xref: /linux/arch/arm64/kvm/arm.c (revision a1c3be890440a1769ed6f822376a3e3ab0d42994)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/errno.h>
10 #include <linux/err.h>
11 #include <linux/kvm_host.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/vmalloc.h>
15 #include <linux/fs.h>
16 #include <linux/mman.h>
17 #include <linux/sched.h>
18 #include <linux/kvm.h>
19 #include <linux/kvm_irqfd.h>
20 #include <linux/irqbypass.h>
21 #include <linux/sched/stat.h>
22 #include <linux/psci.h>
23 #include <trace/events/kvm.h>
24 
25 #define CREATE_TRACE_POINTS
26 #include "trace_arm.h"
27 
28 #include <linux/uaccess.h>
29 #include <asm/ptrace.h>
30 #include <asm/mman.h>
31 #include <asm/tlbflush.h>
32 #include <asm/cacheflush.h>
33 #include <asm/cpufeature.h>
34 #include <asm/virt.h>
35 #include <asm/kvm_arm.h>
36 #include <asm/kvm_asm.h>
37 #include <asm/kvm_mmu.h>
38 #include <asm/kvm_emulate.h>
39 #include <asm/sections.h>
40 
41 #include <kvm/arm_hypercalls.h>
42 #include <kvm/arm_pmu.h>
43 #include <kvm/arm_psci.h>
44 
45 #ifdef REQUIRES_VIRT
46 __asm__(".arch_extension	virt");
47 #endif
48 
49 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
50 DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
51 
52 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
53 
54 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55 unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
56 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
57 
58 /* The VMID used in the VTTBR */
59 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
60 static u32 kvm_next_vmid;
61 static DEFINE_SPINLOCK(kvm_vmid_lock);
62 
63 static bool vgic_present;
64 
65 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
66 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
67 
68 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
69 {
70 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
71 }
72 
73 int kvm_arch_hardware_setup(void *opaque)
74 {
75 	return 0;
76 }
77 
78 int kvm_arch_check_processor_compat(void *opaque)
79 {
80 	return 0;
81 }
82 
83 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
84 			    struct kvm_enable_cap *cap)
85 {
86 	int r;
87 
88 	if (cap->flags)
89 		return -EINVAL;
90 
91 	switch (cap->cap) {
92 	case KVM_CAP_ARM_NISV_TO_USER:
93 		r = 0;
94 		kvm->arch.return_nisv_io_abort_to_user = true;
95 		break;
96 	default:
97 		r = -EINVAL;
98 		break;
99 	}
100 
101 	return r;
102 }
103 
104 static int kvm_arm_default_max_vcpus(void)
105 {
106 	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
107 }
108 
109 static void set_default_spectre(struct kvm *kvm)
110 {
111 	/*
112 	 * The default is to expose CSV2 == 1 if the HW isn't affected.
113 	 * Although this is a per-CPU feature, we make it global because
114 	 * asymmetric systems are just a nuisance.
115 	 *
116 	 * Userspace can override this as long as it doesn't promise
117 	 * the impossible.
118 	 */
119 	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
120 		kvm->arch.pfr0_csv2 = 1;
121 	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
122 		kvm->arch.pfr0_csv3 = 1;
123 }
124 
125 /**
126  * kvm_arch_init_vm - initializes a VM data structure
127  * @kvm:	pointer to the KVM struct
128  */
129 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
130 {
131 	int ret;
132 
133 	ret = kvm_arm_setup_stage2(kvm, type);
134 	if (ret)
135 		return ret;
136 
137 	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
138 	if (ret)
139 		return ret;
140 
141 	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
142 	if (ret)
143 		goto out_free_stage2_pgd;
144 
145 	kvm_vgic_early_init(kvm);
146 
147 	/* The maximum number of VCPUs is limited by the host's GIC model */
148 	kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
149 
150 	set_default_spectre(kvm);
151 
152 	return ret;
153 out_free_stage2_pgd:
154 	kvm_free_stage2_pgd(&kvm->arch.mmu);
155 	return ret;
156 }
157 
158 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
159 {
160 	return VM_FAULT_SIGBUS;
161 }
162 
163 
164 /**
165  * kvm_arch_destroy_vm - destroy the VM data structure
166  * @kvm:	pointer to the KVM struct
167  */
168 void kvm_arch_destroy_vm(struct kvm *kvm)
169 {
170 	int i;
171 
172 	bitmap_free(kvm->arch.pmu_filter);
173 
174 	kvm_vgic_destroy(kvm);
175 
176 	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
177 		if (kvm->vcpus[i]) {
178 			kvm_vcpu_destroy(kvm->vcpus[i]);
179 			kvm->vcpus[i] = NULL;
180 		}
181 	}
182 	atomic_set(&kvm->online_vcpus, 0);
183 }
184 
185 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
186 {
187 	int r;
188 	switch (ext) {
189 	case KVM_CAP_IRQCHIP:
190 		r = vgic_present;
191 		break;
192 	case KVM_CAP_IOEVENTFD:
193 	case KVM_CAP_DEVICE_CTRL:
194 	case KVM_CAP_USER_MEMORY:
195 	case KVM_CAP_SYNC_MMU:
196 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
197 	case KVM_CAP_ONE_REG:
198 	case KVM_CAP_ARM_PSCI:
199 	case KVM_CAP_ARM_PSCI_0_2:
200 	case KVM_CAP_READONLY_MEM:
201 	case KVM_CAP_MP_STATE:
202 	case KVM_CAP_IMMEDIATE_EXIT:
203 	case KVM_CAP_VCPU_EVENTS:
204 	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
205 	case KVM_CAP_ARM_NISV_TO_USER:
206 	case KVM_CAP_ARM_INJECT_EXT_DABT:
207 	case KVM_CAP_SET_GUEST_DEBUG:
208 	case KVM_CAP_VCPU_ATTRIBUTES:
209 		r = 1;
210 		break;
211 	case KVM_CAP_ARM_SET_DEVICE_ADDR:
212 		r = 1;
213 		break;
214 	case KVM_CAP_NR_VCPUS:
215 		r = num_online_cpus();
216 		break;
217 	case KVM_CAP_MAX_VCPUS:
218 	case KVM_CAP_MAX_VCPU_ID:
219 		if (kvm)
220 			r = kvm->arch.max_vcpus;
221 		else
222 			r = kvm_arm_default_max_vcpus();
223 		break;
224 	case KVM_CAP_MSI_DEVID:
225 		if (!kvm)
226 			r = -EINVAL;
227 		else
228 			r = kvm->arch.vgic.msis_require_devid;
229 		break;
230 	case KVM_CAP_ARM_USER_IRQ:
231 		/*
232 		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
233 		 * (bump this number if adding more devices)
234 		 */
235 		r = 1;
236 		break;
237 	case KVM_CAP_STEAL_TIME:
238 		r = kvm_arm_pvtime_supported();
239 		break;
240 	case KVM_CAP_ARM_EL1_32BIT:
241 		r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
242 		break;
243 	case KVM_CAP_GUEST_DEBUG_HW_BPS:
244 		r = get_num_brps();
245 		break;
246 	case KVM_CAP_GUEST_DEBUG_HW_WPS:
247 		r = get_num_wrps();
248 		break;
249 	case KVM_CAP_ARM_PMU_V3:
250 		r = kvm_arm_support_pmu_v3();
251 		break;
252 	case KVM_CAP_ARM_INJECT_SERROR_ESR:
253 		r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
254 		break;
255 	case KVM_CAP_ARM_VM_IPA_SIZE:
256 		r = get_kvm_ipa_limit();
257 		break;
258 	case KVM_CAP_ARM_SVE:
259 		r = system_supports_sve();
260 		break;
261 	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
