1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 4 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 5 */ 6 7 #include <linux/bug.h> 8 #include <linux/cpu_pm.h> 9 #include <linux/entry-kvm.h> 10 #include <linux/errno.h> 11 #include <linux/err.h> 12 #include <linux/kvm_host.h> 13 #include <linux/list.h> 14 #include <linux/module.h> 15 #include <linux/vmalloc.h> 16 #include <linux/fs.h> 17 #include <linux/mman.h> 18 #include <linux/sched.h> 19 #include <linux/kvm.h> 20 #include <linux/kvm_irqfd.h> 21 #include <linux/irqbypass.h> 22 #include <linux/sched/stat.h> 23 #include <linux/psci.h> 24 #include <trace/events/kvm.h> 25 26 #define CREATE_TRACE_POINTS 27 #include "trace_arm.h" 28 29 #include <linux/uaccess.h> 30 #include <asm/ptrace.h> 31 #include <asm/mman.h> 32 #include <asm/tlbflush.h> 33 #include <asm/cacheflush.h> 34 #include <asm/cpufeature.h> 35 #include <asm/virt.h> 36 #include <asm/kvm_arm.h> 37 #include <asm/kvm_asm.h> 38 #include <asm/kvm_emulate.h> 39 #include <asm/kvm_mmu.h> 40 #include <asm/kvm_nested.h> 41 #include <asm/kvm_pkvm.h> 42 #include <asm/kvm_ptrauth.h> 43 #include <asm/sections.h> 44 45 #include <kvm/arm_hypercalls.h> 46 #include <kvm/arm_pmu.h> 47 #include <kvm/arm_psci.h> 48 49 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT; 50 51 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector); 52 53 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page); 54 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params); 55 56 DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt); 57 58 static bool vgic_present, kvm_arm_initialised; 59 60 static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized); 61 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use); 62 63 bool is_kvm_arm_initialised(void) 64 { 65 return kvm_arm_initialised; 66 } 67 68 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 69 { 70 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 71 } 72 73 /* 74 * This functions as an allow-list of protected VM capabilities. 75 * Features not explicitly allowed by this function are denied. 76 */ 77 static bool pkvm_ext_allowed(struct kvm *kvm, long ext) 78 { 79 switch (ext) { 80 case KVM_CAP_IRQCHIP: 81 case KVM_CAP_ARM_PSCI: 82 case KVM_CAP_ARM_PSCI_0_2: 83 case KVM_CAP_NR_VCPUS: 84 case KVM_CAP_MAX_VCPUS: 85 case KVM_CAP_MAX_VCPU_ID: 86 case KVM_CAP_MSI_DEVID: 87 case KVM_CAP_ARM_VM_IPA_SIZE: 88 case KVM_CAP_ARM_PMU_V3: 89 case KVM_CAP_ARM_SVE: 90 case KVM_CAP_ARM_PTRAUTH_ADDRESS: 91 case KVM_CAP_ARM_PTRAUTH_GENERIC: 92 return true; 93 default: 94 return false; 95 } 96 } 97 98 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 99 struct kvm_enable_cap *cap) 100 { 101 int r = -EINVAL; 102 103 if (cap->flags) 104 return -EINVAL; 105 106 if (kvm_vm_is_protected(kvm) && !pkvm_ext_allowed(kvm, cap->cap)) 107 return -EINVAL; 108 109 switch (cap->cap) { 110 case KVM_CAP_ARM_NISV_TO_USER: 111 r = 0; 112 set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER, 113 &kvm->arch.flags); 114 break; 115 case KVM_CAP_ARM_MTE: 116 mutex_lock(&kvm->lock); 117 if (system_supports_mte() && !kvm->created_vcpus) { 118 r = 0; 119 set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags); 120 } 121 mutex_unlock(&kvm->lock); 122 break; 123 case KVM_CAP_ARM_SYSTEM_SUSPEND: 124 r = 0; 125 set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags); 126 break; 127 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE: 128 mutex_lock(&kvm->slots_lock); 129 /* 130 * To keep things simple, allow changing the chunk 131 * size only when no memory slots have been created. 132 */ 133 if (kvm_are_all_memslots_empty(kvm)) { 134 u64 new_cap = cap->args[0]; 135 136 if (!new_cap || kvm_is_block_size_supported(new_cap)) { 137 r = 0; 138 kvm->arch.mmu.split_page_chunk_size = new_cap; 139 } 140 } 141 mutex_unlock(&kvm->slots_lock); 142 break; 143 default: 144 break; 145 } 146 147 return r; 148 } 149 150 static int kvm_arm_default_max_vcpus(void) 151 { 152 return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS; 153 } 154 155 /** 156 * kvm_arch_init_vm - initializes a VM data structure 157 * @kvm: pointer to the KVM struct 158 */ 159 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 160 { 161 int ret; 162 163 mutex_init(&kvm->arch.config_lock); 164 165 #ifdef CONFIG_LOCKDEP 166 /* Clue in lockdep that the config_lock must be taken inside kvm->lock */ 167 mutex_lock(&kvm->lock); 168 mutex_lock(&kvm->arch.config_lock); 169 mutex_unlock(&kvm->arch.config_lock); 170 mutex_unlock(&kvm->lock); 171 #endif 172 173 ret = kvm_share_hyp(kvm, kvm + 1); 174 if (ret) 175 return ret; 176 177 ret = pkvm_init_host_vm(kvm); 178 if (ret) 