478 	if (kvm->arch.mpidr_data) {
2479 		u16 idx = kvm_mpidr_index(kvm->arch.mpidr_data, mpidr);
2480 
2481 		vcpu = kvm_get_vcpu(kvm,
2482 				    kvm->arch.mpidr_data->cmpidr_to_idx[idx]);
2483 		if (mpidr != kvm_vcpu_get_mpidr_aff(vcpu))
2484 			vcpu = NULL;
2485 
2486 		return vcpu;
2487 	}
2488 
2489 	kvm_for_each_vcpu(i, vcpu, kvm) {
2490 		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2491 			return vcpu;
2492 	}
2493 	return NULL;
2494 }
2495 
2496 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2497 {
2498 	return irqchip_in_kernel(kvm);
2499 }
2500 
2501 bool kvm_arch_has_irq_bypass(void)
2502 {
2503 	return true;
2504 }
2505 
2506 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2507 				      struct irq_bypass_producer *prod)
2508 {
2509 	struct kvm_kernel_irqfd *irqfd =
2510 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2511 
2512 	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2513 					  &irqfd->irq_entry);
2514 }
2515 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2516 				      struct irq_bypass_producer *prod)
2517 {
2518 	struct kvm_kernel_irqfd *irqfd =
2519 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2520 
2521 	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2522 				     &irqfd->irq_entry);
2523 }
2524 
2525 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2526 {
2527 	struct kvm_kernel_irqfd *irqfd =
2528 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2529 
2530 	kvm_arm_halt_guest(irqfd->kvm);
2531 }
2532 
2533 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2534 {
2535 	struct kvm_kernel_irqfd *irqfd =
2536 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2537 
2538 	kvm_arm_resume_guest(irqfd->kvm);
2539 }
2540 
2541 /* Initialize Hyp-mode and memory mappings on all CPUs */
2542 static __init int kvm_arm_init(void)
2543 {
2544 	int err;
2545 	bool in_hyp_mode;
2546 
2547 	if (!is_hyp_mode_available()) {
2548 		kvm_info("HYP mode not available\n");
2549 		return -ENODEV;
2550 	}
2551 
2552 	if (kvm_get_mode() == KVM_MODE_NONE) {
2553 		kvm_info("KVM disabled from command line\n");
2554 		return -ENODEV;
2555 	}
2556 
2557 	err = kvm_sys_reg_table_init();
2558 	if (err) {
2559 		kvm_info("Error initializing system register tables");
2560 		return err;
2561 	}
2562 
2563 	in_hyp_mode = is_kernel_in_hyp_mode();
2564 
2565 	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2566 	    cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2567 		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2568 			 "Only trusted guests should be used on this system.\n");
2569 
2570 	err = kvm_set_ipa_limit();
2571 	if (err)
2572 		return err;
2573 
2574 	err = kvm_arm_init_sve();
2575 	if (err)
2576 		return err;
2577 
2578 	err = kvm_arm_vmid_alloc_init();
2579 	if (err) {
2580 		kvm_err("Failed to initialize VMID allocator.\n");
2581 		return err;
2582 	}
2583 
2584 	if (!in_hyp_mode) {
2585 		err = init_hyp_mode();
2586 		if (err)
2587 			goto out_err;
2588 	}
2589 
2590 	err = kvm_init_vector_slots();
2591 	if (err) {
2592 		kvm_err("Cannot initialise vector slots\n");
2593 		goto out_hyp;
2594 	}
2595 
2596 	err = init_subsystems();
2597 	if (err)
2598 		goto out_hyp;
2599 
2600 	if (is_protected_kvm_enabled()) {
2601 		kvm_info("Protected nVHE mode initialized successfully\n");
2602 	} else if (in_hyp_mode) {
2603 		kvm_info("VHE mode initialized successfully\n");
2604 	} else {
2605 		char mode = cpus_have_final_cap(ARM64_KVM_HVHE) ? 'h' : 'n';
2606 		kvm_info("Hyp mode (%cVHE) initialized successfully\n", mode);
2607 	}
2608 
2609 	/*
2610 	 * FIXME: Do something reasonable if kvm_init() fails after pKVM
2611 	 * hypervisor protection is finalized.
2612 	 */
2613 	err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2614 	if (err)
2615 		goto out_subs;
2616 
2617 	kvm_arm_initialised = true;
2618 
2619 	return 0;
2620 
2621 out_subs:
2622 	teardown_subsystems();
2623 out_hyp:
2624 	if (!in_hyp_mode)
2625 		teardown_hyp_mode();
2626 out_err:
2627 	kvm_arm_vmid_alloc_free();
2628 	return err;
2629 }
2630 
2631 static int __init early_kvm_mode_cfg(char *arg)
2632 {
2633 	if (!arg)
2634 		return -EINVAL;
2635 
2636 	if (strcmp(arg, "none") == 0) {
2637 		kvm_mode = KVM_MODE_NONE;
2638 		return 0;
2639 	}
2640 
2641 	if (!is_hyp_mode_available()) {
2642 		pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n");
2643 		return 0;
2644 	}
2645 
2646 	if (strcmp(arg, "protected") == 0) {
2647 		if (!is_kernel_in_hyp_mode())
2648 			kvm_mode = KVM_MODE_PROTECTED;
2649 		else
2650 			pr_warn_once("Protected KVM not available with VHE\n");
2651 
2652 		return 0;
2653 	}
2654 
2655 	if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2656 		kvm_mode = KVM_MODE_DEFAULT;
2657 		return 0;
2658 	}
2659 
2660 	if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) {
2661 		kvm_mode = KVM_MODE_NV;
2662 		return 0;
2663 	}
2664 
2665 	return -EINVAL;
2666 }
2667 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2668 
2669 enum kvm_mode kvm_get_mode(void)
2670 {
2671 	return kvm_mode;
2672 }
2673 
2674 module_init(kvm_arm_init);
2675