1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 4 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 5 */ 6 7 #include <linux/bug.h> 8 #include <linux/cpu_pm.h> 9 #include <linux/entry-kvm.h> 10 #include <linux/errno.h> 11 #include <linux/err.h> 12 #include <linux/kvm_host.h> 13 #include <linux/list.h> 14 #include <linux/module.h> 15 #include <linux/vmalloc.h> 16 #include <linux/fs.h> 17 #include <linux/mman.h> 18 #include <linux/sched.h> 19 #include <linux/kvm.h> 20 #include <linux/kvm_irqfd.h> 21 #include <linux/irqbypass.h> 22 #include <linux/sched/stat.h> 23 #include <linux/psci.h> 24 #include <trace/events/kvm.h> 25 26 #define CREATE_TRACE_POINTS 27 #include "trace_arm.h" 28 29 #include <linux/uaccess.h> 30 #include <asm/ptrace.h> 31 #include <asm/mman.h> 32 #include <asm/tlbflush.h> 33 #include <asm/cacheflush.h> 34 #include <asm/cpufeature.h> 35 #include <asm/virt.h> 36 #include <asm/kvm_arm.h> 37 #include <asm/kvm_asm.h> 38 #include <asm/kvm_mmu.h> 39 #include <asm/kvm_nested.h> 40 #include <asm/kvm_pkvm.h> 41 #include <asm/kvm_emulate.h> 42 #include <asm/sections.h> 43 44 #include <kvm/arm_hypercalls.h> 45 #include <kvm/arm_pmu.h> 46 #include <kvm/arm_psci.h> 47 48 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT; 49 50 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector); 51 52 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page); 53 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params); 54 55 DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt); 56 57 static bool vgic_present, kvm_arm_initialised; 58 59 static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized); 60 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use); 61 62 bool is_kvm_arm_initialised(void) 63 { 64 return kvm_arm_initialised; 65 } 66 67 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 68 { 69 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 70 } 71 72 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 73 struct kvm_enable_cap *cap) 74 { 75 int r; 76 u64 new_cap; 77 78 if (cap->flags) 79 return -EINVAL; 80 81 switch (cap->cap) { 82 case KVM_CAP_ARM_NISV_TO_USER: 83 r = 0; 84 set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER, 85 &kvm->arch.flags); 86 break; 87 case KVM_CAP_ARM_MTE: 88 mutex_lock(&kvm->lock); 89 if (!system_supports_mte() || kvm->created_vcpus) { 90 r = -EINVAL; 91 } else { 92 r = 0; 93 set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags); 94 } 95 mutex_unlock(&kvm->lock); 96 break; 97 case KVM_CAP_ARM_SYSTEM_SUSPEND: 98 r = 0; 99 set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags); 100 break; 101 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE: 102 new_cap = cap->args[0]; 103 104 mutex_lock(&kvm->slots_lock); 105 /* 106 * To keep things simple, allow changing the chunk 107 * size only when no memory slots have been created. 108 */ 109 if (!kvm_are_all_memslots_empty(kvm)) { 110 r = -EINVAL; 111 } else if (new_cap && !kvm_is_block_size_supported(new_cap)) { 112 r = -EINVAL; 113 } else { 114 r = 0; 115 kvm->arch.mmu.split_page_chunk_size = new_cap; 116 } 117 mutex_unlock(&kvm->slots_lock); 118 break; 119 default: 120 r = -EINVAL; 121 break; 122 } 123 124 return r; 125 } 126 127 static int kvm_arm_default_max_vcpus(void) 128 { 129 return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS; 130 } 131 132 /** 133 * kvm_arch_init_vm - initializes a VM data structure 134 * @kvm: pointer to the KVM struct 135 */ 136 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 137 { 138 int ret; 139 140 mutex_init(&kvm->arch.config_lock); 141 142 #ifdef CONFIG_LOCKDEP 143 /* Clue in lockdep that the config_lock must be taken inside kvm->lock */ 144 mutex_lock(&kvm->lock); 145 mutex_lock(&kvm->arch.config_lock); 146 mutex_unlock(&kvm->arch.config_lock); 147 mutex_unlock(&kvm->lock); 148 #endif 149 150 ret = kvm_share_hyp(kvm, kvm + 1); 151 if (ret) 152 return ret; 153 154 ret = pkvm_init_host_vm(kvm); 155 if (ret) 156 goto err_unshare_kvm; 157 158 if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) { 159 ret = -ENOMEM; 160 goto err_unshare_kvm; 161 } 162 cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask); 163 164 ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type); 165 if (ret) 166 goto err_free_cpumask; 167 168 kvm_vgic_early_init(kvm); 169 170 kvm_timer_init_vm(kvm); 171 172 /* The maximum number of VCPUs is limited by the host's GIC model */ 173 kvm->max_vcpus = kvm_arm_default_max_vcpus(); 174 175 kvm_arm_init_hypercalls(kvm); 176 177 bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES); 178 179 return 0; 180 181 err_free_cpumask: 182 free_cpumask_var(kvm->arch.supported_cpus); 183 err_unshare_kvm: 184 kvm_unshare_hyp(kvm, kvm + 1); 185 return ret; 186 } 187 188 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 189 { 190 return VM_FAULT_SIGBUS; 191 } 192 193 void kvm_arch_create_vm_debugfs(struct kvm *kvm) 194 { 195 kvm_sys_regs_create_debugfs(kvm); 196 } 197 198 /** 199 * kvm_arch_destroy_vm - destroy the VM data structure 200 * @kvm: pointer to the KVM struct 201 */ 202 void kvm_arch_destroy_vm(struct kvm *kvm) 203 { 204 bitmap_free(kvm->arch.pmu_filter); 205 free_cpumask_var(kvm->arch.supported_cpus); 206 207 kvm_vgic_destroy(kvm); 208 209 if (is_protected_kvm_enabled()) 210 pkvm_destroy_hyp_vm(kvm); 211 212 kfree(kvm->arch.mpidr_data); 213 kfree(kvm->arch.sysreg_masks); 214 kvm_destroy_vcpus(kvm); 215 216 kvm_unshare_hyp(kvm, kvm + 1); 217 218 kvm_arm_teardown_hypercalls(kvm); 219 } 220 221 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 222 { 223 int r; 224 switch (ext) { 225 case KVM_CAP_IRQCHIP: 226 r = vgic_present; 227 break; 228 case KVM_CAP_IOEVENTFD: 229 case KVM_CAP_USER_MEMORY: 230 case KVM_CAP_SYNC_MMU: 231 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 232 case KVM_CAP_ONE_REG: 233 case KVM_CAP_ARM_PSCI: 234 case KVM_CAP_ARM_PSCI_0_2: 235 case KVM_CAP_READONLY_MEM: 236 case KVM_CAP_MP_STATE: 237 case KVM_CAP_IMMEDIATE_EXIT: 238 case KVM_CAP_VCPU_EVENTS: 239 case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2: 240 case KVM_CAP_ARM_NISV_TO_USER: 241 case KVM_CAP_ARM_INJECT_EXT_DABT: 242 case KVM_CAP_SET_GUEST_DEBUG: 243 case KVM_CAP_VCPU_ATTRIBUTES: 244 case KVM_CAP_PTP_KVM: 245 case KVM_CAP_ARM_SYSTEM_SUSPEND: 246 case KVM_CAP_IRQFD_RESAMPLE: 247 case KVM_CAP_COUNTER_OFFSET: 248 r = 1; 249 break; 250 case KVM_CAP_SET_GUEST_DEBUG2: 251 return KVM_GUESTDBG_VALID_MASK; 252 case KVM_CAP_ARM_SET_DEVICE_ADDR: 253 r = 1; 254 break; 255 case KVM_CAP_NR_VCPUS: 256 /* 257 * ARM64 treats KVM_CAP_NR_CPUS differently from all other 258 * architectures, as it does not always bound it to 259 * KVM_CAP_MAX_VCPUS. It should not matter much because 260 * this is just an advisory value. 261 */ 262 r = min_t(unsigned int, num_online_cpus(), 263 kvm_arm_default_max_vcpus()); 264 break; 265 case KVM_CAP_MAX_VCPUS: 266 case KVM_CAP_MAX_VCPU_ID: 267 if (kvm) 268 r = kvm->max_vcpus; 269 else 270 r = kvm_arm_default_max_vcpus(); 271 break; 272 case KVM_CAP_MSI_DEVID: 273 if (!kvm) 274 r = -EINVAL; 275 else 276 r = kvm->arch.vgic.msis_require_devid; 277 break; 278 case KVM_CAP_ARM_USER_IRQ: 279 /* 280 * 1: EL1_VTIMER, EL1_PTIMER, and PMU. 281 * (bump this number if adding more devices) 282 */ 283 r = 1; 284 break; 285 case KVM_CAP_ARM_MTE: 286 r = system_supports_mte(); 287 break; 288 case KVM_CAP_STEAL_TIME: 289 r = kvm_arm_pvtime_supported(); 290 break; 291 case KVM_CAP_ARM_EL1_32BIT: 292 r = cpus_have_final_cap(ARM64_HAS_32BIT_EL1); 293 break; 294 case KVM_CAP_GUEST_DEBUG_HW_BPS: 295 r = get_num_brps(); 296 break; 297 case KVM_CAP_GUEST_DEBUG_HW_WPS: 298 r = get_num_wrps(); 299 break; 300 case KVM_CAP_ARM_PMU_V3: 301 r = kvm_arm_support_pmu_v3(); 302 break; 303 case KVM_CAP_ARM_INJECT_SERROR_ESR: 304 r = cpus_have_final_cap(ARM64_HAS_RAS_EXTN); 305 break; 306 case KVM_CAP_ARM_VM_IPA_SIZE: 307 r = get_kvm_ipa_limit(); 308 break; 309 case KVM_CAP_ARM_SVE: 310 r = system_supports_sve(); 311 break; 312 case KVM_CAP_ARM_PTRAUTH_ADDRESS: 313 case KVM_CAP_ARM_PTRAUTH_GENERIC: 314 r = system_has_full_ptr_auth(); 315 break; 316 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE: 317 if (kvm) 318 r = kvm->arch.mmu.split_page_chunk_size; 319 else 320 r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT; 321 break; 322 case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES: 323 r = kvm_supported_block_sizes(); 324 break; 325 case KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES: 326 r = BIT(0); 327 break; 328 default: 329 r = 0; 330 } 331 332 return r; 333 } 334 335 long kvm_arch_dev_ioctl(struct file *filp, 336 unsigned int ioctl, unsigned long arg) 337 { 338 return -EINVAL; 339 } 340 341 struct kvm *kvm_arch_alloc_vm(void) 342 { 343 size_t sz = sizeof(struct kvm); 344 345 if (!has_vhe()) 346 return kzalloc(sz, GFP_KERNEL_ACCOUNT); 347 348 return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO); 349 } 350 351 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 352 { 353 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) 354 return -EBUSY; 355 356 if (id >= kvm->max_vcpus) 357 return -EINVAL; 358 359 return 0; 360 } 361 362 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 