179 goto err_unshare_kvm; 180 181 if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) { 182 ret = -ENOMEM; 183 goto err_unshare_kvm; 184 } 185 cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask); 186 187 ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type); 188 if (ret) 189 goto err_free_cpumask; 190 191 kvm_vgic_early_init(kvm); 192 193 kvm_timer_init_vm(kvm); 194 195 /* The maximum number of VCPUs is limited by the host's GIC model */ 196 kvm->max_vcpus = kvm_arm_default_max_vcpus(); 197 198 kvm_arm_init_hypercalls(kvm); 199 200 bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES); 201 202 return 0; 203 204 err_free_cpumask: 205 free_cpumask_var(kvm->arch.supported_cpus); 206 err_unshare_kvm: 207 kvm_unshare_hyp(kvm, kvm + 1); 208 return ret; 209 } 210 211 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 212 { 213 return VM_FAULT_SIGBUS; 214 } 215 216 void kvm_arch_create_vm_debugfs(struct kvm *kvm) 217 { 218 kvm_sys_regs_create_debugfs(kvm); 219 } 220 221 static void kvm_destroy_mpidr_data(struct kvm *kvm) 222 { 223 struct kvm_mpidr_data *data; 224 225 mutex_lock(&kvm->arch.config_lock); 226 227 data = rcu_dereference_protected(kvm->arch.mpidr_data, 228 lockdep_is_held(&kvm->arch.config_lock)); 229 if (data) { 230 rcu_assign_pointer(kvm->arch.mpidr_data, NULL); 231 synchronize_rcu(); 232 kfree(data); 233 } 234 235 mutex_unlock(&kvm->arch.config_lock); 236 } 237 238 /** 239 * kvm_arch_destroy_vm - destroy the VM data structure 240 * @kvm: pointer to the KVM struct 241 */ 242 void kvm_arch_destroy_vm(struct kvm *kvm) 243 { 244 bitmap_free(kvm->arch.pmu_filter); 245 free_cpumask_var(kvm->arch.supported_cpus); 246 247 kvm_vgic_destroy(kvm); 248 249 if (is_protected_kvm_enabled()) 250 pkvm_destroy_hyp_vm(kvm); 251 252 kvm_destroy_mpidr_data(kvm); 253 254 kfree(kvm->arch.sysreg_masks); 255 kvm_destroy_vcpus(kvm); 256 257 kvm_unshare_hyp(kvm, kvm + 1); 258 259 kvm_arm_teardown_hypercalls(kvm); 260 } 261 262 static bool kvm_has_full_ptr_auth(void) 263 { 264 bool apa, gpa, api, gpi, apa3, gpa3; 265 u64 isar1, isar2, val; 266 267 /* 268 * Check that: 269 * 270 * - both Address and Generic auth are implemented for a given 271 * algorithm (Q5, IMPDEF or Q3) 272 * - only a single algorithm is implemented. 273 */ 274 if (!system_has_full_ptr_auth()) 275 return false; 276 277 isar1 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1); 278 isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1); 279 280 apa = !!FIELD_GET(ID_AA64ISAR1_EL1_APA_MASK, isar1); 281 val = FIELD_GET(ID_AA64ISAR1_EL1_GPA_MASK, isar1); 282 gpa = (val == ID_AA64ISAR1_EL1_GPA_IMP); 283 284 api = !!FIELD_GET(ID_AA64ISAR1_EL1_API_MASK, isar1); 285 val = FIELD_GET(ID_AA64ISAR1_EL1_GPI_MASK, isar1); 286 gpi = (val == ID_AA64ISAR1_EL1_GPI_IMP); 287 288 apa3 = !!FIELD_GET(ID_AA64ISAR2_EL1_APA3_MASK, isar2); 289 val = FIELD_GET(ID_AA64ISAR2_EL1_GPA3_MASK, isar2); 290 gpa3 = (val == ID_AA64ISAR2_EL1_GPA3_IMP); 291 292 return (apa == gpa && api == gpi && apa3 == gpa3 && 293 (apa + api + apa3) == 1); 294 } 295 296 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 297 { 298 int r; 299 300 if (kvm && kvm_vm_is_protected(kvm) && !pkvm_ext_allowed(kvm, ext)) 301 return 0; 302 303 switch (ext) { 304 case KVM_CAP_IRQCHIP: 305 r = vgic_present; 306 break; 307 case KVM_CAP_IOEVENTFD: 308 case KVM_CAP_USER_MEMORY: 309 case KVM_CAP_SYNC_MMU: 310 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 311 case KVM_CAP_ONE_REG: 312 case KVM_CAP_ARM_PSCI: 313 case KVM_CAP_ARM_PSCI_0_2: 314 case KVM_CAP_READONLY_MEM: 315 case KVM_CAP_MP_STATE: 316 case KVM_CAP_IMMEDIATE_EXIT: 317 case KVM_CAP_VCPU_EVENTS: 318 case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2: 319 case KVM_CAP_ARM_NISV_TO_USER: 320 case KVM_CAP_ARM_INJECT_EXT_DABT: 321 case KVM_CAP_SET_GUEST_DEBUG: 322 case KVM_CAP_VCPU_ATTRIBUTES: 323 case KVM_CAP_PTP_KVM: 324 case KVM_CAP_ARM_SYSTEM_SUSPEND: 325 case KVM_CAP_IRQFD_RESAMPLE: 326 case KVM_CAP_COUNTER_OFFSET: 327 r = 1; 328 break; 329 case KVM_CAP_SET_GUEST_DEBUG2: 330 return KVM_GUESTDBG_VALID_MASK; 331 case KVM_CAP_ARM_SET_DEVICE_ADDR: 332 r = 1; 333 break; 334 case KVM_CAP_NR_VCPUS: 335 /* 336 * ARM64 treats KVM_CAP_NR_CPUS differently from all other 337 * architectures, as it does not always bound it to 338 * KVM_CAP_MAX_VCPUS. It should not matter much because 339 * this is just an advisory value. 