262 	case KVM_CAP_ARM_PTRAUTH_GENERIC:
263 		r = system_has_full_ptr_auth();
264 		break;
265 	default:
266 		r = 0;
267 	}
268 
269 	return r;
270 }
271 
272 long kvm_arch_dev_ioctl(struct file *filp,
273 			unsigned int ioctl, unsigned long arg)
274 {
275 	return -EINVAL;
276 }
277 
278 struct kvm *kvm_arch_alloc_vm(void)
279 {
280 	if (!has_vhe())
281 		return kzalloc(sizeof(struct kvm), GFP_KERNEL);
282 
283 	return vzalloc(sizeof(struct kvm));
284 }
285 
286 void kvm_arch_free_vm(struct kvm *kvm)
287 {
288 	if (!has_vhe())
289 		kfree(kvm);
290 	else
291 		vfree(kvm);
292 }
293 
294 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
295 {
296 	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
297 		return -EBUSY;
298 
299 	if (id >= kvm->arch.max_vcpus)
300 		return -EINVAL;
301 
302 	return 0;
303 }
304 
305 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
306 {
307 	int err;
308 
309 	/* Force users to call KVM_ARM_VCPU_INIT */
310 	vcpu->arch.target = -1;
311 	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
312 
313 	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
314 
315 	/* Set up the timer */
316 	kvm_timer_vcpu_init(vcpu);
317 
318 	kvm_pmu_vcpu_init(vcpu);
319 
320 	kvm_arm_reset_debug_ptr(vcpu);
321 
322 	kvm_arm_pvtime_vcpu_init(&vcpu->arch);
323 
324 	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
325 
326 	err = kvm_vgic_vcpu_init(vcpu);
327 	if (err)
328 		return err;
329 
330 	return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
331 }
332 
333 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
334 {
335 }
336 
337 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
338 {
339 	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
340 		static_branch_dec(&userspace_irqchip_in_use);
341 
342 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
343 	kvm_timer_vcpu_terminate(vcpu);
344 	kvm_pmu_vcpu_destroy(vcpu);
345 
346 	kvm_arm_vcpu_destroy(vcpu);
347 }
348 
349 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
350 {
351 	return kvm_timer_is_pending(vcpu);
352 }
353 
354 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
355 {
356 	/*
357 	 * If we're about to block (most likely because we've just hit a
358 	 * WFI), we need to sync back the state of the GIC CPU interface
359 	 * so that we have the latest PMR and group enables. This ensures
360 	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
361 	 * whether we have pending interrupts.
362 	 *
363 	 * For the same reason, we want to tell GICv4 that we need
364 	 * doorbells to be signalled, should an interrupt become pending.
365 	 */
366 	preempt_disable();
367 	kvm_vgic_vmcr_sync(vcpu);
368 	vgic_v4_put(vcpu, true);
369 	preempt_enable();
370 }
371 
372 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
373 {
374 	preempt_disable();
375 	vgic_v4_load(vcpu);
376 	preempt_enable();
377 }
378 
379 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
380 {
381 	struct kvm_s2_mmu *mmu;
382 	int *last_ran;
383 
384 	mmu = vcpu->arch.hw_mmu;
385 	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
386 
387 	/*
388 	 * We guarantee that both TLBs and I-cache are private to each
389 	 * vcpu. If detecting that a vcpu from the same VM has
390 	 * previously run on the same physical CPU, call into the
391 	 * hypervisor code to nuke the relevant contexts.
392 	 *
393 	 * We might get preempted before the vCPU actually runs, but
394 	 * over-invalidation doesn't affect correctness.
395 	 */
396 	if (*last_ran != vcpu->vcpu_id) {
397 		kvm_call_hyp(__kvm_flush_cpu_context, mmu);
398 		*last_ran = vcpu->vcpu_id;
399 	}
400 
401 	vcpu->cpu = cpu;
402 
403 	kvm_vgic_load(vcpu);
404 	kvm_timer_vcpu_load(vcpu);
405 	if (has_vhe())
406 		kvm_vcpu_load_sysregs_vhe(vcpu);
407 	kvm_arch_vcpu_load_fp(vcpu);
408 	kvm_vcpu_pmu_restore_guest(vcpu);
409 	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
410 		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
411 
412 	if (single_task_running())
413 		vcpu_clear_wfx_traps(vcpu);
414 	else
415 		vcpu_set_wfx_traps(vcpu);
416 
417 	if (vcpu_has_ptrauth(vcpu))
418 		vcpu_ptrauth_disable(vcpu);
419 }
420 
421 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
422 {
423 	kvm_arch_vcpu_put_fp(vcpu);
424 	if (has_vhe())
425 		kvm_vcpu_put_sysregs_vhe(vcpu);
426 	kvm_timer_vcpu_put(vcpu);
427 	kvm_vgic_put(vcpu);
428 	kvm_vcpu_pmu_restore_host(vcpu);
429 
430 	vcpu->cpu = -1;
431 }
432 
433 static void vcpu_power_off(struct kvm_vcpu *vcpu)
434 {
435 	vcpu->arch.power_off = true;
436 	kvm_make_request(KVM_REQ_SLEEP, vcpu);
437 	kvm_vcpu_kick(vcpu);
438 }
439 
440 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
441 				    struct kvm_mp_state *mp_state)
442 {
443 	if (vcpu->arch.power_off)
444 		mp_state->mp_state = KVM_MP_STATE_STOPPED;
445 	else
446 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
447 
448 	return 0;
449 }
450 
451 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
452 				    struct kvm_mp_state *mp_state)
453 {
454 	int ret = 0;
455 
456 	switch (mp_state->mp_state) {
457 	case KVM_MP_STATE_RUNNABLE:
458 		vcpu->arch.power_off = false;
459 		break;
460 	case KVM_MP_STATE_STOPPED:
461 		vcpu_power_off(vcpu);
462 		break;
463 	default:
464 		ret = -EINVAL;
465 	}
466 
467 	return ret;
468 }
469 
470 /**
471  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
472  * @v:		The VCPU pointer
473  *
474  * If the guest CPU is not waiting for interrupts or an interrupt line is
475  * asserted, the CPU is by definition runnable.
476  */
477 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
478 {
479 	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
480 	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
481 		&& !v->arch.power_off && !v->arch.pause);
482 }
483 
484 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
485 {
486 	return vcpu_mode_priv(vcpu);
487 }
488 
489 /* Just ensure a guest exit from a particular CPU */
490 static void exit_vm_noop(void *info)
491 {
492 }
493 
494 void force_vm_exit(const cpumask_t *mask)
495 {
496 	preempt_disable();
497 	smp_call_function_many(mask, exit_vm_noop, NULL, true);
498 	preempt_enable();
499 }
500 
501 /**
502  * need_new_vmid_gen - check that the VMID is still valid
503  * @vmid: The VMID to check
504  *
505  * return true if there is a new generation of VMIDs being used
506  *
507  * The hardware supports a limited set of values with the value zero reserved
508  * for the host, so we check if an assigned value belongs to a previous
509  * generation, which requires us to assign a new value. If we're the first to
510  * use a VMID for the new generation, we must flush necessary caches and TLBs
511  * on all CPUs.