363 { 364 int err; 365 366 spin_lock_init(&vcpu->arch.mp_state_lock); 367 368 #ifdef CONFIG_LOCKDEP 369 /* Inform lockdep that the config_lock is acquired after vcpu->mutex */ 370 mutex_lock(&vcpu->mutex); 371 mutex_lock(&vcpu->kvm->arch.config_lock); 372 mutex_unlock(&vcpu->kvm->arch.config_lock); 373 mutex_unlock(&vcpu->mutex); 374 #endif 375 376 /* Force users to call KVM_ARM_VCPU_INIT */ 377 vcpu_clear_flag(vcpu, VCPU_INITIALIZED); 378 379 vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO; 380 381 /* 382 * Default value for the FP state, will be overloaded at load 383 * time if we support FP (pretty likely) 384 */ 385 vcpu->arch.fp_state = FP_STATE_FREE; 386 387 /* Set up the timer */ 388 kvm_timer_vcpu_init(vcpu); 389 390 kvm_pmu_vcpu_init(vcpu); 391 392 kvm_arm_reset_debug_ptr(vcpu); 393 394 kvm_arm_pvtime_vcpu_init(&vcpu->arch); 395 396 vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu; 397 398 err = kvm_vgic_vcpu_init(vcpu); 399 if (err) 400 return err; 401 402 return kvm_share_hyp(vcpu, vcpu + 1); 403 } 404 405 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 406 { 407 } 408 409 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 410 { 411 if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm))) 412 static_branch_dec(&userspace_irqchip_in_use); 413 414 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); 415 kvm_timer_vcpu_terminate(vcpu); 416 kvm_pmu_vcpu_destroy(vcpu); 417 kvm_vgic_vcpu_destroy(vcpu); 418 kvm_arm_vcpu_destroy(vcpu); 419 } 420 421 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 422 { 423 424 } 425 426 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 427 { 428 429 } 430 431 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 432 { 433 struct kvm_s2_mmu *mmu; 434 int *last_ran; 435 436 mmu = vcpu->arch.hw_mmu; 437 last_ran = this_cpu_ptr(mmu->last_vcpu_ran); 438 439 /* 440 * We guarantee that both TLBs and I-cache are private to each 441 * vcpu. If detecting that a vcpu from the same VM has 442 * previously run on the same physical CPU, call into the 443 * hypervisor code to nuke the relevant contexts. 444 * 445 * We might get preempted before the vCPU actually runs, but 446 * over-invalidation doesn't affect correctness. 447 */ 448 if (*last_ran != vcpu->vcpu_idx) { 449 kvm_call_hyp(__kvm_flush_cpu_context, mmu); 450 *last_ran = vcpu->vcpu_idx; 451 } 452 453 vcpu->cpu = cpu; 454 455 kvm_vgic_load(vcpu); 456 kvm_timer_vcpu_load(vcpu); 457 if (has_vhe()) 458 kvm_vcpu_load_vhe(vcpu); 459 kvm_arch_vcpu_load_fp(vcpu); 460 kvm_vcpu_pmu_restore_guest(vcpu); 461 if (kvm_arm_is_pvtime_enabled(&vcpu->arch)) 462 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu); 463 464 if (single_task_running()) 465 vcpu_clear_wfx_traps(vcpu); 466 else 467 vcpu_set_wfx_traps(vcpu); 468 469 if (vcpu_has_ptrauth(vcpu)) 470 vcpu_ptrauth_disable(vcpu); 471 kvm_arch_vcpu_load_debug_state_flags(vcpu); 472 473 if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus)) 474 vcpu_set_on_unsupported_cpu(vcpu); 475 } 476 477 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 478 { 479 kvm_arch_vcpu_put_debug_state_flags(vcpu); 480 kvm_arch_vcpu_put_fp(vcpu); 481 if (has_vhe()) 482 kvm_vcpu_put_vhe(vcpu); 483 kvm_timer_vcpu_put(vcpu); 484 kvm_vgic_put(vcpu); 485 kvm_vcpu_pmu_restore_host(vcpu); 486 kvm_arm_vmid_clear_active(); 487 488 vcpu_clear_on_unsupported_cpu(vcpu); 489 vcpu->cpu = -1; 490 } 491 492 static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu) 493 { 494 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED); 495 kvm_make_request(KVM_REQ_SLEEP, vcpu); 496 kvm_vcpu_kick(vcpu); 497 } 498 499 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu) 500 { 501 spin_lock(&vcpu->arch.mp_state_lock); 502 __kvm_arm_vcpu_power_off(vcpu); 503 spin_unlock(&vcpu->arch.mp_state_lock); 504 } 505 506 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu) 507 { 508 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED; 509 } 510 511 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu) 512 { 513 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED); 514 kvm_make_request(KVM_REQ_SUSPEND, vcpu); 515 kvm_vcpu_kick(vcpu); 516 } 517 518 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu) 519 { 520 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED; 521 } 522 523 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 524 struct kvm_mp_state *mp_state) 525 { 526 *mp_state = READ_ONCE(vcpu->arch.mp_state); 527 528 return 0; 529 } 530 531 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 532 struct kvm_mp_state *mp_state) 533 { 534 int ret = 0; 535 536 spin_lock(&vcpu->arch.mp_state_lock); 537 538 switch (mp_state->mp_state) { 539 case KVM_MP_STATE_RUNNABLE: 540 WRITE_ONCE(vcpu->arch.mp_state, *mp_state); 541 break; 542 case KVM_MP_STATE_STOPPED: 543 __kvm_arm_vcpu_power_off(vcpu); 544 break; 545 case KVM_MP_STATE_SUSPENDED: 546 kvm_arm_vcpu_suspend(vcpu); 547 break; 548 default: 549 ret = -EINVAL; 550 } 551 552 spin_unlock(&vcpu->arch.mp_state_lock); 553 554 return ret; 555 } 556 557 /** 558 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled 559 * @v: The VCPU pointer 560 * 561 * If the guest CPU is not waiting for interrupts or an interrupt line is 562 * asserted, the CPU is by definition runnable. 563 */ 564 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 565 { 566 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF); 567 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v)) 568 && !kvm_arm_vcpu_stopped(v) && !v->arch.pause); 569 } 570 571 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 572 { 573 return vcpu_mode_priv(vcpu); 574 } 575 576 #ifdef CONFIG_GUEST_PERF_EVENTS 577 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 578 { 579 return *vcpu_pc(vcpu); 580 } 581 #endif 582 583 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu) 584 { 585 return vcpu_get_flag(vcpu, VCPU_INITIALIZED); 586 } 587 588 static void kvm_init_mpidr_data(struct kvm *kvm) 589 { 590 struct kvm_mpidr_data *data = NULL; 591 unsigned long c, mask, nr_entries; 592 u64 aff_set = 0, aff_clr = ~0UL; 593 struct kvm_vcpu *vcpu; 594 595 mutex_lock(&kvm->arch.config_lock); 596 597 if (kvm->arch.mpidr_data || atomic_read(&kvm->online_vcpus) == 1) 598 goto out; 599 600 kvm_for_each_vcpu(c, vcpu, kvm) { 601 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu); 602 aff_set |= aff; 603 aff_clr &= aff; 604 } 605 606 /* 607 * A significant bit can be either 0 or 1, and will only appear in 608 * aff_set. Use aff_clr to weed out the useless stuff. 609 */ 610 mask = aff_set ^ aff_clr; 611 nr_entries = BIT_ULL(hweight_long(mask)); 612 613 /* 614 * Don't let userspace fool us. If we need more than a single page 615 * to describe the compressed MPIDR array, just fall back to the 616 * iterative method. Single vcpu VMs do not need this either. 617 */ 618 if (struct_size(data, cmpidr_to_idx, nr_entries) <= PAGE_SIZE) 619 data = kzalloc(struct_size(data, cmpidr_to_idx, nr_entries), 620 GFP_KERNEL_ACCOUNT); 621 622 if (!data) 623 goto out; 624 625 data->mpidr_mask = mask; 626 627 kvm_for_each_vcpu(c, vcpu, kvm) { 628 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu); 629 u16 index = kvm_mpidr_index(data, aff); 630 631 data->cmpidr_to_idx[index] = c; 632 } 633 634 kvm->arch.mpidr_data = data; 635 out: 636 mutex_unlock(&kvm->arch.config_lock); 637 } 638 639 /* 640 * Handle both the initialisation that is being done when the vcpu is 641 * run for the first time, as well as the updates that must be 642 * performed each time we get a new thread dealing with this vcpu. 643 */ 644 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 645 { 646 struct kvm *kvm = vcpu->kvm; 647 int ret; 648 649 if (!kvm_vcpu_initialized(vcpu)) 650 return -ENOEXEC; 651 652 if (!kvm_arm_vcpu_is_finalized(vcpu)) 653 return -EPERM; 654 655 ret = kvm_arch_vcpu_run_map_fp(vcpu); 656 if (ret) 657 return ret; 658 659 if (likely(vcpu_has_run_once(vcpu))) 660 return 0; 661 662 kvm_init_mpidr_data(kvm); 663 664 kvm_arm_vcpu_init_debug(vcpu); 665 666 if (likely(irqchip_in_kernel(kvm))) { 667 /* 668 * Map the VGIC hardware resources before running a vcpu the 669 * first time on this VM. 670 */ 671 ret = kvm_vgic_map_resources(kvm); 672 if (ret) 673 return ret; 674 } 675 676 if (vcpu_has_nv(vcpu)) { 677 ret = kvm_init_nv_sysregs(vcpu->kvm); 678 if (ret) 679 return ret; 680 } 681 682 /* 683 * This needs to happen after NV has imposed its own restrictions on 684 * the feature set 685 */ 686 kvm_init_sysreg(vcpu); 687 688 ret = kvm_timer_enable(vcpu); 689 if (ret) 690 return ret; 691 692 ret = kvm_arm_pmu_v3_enable(vcpu); 693 if (ret) 694 return ret; 695 696 if (is_protected_kvm_enabled()) { 697 ret = pkvm_create_hyp_vm(kvm); 698 if (ret) 699 return ret; 700 } 701 702 if (!irqchip_in_kernel(kvm)) { 703 /* 704 * Tell the rest of the code that there are userspace irqchip 705 * VMs in the wild. 706 */ 707 static_branch_inc(&userspace_irqchip_in_use); 708 } 709 710 /* 711 * Initialize traps for protected VMs. 712 * NOTE: Move to run in EL2 directly, rather than via a hypercall, once 713 * the code is in place for first run initialization at EL2. 