340 */ 341 r = min_t(unsigned int, num_online_cpus(), 342 kvm_arm_default_max_vcpus()); 343 break; 344 case KVM_CAP_MAX_VCPUS: 345 case KVM_CAP_MAX_VCPU_ID: 346 if (kvm) 347 r = kvm->max_vcpus; 348 else 349 r = kvm_arm_default_max_vcpus(); 350 break; 351 case KVM_CAP_MSI_DEVID: 352 if (!kvm) 353 r = -EINVAL; 354 else 355 r = kvm->arch.vgic.msis_require_devid; 356 break; 357 case KVM_CAP_ARM_USER_IRQ: 358 /* 359 * 1: EL1_VTIMER, EL1_PTIMER, and PMU. 360 * (bump this number if adding more devices) 361 */ 362 r = 1; 363 break; 364 case KVM_CAP_ARM_MTE: 365 r = system_supports_mte(); 366 break; 367 case KVM_CAP_STEAL_TIME: 368 r = kvm_arm_pvtime_supported(); 369 break; 370 case KVM_CAP_ARM_EL1_32BIT: 371 r = cpus_have_final_cap(ARM64_HAS_32BIT_EL1); 372 break; 373 case KVM_CAP_GUEST_DEBUG_HW_BPS: 374 r = get_num_brps(); 375 break; 376 case KVM_CAP_GUEST_DEBUG_HW_WPS: 377 r = get_num_wrps(); 378 break; 379 case KVM_CAP_ARM_PMU_V3: 380 r = kvm_arm_support_pmu_v3(); 381 break; 382 case KVM_CAP_ARM_INJECT_SERROR_ESR: 383 r = cpus_have_final_cap(ARM64_HAS_RAS_EXTN); 384 break; 385 case KVM_CAP_ARM_VM_IPA_SIZE: 386 r = get_kvm_ipa_limit(); 387 break; 388 case KVM_CAP_ARM_SVE: 389 r = system_supports_sve(); 390 break; 391 case KVM_CAP_ARM_PTRAUTH_ADDRESS: 392 case KVM_CAP_ARM_PTRAUTH_GENERIC: 393 r = kvm_has_full_ptr_auth(); 394 break; 395 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE: 396 if (kvm) 397 r = kvm->arch.mmu.split_page_chunk_size; 398 else 399 r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT; 400 break; 401 case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES: 402 r = kvm_supported_block_sizes(); 403 break; 404 case KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES: 405 r = BIT(0); 406 break; 407 default: 408 r = 0; 409 } 410 411 return r; 412 } 413 414 long kvm_arch_dev_ioctl(struct file *filp, 415 unsigned int ioctl, unsigned long arg) 416 { 417 return -EINVAL; 418 } 419 420 struct kvm *kvm_arch_alloc_vm(void) 421 { 422 size_t sz = sizeof(struct kvm); 423 424 if (!has_vhe()) 425 return kzalloc(sz, GFP_KERNEL_ACCOUNT); 426 427 return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO); 428 } 429 430 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 431 { 432 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) 433 return -EBUSY; 434 435 if (id >= kvm->max_vcpus) 436 return -EINVAL; 437 438 return 0; 439 } 440 441 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 442 { 443 int err; 444 445 spin_lock_init(&vcpu->arch.mp_state_lock); 446 447 #ifdef CONFIG_LOCKDEP 448 /* Inform lockdep that the config_lock is acquired after vcpu->mutex */ 449 mutex_lock(&vcpu->mutex); 450 mutex_lock(&vcpu->kvm->arch.config_lock); 451 mutex_unlock(&vcpu->kvm->arch.config_lock); 452 mutex_unlock(&vcpu->mutex); 453 #endif 454 455 /* Force users to call KVM_ARM_VCPU_INIT */ 456 vcpu_clear_flag(vcpu, VCPU_INITIALIZED); 457 458 vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO; 459 460 /* Set up the timer */ 461 kvm_timer_vcpu_init(vcpu); 462 463 kvm_pmu_vcpu_init(vcpu); 464 465 kvm_arm_reset_debug_ptr(vcpu); 466 467 kvm_arm_pvtime_vcpu_init(&vcpu->arch); 468 469 vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu; 470 471 /* 472 * This vCPU may have been created after mpidr_data was initialized. 473 * Throw out the pre-computed mappings if that is the case which forces 474 * KVM to fall back to iteratively searching the vCPUs. 475 */ 476 kvm_destroy_mpidr_data(vcpu->kvm); 477 478 err = kvm_vgic_vcpu_init(vcpu); 479 if (err) 480 return err; 481 482 return kvm_share_hyp(vcpu, vcpu + 1); 483 } 484 485 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 486 { 487 } 488 489 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 490 { 491 if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm))) 492 static_branch_dec(&userspace_irqchip_in_use); 493 494 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); 495 kvm_timer_vcpu_terminate(vcpu); 496 kvm_pmu_vcpu_destroy(vcpu); 497 kvm_vgic_vcpu_destroy(vcpu); 498 kvm_arm_vcpu_destroy(vcpu); 499 } 500 501 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 502 { 503 504 } 505 506 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 507 { 508 509 } 510 511 static void vcpu_set_pauth_traps(struct kvm_vcpu *vcpu) 512 { 513 if (vcpu_has_ptrauth(vcpu)) { 514 /* 515 * Either we're running running an L2 guest, and the API/APK 516 * bits come from L1's HCR_EL2, or API/APK are both set. 517 */ 518 if (unlikely(vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu))) { 519 u64 val; 520 521 val = __vcpu_sys_reg(vcpu, HCR_EL2); 522 val &= (HCR_API | HCR_APK); 523 vcpu->arch.hcr_el2 &= ~(HCR_API | HCR_APK); 524 vcpu->arch.hcr_el2 |= val; 525 } else { 526 vcpu->arch.hcr_el2 |= (HCR_API | HCR_APK); 527 } 528 529 /* 530 * Save the host keys if there is any chance for the guest 531 * to use pauth, as the entry code will reload the guest 532 * keys in that case. 533 * Protected mode is the exception to that rule, as the 534 * entry into the EL2 code eagerly switch back and forth 535 * between host and hyp keys (and kvm_hyp_ctxt is out of 536 * reach anyway). 