512  */
513 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
514 {
515 	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
516 	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
517 	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
518 }
519 
520 /**
521  * update_vmid - Update the vmid with a valid VMID for the current generation
522  * @vmid: The stage-2 VMID information struct
523  */
524 static void update_vmid(struct kvm_vmid *vmid)
525 {
526 	if (!need_new_vmid_gen(vmid))
527 		return;
528 
529 	spin_lock(&kvm_vmid_lock);
530 
531 	/*
532 	 * We need to re-check the vmid_gen here to ensure that if another vcpu
533 	 * already allocated a valid vmid for this vm, then this vcpu should
534 	 * use the same vmid.
535 	 */
536 	if (!need_new_vmid_gen(vmid)) {
537 		spin_unlock(&kvm_vmid_lock);
538 		return;
539 	}
540 
541 	/* First user of a new VMID generation? */
542 	if (unlikely(kvm_next_vmid == 0)) {
543 		atomic64_inc(&kvm_vmid_gen);
544 		kvm_next_vmid = 1;
545 
546 		/*
547 		 * On SMP we know no other CPUs can use this CPU's or each
548 		 * other's VMID after force_vm_exit returns since the
549 		 * kvm_vmid_lock blocks them from reentry to the guest.
550 		 */
551 		force_vm_exit(cpu_all_mask);
552 		/*
553 		 * Now broadcast TLB + ICACHE invalidation over the inner
554 		 * shareable domain to make sure all data structures are
555 		 * clean.
556 		 */
557 		kvm_call_hyp(__kvm_flush_vm_context);
558 	}
559 
560 	vmid->vmid = kvm_next_vmid;
561 	kvm_next_vmid++;
562 	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
563 
564 	smp_wmb();
565 	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
566 
567 	spin_unlock(&kvm_vmid_lock);
568 }
569 
570 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
571 {
572 	struct kvm *kvm = vcpu->kvm;
573 	int ret = 0;
574 
575 	if (likely(vcpu->arch.has_run_once))
576 		return 0;
577 
578 	if (!kvm_arm_vcpu_is_finalized(vcpu))
579 		return -EPERM;
580 
581 	vcpu->arch.has_run_once = true;
582 
583 	if (likely(irqchip_in_kernel(kvm))) {
584 		/*
585 		 * Map the VGIC hardware resources before running a vcpu the
586 		 * first time on this VM.
587 		 */
588 		ret = kvm_vgic_map_resources(kvm);
589 		if (ret)
590 			return ret;
591 	} else {
592 		/*
593 		 * Tell the rest of the code that there are userspace irqchip
594 		 * VMs in the wild.
595 		 */
596 		static_branch_inc(&userspace_irqchip_in_use);
597 	}
598 
599 	ret = kvm_timer_enable(vcpu);
600 	if (ret)
601 		return ret;
602 
603 	ret = kvm_arm_pmu_v3_enable(vcpu);
604 
605 	return ret;
606 }
607 
608 bool kvm_arch_intc_initialized(struct kvm *kvm)
609 {
610 	return vgic_initialized(kvm);
611 }
612 
613 void kvm_arm_halt_guest(struct kvm *kvm)
614 {
615 	int i;
616 	struct kvm_vcpu *vcpu;
617 
618 	kvm_for_each_vcpu(i, vcpu, kvm)
619 		vcpu->arch.pause = true;
620 	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
621 }
622 
623 void kvm_arm_resume_guest(struct kvm *kvm)
624 {
625 	int i;
626 	struct kvm_vcpu *vcpu;
627 
628 	kvm_for_each_vcpu(i, vcpu, kvm) {
629 		vcpu->arch.pause = false;
630 		rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
631 	}
632 }
633 
634 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
635 {
636 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
637 
638 	rcuwait_wait_event(wait,
639 			   (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
640 			   TASK_INTERRUPTIBLE);
641 
642 	if (vcpu->arch.power_off || vcpu->arch.pause) {
643 		/* Awaken to handle a signal, request we sleep again later. */
644 		kvm_make_request(KVM_REQ_SLEEP, vcpu);
645 	}
646 
647 	/*
648 	 * Make sure we will observe a potential reset request if we've
649 	 * observed a change to the power state. Pairs with the smp_wmb() in
650 	 * kvm_psci_vcpu_on().
651 	 */
652 	smp_rmb();
653 }
654 
655 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
656 {
657 	return vcpu->arch.target >= 0;
658 }
659 
660 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
661 {
662 	if (kvm_request_pending(vcpu)) {
663 		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
664 			vcpu_req_sleep(vcpu);
665 
666 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
667 			kvm_reset_vcpu(vcpu);
668 
669 		/*
670 		 * Clear IRQ_PENDING requests that were made to guarantee
671 		 * that a VCPU sees new virtual interrupts.
672 		 */
673 		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
674 
675 		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
676 			kvm_update_stolen_time(vcpu);
677 
678 		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
679 			/* The distributor enable bits were changed */
680 			preempt_disable();
681 			vgic_v4_put(vcpu, false);
682 			vgic_v4_load(vcpu);
683 			preempt_enable();
684 		}
685 	}
686 }
687 
688 /**
689  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
690  * @vcpu:	The VCPU pointer
691  *
692  * This function is called through the VCPU_RUN ioctl called from user space. It
693  * will execute VM code in a loop until the time slice for the process is used
694  * or some emulation is needed from user space in which case the function will
695  * return with return value 0 and with the kvm_run structure filled in with the
696  * required data for the requested emulation.
697  */
698 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
699 {
700 	struct kvm_run *run = vcpu->run;
701 	int ret;
702 
703 	if (unlikely(!kvm_vcpu_initialized(vcpu)))
704 		return -ENOEXEC;
705 
706 	ret = kvm_vcpu_first_run_init(vcpu);
707 	if (ret)
708 		return ret;
709 
710 	if (run->exit_reason == KVM_EXIT_MMIO) {
711 		ret = kvm_handle_mmio_return(vcpu);
712 		if (ret)
713 			return ret;
714 	}
715 
716 	if (run->immediate_exit)
717 		return -EINTR;
718 
719 	vcpu_load(vcpu);
720 
721 	kvm_sigset_activate(vcpu);
722 
723 	ret = 1;
724 	run->exit_reason = KVM_EXIT_UNKNOWN;
725 	while (ret > 0) {
726 		/*
727 		 * Check conditions before entering the guest
728 		 */
729 		cond_resched();
730 
731 		update_vmid(&vcpu->arch.hw_mmu->vmid);
732 
733 		check_vcpu_requests(vcpu);
734 
735 		/*
736 		 * Preparing the interrupts to be injected also
737 		 * involves poking the GIC, which must be done in a
738 		 * non-preemptible context.
739 		 */
740 		preempt_disable();
741 
742 		kvm_pmu_flush_hwstate(vcpu);
743 
744 		local_irq_disable();
745 
746 		kvm_vgic_flush_hwstate(vcpu);
747 
748 		/*
749 		 * Exit if we have a signal pending so that we can deliver the
750 		 * signal to user space.
751 		 */
752 		if (signal_pending(current)) {
753 			ret = -EINTR;
754 			run->exit_reason = KVM_EXIT_INTR;
755 		}
756 
757 		/*
758 		 * If we're using a userspace irqchip, then check if we need
759 		 * to tell a userspace irqchip about timer or PMU level
760 		 * changes and if so, exit to userspace (the actual level
761 		 * state gets updated in kvm_timer_update_run and
762 		 * kvm_pmu_update_run below).