714 */ 715 if (kvm_vm_is_protected(kvm)) 716 kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu); 717 718 mutex_lock(&kvm->arch.config_lock); 719 set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags); 720 mutex_unlock(&kvm->arch.config_lock); 721 722 return ret; 723 } 724 725 bool kvm_arch_intc_initialized(struct kvm *kvm) 726 { 727 return vgic_initialized(kvm); 728 } 729 730 void kvm_arm_halt_guest(struct kvm *kvm) 731 { 732 unsigned long i; 733 struct kvm_vcpu *vcpu; 734 735 kvm_for_each_vcpu(i, vcpu, kvm) 736 vcpu->arch.pause = true; 737 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP); 738 } 739 740 void kvm_arm_resume_guest(struct kvm *kvm) 741 { 742 unsigned long i; 743 struct kvm_vcpu *vcpu; 744 745 kvm_for_each_vcpu(i, vcpu, kvm) { 746 vcpu->arch.pause = false; 747 __kvm_vcpu_wake_up(vcpu); 748 } 749 } 750 751 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu) 752 { 753 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 754 755 rcuwait_wait_event(wait, 756 (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause), 757 TASK_INTERRUPTIBLE); 758 759 if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) { 760 /* Awaken to handle a signal, request we sleep again later. */ 761 kvm_make_request(KVM_REQ_SLEEP, vcpu); 762 } 763 764 /* 765 * Make sure we will observe a potential reset request if we've 766 * observed a change to the power state. Pairs with the smp_wmb() in 767 * kvm_psci_vcpu_on(). 768 */ 769 smp_rmb(); 770 } 771 772 /** 773 * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior 774 * @vcpu: The VCPU pointer 775 * 776 * Suspend execution of a vCPU until a valid wake event is detected, i.e. until 777 * the vCPU is runnable. The vCPU may or may not be scheduled out, depending 778 * on when a wake event arrives, e.g. there may already be a pending wake event. 779 */ 780 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu) 781 { 782 /* 783 * Sync back the state of the GIC CPU interface so that we have 784 * the latest PMR and group enables. This ensures that 785 * kvm_arch_vcpu_runnable has up-to-date data to decide whether 786 * we have pending interrupts, e.g. when determining if the 787 * vCPU should block. 788 * 789 * For the same reason, we want to tell GICv4 that we need 790 * doorbells to be signalled, should an interrupt become pending. 791 */ 792 preempt_disable(); 793 kvm_vgic_vmcr_sync(vcpu); 794 vcpu_set_flag(vcpu, IN_WFI); 795 vgic_v4_put(vcpu); 796 preempt_enable(); 797 798 kvm_vcpu_halt(vcpu); 799 vcpu_clear_flag(vcpu, IN_WFIT); 800 801 preempt_disable(); 802 vcpu_clear_flag(vcpu, IN_WFI); 803 vgic_v4_load(vcpu); 804 preempt_enable(); 805 } 806 807 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu) 808 { 809 if (!kvm_arm_vcpu_suspended(vcpu)) 810 return 1; 811 812 kvm_vcpu_wfi(vcpu); 813 814 /* 815 * The suspend state is sticky; we do not leave it until userspace 816 * explicitly marks the vCPU as runnable. Request that we suspend again 817 * later. 818 */ 819 kvm_make_request(KVM_REQ_SUSPEND, vcpu); 820 821 /* 822 * Check to make sure the vCPU is actually runnable. If so, exit to 823 * userspace informing it of the wakeup condition. 824 */ 825 if (kvm_arch_vcpu_runnable(vcpu)) { 826 memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event)); 827 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP; 828 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 829 return 0; 830 } 831 832 /* 833 * Otherwise, we were unblocked to process a different event, such as a 834 * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to 835 * process the event. 836 */ 837 return 1; 838 } 839 840 /** 841 * check_vcpu_requests - check and handle pending vCPU requests 842 * @vcpu: the VCPU pointer 843 * 844 * Return: 1 if we should enter the guest 845 * 0 if we should exit to userspace 846 * < 0 if we should exit to userspace, where the return value indicates 847 * an error 848 */ 849 static int check_vcpu_requests(struct kvm_vcpu *vcpu) 850 { 851 if (kvm_request_pending(vcpu)) { 852 if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) 853 kvm_vcpu_sleep(vcpu); 854 855 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) 856 kvm_reset_vcpu(vcpu); 857 858 /* 859 * Clear IRQ_PENDING requests that were made to guarantee 860 * that a VCPU sees new virtual interrupts. 861 */ 862 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu); 863 864 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu)) 865 kvm_update_stolen_time(vcpu); 866 867 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) { 868 /* The distributor enable bits were changed */ 869 preempt_disable(); 870 vgic_v4_put(vcpu); 871 vgic_v4_load(vcpu); 872 preempt_enable(); 873 } 874 875 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu)) 876 kvm_vcpu_reload_pmu(vcpu); 877 878 if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu)) 879 kvm_vcpu_pmu_restore_guest(vcpu); 880 881 if (kvm_check_request(KVM_REQ_SUSPEND, vcpu)) 882 return kvm_vcpu_suspend(vcpu); 883 884 if (kvm_dirty_ring_check_request(vcpu)) 885 return 0; 886 } 887 888 return 1; 889 } 890 891 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu) 892 { 893 if (likely(!vcpu_mode_is_32bit(vcpu))) 894 return false; 895 896 if (vcpu_has_nv(vcpu)) 897 return true; 898 899 return !kvm_supports_32bit_el0(); 900 } 901 902 /** 903 * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest 904 * @vcpu: The VCPU pointer 905 * @ret: Pointer to write optional return code 906 * 907 * Returns: true if the VCPU needs to return to a preemptible + interruptible 908 * and skip guest entry. 909 * 910 * This function disambiguates between two different types of exits: exits to a 911 * preemptible + interruptible kernel context and exits to userspace. For an 912 * exit to userspace, this function will write the return code to ret and return 913 * true. For an exit to preemptible + interruptible kernel context (i.e. check 914 * for pending work and re-enter), return true without writing to ret. 915 */ 916 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret) 917 { 918 struct kvm_run *run = vcpu->run; 919 920 /* 921 * If we're using a userspace irqchip, then check if we need 922 * to tell a userspace irqchip about timer or PMU level 923 * changes and if so, exit to userspace (the actual level 924 * state gets updated in kvm_timer_update_run and 925 * kvm_pmu_update_run below). 926 */ 927 if (static_branch_unlikely(&userspace_irqchip_in_use)) { 928 if (kvm_timer_should_notify_user(vcpu) || 929 kvm_pmu_should_notify_user(vcpu)) { 930 *ret = -EINTR; 931 run->exit_reason = KVM_EXIT_INTR; 932 return true; 933 } 934 } 935 936 if (unlikely(vcpu_on_unsupported_cpu(vcpu))) { 937 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 938 run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED; 939 run->fail_entry.cpu = smp_processor_id(); 940 *ret = 0; 941 return true; 942 } 943 944 return kvm_request_pending(vcpu) || 945 xfer_to_guest_mode_work_pending(); 946 } 947 948 /* 949 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while 950 * the vCPU is running. 951 * 952 * This must be noinstr as instrumentation may make use of RCU, and this is not 953 * safe during the EQS. 954 */ 955 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu) 956 { 957 int ret; 958 959 guest_state_enter_irqoff(); 960 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu); 961 guest_state_exit_irqoff(); 962 963 return ret; 964 } 965 966 /** 967 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code 968 * @vcpu: The VCPU pointer 969 * 970 * This function is called through the VCPU_RUN ioctl called from user space. It 971 * will execute VM code in a loop until the time slice for the process is used 972 * or some emulation is needed from user space in which case the function will 973 * return with return value 0 and with the kvm_run structure filled in with the 974 * required data for the requested emulation. 975 */ 976 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 977 { 978 struct kvm_run *run = vcpu->run; 979 int ret; 980 981 if (run->exit_reason == KVM_EXIT_MMIO) { 982 ret = kvm_handle_mmio_return(vcpu); 983 if (ret) 984 return ret; 985 } 986 987 vcpu_load(vcpu); 988 989 if (run->immediate_exit) { 990 ret = -EINTR; 991 goto out; 992 } 993 994 kvm_sigset_activate(vcpu); 995 996 ret = 1; 997 run->exit_reason = KVM_EXIT_UNKNOWN; 998 run->flags = 0; 999 while (ret > 0) { 1000 /* 1001 * Check conditions before entering the guest 1002 */ 1003 ret = xfer_to_guest_mode_handle_work(vcpu); 1004 if (!ret) 1005 ret = 1; 1006 1007 if (ret > 0) 1008 ret = check_vcpu_requests(vcpu); 1009 1010 /* 1011 * Preparing the interrupts to be injected also 1012 * involves poking the GIC, which must be done in a 1013 * non-preemptible context. 1014 */ 1015 preempt_disable(); 1016 1017 /* 1018 * The VMID allocator only tracks active VMIDs per 1019 * physical CPU, and therefore the VMID allocated may not be 1020 * preserved on VMID roll-over if the task was preempted, 1021 * making a thread's VMID inactive. So we need to call 1022 * kvm_arm_vmid_update() in non-premptible context. 