537 */ 538 if (is_protected_kvm_enabled()) 539 return; 540 541 if (vcpu->arch.hcr_el2 & (HCR_API | HCR_APK)) { 542 struct kvm_cpu_context *ctxt; 543 ctxt = this_cpu_ptr_hyp_sym(kvm_hyp_ctxt); 544 ptrauth_save_keys(ctxt); 545 } 546 } 547 } 548 549 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 550 { 551 struct kvm_s2_mmu *mmu; 552 int *last_ran; 553 554 mmu = vcpu->arch.hw_mmu; 555 last_ran = this_cpu_ptr(mmu->last_vcpu_ran); 556 557 /* 558 * We guarantee that both TLBs and I-cache are private to each 559 * vcpu. If detecting that a vcpu from the same VM has 560 * previously run on the same physical CPU, call into the 561 * hypervisor code to nuke the relevant contexts. 562 * 563 * We might get preempted before the vCPU actually runs, but 564 * over-invalidation doesn't affect correctness. 565 */ 566 if (*last_ran != vcpu->vcpu_idx) { 567 kvm_call_hyp(__kvm_flush_cpu_context, mmu); 568 *last_ran = vcpu->vcpu_idx; 569 } 570 571 vcpu->cpu = cpu; 572 573 kvm_vgic_load(vcpu); 574 kvm_timer_vcpu_load(vcpu); 575 if (has_vhe()) 576 kvm_vcpu_load_vhe(vcpu); 577 kvm_arch_vcpu_load_fp(vcpu); 578 kvm_vcpu_pmu_restore_guest(vcpu); 579 if (kvm_arm_is_pvtime_enabled(&vcpu->arch)) 580 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu); 581 582 if (single_task_running()) 583 vcpu_clear_wfx_traps(vcpu); 584 else 585 vcpu_set_wfx_traps(vcpu); 586 587 vcpu_set_pauth_traps(vcpu); 588 589 kvm_arch_vcpu_load_debug_state_flags(vcpu); 590 591 if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus)) 592 vcpu_set_on_unsupported_cpu(vcpu); 593 } 594 595 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 596 { 597 kvm_arch_vcpu_put_debug_state_flags(vcpu); 598 kvm_arch_vcpu_put_fp(vcpu); 599 if (has_vhe()) 600 kvm_vcpu_put_vhe(vcpu); 601 kvm_timer_vcpu_put(vcpu); 602 kvm_vgic_put(vcpu); 603 kvm_vcpu_pmu_restore_host(vcpu); 604 kvm_arm_vmid_clear_active(); 605 606 vcpu_clear_on_unsupported_cpu(vcpu); 607 vcpu->cpu = -1; 608 } 609 610 static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu) 611 { 612 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED); 613 kvm_make_request(KVM_REQ_SLEEP, vcpu); 614 kvm_vcpu_kick(vcpu); 615 } 616 617 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu) 618 { 619 spin_lock(&vcpu->arch.mp_state_lock); 620 __kvm_arm_vcpu_power_off(vcpu); 621 spin_unlock(&vcpu->arch.mp_state_lock); 622 } 623 624 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu) 625 { 626 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED; 627 } 628 629 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu) 630 { 631 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED); 632 kvm_make_request(KVM_REQ_SUSPEND, vcpu); 633 kvm_vcpu_kick(vcpu); 634 } 635 636 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu) 637 { 638 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED; 639 } 640 641 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 642 struct kvm_mp_state *mp_state) 643 { 644 *mp_state = READ_ONCE(vcpu->arch.mp_state); 645 646 return 0; 647 } 648 649 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 650 struct kvm_mp_state *mp_state) 651 { 652 int ret = 0; 653 654 spin_lock(&vcpu->arch.mp_state_lock); 655 656 switch (mp_state->mp_state) { 657 case KVM_MP_STATE_RUNNABLE: 658 WRITE_ONCE(vcpu->arch.mp_state, *mp_state); 659 break; 660 case KVM_MP_STATE_STOPPED: 661 __kvm_arm_vcpu_power_off(vcpu); 662 break; 663 case KVM_MP_STATE_SUSPENDED: 664 kvm_arm_vcpu_suspend(vcpu); 665 break; 666 default: 667 ret = -EINVAL; 668 } 669 670 spin_unlock(&vcpu->arch.mp_state_lock); 671 672 return ret; 673 } 674 675 /** 676 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled 677 * @v: The VCPU pointer 678 * 679 * If the guest CPU is not waiting for interrupts or an interrupt line is 680 * asserted, the CPU is by definition runnable. 681 */ 682 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 683 { 684 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF); 685 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v)) 686 && !kvm_arm_vcpu_stopped(v) && !v->arch.pause); 687 } 688 689 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 690 { 691 return vcpu_mode_priv(vcpu); 692 } 693 694 #ifdef CONFIG_GUEST_PERF_EVENTS 695 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 696 { 697 return *vcpu_pc(vcpu); 698 } 699 #endif 700 701 static void kvm_init_mpidr_data(struct kvm *kvm) 702 { 703 struct kvm_mpidr_data *data = NULL; 704 unsigned long c, mask, nr_entries; 705 u64 aff_set = 0, aff_clr = ~0UL; 706 struct kvm_vcpu *vcpu; 707 708 mutex_lock(&kvm->arch.config_lock); 709 710 if (rcu_access_pointer(kvm->arch.mpidr_data) || 711 atomic_read(&kvm->online_vcpus) == 1) 712 goto out; 713 714 kvm_for_each_vcpu(c, vcpu, kvm) { 715 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu); 716 aff_set |= aff; 717 aff_clr &= aff; 718 } 719 720 /* 721 * A significant bit can be either 0 or 1, and will only appear in 722 * aff_set. Use aff_clr to weed out the useless stuff. 