763 		 */
764 		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
765 			if (kvm_timer_should_notify_user(vcpu) ||
766 			    kvm_pmu_should_notify_user(vcpu)) {
767 				ret = -EINTR;
768 				run->exit_reason = KVM_EXIT_INTR;
769 			}
770 		}
771 
772 		/*
773 		 * Ensure we set mode to IN_GUEST_MODE after we disable
774 		 * interrupts and before the final VCPU requests check.
775 		 * See the comment in kvm_vcpu_exiting_guest_mode() and
776 		 * Documentation/virt/kvm/vcpu-requests.rst
777 		 */
778 		smp_store_mb(vcpu->mode, IN_GUEST_MODE);
779 
780 		if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
781 		    kvm_request_pending(vcpu)) {
782 			vcpu->mode = OUTSIDE_GUEST_MODE;
783 			isb(); /* Ensure work in x_flush_hwstate is committed */
784 			kvm_pmu_sync_hwstate(vcpu);
785 			if (static_branch_unlikely(&userspace_irqchip_in_use))
786 				kvm_timer_sync_user(vcpu);
787 			kvm_vgic_sync_hwstate(vcpu);
788 			local_irq_enable();
789 			preempt_enable();
790 			continue;
791 		}
792 
793 		kvm_arm_setup_debug(vcpu);
794 
795 		/**************************************************************
796 		 * Enter the guest
797 		 */
798 		trace_kvm_entry(*vcpu_pc(vcpu));
799 		guest_enter_irqoff();
800 
801 		ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
802 
803 		vcpu->mode = OUTSIDE_GUEST_MODE;
804 		vcpu->stat.exits++;
805 		/*
806 		 * Back from guest
807 		 *************************************************************/
808 
809 		kvm_arm_clear_debug(vcpu);
810 
811 		/*
812 		 * We must sync the PMU state before the vgic state so
813 		 * that the vgic can properly sample the updated state of the
814 		 * interrupt line.
815 		 */
816 		kvm_pmu_sync_hwstate(vcpu);
817 
818 		/*
819 		 * Sync the vgic state before syncing the timer state because
820 		 * the timer code needs to know if the virtual timer
821 		 * interrupts are active.
822 		 */
823 		kvm_vgic_sync_hwstate(vcpu);
824 
825 		/*
826 		 * Sync the timer hardware state before enabling interrupts as
827 		 * we don't want vtimer interrupts to race with syncing the
828 		 * timer virtual interrupt state.
829 		 */
830 		if (static_branch_unlikely(&userspace_irqchip_in_use))
831 			kvm_timer_sync_user(vcpu);
832 
833 		kvm_arch_vcpu_ctxsync_fp(vcpu);
834 
835 		/*
836 		 * We may have taken a host interrupt in HYP mode (ie
837 		 * while executing the guest). This interrupt is still
838 		 * pending, as we haven't serviced it yet!
839 		 *
840 		 * We're now back in SVC mode, with interrupts
841 		 * disabled.  Enabling the interrupts now will have
842 		 * the effect of taking the interrupt again, in SVC
843 		 * mode this time.
844 		 */
845 		local_irq_enable();
846 
847 		/*
848 		 * We do local_irq_enable() before calling guest_exit() so
849 		 * that if a timer interrupt hits while running the guest we
850 		 * account that tick as being spent in the guest.  We enable
851 		 * preemption after calling guest_exit() so that if we get
852 		 * preempted we make sure ticks after that is not counted as
853 		 * guest time.
854 		 */
855 		guest_exit();
856 		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
857 
858 		/* Exit types that need handling before we can be preempted */
859 		handle_exit_early(vcpu, ret);
860 
861 		preempt_enable();
862 
863 		/*
864 		 * The ARMv8 architecture doesn't give the hypervisor
865 		 * a mechanism to prevent a guest from dropping to AArch32 EL0
866 		 * if implemented by the CPU. If we spot the guest in such
867 		 * state and that we decided it wasn't supposed to do so (like
868 		 * with the asymmetric AArch32 case), return to userspace with
869 		 * a fatal error.
870 		 */
871 		if (!system_supports_32bit_el0() && vcpu_mode_is_32bit(vcpu)) {
872 			/*
873 			 * As we have caught the guest red-handed, decide that
874 			 * it isn't fit for purpose anymore by making the vcpu
875 			 * invalid. The VMM can try and fix it by issuing  a
876 			 * KVM_ARM_VCPU_INIT if it really wants to.
877 			 */
878 			vcpu->arch.target = -1;
879 			ret = ARM_EXCEPTION_IL;
880 		}
881 
882 		ret = handle_exit(vcpu, ret);
883 	}
884 
885 	/* Tell userspace about in-kernel device output levels */
886 	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
887 		kvm_timer_update_run(vcpu);
888 		kvm_pmu_update_run(vcpu);
889 	}
890 
891 	kvm_sigset_deactivate(vcpu);
892 
893 	vcpu_put(vcpu);
894 	return ret;
895 }
896 
897 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
898 {
899 	int bit_index;
900 	bool set;
901 	unsigned long *hcr;
902 
903 	if (number == KVM_ARM_IRQ_CPU_IRQ)
904 		bit_index = __ffs(HCR_VI);
905 	else /* KVM_ARM_IRQ_CPU_FIQ */
906 		bit_index = __ffs(HCR_VF);
907 
908 	hcr = vcpu_hcr(vcpu);
909 	if (level)
910 		set = test_and_set_bit(bit_index, hcr);
911 	else
912 		set = test_and_clear_bit(bit_index, hcr);
913 
914 	/*
915 	 * If we didn't change anything, no need to wake up or kick other CPUs
916 	 */
917 	if (set == level)
918 		return 0;
919 
920 	/*
921 	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
922 	 * trigger a world-switch round on the running physical CPU to set the
923 	 * virtual IRQ/FIQ fields in the HCR appropriately.
924 	 */
925 	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
926 	kvm_vcpu_kick(vcpu);
927 
928 	return 0;
929 }
930 
931 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
932 			  bool line_status)
933 {
934 	u32 irq = irq_level->irq;
935 	unsigned int irq_type, vcpu_idx, irq_num;
936 	int nrcpus = atomic_read(&kvm->online_vcpus);
937 	struct kvm_vcpu *vcpu = NULL;
938 	bool level = irq_level->level;
939 
940 	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
941 	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
942 	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
943 	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
944 
945 	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
946 
947 	switch (irq_type) {
948 	case KVM_ARM_IRQ_TYPE_CPU:
949 		if (irqchip_in_kernel(kvm))
950 			return -ENXIO;
951 
952 		if (vcpu_idx >= nrcpus)
953 			return -EINVAL;
954 
955 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
956 		if (!vcpu)
957 			return -EINVAL;
958 
959 		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
960 			return -EINVAL;
961 
962 		return vcpu_interrupt_line(vcpu, irq_num, level);
963 	case KVM_ARM_IRQ_TYPE_PPI:
964 		if (!irqchip_in_kernel(kvm))
965 			return -ENXIO;
966 
967 		if (vcpu_idx >= nrcpus)
968 			return -EINVAL;
969 
970 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
971 		if (!vcpu)
972 			return -EINVAL;
973 
974 		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
975 			return -EINVAL;
976 
977 		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
978 	case KVM_ARM_IRQ_TYPE_SPI:
979 		if (!irqchip_in_kernel(kvm))
980 			return -ENXIO;
981 
982 		if (irq_num < VGIC_NR_PRIVATE_IRQS)
983 			return -EINVAL;
984 
985 		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
986 	}
987 
988 	return -EINVAL;
989 }
990 
991 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
992 			       const struct kvm_vcpu_init *init)
993 {
994 	unsigned int i, ret;
995 	int phys_target = kvm_target_cpu();
996 
997 	if (init->target != phys_target)
998 		return -EINVAL;
999 
1000 	/*
1001 	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1002 	 * use the same target.