1023 */ 1024 if (kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid) && 1025 has_vhe()) 1026 __load_stage2(vcpu->arch.hw_mmu, 1027 vcpu->arch.hw_mmu->arch); 1028 1029 kvm_pmu_flush_hwstate(vcpu); 1030 1031 local_irq_disable(); 1032 1033 kvm_vgic_flush_hwstate(vcpu); 1034 1035 kvm_pmu_update_vcpu_events(vcpu); 1036 1037 /* 1038 * Ensure we set mode to IN_GUEST_MODE after we disable 1039 * interrupts and before the final VCPU requests check. 1040 * See the comment in kvm_vcpu_exiting_guest_mode() and 1041 * Documentation/virt/kvm/vcpu-requests.rst 1042 */ 1043 smp_store_mb(vcpu->mode, IN_GUEST_MODE); 1044 1045 if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) { 1046 vcpu->mode = OUTSIDE_GUEST_MODE; 1047 isb(); /* Ensure work in x_flush_hwstate is committed */ 1048 kvm_pmu_sync_hwstate(vcpu); 1049 if (static_branch_unlikely(&userspace_irqchip_in_use)) 1050 kvm_timer_sync_user(vcpu); 1051 kvm_vgic_sync_hwstate(vcpu); 1052 local_irq_enable(); 1053 preempt_enable(); 1054 continue; 1055 } 1056 1057 kvm_arm_setup_debug(vcpu); 1058 kvm_arch_vcpu_ctxflush_fp(vcpu); 1059 1060 /************************************************************** 1061 * Enter the guest 1062 */ 1063 trace_kvm_entry(*vcpu_pc(vcpu)); 1064 guest_timing_enter_irqoff(); 1065 1066 ret = kvm_arm_vcpu_enter_exit(vcpu); 1067 1068 vcpu->mode = OUTSIDE_GUEST_MODE; 1069 vcpu->stat.exits++; 1070 /* 1071 * Back from guest 1072 *************************************************************/ 1073 1074 kvm_arm_clear_debug(vcpu); 1075 1076 /* 1077 * We must sync the PMU state before the vgic state so 1078 * that the vgic can properly sample the updated state of the 1079 * interrupt line. 1080 */ 1081 kvm_pmu_sync_hwstate(vcpu); 1082 1083 /* 1084 * Sync the vgic state before syncing the timer state because 1085 * the timer code needs to know if the virtual timer 1086 * interrupts are active. 1087 */ 1088 kvm_vgic_sync_hwstate(vcpu); 1089 1090 /* 1091 * Sync the timer hardware state before enabling interrupts as 1092 * we don't want vtimer interrupts to race with syncing the 1093 * timer virtual interrupt state. 1094 */ 1095 if (static_branch_unlikely(&userspace_irqchip_in_use)) 1096 kvm_timer_sync_user(vcpu); 1097 1098 kvm_arch_vcpu_ctxsync_fp(vcpu); 1099 1100 /* 1101 * We must ensure that any pending interrupts are taken before 1102 * we exit guest timing so that timer ticks are accounted as 1103 * guest time. Transiently unmask interrupts so that any 1104 * pending interrupts are taken. 1105 * 1106 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other 1107 * context synchronization event) is necessary to ensure that 1108 * pending interrupts are taken. 1109 */ 1110 if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) { 1111 local_irq_enable(); 1112 isb(); 1113 local_irq_disable(); 1114 } 1115 1116 guest_timing_exit_irqoff(); 1117 1118 local_irq_enable(); 1119 1120 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu)); 1121 1122 /* Exit types that need handling before we can be preempted */ 1123 handle_exit_early(vcpu, ret); 1124 1125 preempt_enable(); 1126 1127 /* 1128 * The ARMv8 architecture doesn't give the hypervisor 1129 * a mechanism to prevent a guest from dropping to AArch32 EL0 1130 * if implemented by the CPU. If we spot the guest in such 1131 * state and that we decided it wasn't supposed to do so (like 1132 * with the asymmetric AArch32 case), return to userspace with 1133 * a fatal error. 1134 */ 1135 if (vcpu_mode_is_bad_32bit(vcpu)) { 1136 /* 1137 * As we have caught the guest red-handed, decide that 1138 * it isn't fit for purpose anymore by making the vcpu 1139 * invalid. The VMM can try and fix it by issuing a 1140 * KVM_ARM_VCPU_INIT if it really wants to. 1141 */ 1142 vcpu_clear_flag(vcpu, VCPU_INITIALIZED); 1143 ret = ARM_EXCEPTION_IL; 1144 } 1145 1146 ret = handle_exit(vcpu, ret); 1147 } 1148 1149 /* Tell userspace about in-kernel device output levels */ 1150 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) { 1151 kvm_timer_update_run(vcpu); 1152 kvm_pmu_update_run(vcpu); 1153 } 1154 1155 kvm_sigset_deactivate(vcpu); 1156 1157 out: 1158 /* 1159 * In the unlikely event that we are returning to userspace 1160 * with pending exceptions or PC adjustment, commit these 1161 * adjustments in order to give userspace a consistent view of 1162 * the vcpu state. Note that this relies on __kvm_adjust_pc() 1163 * being preempt-safe on VHE. 1164 */ 1165 if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) || 1166 vcpu_get_flag(vcpu, INCREMENT_PC))) 1167 kvm_call_hyp(__kvm_adjust_pc, vcpu); 1168 1169 vcpu_put(vcpu); 1170 return ret; 1171 } 1172 1173 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level) 1174 { 1175 int bit_index; 1176 bool set; 1177 unsigned long *hcr; 1178 1179 if (number == KVM_ARM_IRQ_CPU_IRQ) 1180 bit_index = __ffs(HCR_VI); 1181 else /* KVM_ARM_IRQ_CPU_FIQ */ 1182 bit_index = __ffs(HCR_VF); 1183 1184 hcr = vcpu_hcr(vcpu); 1185 if (level) 1186 set = test_and_set_bit(bit_index, hcr); 1187 else 1188 set = test_and_clear_bit(bit_index, hcr); 1189 1190 /* 1191 * If we didn't change anything, no need to wake up or kick other CPUs 1192 */ 1193 if (set == level) 1194 return 0; 1195 1196 /* 1197 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and 1198 * trigger a world-switch round on the running physical CPU to set the 1199 * virtual IRQ/FIQ fields in the HCR appropriately. 1200 */ 1201 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); 1202 kvm_vcpu_kick(vcpu); 1203 1204 return 0; 1205 } 1206 1207 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1208 bool line_status) 1209 { 1210 u32 irq = irq_level->irq; 1211 unsigned int irq_type, vcpu_id, irq_num; 1212 struct kvm_vcpu *vcpu = NULL; 1213 bool level = irq_level->level; 1214 1215 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK; 1216 vcpu_id = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK; 1217 vcpu_id += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1); 1218 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK; 1219 1220 trace_kvm_irq_line(irq_type, vcpu_id, irq_num, irq_level->level); 1221 1222 switch (irq_type) { 1223 case KVM_ARM_IRQ_TYPE_CPU: 1224 if (irqchip_in_kernel(kvm)) 1225 return -ENXIO; 1226 1227 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); 1228 if (!vcpu) 1229 return -EINVAL; 1230 1231 if (irq_num > KVM_ARM_IRQ_CPU_FIQ) 1232 return -EINVAL; 1233 1234 return vcpu_interrupt_line(vcpu, irq_num, level); 1235 case KVM_ARM_IRQ_TYPE_PPI: 1236 if (!irqchip_in_kernel(kvm)) 1237 return -ENXIO; 1238 1239 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); 1240 if (!vcpu) 1241 return -EINVAL; 1242 1243 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS) 1244 return -EINVAL; 1245 1246 return kvm_vgic_inject_irq(kvm, vcpu, irq_num, level, NULL); 1247 case KVM_ARM_IRQ_TYPE_SPI: 1248 if (!irqchip_in_kernel(kvm)) 1249 return -ENXIO; 1250 1251 if (irq_num < VGIC_NR_PRIVATE_IRQS) 1252 return -EINVAL; 1253 1254 return kvm_vgic_inject_irq(kvm, NULL, irq_num, level, NULL); 1255 } 1256 1257 return -EINVAL; 1258 } 1259 1260 static unsigned long system_supported_vcpu_features(void) 1261 { 1262 unsigned long features = KVM_VCPU_VALID_FEATURES; 1263 1264 if (!cpus_have_final_cap(ARM64_HAS_32BIT_EL1)) 1265 clear_bit(KVM_ARM_VCPU_EL1_32BIT, &features); 1266 1267 if (!kvm_arm_support_pmu_v3()) 1268 clear_bit(KVM_ARM_VCPU_PMU_V3, &features); 1269 1270 if (!system_supports_sve()) 1271 clear_bit(KVM_ARM_VCPU_SVE, &features); 1272 1273 if (!system_has_full_ptr_auth()) { 1274 clear_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features); 1275 clear_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features); 1276 } 1277 1278 if (!cpus_have_final_cap(ARM64_HAS_NESTED_VIRT)) 1279 clear_bit(KVM_ARM_VCPU_HAS_EL2, &features); 1280 1281 return features; 1282 } 1283 1284 static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu, 1285 const struct kvm_vcpu_init *init) 1286 { 1287 unsigned long features = init->features[0]; 1288 int i; 1289 1290 if (features & ~KVM_VCPU_VALID_FEATURES) 1291 return -ENOENT; 1292 1293 for (i = 1; i < ARRAY_SIZE(init->features); i++) { 1294 if (init->features[i]) 1295 return -ENOENT; 1296 } 1297 1298 if (features & ~system_supported_vcpu_features()) 1299 return -EINVAL; 1300 1301 /* 1302 * For now make sure that both address/generic pointer authentication 1303 * features are requested by the userspace together. 