723 */ 724 mask = aff_set ^ aff_clr; 725 nr_entries = BIT_ULL(hweight_long(mask)); 726 727 /* 728 * Don't let userspace fool us. If we need more than a single page 729 * to describe the compressed MPIDR array, just fall back to the 730 * iterative method. Single vcpu VMs do not need this either. 731 */ 732 if (struct_size(data, cmpidr_to_idx, nr_entries) <= PAGE_SIZE) 733 data = kzalloc(struct_size(data, cmpidr_to_idx, nr_entries), 734 GFP_KERNEL_ACCOUNT); 735 736 if (!data) 737 goto out; 738 739 data->mpidr_mask = mask; 740 741 kvm_for_each_vcpu(c, vcpu, kvm) { 742 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu); 743 u16 index = kvm_mpidr_index(data, aff); 744 745 data->cmpidr_to_idx[index] = c; 746 } 747 748 rcu_assign_pointer(kvm->arch.mpidr_data, data); 749 out: 750 mutex_unlock(&kvm->arch.config_lock); 751 } 752 753 /* 754 * Handle both the initialisation that is being done when the vcpu is 755 * run for the first time, as well as the updates that must be 756 * performed each time we get a new thread dealing with this vcpu. 757 */ 758 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 759 { 760 struct kvm *kvm = vcpu->kvm; 761 int ret; 762 763 if (!kvm_vcpu_initialized(vcpu)) 764 return -ENOEXEC; 765 766 if (!kvm_arm_vcpu_is_finalized(vcpu)) 767 return -EPERM; 768 769 ret = kvm_arch_vcpu_run_map_fp(vcpu); 770 if (ret) 771 return ret; 772 773 if (likely(vcpu_has_run_once(vcpu))) 774 return 0; 775 776 kvm_init_mpidr_data(kvm); 777 778 kvm_arm_vcpu_init_debug(vcpu); 779 780 if (likely(irqchip_in_kernel(kvm))) { 781 /* 782 * Map the VGIC hardware resources before running a vcpu the 783 * first time on this VM. 784 */ 785 ret = kvm_vgic_map_resources(kvm); 786 if (ret) 787 return ret; 788 } 789 790 if (vcpu_has_nv(vcpu)) { 791 ret = kvm_init_nv_sysregs(vcpu->kvm); 792 if (ret) 793 return ret; 794 } 795 796 /* 797 * This needs to happen after NV has imposed its own restrictions on 798 * the feature set 799 */ 800 kvm_init_sysreg(vcpu); 801 802 ret = kvm_timer_enable(vcpu); 803 if (ret) 804 return ret; 805 806 ret = kvm_arm_pmu_v3_enable(vcpu); 807 if (ret) 808 return ret; 809 810 if (is_protected_kvm_enabled()) { 811 ret = pkvm_create_hyp_vm(kvm); 812 if (ret) 813 return ret; 814 } 815 816 if (!irqchip_in_kernel(kvm)) { 817 /* 818 * Tell the rest of the code that there are userspace irqchip 819 * VMs in the wild. 820 */ 821 static_branch_inc(&userspace_irqchip_in_use); 822 } 823 824 /* 825 * Initialize traps for protected VMs. 826 * NOTE: Move to run in EL2 directly, rather than via a hypercall, once 827 * the code is in place for first run initialization at EL2. 828 */ 829 if (kvm_vm_is_protected(kvm)) 830 kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu); 831 832 mutex_lock(&kvm->arch.config_lock); 833 set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags); 834 mutex_unlock(&kvm->arch.config_lock); 835 836 return ret; 837 } 838 839 bool kvm_arch_intc_initialized(struct kvm *kvm) 840 { 841 return vgic_initialized(kvm); 842 } 843 844 void kvm_arm_halt_guest(struct kvm *kvm) 845 { 846 unsigned long i; 847 struct kvm_vcpu *vcpu; 848 849 kvm_for_each_vcpu(i, vcpu, kvm) 850 vcpu->arch.pause = true; 851 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP); 852 } 853 854 void kvm_arm_resume_guest(struct kvm *kvm) 855 { 856 unsigned long i; 857 struct kvm_vcpu *vcpu; 858 859 kvm_for_each_vcpu(i, vcpu, kvm) { 860 vcpu->arch.pause = false; 861 __kvm_vcpu_wake_up(vcpu); 862 } 863 } 864 865 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu) 866 { 867 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 868 869 rcuwait_wait_event(wait, 870 (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause), 871 TASK_INTERRUPTIBLE); 872 873 if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) { 874 /* Awaken to handle a signal, request we sleep again later. */ 875 kvm_make_request(KVM_REQ_SLEEP, vcpu); 876 } 877 878 /* 879 * Make sure we will observe a potential reset request if we've 880 * observed a change to the power state. Pairs with the smp_wmb() in 881 * kvm_psci_vcpu_on(). 