1003 	 */
1004 	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
1005 		return -EINVAL;
1006 
1007 	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
1008 	for (i = 0; i < sizeof(init->features) * 8; i++) {
1009 		bool set = (init->features[i / 32] & (1 << (i % 32)));
1010 
1011 		if (set && i >= KVM_VCPU_MAX_FEATURES)
1012 			return -ENOENT;
1013 
1014 		/*
1015 		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1016 		 * use the same feature set.
1017 		 */
1018 		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
1019 		    test_bit(i, vcpu->arch.features) != set)
1020 			return -EINVAL;
1021 
1022 		if (set)
1023 			set_bit(i, vcpu->arch.features);
1024 	}
1025 
1026 	vcpu->arch.target = phys_target;
1027 
1028 	/* Now we know what it is, we can reset it. */
1029 	ret = kvm_reset_vcpu(vcpu);
1030 	if (ret) {
1031 		vcpu->arch.target = -1;
1032 		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1033 	}
1034 
1035 	return ret;
1036 }
1037 
1038 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1039 					 struct kvm_vcpu_init *init)
1040 {
1041 	int ret;
1042 
1043 	ret = kvm_vcpu_set_target(vcpu, init);
1044 	if (ret)
1045 		return ret;
1046 
1047 	/*
1048 	 * Ensure a rebooted VM will fault in RAM pages and detect if the
1049 	 * guest MMU is turned off and flush the caches as needed.
1050 	 *
1051 	 * S2FWB enforces all memory accesses to RAM being cacheable,
1052 	 * ensuring that the data side is always coherent. We still
1053 	 * need to invalidate the I-cache though, as FWB does *not*
1054 	 * imply CTR_EL0.DIC.
1055 	 */
1056 	if (vcpu->arch.has_run_once) {
1057 		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1058 			stage2_unmap_vm(vcpu->kvm);
1059 		else
1060 			__flush_icache_all();
1061 	}
1062 
1063 	vcpu_reset_hcr(vcpu);
1064 
1065 	/*
1066 	 * Handle the "start in power-off" case.
1067 	 */
1068 	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1069 		vcpu_power_off(vcpu);
1070 	else
1071 		vcpu->arch.power_off = false;
1072 
1073 	return 0;
1074 }
1075 
1076 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1077 				 struct kvm_device_attr *attr)
1078 {
1079 	int ret = -ENXIO;
1080 
1081 	switch (attr->group) {
1082 	default:
1083 		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1084 		break;
1085 	}
1086 
1087 	return ret;
1088 }
1089 
1090 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1091 				 struct kvm_device_attr *attr)
1092 {
1093 	int ret = -ENXIO;
1094 
1095 	switch (attr->group) {
1096 	default:
1097 		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1098 		break;
1099 	}
1100 
1101 	return ret;
1102 }
1103 
1104 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1105 				 struct kvm_device_attr *attr)
1106 {
1107 	int ret = -ENXIO;
1108 
1109 	switch (attr->group) {
1110 	default:
1111 		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1112 		break;
1113 	}
1114 
1115 	return ret;
1116 }
1117 
1118 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1119 				   struct kvm_vcpu_events *events)
1120 {
1121 	memset(events, 0, sizeof(*events));
1122 
1123 	return __kvm_arm_vcpu_get_events(vcpu, events);
1124 }
1125 
1126 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1127 				   struct kvm_vcpu_events *events)
1128 {
1129 	int i;
1130 
1131 	/* check whether the reserved field is zero */
1132 	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1133 		if (events->reserved[i])
1134 			return -EINVAL;
1135 
1136 	/* check whether the pad field is zero */
1137 	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1138 		if (events->exception.pad[i])
1139 			return -EINVAL;
1140 
1141 	return __kvm_arm_vcpu_set_events(vcpu, events);
1142 }
1143 
1144 long kvm_arch_vcpu_ioctl(struct file *filp,
1145 			 unsigned int ioctl, unsigned long arg)
1146 {
1147 	struct kvm_vcpu *vcpu = filp->private_data;
1148 	void __user *argp = (void __user *)arg;
1149 	struct kvm_device_attr attr;
1150 	long r;
1151 
1152 	switch (ioctl) {
1153 	case KVM_ARM_VCPU_INIT: {
1154 		struct kvm_vcpu_init init;
1155 
1156 		r = -EFAULT;
1157 		if (copy_from_user(&init, argp, sizeof(init)))
1158 			break;
1159 
1160 		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1161 		break;
1162 	}
1163 	case KVM_SET_ONE_REG:
1164 	case KVM_GET_ONE_REG: {
1165 		struct kvm_one_reg reg;
1166 
1167 		r = -ENOEXEC;
1168 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1169 			break;
1170 
1171 		r = -EFAULT;
1172 		if (copy_from_user(&reg, argp, sizeof(reg)))
1173 			break;
1174 
1175 		if (ioctl == KVM_SET_ONE_REG)
1176 			r = kvm_arm_set_reg(vcpu, &reg);
1177 		else
1178 			r = kvm_arm_get_reg(vcpu, &reg);
1179 		break;
1180 	}
1181 	case KVM_GET_REG_LIST: {
1182 		struct kvm_reg_list __user *user_list = argp;
1183 		struct kvm_reg_list reg_list;
1184 		unsigned n;
1185 
1186 		r = -ENOEXEC;
1187 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1188 			break;
1189 
1190 		r = -EPERM;
1191 		if (!kvm_arm_vcpu_is_finalized(vcpu))
1192 			break;
1193 
1194 		r = -EFAULT;
1195 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1196 			break;
1197 		n = reg_list.n;
1198 		reg_list.n = kvm_arm_num_regs(vcpu);
1199 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1200 			break;
1201 		r = -E2BIG;
1202 		if (n < reg_list.n)
1203 			break;
1204 		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1205 		break;
1206 	}
1207 	case KVM_SET_DEVICE_ATTR: {
1208 		r = -EFAULT;
1209 		if (copy_from_user(&attr, argp, sizeof(attr)))
1210 			break;
1211 		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1212 		break;
1213 	}
1214 	case KVM_GET_DEVICE_ATTR: {
1215 		r = -EFAULT;
1216 		if (copy_from_user(&attr, argp, sizeof(attr)))
1217 			break;
1218 		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1219 		break;
1220 	}
1221 	case KVM_HAS_DEVICE_ATTR: {
1222 		r = -EFAULT;
1223 		if (copy_from_user(&attr, argp, sizeof(attr)))
1224 			break;
1225 		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1226 		break;
1227 	}
1228 	case KVM_GET_VCPU_EVENTS: {
1229 		struct kvm_vcpu_events events;
1230 
1231 		if (kvm_arm_vcpu_get_events(vcpu, &events))
1232 			return -EINVAL;
1233 
1234 		if (copy_to_user(argp, &events, sizeof(events)))
1235 			return -EFAULT;
1236 
1237 		return 0;
1238 	}
1239 	case KVM_SET_VCPU_EVENTS: {
1240 		struct kvm_vcpu_events events;
1241 
1242 		if (copy_from_user(&events, argp, sizeof(events)))
1243 			return -EFAULT;
1244 
1245 		return kvm_arm_vcpu_set_events(vcpu, &events);
1246 	}
1247 	case KVM_ARM_VCPU_FINALIZE: {
1248 		int what;
1249 
1250 		if (!kvm_vcpu_initialized(vcpu))
1251 			return -ENOEXEC;
1252 
1253 		if (get_user(what, (const int __user *)argp))
1254 			return -EFAULT;
1255 
1256 		return kvm_arm_vcpu_finalize(vcpu, what);
1257 	}