1304 */ 1305 if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features) != 1306 test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features)) 1307 return -EINVAL; 1308 1309 /* Disallow NV+SVE for the time being */ 1310 if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features) && 1311 test_bit(KVM_ARM_VCPU_SVE, &features)) 1312 return -EINVAL; 1313 1314 if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features)) 1315 return 0; 1316 1317 /* MTE is incompatible with AArch32 */ 1318 if (kvm_has_mte(vcpu->kvm)) 1319 return -EINVAL; 1320 1321 /* NV is incompatible with AArch32 */ 1322 if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features)) 1323 return -EINVAL; 1324 1325 return 0; 1326 } 1327 1328 static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu, 1329 const struct kvm_vcpu_init *init) 1330 { 1331 unsigned long features = init->features[0]; 1332 1333 return !bitmap_equal(vcpu->kvm->arch.vcpu_features, &features, 1334 KVM_VCPU_MAX_FEATURES); 1335 } 1336 1337 static int kvm_setup_vcpu(struct kvm_vcpu *vcpu) 1338 { 1339 struct kvm *kvm = vcpu->kvm; 1340 int ret = 0; 1341 1342 /* 1343 * When the vCPU has a PMU, but no PMU is set for the guest 1344 * yet, set the default one. 1345 */ 1346 if (kvm_vcpu_has_pmu(vcpu) && !kvm->arch.arm_pmu) 1347 ret = kvm_arm_set_default_pmu(kvm); 1348 1349 return ret; 1350 } 1351 1352 static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu, 1353 const struct kvm_vcpu_init *init) 1354 { 1355 unsigned long features = init->features[0]; 1356 struct kvm *kvm = vcpu->kvm; 1357 int ret = -EINVAL; 1358 1359 mutex_lock(&kvm->arch.config_lock); 1360 1361 if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) && 1362 kvm_vcpu_init_changed(vcpu, init)) 1363 goto out_unlock; 1364 1365 bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES); 1366 1367 ret = kvm_setup_vcpu(vcpu); 1368 if (ret) 1369 goto out_unlock; 1370 1371 /* Now we know what it is, we can reset it. */ 1372 kvm_reset_vcpu(vcpu); 1373 1374 set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags); 1375 vcpu_set_flag(vcpu, VCPU_INITIALIZED); 1376 ret = 0; 1377 out_unlock: 1378 mutex_unlock(&kvm->arch.config_lock); 1379 return ret; 1380 } 1381 1382 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu, 1383 const struct kvm_vcpu_init *init) 1384 { 1385 int ret; 1386 1387 if (init->target != KVM_ARM_TARGET_GENERIC_V8 && 1388 init->target != kvm_target_cpu()) 1389 return -EINVAL; 1390 1391 ret = kvm_vcpu_init_check_features(vcpu, init); 1392 if (ret) 1393 return ret; 1394 1395 if (!kvm_vcpu_initialized(vcpu)) 1396 return __kvm_vcpu_set_target(vcpu, init); 1397 1398 if (kvm_vcpu_init_changed(vcpu, init)) 1399 return -EINVAL; 1400 1401 kvm_reset_vcpu(vcpu); 1402 return 0; 1403 } 1404 1405 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu, 1406 struct kvm_vcpu_init *init) 1407 { 1408 bool power_off = false; 1409 int ret; 1410 1411 /* 1412 * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid 1413 * reflecting it in the finalized feature set, thus limiting its scope 1414 * to a single KVM_ARM_VCPU_INIT call. 1415 */ 1416 if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) { 1417 init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF); 1418 power_off = true; 1419 } 1420 1421 ret = kvm_vcpu_set_target(vcpu, init); 1422 if (ret) 1423 return ret; 1424 1425 /* 1426 * Ensure a rebooted VM will fault in RAM pages and detect if the 1427 * guest MMU is turned off and flush the caches as needed. 1428 * 1429 * S2FWB enforces all memory accesses to RAM being cacheable, 1430 * ensuring that the data side is always coherent. We still 1431 * need to invalidate the I-cache though, as FWB does *not* 1432 * imply CTR_EL0.DIC. 1433 */ 1434 if (vcpu_has_run_once(vcpu)) { 1435 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) 1436 stage2_unmap_vm(vcpu->kvm); 1437 else 1438 icache_inval_all_pou(); 1439 } 1440 1441 vcpu_reset_hcr(vcpu); 1442 vcpu->arch.cptr_el2 = kvm_get_reset_cptr_el2(vcpu); 1443 1444 /* 1445 * Handle the "start in power-off" case. 1446 */ 1447 spin_lock(&vcpu->arch.mp_state_lock); 1448 1449 if (power_off) 1450 __kvm_arm_vcpu_power_off(vcpu); 1451 else 1452 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE); 1453 1454 spin_unlock(&vcpu->arch.mp_state_lock); 1455 1456 return 0; 1457 } 1458 1459 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu, 1460 struct kvm_device_attr *attr) 1461 { 1462 int ret = -ENXIO; 1463 1464 switch (attr->group) { 1465 default: 1466 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr); 1467 break; 1468 } 1469 1470 return ret; 1471 } 1472 1473 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu, 1474 struct kvm_device_attr *attr) 1475 { 1476 int ret = -ENXIO; 1477 1478 switch (attr->group) { 1479 default: 1480 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr); 1481 break; 1482 } 1483 1484 return ret; 1485 } 1486 1487 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu, 1488 struct kvm_device_attr *attr) 1489 { 1490 int ret = -ENXIO; 1491 1492 switch (attr->group) { 1493 default: 1494 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr); 1495 break; 1496 } 1497 1498 return ret; 1499 } 1500 1501 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, 1502 struct kvm_vcpu_events *events) 1503 { 1504 memset(events, 0, sizeof(*events)); 1505 1506 return __kvm_arm_vcpu_get_events(vcpu, events); 1507 } 1508 1509 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, 1510 struct kvm_vcpu_events *events) 1511 { 1512 int i; 1513 1514 /* check whether the reserved field is zero */ 1515 for (i = 0; i < ARRAY_SIZE(events->reserved); i++) 1516 if (events->reserved[i]) 1517 return -EINVAL; 1518 1519 /* check whether the pad field is zero */ 1520 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++) 1521 if (events->exception.pad[i]) 1522 return -EINVAL; 1523 1524 return __kvm_arm_vcpu_set_events(vcpu, events); 1525 } 1526 1527 long kvm_arch_vcpu_ioctl(struct file *filp, 1528 unsigned int ioctl, unsigned long arg) 1529 { 1530 struct kvm_vcpu *vcpu = filp->private_data; 1531 void __user *argp = (void __user *)arg; 1532 struct kvm_device_attr attr; 1533 long r; 1534 1535 switch (ioctl) { 1536 case KVM_ARM_VCPU_INIT: { 1537 struct kvm_vcpu_init init; 1538 1539 r = -EFAULT; 1540 if (copy_from_user(&init, argp, sizeof(init))) 1541 break; 1542 1543 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init); 1544 break; 1545 } 1546 case KVM_SET_ONE_REG: 1547 case KVM_GET_ONE_REG: { 1548 struct kvm_one_reg reg; 1549 1550 r = -ENOEXEC; 1551 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1552 break; 1553 1554 r = -EFAULT; 1555 if (copy_from_user(®, argp, sizeof(reg))) 1556 break; 1557 1558 /* 1559 * We could owe a reset due to PSCI. Handle the pending reset 1560 * here to ensure userspace register accesses are ordered after 1561 * the reset. 1562 */ 1563 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) 1564 kvm_reset_vcpu(vcpu); 1565 1566 if (ioctl == KVM_SET_ONE_REG) 1567 r = kvm_arm_set_reg(vcpu, ®); 1568 else 1569 r = kvm_arm_get_reg(vcpu, ®); 1570 break; 1571 } 1572 case KVM_GET_REG_LIST: { 1573 struct kvm_reg_list __user *user_list = argp; 1574 struct kvm_reg_list reg_list; 1575 unsigned n; 1576 1577 r = -ENOEXEC; 1578 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1579 break; 1580 1581 r = -EPERM; 1582 if (!kvm_arm_vcpu_is_finalized(vcpu)) 1583 break; 1584 1585 r = -EFAULT; 1586 if (copy_from_user(®_list, user_list, sizeof(reg_list))) 1587 break; 1588 n = reg_list.n; 1589 reg_list.n = kvm_arm_num_regs(vcpu); 1590 if (copy_to_user(user_list, ®_list, sizeof(reg_list))) 1591 break; 1592 r = -E2BIG; 1593 if (n < reg_list.n) 1594 break; 1595 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg); 1596 break; 1597 } 1598 case KVM_SET_DEVICE_ATTR: { 1599 r = -EFAULT; 1600 if (copy_from_user(&attr, argp, sizeof(attr))) 1601 break; 1602 r = kvm_arm_vcpu_set_attr(vcpu, &attr); 1603 break; 1604 } 1605 case KVM_GET_DEVICE_ATTR: { 1606 r = -EFAULT; 1607 if (copy_from_user(&attr, argp, sizeof(attr))) 1608 break; 1609 r = kvm_arm_vcpu_get_attr(vcpu, &attr); 1610 break; 1611 } 1612 case KVM_HAS_DEVICE_ATTR: { 1613 r = -EFAULT; 1614 if (copy_from_user(&attr, argp, sizeof(attr))) 1615 break; 1616 r = kvm_arm_vcpu_has_attr(vcpu, &attr); 1617 break; 1618 } 1619 case KVM_GET_VCPU_EVENTS: { 1620 struct kvm_vcpu_events events; 1621 1622 if (kvm_arm_vcpu_get_events(vcpu, &events)) 1623 return -EINVAL; 1624 1625 if (copy_to_user(argp, &events, sizeof(events))) 1626 return -EFAULT; 1627 1628 return 0; 1629 } 1630 case KVM_SET_VCPU_EVENTS: { 1631 struct kvm_vcpu_events events; 1632 1633 if (copy_from_user(&events, argp, sizeof(events))) 1634 return -EFAULT; 1635 1636 return kvm_arm_vcpu_set_events(vcpu, &events); 1637 } 1638 case KVM_ARM_VCPU_FINALIZE: { 1639 int what; 1640 1641 if (!kvm_vcpu_initialized(vcpu)) 1642 return -ENOEXEC; 1643 1644 if (get_user(what, (const int __user *)argp)) 1645 return -EFAULT; 1646 1647 return kvm_arm_vcpu_finalize(vcpu, what); 1648 } 1649 default: 1650 r = -EINVAL; 1651 } 1652 1653 return r; 1654 } 1655 1656 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 1657 { 1658 1659 } 1660 1661 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm, 1662 struct kvm_arm_device_addr *dev_addr) 1663 { 1664 switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) { 1665 case KVM_ARM_DEVICE_VGIC_V2: 1666 if (!vgic_present) 1667 return -ENXIO; 1668 return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr); 1669 default: 1670 return -ENODEV; 1671 } 1672 } 1673 1674 static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1675 { 1676 switch (attr->group) { 1677 case KVM_ARM_VM_SMCCC_CTRL: 1678 return kvm_vm_smccc_has_attr(kvm, attr); 1679 default: 1680 return -ENXIO; 1681 } 1682 } 1683 1684 static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1685 { 1686 switch (attr->group) { 1687 case KVM_ARM_VM_SMCCC_CTRL: 1688 return kvm_vm_smccc_set_attr(kvm, attr); 1689 default: 1690 return -ENXIO; 1691 } 1692 } 1693 1694 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 1695 { 1696 struct kvm *kvm = filp->private_data; 1697 void __user *argp = (void __user *)arg; 1698 struct kvm_device_attr attr; 1699 1700 switch (ioctl) { 1701 case KVM_CREATE_IRQCHIP: { 1702 int ret; 1703 if (!vgic_present) 1704 return -ENXIO; 1705 mutex_lock(&kvm->lock); 1706 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2); 1707 mutex_unlock(&kvm->lock); 1708 return ret; 1709 } 1710 case KVM_ARM_SET_DEVICE_ADDR: { 1711 struct kvm_arm_device_addr dev_addr; 1712 1713 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr))) 1714 return -EFAULT; 1715 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr); 1716 } 1717 case KVM_ARM_PREFERRED_TARGET: { 1718 struct kvm_vcpu_init init = { 1719 .target = KVM_ARM_TARGET_GENERIC_V8, 1720 }; 1721 1722 if (copy_to_user(argp, &init, sizeof(init))) 1723 return -EFAULT; 1724 1725 return 0; 1726 } 1727 case KVM_ARM_MTE_COPY_TAGS: { 1728 struct kvm_arm_copy_mte_tags copy_tags; 1729 1730 if (copy_from_user(©_tags, argp, sizeof(copy_tags))) 1731 return -EFAULT; 1732 return kvm_vm_ioctl_mte_copy_tags(kvm, ©_tags); 1733 } 1734 case KVM_ARM_SET_COUNTER_OFFSET: { 1735 struct kvm_arm_counter_offset offset; 1736 1737 if (copy_from_user(&offset, argp, sizeof(offset))) 1738 return -EFAULT; 1739 return kvm_vm_ioctl_set_counter_offset(kvm, &offset); 1740 } 1741 case KVM_HAS_DEVICE_ATTR: { 1742 if (copy_from_user(&attr, argp, sizeof(attr))) 1743 return -EFAULT; 1744 1745 return kvm_vm_has_attr(kvm, &attr); 1746 } 1747 case KVM_SET_DEVICE_ATTR: { 1748 if (copy_from_user(&attr, argp, sizeof(attr))) 1749 return -EFAULT; 1750 1751 return kvm_vm_set_attr(kvm, &attr); 1752 } 1753 case KVM_ARM_GET_REG_WRITABLE_MASKS: { 1754 struct reg_mask_range range; 1755 1756 if (copy_from_user(&range, argp, sizeof(range))) 1757 return -EFAULT; 1758 return kvm_vm_ioctl_get_reg_writable_masks(kvm, &range); 1759 } 1760 default: 1761 return -EINVAL; 1762 } 1763 } 1764 1765 /* unlocks vcpus from @vcpu_lock_idx and smaller */ 1766 static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx) 1767 { 1768 struct kvm_vcpu *tmp_vcpu; 1769 1770 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) { 1771 tmp_vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx); 1772 mutex_unlock(&tmp_vcpu->mutex); 1773 } 1774 } 1775 1776 void unlock_all_vcpus(struct kvm *kvm) 1777 { 1778 lockdep_assert_held(&kvm->lock); 1779 1780 unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1); 1781 } 1782 1783 /* Returns true if all vcpus were locked, false otherwise */ 1784 bool lock_all_vcpus(struct kvm *kvm) 1785 { 1786 struct kvm_vcpu *tmp_vcpu; 1787 unsigned long c; 1788 1789 lockdep_assert_held(&kvm->lock); 1790 1791 /* 1792 * Any time a vcpu is in an ioctl (including running), the 1793 * core KVM code tries to grab the vcpu->mutex. 1794 * 1795 * By grabbing the vcpu->mutex of all VCPUs we ensure that no 1796 * other VCPUs can fiddle with the state while we access it. 1797 */ 1798 kvm_for_each_vcpu(c, tmp_vcpu, kvm) { 1799 if (!mutex_trylock(&tmp_vcpu->mutex)) { 1800 unlock_vcpus(kvm, c - 1); 1801 return false; 1802 } 1803 } 1804 1805 return true; 1806 } 1807 1808 static unsigned long nvhe_percpu_size(void) 1809 { 1810 return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) - 1811 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start); 1812 } 1813 1814 static unsigned long nvhe_percpu_order(void) 1815 { 1816 unsigned long size = nvhe_percpu_size(); 1817 1818 return size ? get_order(size) : 0; 1819 } 1820 1821 /* A lookup table holding the hypervisor VA for each vector slot */ 1822 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS]; 1823 1824 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot) 1825 { 1826 hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot); 1827 } 1828 1829 static int kvm_init_vector_slots(void) 1830 { 1831 int err; 1832 void *base; 1833 1834 base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector)); 1835 kvm_init_vector_slot(base, HYP_VECTOR_DIRECT); 1836 1837 base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs)); 1838 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT); 1839 1840 if (kvm_system_needs_idmapped_vectors() && 1841 !is_protected_kvm_enabled()) { 1842 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs), 1843 __BP_HARDEN_HYP_VECS_SZ, &base); 1844 if (err) 1845 return err; 1846 } 1847 1848 kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT); 1849 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT); 1850 return 0; 1851 } 1852 1853 static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits) 1854 { 1855 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu); 1856 u64 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 1857 unsigned long tcr; 1858 1859 /* 1860 * Calculate the raw per-cpu offset without a translation from the 1861 * kernel's mapping to the linear mapping, and store it in tpidr_el2 1862 * so that we can use adr_l to access per-cpu variables in EL2. 1863 * Also drop the KASAN tag which gets in the way... 1864 */ 1865 params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) - 1866 (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start)); 1867 1868 params->mair_el2 = read_sysreg(mair_el1); 1869 1870 tcr = read_sysreg(tcr_el1); 1871 if (cpus_have_final_cap(ARM64_KVM_HVHE)) { 1872 tcr |= TCR_EPD1_MASK; 1873 } else { 1874 tcr &= TCR_EL2_MASK; 1875 tcr |= TCR_EL2_RES1; 1876 } 1877 tcr &= ~TCR_T0SZ_MASK; 1878 tcr |= TCR_T0SZ(hyp_va_bits); 1879 tcr &= ~TCR_EL2_PS_MASK; 1880 tcr |= FIELD_PREP(TCR_EL2_PS_MASK, kvm_get_parange(mmfr0)); 1881 if (kvm_lpa2_is_enabled()) 1882 tcr |= TCR_EL2_DS; 1883 params->tcr_el2 = tcr; 1884 1885 params->pgd_pa = kvm_mmu_get_httbr(); 1886 if (is_protected_kvm_enabled()) 1887 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS; 1888 else 1889 params->hcr_el2 = HCR_HOST_NVHE_FLAGS; 1890 if (cpus_have_final_cap(ARM64_KVM_HVHE)) 1891 params->hcr_el2 |= HCR_E2H; 1892 params->vttbr = params->vtcr = 0; 1893 1894 /* 1895 * Flush the init params from the data cache because the struct will 1896 * be read while the MMU is off. 1897 */ 1898 kvm_flush_dcache_to_poc(params, sizeof(*params)); 1899 } 1900 1901 static void hyp_install_host_vector(void) 1902 { 1903 struct kvm_nvhe_init_params *params; 1904 struct arm_smccc_res res; 1905 1906 /* Switch from the HYP stub to our own HYP init vector */ 1907 __hyp_set_vectors(kvm_get_idmap_vector()); 1908 1909 /* 1910 * Call initialization code, and switch to the full blown HYP code. 1911 * If the cpucaps haven't been finalized yet, something has gone very 1912 * wrong, and hyp will crash and burn when it uses any 1913 * cpus_have_*_cap() wrapper. 1914 */ 1915 BUG_ON(!system_capabilities_finalized()); 1916 params = this_cpu_ptr_nvhe_sym(kvm_init_params); 1917 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res); 1918 WARN_ON(res.a0 != SMCCC_RET_SUCCESS); 1919 } 1920 1921 static void cpu_init_hyp_mode(void) 1922 { 1923 hyp_install_host_vector(); 1924 1925 /* 1926 * Disabling SSBD on a non-VHE system requires us to enable SSBS 1927 * at EL2. 1928 */ 1929 if (this_cpu_has_cap(ARM64_SSBS) && 1930 arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) { 1931 kvm_call_hyp_nvhe(__kvm_enable_ssbs); 1932 } 1933 } 1934 1935 static void cpu_hyp_reset(void) 1936 { 1937 if (!is_kernel_in_hyp_mode()) 1938 __hyp_reset_vectors(); 1939 } 1940 1941 /* 1942 * EL2 vectors can be mapped and rerouted in a number of ways, 1943 * depending on the kernel configuration and CPU present: 1944 * 1945 * - If the CPU is affected by Spectre-v2, the hardening sequence is 1946 * placed in one of the vector slots, which is executed before jumping 1947 * to the real vectors. 1948 * 1949 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot 1950 * containing the hardening sequence is mapped next to the idmap page, 1951 * and executed before jumping to the real vectors. 1952 * 1953 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an 1954 * empty slot is selected, mapped next to the idmap page, and 1955 * executed before jumping to the real vectors. 1956 * 1957 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with 1958 * VHE, as we don't have hypervisor-specific mappings. If the system 1959 * is VHE and yet selects this capability, it will be ignored. 1960 */ 1961 static void cpu_set_hyp_vector(void) 1962 { 1963 struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data); 1964 void *vector = hyp_spectre_vector_selector[data->slot]; 1965 1966 if (!is_protected_kvm_enabled()) 1967 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector; 1968 else 1969 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot); 1970 } 1971 1972 static void cpu_hyp_init_context(void) 1973 { 1974 kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt); 1975 1976 if (!is_kernel_in_hyp_mode()) 1977 cpu_init_hyp_mode(); 1978 } 1979 1980 static void cpu_hyp_init_features(void) 1981 { 1982 cpu_set_hyp_vector(); 1983 kvm_arm_init_debug(); 1984 1985 if (is_kernel_in_hyp_mode()) 1986 kvm_timer_init_vhe(); 1987 1988 if (vgic_present) 1989 kvm_vgic_init_cpu_hardware(); 1990 } 1991 1992 static void cpu_hyp_reinit(void) 1993 { 1994 cpu_hyp_reset(); 1995 cpu_hyp_init_context(); 1996 cpu_hyp_init_features(); 1997 } 1998 1999 static void cpu_hyp_init(void *discard) 2000 { 2001 if (!