882 */ 883 smp_rmb(); 884 } 885 886 /** 887 * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior 888 * @vcpu: The VCPU pointer 889 * 890 * Suspend execution of a vCPU until a valid wake event is detected, i.e. until 891 * the vCPU is runnable. The vCPU may or may not be scheduled out, depending 892 * on when a wake event arrives, e.g. there may already be a pending wake event. 893 */ 894 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu) 895 { 896 /* 897 * Sync back the state of the GIC CPU interface so that we have 898 * the latest PMR and group enables. This ensures that 899 * kvm_arch_vcpu_runnable has up-to-date data to decide whether 900 * we have pending interrupts, e.g. when determining if the 901 * vCPU should block. 902 * 903 * For the same reason, we want to tell GICv4 that we need 904 * doorbells to be signalled, should an interrupt become pending. 905 */ 906 preempt_disable(); 907 vcpu_set_flag(vcpu, IN_WFI); 908 kvm_vgic_put(vcpu); 909 preempt_enable(); 910 911 kvm_vcpu_halt(vcpu); 912 vcpu_clear_flag(vcpu, IN_WFIT); 913 914 preempt_disable(); 915 vcpu_clear_flag(vcpu, IN_WFI); 916 kvm_vgic_load(vcpu); 917 preempt_enable(); 918 } 919 920 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu) 921 { 922 if (!kvm_arm_vcpu_suspended(vcpu)) 923 return 1; 924 925 kvm_vcpu_wfi(vcpu); 926 927 /* 928 * The suspend state is sticky; we do not leave it until userspace 929 * explicitly marks the vCPU as runnable. Request that we suspend again 930 * later. 931 */ 932 kvm_make_request(KVM_REQ_SUSPEND, vcpu); 933 934 /* 935 * Check to make sure the vCPU is actually runnable. If so, exit to 936 * userspace informing it of the wakeup condition. 937 */ 938 if (kvm_arch_vcpu_runnable(vcpu)) { 939 memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event)); 940 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP; 941 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 942 return 0; 943 } 944 945 /* 946 * Otherwise, we were unblocked to process a different event, such as a 947 * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to 948 * process the event. 949 */ 950 return 1; 951 } 952 953 /** 954 * check_vcpu_requests - check and handle pending vCPU requests 955 * @vcpu: the VCPU pointer 956 * 957 * Return: 1 if we should enter the guest 958 * 0 if we should exit to userspace 959 * < 0 if we should exit to userspace, where the return value indicates 960 * an error 961 */ 962 static int check_vcpu_requests(struct kvm_vcpu *vcpu) 963 { 964 if (kvm_request_pending(vcpu)) { 965 if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) 966 kvm_vcpu_sleep(vcpu); 967 968 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) 969 kvm_reset_vcpu(vcpu); 970 971 /* 972 * Clear IRQ_PENDING requests that were made to guarantee 973 * that a VCPU sees new virtual interrupts. 974 */ 975 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu); 976 977 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu)) 978 kvm_update_stolen_time(vcpu); 979 980 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) { 981 /* The distributor enable bits were changed */ 982 preempt_disable(); 983 vgic_v4_put(vcpu); 984 vgic_v4_load(vcpu); 985 preempt_enable(); 986 } 987 988 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu)) 989 kvm_vcpu_reload_pmu(vcpu); 990 991 if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu)) 992 kvm_vcpu_pmu_restore_guest(vcpu); 993 994 if (kvm_check_request(KVM_REQ_SUSPEND, vcpu)) 995 return kvm_vcpu_suspend(vcpu); 996 997 if (kvm_dirty_ring_check_request(vcpu)) 998 return 0; 999 } 1000 1001 return 1; 1002 } 1003 1004 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu) 1005 { 1006 if (likely(!vcpu_mode_is_32bit(vcpu))) 1007 return false; 1008 1009 if (vcpu_has_nv(vcpu)) 1010 return true; 1011 1012 return !kvm_supports_32bit_el0(); 1013 } 1014 1015 /** 1016 * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest 1017 * @vcpu: The VCPU pointer 1018 * @ret: Pointer to write optional return code 1019 * 1020 * Returns: true if the VCPU needs to return to a preemptible + interruptible 1021 * and skip guest entry. 1022 * 1023 * This function disambiguates between two different types of exits: exits to a 1024 * preemptible + interruptible kernel context and exits to userspace. For an 1025 * exit to userspace, this function will write the return code to ret and return 1026 * true. For an exit to preemptible + interruptible kernel context (i.e. check 1027 * for pending work and re-enter), return true without writing to ret. 1028 */ 1029 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret) 1030 { 1031 struct kvm_run *run = vcpu->run; 1032 1033 /* 1034 * If we're using a userspace irqchip, then check if we need 1035 * to tell a userspace irqchip about timer or PMU level 1036 * changes and if so, exit to userspace (the actual level 1037 * state gets updated in kvm_timer_update_run and 1038 * kvm_pmu_update_run below). 