1258 	default:
1259 		r = -EINVAL;
1260 	}
1261 
1262 	return r;
1263 }
1264 
1265 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1266 {
1267 
1268 }
1269 
1270 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1271 					struct kvm_memory_slot *memslot)
1272 {
1273 	kvm_flush_remote_tlbs(kvm);
1274 }
1275 
1276 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1277 					struct kvm_arm_device_addr *dev_addr)
1278 {
1279 	unsigned long dev_id, type;
1280 
1281 	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1282 		KVM_ARM_DEVICE_ID_SHIFT;
1283 	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1284 		KVM_ARM_DEVICE_TYPE_SHIFT;
1285 
1286 	switch (dev_id) {
1287 	case KVM_ARM_DEVICE_VGIC_V2:
1288 		if (!vgic_present)
1289 			return -ENXIO;
1290 		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1291 	default:
1292 		return -ENODEV;
1293 	}
1294 }
1295 
1296 long kvm_arch_vm_ioctl(struct file *filp,
1297 		       unsigned int ioctl, unsigned long arg)
1298 {
1299 	struct kvm *kvm = filp->private_data;
1300 	void __user *argp = (void __user *)arg;
1301 
1302 	switch (ioctl) {
1303 	case KVM_CREATE_IRQCHIP: {
1304 		int ret;
1305 		if (!vgic_present)
1306 			return -ENXIO;
1307 		mutex_lock(&kvm->lock);
1308 		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1309 		mutex_unlock(&kvm->lock);
1310 		return ret;
1311 	}
1312 	case KVM_ARM_SET_DEVICE_ADDR: {
1313 		struct kvm_arm_device_addr dev_addr;
1314 
1315 		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1316 			return -EFAULT;
1317 		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1318 	}
1319 	case KVM_ARM_PREFERRED_TARGET: {
1320 		int err;
1321 		struct kvm_vcpu_init init;
1322 
1323 		err = kvm_vcpu_preferred_target(&init);
1324 		if (err)
1325 			return err;
1326 
1327 		if (copy_to_user(argp, &init, sizeof(init)))
1328 			return -EFAULT;
1329 
1330 		return 0;
1331 	}
1332 	default:
1333 		return -EINVAL;
1334 	}
1335 }
1336 
1337 static unsigned long nvhe_percpu_size(void)
1338 {
1339 	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1340 		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1341 }
1342 
1343 static unsigned long nvhe_percpu_order(void)
1344 {
1345 	unsigned long size = nvhe_percpu_size();
1346 
1347 	return size ? get_order(size) : 0;
1348 }
1349 
1350 /* A lookup table holding the hypervisor VA for each vector slot */
1351 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1352 
1353 static int __kvm_vector_slot2idx(enum arm64_hyp_spectre_vector slot)
1354 {
1355 	return slot - (slot != HYP_VECTOR_DIRECT);
1356 }
1357 
1358 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1359 {
1360 	int idx = __kvm_vector_slot2idx(slot);
1361 
1362 	hyp_spectre_vector_selector[slot] = base + (idx * SZ_2K);
1363 }
1364 
1365 static int kvm_init_vector_slots(void)
1366 {
1367 	int err;
1368 	void *base;
1369 
1370 	base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1371 	kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1372 
1373 	base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1374 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1375 
1376 	if (!cpus_have_const_cap(ARM64_SPECTRE_V3A))
1377 		return 0;
1378 
1379 	if (!has_vhe()) {
1380 		err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1381 					       __BP_HARDEN_HYP_VECS_SZ, &base);
1382 		if (err)
1383 			return err;
1384 	}
1385 
1386 	kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1387 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1388 	return 0;
1389 }
1390 
1391 static void cpu_init_hyp_mode(void)
1392 {
1393 	struct kvm_nvhe_init_params *params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1394 	struct arm_smccc_res res;
1395 	unsigned long tcr;
1396 
1397 	/* Switch from the HYP stub to our own HYP init vector */
1398 	__hyp_set_vectors(kvm_get_idmap_vector());
1399 
1400 	/*
1401 	 * Calculate the raw per-cpu offset without a translation from the
1402 	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
1403 	 * so that we can use adr_l to access per-cpu variables in EL2.
1404 	 * Also drop the KASAN tag which gets in the way...
1405 	 */
1406 	params->tpidr_el2 = (unsigned long)kasan_reset_tag(this_cpu_ptr_nvhe_sym(__per_cpu_start)) -
1407 			    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1408 
1409 	params->mair_el2 = read_sysreg(mair_el1);
1410 
1411 	/*
1412 	 * The ID map may be configured to use an extended virtual address
1413 	 * range. This is only the case if system RAM is out of range for the
1414 	 * currently configured page size and VA_BITS, in which case we will
1415 	 * also need the extended virtual range for the HYP ID map, or we won't
1416 	 * be able to enable the EL2 MMU.
1417 	 *
1418 	 * However, at EL2, there is only one TTBR register, and we can't switch
1419 	 * between translation tables *and* update TCR_EL2.T0SZ at the same
1420 	 * time. Bottom line: we need to use the extended range with *both* our
1421 	 * translation tables.
1422 	 *
1423 	 * So use the same T0SZ value we use for the ID map.
1424 	 */
1425 	tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
1426 	tcr &= ~TCR_T0SZ_MASK;
1427 	tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
1428 	params->tcr_el2 = tcr;
1429 
1430 	params->stack_hyp_va = kern_hyp_va(__this_cpu_read(kvm_arm_hyp_stack_page) + PAGE_SIZE);
1431 	params->pgd_pa = kvm_mmu_get_httbr();
1432 
1433 	/*
1434 	 * Flush the init params from the data cache because the struct will
1435 	 * be read while the MMU is off.
1436 	 */
1437 	kvm_flush_dcache_to_poc(params, sizeof(*params));
1438 
1439 	/*
1440 	 * Call initialization code, and switch to the full blown HYP code.
1441 	 * If the cpucaps haven't been finalized yet, something has gone very
1442 	 * wrong, and hyp will crash and burn when it uses any
1443 	 * cpus_have_const_cap() wrapper.
1444 	 */
1445 	BUG_ON(!system_capabilities_finalized());
1446 	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1447 	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1448 
1449 	/*
1450 	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
1451 	 * at EL2.
1452 	 */
1453 	if (this_cpu_has_cap(ARM64_SSBS) &&
1454 	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1455 		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1456 	}
1457 }
1458 
1459 static void cpu_hyp_reset(void)
1460 {
1461 	if (!is_kernel_in_hyp_mode())
1462 		__hyp_reset_vectors();
1463 }
1464 
1465 /*
1466  * EL2 vectors can be mapped and rerouted in a number of ways,
1467  * depending on the kernel configuration and CPU present:
1468  *
1469  * - If the CPU is affected by Spectre-v2, the hardening sequence is
1470  *   placed in one of the vector slots, which is executed before jumping
1471  *   to the real vectors.