__this_cpu_read(kvm_hyp_initialized)) { 2002 cpu_hyp_reinit(); 2003 __this_cpu_write(kvm_hyp_initialized, 1); 2004 } 2005 } 2006 2007 static void cpu_hyp_uninit(void *discard) 2008 { 2009 if (__this_cpu_read(kvm_hyp_initialized)) { 2010 cpu_hyp_reset(); 2011 __this_cpu_write(kvm_hyp_initialized, 0); 2012 } 2013 } 2014 2015 int kvm_arch_hardware_enable(void) 2016 { 2017 /* 2018 * Most calls to this function are made with migration 2019 * disabled, but not with preemption disabled. The former is 2020 * enough to ensure correctness, but most of the helpers 2021 * expect the later and will throw a tantrum otherwise. 2022 */ 2023 preempt_disable(); 2024 2025 cpu_hyp_init(NULL); 2026 2027 kvm_vgic_cpu_up(); 2028 kvm_timer_cpu_up(); 2029 2030 preempt_enable(); 2031 2032 return 0; 2033 } 2034 2035 void kvm_arch_hardware_disable(void) 2036 { 2037 kvm_timer_cpu_down(); 2038 kvm_vgic_cpu_down(); 2039 2040 if (!is_protected_kvm_enabled()) 2041 cpu_hyp_uninit(NULL); 2042 } 2043 2044 #ifdef CONFIG_CPU_PM 2045 static int hyp_init_cpu_pm_notifier(struct notifier_block *self, 2046 unsigned long cmd, 2047 void *v) 2048 { 2049 /* 2050 * kvm_hyp_initialized is left with its old value over 2051 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should 2052 * re-enable hyp. 2053 */ 2054 switch (cmd) { 2055 case CPU_PM_ENTER: 2056 if (__this_cpu_read(kvm_hyp_initialized)) 2057 /* 2058 * don't update kvm_hyp_initialized here 2059 * so that the hyp will be re-enabled 2060 * when we resume. See below. 2061 */ 2062 cpu_hyp_reset(); 2063 2064 return NOTIFY_OK; 2065 case CPU_PM_ENTER_FAILED: 2066 case CPU_PM_EXIT: 2067 if (__this_cpu_read(kvm_hyp_initialized)) 2068 /* The hyp was enabled before suspend. */ 2069 cpu_hyp_reinit(); 2070 2071 return NOTIFY_OK; 2072 2073 default: 2074 return NOTIFY_DONE; 2075 } 2076 } 2077 2078 static struct notifier_block hyp_init_cpu_pm_nb = { 2079 .notifier_call = hyp_init_cpu_pm_notifier, 2080 }; 2081 2082 static void __init hyp_cpu_pm_init(void) 2083 { 2084 if (!is_protected_kvm_enabled()) 2085 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb); 2086 } 2087 static void __init hyp_cpu_pm_exit(void) 2088 { 2089 if (!is_protected_kvm_enabled()) 2090 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb); 2091 } 2092 #else 2093 static inline void __init hyp_cpu_pm_init(void) 2094 { 2095 } 2096 static inline void __init hyp_cpu_pm_exit(void) 2097 { 2098 } 2099 #endif 2100 2101 static void __init init_cpu_logical_map(void) 2102 { 2103 unsigned int cpu; 2104 2105 /* 2106 * Copy the MPIDR <-> logical CPU ID mapping to hyp. 2107 * Only copy the set of online CPUs whose features have been checked 2108 * against the finalized system capabilities. The hypervisor will not 2109 * allow any other CPUs from the `possible` set to boot. 2110 */ 2111 for_each_online_cpu(cpu) 2112 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu); 2113 } 2114 2115 #define init_psci_0_1_impl_state(config, what) \ 2116 config.psci_0_1_ ## what ## _implemented = psci_ops.what 2117 2118 static bool __init init_psci_relay(void) 2119 { 2120 /* 2121 * If PSCI has not been initialized, protected KVM cannot install 2122 * itself on newly booted CPUs. 2123 */ 2124 if (!psci_ops.get_version) { 2125 kvm_err("Cannot initialize protected mode without PSCI\n"); 2126 return false; 2127 } 2128 2129 kvm_host_psci_config.version = psci_ops.get_version(); 2130 kvm_host_psci_config.smccc_version = arm_smccc_get_version(); 2131 2132 if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) { 2133 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids(); 2134 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend); 2135 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on); 2136 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off); 2137 init_psci_0_1_impl_state(kvm_host_psci_config, migrate); 2138 } 2139 return true; 2140 } 2141 2142 static int __init init_subsystems(void) 2143 { 2144 int err = 0; 2145 2146 /* 2147 * Enable hardware so that subsystem initialisation can access EL2. 2148 */ 2149 on_each_cpu(cpu_hyp_init, NULL, 1); 2150 2151 /* 2152 * Register CPU lower-power notifier 2153 */ 2154 hyp_cpu_pm_init(); 2155 2156 /* 2157 * Init HYP view of VGIC 2158 */ 2159 err = kvm_vgic_hyp_init(); 2160 switch (err) { 2161 case 0: 2162 vgic_present = true; 2163 break; 2164 case -ENODEV: 2165 case -ENXIO: 2166 vgic_present = false; 2167 err = 0; 2168 break; 2169 default: 2170 goto out; 2171 } 2172 2173 /* 2174 * Init HYP architected timer support 2175 */ 2176 err = kvm_timer_hyp_init(vgic_present); 2177 if (err) 2178 goto out; 2179 2180 kvm_register_perf_callbacks(NULL); 2181 2182 out: 2183 if (err) 2184 hyp_cpu_pm_exit(); 2185 2186 if (err || !is_protected_kvm_enabled()) 2187 on_each_cpu(cpu_hyp_uninit, NULL, 1); 2188 2189 return err; 2190 } 2191 2192 static void __init teardown_subsystems(void) 2193 { 2194 kvm_unregister_perf_callbacks(); 2195 hyp_cpu_pm_exit(); 2196 } 2197 2198 static void __init teardown_hyp_mode(void) 2199 { 2200 int cpu; 2201 2202 free_hyp_pgds(); 2203 for_each_possible_cpu(cpu) { 2204 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu)); 2205 free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order()); 2206 } 2207 } 2208 2209 static int __init do_pkvm_init(u32 hyp_va_bits) 2210 { 2211 void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)); 2212 int ret; 2213 2214 preempt_disable(); 2215 cpu_hyp_init_context(); 2216 ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size, 2217 num_possible_cpus(), kern_hyp_va(per_cpu_base), 2218 hyp_va_bits); 2219 cpu_hyp_init_features(); 2220 2221 /* 2222 * The stub hypercalls are now disabled, so set our local flag to 2223 * prevent a later re-init attempt in kvm_arch_hardware_enable(). 2224 */ 2225 __this_cpu_write(kvm_hyp_initialized, 1); 2226 preempt_enable(); 2227 2228 return ret; 2229 } 2230 2231 static u64 get_hyp_id_aa64pfr0_el1(void) 2232 { 2233 /* 2234 * Track whether the system isn't affected by spectre/meltdown in the 2235 * hypervisor's view of id_aa64pfr0_el1, used for protected VMs. 2236 * Although this is per-CPU, we make it global for simplicity, e.g., not 2237 * to have to worry about vcpu migration. 2238 * 2239 * Unlike for non-protected VMs, userspace cannot override this for 2240 * protected VMs. 2241 */ 2242 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); 2243 2244 val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) | 2245 ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3)); 2246 2247 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2), 2248 arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED); 2249 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3), 2250 arm64_get_meltdown_state() == SPECTRE_UNAFFECTED); 2251 2252 return val; 2253 } 2254 2255 static void kvm_hyp_init_symbols(void) 2256 { 2257 kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1(); 2258 kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1); 2259 kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1); 2260 kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1); 2261 kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1); 2262 kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 2263 kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 2264 kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1); 2265 kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1); 2266 kvm_nvhe_sym(__icache_flags) = __icache_flags; 2267 kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits; 2268 } 2269 2270 static int __init kvm_hyp_init_protection(u32 hyp_va_bits) 2271 { 2272 void *addr = phys_to_virt(hyp_mem_base); 2273 int ret; 2274 2275 ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP); 2276 if (ret) 2277 return ret; 2278 2279 ret = do_pkvm_init(hyp_va_bits); 2280 if (ret) 2281 return ret; 2282 2283 free_hyp_pgds(); 2284 2285 return 0; 2286 } 2287 2288 static void pkvm_hyp_init_ptrauth(void) 2289 { 2290 struct kvm_cpu_context *hyp_ctxt; 2291 int cpu; 2292 2293 for_each_possible_cpu(cpu) { 2294 hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu); 2295 hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long(); 2296 hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long(); 2297 hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long(); 2298 hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long(); 2299 hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long(); 2300 hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long(); 2301 hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long(); 2302 hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long(); 2303 hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long(); 2304 hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long(); 2305 } 2306 } 2307 2308 /* Inits Hyp-mode on all online CPUs */ 2309 static int __init init_hyp_mode(void) 2310 { 2311 u32 hyp_va_bits; 2312 int cpu; 2313 int err = -ENOMEM; 2314 2315 /* 2316 * The protected Hyp-mode cannot be initialized if the memory pool 2317 * allocation has failed. 