1039 */ 1040 if (static_branch_unlikely(&userspace_irqchip_in_use)) { 1041 if (kvm_timer_should_notify_user(vcpu) || 1042 kvm_pmu_should_notify_user(vcpu)) { 1043 *ret = -EINTR; 1044 run->exit_reason = KVM_EXIT_INTR; 1045 return true; 1046 } 1047 } 1048 1049 if (unlikely(vcpu_on_unsupported_cpu(vcpu))) { 1050 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 1051 run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED; 1052 run->fail_entry.cpu = smp_processor_id(); 1053 *ret = 0; 1054 return true; 1055 } 1056 1057 return kvm_request_pending(vcpu) || 1058 xfer_to_guest_mode_work_pending(); 1059 } 1060 1061 /* 1062 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while 1063 * the vCPU is running. 1064 * 1065 * This must be noinstr as instrumentation may make use of RCU, and this is not 1066 * safe during the EQS. 1067 */ 1068 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu) 1069 { 1070 int ret; 1071 1072 guest_state_enter_irqoff(); 1073 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu); 1074 guest_state_exit_irqoff(); 1075 1076 return ret; 1077 } 1078 1079 /** 1080 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code 1081 * @vcpu: The VCPU pointer 1082 * 1083 * This function is called through the VCPU_RUN ioctl called from user space. It 1084 * will execute VM code in a loop until the time slice for the process is used 1085 * or some emulation is needed from user space in which case the function will 1086 * return with return value 0 and with the kvm_run structure filled in with the 1087 * required data for the requested emulation. 1088 */ 1089 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 1090 { 1091 struct kvm_run *run = vcpu->run; 1092 int ret; 1093 1094 if (run->exit_reason == KVM_EXIT_MMIO) { 1095 ret = kvm_handle_mmio_return(vcpu); 1096 if (ret <= 0) 1097 return ret; 1098 } 1099 1100 vcpu_load(vcpu); 1101 1102 if (run->immediate_exit) { 1103 ret = -EINTR; 1104 goto out; 1105 } 1106 1107 kvm_sigset_activate(vcpu); 1108 1109 ret = 1; 1110 run->exit_reason = KVM_EXIT_UNKNOWN; 1111 run->flags = 0; 1112 while (ret > 0) { 1113 /* 1114 * Check conditions before entering the guest 1115 */ 1116 ret = xfer_to_guest_mode_handle_work(vcpu); 1117 if (!ret) 1118 ret = 1; 1119 1120 if (ret > 0) 1121 ret = check_vcpu_requests(vcpu); 1122 1123 /* 1124 * Preparing the interrupts to be injected also 1125 * involves poking the GIC, which must be done in a 1126 * non-preemptible context. 1127 */ 1128 preempt_disable(); 1129 1130 /* 1131 * The VMID allocator only tracks active VMIDs per 1132 * physical CPU, and therefore the VMID allocated may not be 1133 * preserved on VMID roll-over if the task was preempted, 1134 * making a thread's VMID inactive. So we need to call 1135 * kvm_arm_vmid_update() in non-premptible context. 1136 */ 1137 if (kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid) && 1138 has_vhe()) 1139 __load_stage2(vcpu->arch.hw_mmu, 1140 vcpu->arch.hw_mmu->arch); 1141 1142 kvm_pmu_flush_hwstate(vcpu); 1143 1144 local_irq_disable(); 1145 1146 kvm_vgic_flush_hwstate(vcpu); 1147 1148 kvm_pmu_update_vcpu_events(vcpu); 1149 1150 /* 1151 * Ensure we set mode to IN_GUEST_MODE after we disable 1152 * interrupts and before the final VCPU requests check. 1153 * See the comment in kvm_vcpu_exiting_guest_mode() and 1154 * Documentation/virt/kvm/vcpu-requests.rst 1155 */ 1156 smp_store_mb(vcpu->mode, IN_GUEST_MODE); 1157 1158 if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) { 1159 vcpu->mode = OUTSIDE_GUEST_MODE; 1160 isb(); /* Ensure work in x_flush_hwstate is committed */ 1161 kvm_pmu_sync_hwstate(vcpu); 1162 if (static_branch_unlikely(&userspace_irqchip_in_use)) 1163 kvm_timer_sync_user(vcpu); 1164 kvm_vgic_sync_hwstate(vcpu); 1165 local_irq_enable(); 1166 preempt_enable(); 1167 continue; 1168 } 1169 1170 kvm_arm_setup_debug(vcpu); 1171 kvm_arch_vcpu_ctxflush_fp(vcpu); 1172 1173 /************************************************************** 1174 * Enter the guest 1175 */ 1176 trace_kvm_entry(*vcpu_pc(vcpu)); 1177 guest_timing_enter_irqoff(); 1178 1179 ret = kvm_arm_vcpu_enter_exit(vcpu); 1180 1181 vcpu->mode = OUTSIDE_GUEST_MODE; 1182 vcpu->stat.exits++; 1183 /* 1184 * Back from guest 1185 *************************************************************/ 1186 1187 kvm_arm_clear_debug(vcpu); 1188 1189 /* 1190 * We must sync the PMU state before the vgic state so 1191 * that the vgic can properly sample the updated state of the 1192 * interrupt line. 1193 */ 1194 kvm_pmu_sync_hwstate(vcpu); 1195 1196 /* 1197 * Sync the vgic state before syncing the timer state because 1198 * the timer code needs to know if the virtual timer 1199 * interrupts are active. 