1472  *
1473  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1474  *   containing the hardening sequence is mapped next to the idmap page,
1475  *   and executed before jumping to the real vectors.
1476  *
1477  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1478  *   empty slot is selected, mapped next to the idmap page, and
1479  *   executed before jumping to the real vectors.
1480  *
1481  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1482  * VHE, as we don't have hypervisor-specific mappings. If the system
1483  * is VHE and yet selects this capability, it will be ignored.
1484  */
1485 static void cpu_set_hyp_vector(void)
1486 {
1487 	struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1488 	void *vector = hyp_spectre_vector_selector[data->slot];
1489 
1490 	*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1491 }
1492 
1493 static void cpu_hyp_reinit(void)
1494 {
1495 	kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1496 
1497 	cpu_hyp_reset();
1498 	cpu_set_hyp_vector();
1499 
1500 	if (is_kernel_in_hyp_mode())
1501 		kvm_timer_init_vhe();
1502 	else
1503 		cpu_init_hyp_mode();
1504 
1505 	kvm_arm_init_debug();
1506 
1507 	if (vgic_present)
1508 		kvm_vgic_init_cpu_hardware();
1509 }
1510 
1511 static void _kvm_arch_hardware_enable(void *discard)
1512 {
1513 	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1514 		cpu_hyp_reinit();
1515 		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1516 	}
1517 }
1518 
1519 int kvm_arch_hardware_enable(void)
1520 {
1521 	_kvm_arch_hardware_enable(NULL);
1522 	return 0;
1523 }
1524 
1525 static void _kvm_arch_hardware_disable(void *discard)
1526 {
1527 	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1528 		cpu_hyp_reset();
1529 		__this_cpu_write(kvm_arm_hardware_enabled, 0);
1530 	}
1531 }
1532 
1533 void kvm_arch_hardware_disable(void)
1534 {
1535 	if (!is_protected_kvm_enabled())
1536 		_kvm_arch_hardware_disable(NULL);
1537 }
1538 
1539 #ifdef CONFIG_CPU_PM
1540 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1541 				    unsigned long cmd,
1542 				    void *v)
1543 {
1544 	/*
1545 	 * kvm_arm_hardware_enabled is left with its old value over
1546 	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1547 	 * re-enable hyp.
1548 	 */
1549 	switch (cmd) {
1550 	case CPU_PM_ENTER:
1551 		if (__this_cpu_read(kvm_arm_hardware_enabled))
1552 			/*
1553 			 * don't update kvm_arm_hardware_enabled here
1554 			 * so that the hardware will be re-enabled
1555 			 * when we resume. See below.
1556 			 */
1557 			cpu_hyp_reset();
1558 
1559 		return NOTIFY_OK;
1560 	case CPU_PM_ENTER_FAILED:
1561 	case CPU_PM_EXIT:
1562 		if (__this_cpu_read(kvm_arm_hardware_enabled))
1563 			/* The hardware was enabled before suspend. */
1564 			cpu_hyp_reinit();
1565 
1566 		return NOTIFY_OK;
1567 
1568 	default:
1569 		return NOTIFY_DONE;
1570 	}
1571 }
1572 
1573 static struct notifier_block hyp_init_cpu_pm_nb = {
1574 	.notifier_call = hyp_init_cpu_pm_notifier,
1575 };
1576 
1577 static void hyp_cpu_pm_init(void)
1578 {
1579 	if (!is_protected_kvm_enabled())
1580 		cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1581 }
1582 static void hyp_cpu_pm_exit(void)
1583 {
1584 	if (!is_protected_kvm_enabled())
1585 		cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1586 }
1587 #else
1588 static inline void hyp_cpu_pm_init(void)
1589 {
1590 }
1591 static inline void hyp_cpu_pm_exit(void)
1592 {
1593 }
1594 #endif
1595 
1596 static void init_cpu_logical_map(void)
1597 {
1598 	unsigned int cpu;
1599 
1600 	/*
1601 	 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1602 	 * Only copy the set of online CPUs whose features have been chacked
1603 	 * against the finalized system capabilities. The hypervisor will not
1604 	 * allow any other CPUs from the `possible` set to boot.
1605 	 */
1606 	for_each_online_cpu(cpu)
1607 		hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1608 }
1609 
1610 #define init_psci_0_1_impl_state(config, what)	\
1611 	config.psci_0_1_ ## what ## _implemented = psci_ops.what
1612 
1613 static bool init_psci_relay(void)
1614 {
1615 	/*
1616 	 * If PSCI has not been initialized, protected KVM cannot install
1617 	 * itself on newly booted CPUs.
1618 	 */
1619 	if (!psci_ops.get_version) {
1620 		kvm_err("Cannot initialize protected mode without PSCI\n");
1621 		return false;
1622 	}
1623 
1624 	kvm_host_psci_config.version = psci_ops.get_version();
1625 
1626 	if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
1627 		kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1628 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
1629 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
1630 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
1631 		init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1632 	}
1633 	return true;
1634 }
1635 
1636 static int init_common_resources(void)
1637 {
1638 	return kvm_set_ipa_limit();
1639 }
1640 
1641 static int init_subsystems(void)
1642 {
1643 	int err = 0;
1644 
1645 	/*
1646 	 * Enable hardware so that subsystem initialisation can access EL2.