2318 */ 2319 if (is_protected_kvm_enabled() && !hyp_mem_base) 2320 goto out_err; 2321 2322 /* 2323 * Allocate Hyp PGD and setup Hyp identity mapping 2324 */ 2325 err = kvm_mmu_init(&hyp_va_bits); 2326 if (err) 2327 goto out_err; 2328 2329 /* 2330 * Allocate stack pages for Hypervisor-mode 2331 */ 2332 for_each_possible_cpu(cpu) { 2333 unsigned long stack_page; 2334 2335 stack_page = __get_free_page(GFP_KERNEL); 2336 if (!stack_page) { 2337 err = -ENOMEM; 2338 goto out_err; 2339 } 2340 2341 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page; 2342 } 2343 2344 /* 2345 * Allocate and initialize pages for Hypervisor-mode percpu regions. 2346 */ 2347 for_each_possible_cpu(cpu) { 2348 struct page *page; 2349 void *page_addr; 2350 2351 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order()); 2352 if (!page) { 2353 err = -ENOMEM; 2354 goto out_err; 2355 } 2356 2357 page_addr = page_address(page); 2358 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size()); 2359 kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr; 2360 } 2361 2362 /* 2363 * Map the Hyp-code called directly from the host 2364 */ 2365 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start), 2366 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC); 2367 if (err) { 2368 kvm_err("Cannot map world-switch code\n"); 2369 goto out_err; 2370 } 2371 2372 err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start), 2373 kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO); 2374 if (err) { 2375 kvm_err("Cannot map .hyp.rodata section\n"); 2376 goto out_err; 2377 } 2378 2379 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata), 2380 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO); 2381 if (err) { 2382 kvm_err("Cannot map rodata section\n"); 2383 goto out_err; 2384 } 2385 2386 /* 2387 * .hyp.bss is guaranteed to be placed at the beginning of the .bss 2388 * section thanks to an assertion in the linker script. Map it RW and 2389 * the rest of .bss RO. 2390 */ 2391 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start), 2392 kvm_ksym_ref(__hyp_bss_end), PAGE_HYP); 2393 if (err) { 2394 kvm_err("Cannot map hyp bss section: %d\n", err); 2395 goto out_err; 2396 } 2397 2398 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end), 2399 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO); 2400 if (err) { 2401 kvm_err("Cannot map bss section\n"); 2402 goto out_err; 2403 } 2404 2405 /* 2406 * Map the Hyp stack pages 2407 */ 2408 for_each_possible_cpu(cpu) { 2409 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu); 2410 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu); 2411 2412 err = create_hyp_stack(__pa(stack_page), ¶ms->stack_hyp_va); 2413 if (err) { 2414 kvm_err("Cannot map hyp stack\n"); 2415 goto out_err; 2416 } 2417 2418 /* 2419 * Save the stack PA in nvhe_init_params. This will be needed 2420 * to recreate the stack mapping in protected nVHE mode. 2421 * __hyp_pa() won't do the right thing there, since the stack 2422 * has been mapped in the flexible private VA space. 2423 */ 2424 params->stack_pa = __pa(stack_page); 2425 } 2426 2427 for_each_possible_cpu(cpu) { 2428 char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu]; 2429 char *percpu_end = percpu_begin + nvhe_percpu_size(); 2430 2431 /* Map Hyp percpu pages */ 2432 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP); 2433 if (err) { 2434 kvm_err("Cannot map hyp percpu region\n"); 2435 goto out_err; 2436 } 2437 2438 /* Prepare the CPU initialization parameters */ 2439 cpu_prepare_hyp_mode(cpu, hyp_va_bits); 2440 } 2441 2442 kvm_hyp_init_symbols(); 2443 2444 if (is_protected_kvm_enabled()) { 2445 if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) && 2446 cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH)) 2447 pkvm_hyp_init_ptrauth(); 2448 2449 init_cpu_logical_map(); 2450 2451 if (!init_psci_relay()) { 2452 err = -ENODEV; 2453 goto out_err; 2454 } 2455 2456 err = kvm_hyp_init_protection(hyp_va_bits); 2457 if (err) { 2458 kvm_err("Failed to init hyp memory protection\n"); 2459 goto out_err; 2460 } 2461 } 2462 2463 return 0; 2464 2465 out_err: 2466 teardown_hyp_mode(); 2467 kvm_err("error initializing Hyp mode: %d\n", err); 2468 return err; 2469 } 2470 2471 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr) 2472 { 2473 struct kvm_vcpu *vcpu; 2474 unsigned long i; 2475 2476 mpidr &= MPIDR_HWID_BITMASK; 2477 2478 if (kvm->arch.mpidr_data) { 2479 u16 idx = kvm_mpidr_index(kvm->arch.mpidr_data, mpidr); 2480 2481 vcpu = kvm_get_vcpu(kvm, 2482 kvm->arch.mpidr_data->cmpidr_to_idx[idx]); 2483 if (mpidr != kvm_vcpu_get_mpidr_aff(vcpu)) 2484 vcpu = NULL; 2485 2486 return vcpu; 2487 } 2488 2489 kvm_for_each_vcpu(i, vcpu, kvm) { 2490 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu)) 2491 return vcpu; 2492 } 2493 return NULL; 2494 } 2495 2496 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm) 2497 { 2498 return irqchip_in_kernel(kvm); 2499 } 2500 2501 bool kvm_arch_has_irq_bypass(void) 2502 { 2503 return true; 2504 } 2505 2506 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 2507 struct irq_bypass_producer *prod) 2508 { 2509 struct kvm_kernel_irqfd *irqfd = 2510 container_of(cons, struct kvm_kernel_irqfd, consumer); 2511 2512 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq, 2513 &irqfd->irq_entry); 2514 } 2515 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 2516 struct irq_bypass_producer *prod) 2517 { 2518 struct kvm_kernel_irqfd *irqfd = 2519 container_of(cons, struct kvm_kernel_irqfd, consumer); 2520 2521 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq, 2522 &irqfd->irq_entry); 2523 } 2524 2525 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons) 2526 { 2527 struct kvm_kernel_irqfd *irqfd = 2528 container_of(cons, struct kvm_kernel_irqfd, consumer); 2529 2530 kvm_arm_halt_guest(irqfd->kvm); 2531 } 2532 2533 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons) 2534 { 2535 struct kvm_kernel_irqfd *irqfd = 2536 container_of(cons, struct kvm_kernel_irqfd, consumer); 2537 2538 kvm_arm_resume_guest(irqfd->kvm); 2539 } 2540 2541 /* Initialize Hyp-mode and memory mappings on all CPUs */ 2542 static __init int kvm_arm_init(void) 2543 { 2544 int err; 2545 bool in_hyp_mode; 2546 2547 if (!is_hyp_mode_available()) { 2548 kvm_info("HYP mode not available\n"); 2549 return -ENODEV; 2550 } 2551 2552 if (kvm_get_mode() == KVM_MODE_NONE) { 2553 kvm_info("KVM disabled from command line\n"); 2554 return -ENODEV; 2555 } 2556 2557 err = kvm_sys_reg_table_init(); 2558 if (err) { 2559 kvm_info("Error initializing system register tables"); 2560 return err; 2561 } 2562 2563 in_hyp_mode = is_kernel_in_hyp_mode(); 2564 2565 if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) || 2566 cpus_have_final_cap(ARM64_WORKAROUND_1508412)) 2567 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \ 2568 "Only trusted guests should be used on this system.\n"); 2569 2570 err = kvm_set_ipa_limit(); 2571 if (err) 2572 return err; 2573 2574 err = kvm_arm_init_sve(); 2575 if (err) 2576 return err; 2577 2578 err = kvm_arm_vmid_alloc_init(); 2579 if (err) { 2580 kvm_err("Failed to initialize VMID allocator.\n"); 2581 return err; 2582 } 2583 2584 if (!in_hyp_mode) { 2585 err = init_hyp_mode(); 2586 if (err) 2587 goto out_err; 2588 } 2589 2590 err = kvm_init_vector_slots(); 2591 if (err) { 2592 kvm_err("Cannot initialise vector slots\n"); 2593 goto out_hyp; 2594 } 2595 2596 err = init_subsystems(); 2597 if (err) 2598 goto out_hyp; 2599 2600 if (is_protected_kvm_enabled()) { 2601 kvm_info("Protected nVHE mode initialized successfully\n"); 2602 } else if (in_hyp_mode) { 2603 kvm_info("VHE mode initialized successfully\n"); 2604 } else { 2605 char mode = cpus_have_final_cap(ARM64_KVM_HVHE) ? 'h' : 'n'; 2606 kvm_info("Hyp mode (%cVHE) initialized successfully\n", mode); 2607 } 2608 2609 /* 2610 * FIXME: Do something reasonable if kvm_init() fails after pKVM 2611 * hypervisor protection is finalized. 2612 */ 2613 err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE); 2614 if (err) 2615 goto out_subs; 2616 2617 kvm_arm_initialised = true; 2618 2619 return 0; 2620 2621 out_subs: 2622 teardown_subsystems(); 2623 out_hyp: 2624 if (!in_hyp_mode) 2625 teardown_hyp_mode(); 2626 out_err: 2627 kvm_arm_vmid_alloc_free(); 2628 return err; 2629 } 2630 2631 static int __init early_kvm_mode_cfg(char *arg) 2632 { 2633 if (!arg) 2634 return -EINVAL; 2635 2636 if (strcmp(arg, "none") == 0) { 2637 kvm_mode = KVM_MODE_NONE; 2638 return 0; 2639 } 2640 2641 if (!is_hyp_mode_available()) { 2642 pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n"); 2643 return 0; 2644 } 2645 2646 if (strcmp(arg, "protected") == 0) { 2647 if (!is_kernel_in_hyp_mode()) 2648 kvm_mode = KVM_MODE_PROTECTED; 2649 else 2650 pr_warn_once("Protected KVM not available with VHE\n"); 2651 2652 return 0; 2653 } 2654 2655 if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) { 2656 kvm_mode = KVM_MODE_DEFAULT; 2657 return 0; 2658 } 2659 2660 if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) { 2661 kvm_mode = KVM_MODE_NV; 2662 return 0; 2663 } 2664 2665 return -EINVAL; 2666 } 2667 early_param("kvm-arm.mode", early_kvm_mode_cfg); 2668 2669 enum kvm_mode kvm_get_mode(void) 2670 { 2671 return kvm_mode; 2672 } 2673 2674 module_init(kvm_arm_init); 2675