1647 	 */
1648 	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1649 
1650 	/*
1651 	 * Register CPU lower-power notifier
1652 	 */
1653 	hyp_cpu_pm_init();
1654 
1655 	/*
1656 	 * Init HYP view of VGIC
1657 	 */
1658 	err = kvm_vgic_hyp_init();
1659 	switch (err) {
1660 	case 0:
1661 		vgic_present = true;
1662 		break;
1663 	case -ENODEV:
1664 	case -ENXIO:
1665 		vgic_present = false;
1666 		err = 0;
1667 		break;
1668 	default:
1669 		goto out;
1670 	}
1671 
1672 	/*
1673 	 * Init HYP architected timer support
1674 	 */
1675 	err = kvm_timer_hyp_init(vgic_present);
1676 	if (err)
1677 		goto out;
1678 
1679 	kvm_perf_init();
1680 	kvm_sys_reg_table_init();
1681 
1682 out:
1683 	if (err || !is_protected_kvm_enabled())
1684 		on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1685 
1686 	return err;
1687 }
1688 
1689 static void teardown_hyp_mode(void)
1690 {
1691 	int cpu;
1692 
1693 	free_hyp_pgds();
1694 	for_each_possible_cpu(cpu) {
1695 		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1696 		free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
1697 	}
1698 }
1699 
1700 /**
1701  * Inits Hyp-mode on all online CPUs
1702  */
1703 static int init_hyp_mode(void)
1704 {
1705 	int cpu;
1706 	int err = 0;
1707 
1708 	/*
1709 	 * Allocate Hyp PGD and setup Hyp identity mapping
1710 	 */
1711 	err = kvm_mmu_init();
1712 	if (err)
1713 		goto out_err;
1714 
1715 	/*
1716 	 * Allocate stack pages for Hypervisor-mode
1717 	 */
1718 	for_each_possible_cpu(cpu) {
1719 		unsigned long stack_page;
1720 
1721 		stack_page = __get_free_page(GFP_KERNEL);
1722 		if (!stack_page) {
1723 			err = -ENOMEM;
1724 			goto out_err;
1725 		}
1726 
1727 		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1728 	}
1729 
1730 	/*
1731 	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
1732 	 */
1733 	for_each_possible_cpu(cpu) {
1734 		struct page *page;
1735 		void *page_addr;
1736 
1737 		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
1738 		if (!page) {
1739 			err = -ENOMEM;
1740 			goto out_err;
1741 		}
1742 
1743 		page_addr = page_address(page);
1744 		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
1745 		kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
1746 	}
1747 
1748 	/*
1749 	 * Map the Hyp-code called directly from the host
1750 	 */
1751 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1752 				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1753 	if (err) {
1754 		kvm_err("Cannot map world-switch code\n");
1755 		goto out_err;
1756 	}
1757 
1758 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
1759 				  kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1760 	if (err) {
1761 		kvm_err("Cannot map .hyp.rodata section\n");
1762 		goto out_err;
1763 	}
1764 
1765 	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1766 				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1767 	if (err) {
1768 		kvm_err("Cannot map rodata section\n");
1769 		goto out_err;
1770 	}
1771 
1772 	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1773 				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1774 	if (err) {
1775 		kvm_err("Cannot map bss section\n");
1776 		goto out_err;
1777 	}
1778 
1779 	/*
1780 	 * Map the Hyp stack pages
1781 	 */
1782 	for_each_possible_cpu(cpu) {
1783 		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1784 		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1785 					  PAGE_HYP);
1786 
1787 		if (err) {
1788 			kvm_err("Cannot map hyp stack\n");
1789 			goto out_err;
1790 		}
1791 	}
1792 
1793 	/*
1794 	 * Map Hyp percpu pages
1795 	 */
1796 	for_each_possible_cpu(cpu) {
1797 		char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
1798 		char *percpu_end = percpu_begin + nvhe_percpu_size();
1799 
1800 		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1801 
1802 		if (err) {
1803 			kvm_err("Cannot map hyp percpu region\n");
1804 			goto out_err;
1805 		}
1806 	}
1807 
1808 	if (is_protected_kvm_enabled()) {
1809 		init_cpu_logical_map();
1810 
1811 		if (!init_psci_relay())
1812 			goto out_err;
1813 	}
1814 
1815 	return 0;
1816 
1817 out_err:
1818 	teardown_hyp_mode();
1819 	kvm_err("error initializing Hyp mode: %d\n", err);
1820 	return err;
1821 }
1822 
1823 static void check_kvm_target_cpu(void *ret)
1824 {
1825 	*(int *)ret = kvm_target_cpu();
1826 }
1827 
1828 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1829 {
1830 	struct kvm_vcpu *vcpu;
1831 	int i;
1832 
1833 	mpidr &= MPIDR_HWID_BITMASK;
1834 	kvm_for_each_vcpu(i, vcpu, kvm) {
1835 		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1836 			return vcpu;
1837 	}
1838 	return NULL;
1839 }
1840 
1841 bool kvm_arch_has_irq_bypass(void)
1842 {
1843 	return true;
1844 }
1845 
1846 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1847 				      struct irq_bypass_producer *prod)
1848 {
1849 	struct kvm_kernel_irqfd *irqfd =
1850 		container_of(cons, struct kvm_kernel_irqfd, consumer);
1851 
1852 	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1853 					  &irqfd->irq_entry);
1854 }
1855 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1856 				      struct irq_bypass_producer *prod)
1857 {
1858 	struct kvm_kernel_irqfd *irqfd =
1859 		container_of(cons, struct kvm_kernel_irqfd, consumer);
1860 
1861 	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1862 				     &irqfd->irq_entry);
1863 }
1864 
1865 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1866 {
1867 	struct kvm_kernel_irqfd *irqfd =
1868 		container_of(cons, struct kvm_kernel_irqfd, consumer);
1869 
1870 	kvm_arm_halt_guest(irqfd->kvm);
1871 }
1872 
1873 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1874 {
1875 	struct kvm_kernel_irqfd *irqfd =
1876 		container_of(cons, struct kvm_kernel_irqfd, consumer);
1877 
1878 	kvm_arm_resume_guest(irqfd->kvm);
1879 }
1880 
1881 /**
1882  * Initialize Hyp-mode and memory mappings on all CPUs.
1883  */
1884 int kvm_arch_init(void *opaque)
1885 {
1886 	int err;
1887 	int ret, cpu;
1888 	bool in_hyp_mode;
1889 
1890 	if (!is_hyp_mode_available()) {
1891 		kvm_info("HYP mode not available\n");
1892 		return -ENODEV;
1893 	}
1894 
1895 	in_hyp_mode = is_kernel_in_hyp_mode();
1896 
1897 	if (!in_hyp_mode && kvm_arch_requires_vhe()) {
1898 		kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1899 		return -ENODEV;
1900 	}
1901 
1902 	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
1903 	    cpus_have_final_cap(ARM64_WORKAROUND_1508412))
1904 		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
1905 			 "Only trusted guests should be used on this system.\n");
1906 
1907 	for_each_online_cpu(cpu) {
1908 		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1909 		if (ret < 0) {
1910 			kvm_err("Error, CPU %d not supported!\n", cpu);
1911 			return -ENODEV;
1912 		}
1913 	}
1914 
1915 	err = init_common_resources();
1916 	if (err)
1917 		return err;
1918 
1919 	err = kvm_arm_init_sve();
1920 	if (err)
1921 		return err;
1922 
1923 	if (!in_hyp_mode) {
1924 		err = init_hyp_mode();
1925 		if (err)
1926 			goto out_err;
1927 	}
1928 
1929 	err = kvm_init_vector_slots();
1930 	if (err) {
1931 		kvm_err("Cannot initialise vector slots\n");
1932 		goto out_err;
1933 	}
1934 
1935 	err = init_subsystems();
1936 	if (err)
1937 		goto out_hyp;
1938 
1939 	if (is_protected_kvm_enabled()) {
1940 		static_branch_enable(&kvm_protected_mode_initialized);
1941 		kvm_info("Protected nVHE mode initialized successfully\n");
1942 	} else if (in_hyp_mode) {
1943 		kvm_info("VHE mode initialized successfully\n");
1944 	} else {
1945 		kvm_info("Hyp mode initialized successfully\n");
1946 	}
1947 
1948 	return 0;
1949 
1950 out_hyp:
1951 	hyp_cpu_pm_exit();
1952 	if (!in_hyp_mode)
1953 		teardown_hyp_mode();
1954 out_err:
1955 	return err;
1956 }
1957 
1958 /* NOP: Compiling as a module not supported */
1959 void kvm_arch_exit(void)
1960 {
1961 	kvm_perf_teardown();
1962 }
1963 
1964 static int __init early_kvm_mode_cfg(char *arg)
1965 {
1966 	if (!arg)
1967 		return -EINVAL;
1968 
1969 	if (strcmp(arg, "protected") == 0) {
1970 		kvm_mode = KVM_MODE_PROTECTED;
1971 		return 0;
1972 	}
1973 
1974 	if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode()))
1975 		return 0;
1976 
1977 	return -EINVAL;
1978 }
1979 early_param("kvm-arm.mode", early_kvm_mode_cfg);
1980 
1981 enum kvm_mode kvm_get_mode(void)
1982 {
1983 	return kvm_mode;
1984 }
1985 
1986 static int arm_init(void)
1987 {
1988 	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1989 	return rc;
1990 }
1991 
1992 module_init(arm_init);
1993