1200 */ 1201 kvm_vgic_sync_hwstate(vcpu); 1202 1203 /* 1204 * Sync the timer hardware state before enabling interrupts as 1205 * we don't want vtimer interrupts to race with syncing the 1206 * timer virtual interrupt state. 1207 */ 1208 if (static_branch_unlikely(&userspace_irqchip_in_use)) 1209 kvm_timer_sync_user(vcpu); 1210 1211 kvm_arch_vcpu_ctxsync_fp(vcpu); 1212 1213 /* 1214 * We must ensure that any pending interrupts are taken before 1215 * we exit guest timing so that timer ticks are accounted as 1216 * guest time. Transiently unmask interrupts so that any 1217 * pending interrupts are taken. 1218 * 1219 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other 1220 * context synchronization event) is necessary to ensure that 1221 * pending interrupts are taken. 1222 */ 1223 if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) { 1224 local_irq_enable(); 1225 isb(); 1226 local_irq_disable(); 1227 } 1228 1229 guest_timing_exit_irqoff(); 1230 1231 local_irq_enable(); 1232 1233 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu)); 1234 1235 /* Exit types that need handling before we can be preempted */ 1236 handle_exit_early(vcpu, ret); 1237 1238 preempt_enable(); 1239 1240 /* 1241 * The ARMv8 architecture doesn't give the hypervisor 1242 * a mechanism to prevent a guest from dropping to AArch32 EL0 1243 * if implemented by the CPU. If we spot the guest in such 1244 * state and that we decided it wasn't supposed to do so (like 1245 * with the asymmetric AArch32 case), return to userspace with 1246 * a fatal error. 1247 */ 1248 if (vcpu_mode_is_bad_32bit(vcpu)) { 1249 /* 1250 * As we have caught the guest red-handed, decide that 1251 * it isn't fit for purpose anymore by making the vcpu 1252 * invalid. The VMM can try and fix it by issuing a 1253 * KVM_ARM_VCPU_INIT if it really wants to. 1254 */ 1255 vcpu_clear_flag(vcpu, VCPU_INITIALIZED); 1256 ret = ARM_EXCEPTION_IL; 1257 } 1258 1259 ret = handle_exit(vcpu, ret); 1260 } 1261 1262 /* Tell userspace about in-kernel device output levels */ 1263 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) { 1264 kvm_timer_update_run(vcpu); 1265 kvm_pmu_update_run(vcpu); 1266 } 1267 1268 kvm_sigset_deactivate(vcpu); 1269 1270 out: 1271 /* 1272 * In the unlikely event that we are returning to userspace 1273 * with pending exceptions or PC adjustment, commit these 1274 * adjustments in order to give userspace a consistent view of 1275 * the vcpu state. Note that this relies on __kvm_adjust_pc() 1276 * being preempt-safe on VHE. 1277 */ 1278 if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) || 1279 vcpu_get_flag(vcpu, INCREMENT_PC))) 1280 kvm_call_hyp(__kvm_adjust_pc, vcpu); 1281 1282 vcpu_put(vcpu); 1283 return ret; 1284 } 1285 1286 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level) 1287 { 1288 int bit_index; 1289 bool set; 1290 unsigned long *hcr; 1291 1292 if (number == KVM_ARM_IRQ_CPU_IRQ) 1293 bit_index = __ffs(HCR_VI); 1294 else /* KVM_ARM_IRQ_CPU_FIQ */ 1295 bit_index = __ffs(HCR_VF); 1296 1297 hcr = vcpu_hcr(vcpu); 1298 if (level) 1299 set = test_and_set_bit(bit_index, hcr); 1300 else 1301 set = test_and_clear_bit(bit_index, hcr); 1302 1303 /* 1304 * If we didn't change anything, no need to wake up or kick other CPUs 1305 */ 1306 if (set == level) 1307 return 0; 1308 1309 /* 1310 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and 1311 * trigger a world-switch round on the running physical CPU to set the 1312 * virtual IRQ/FIQ fields in the HCR appropriately. 1313 */ 1314 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); 1315 kvm_vcpu_kick(vcpu); 1316 1317 return 0; 1318 } 1319 1320 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1321 bool line_status) 1322 { 1323 u32 irq = irq_level->irq; 1324 unsigned int irq_type, vcpu_id, irq_num; 1325 struct kvm_vcpu *vcpu = NULL; 1326 bool level = irq_level->level; 1327 1328 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK; 1329 vcpu_id = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK; 1330 vcpu_id += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1); 1331 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK; 1332 1333 trace_kvm_irq_line(irq_type, vcpu_id, irq_num, irq_level->level); 1334 1335 switch (irq_type) { 1336 case KVM_ARM_IRQ_TYPE_CPU: 1337 if (irqchip_in_kernel(kvm)) 1338 return -ENXIO; 1339 1340 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); 1341 if (!vcpu) 1342 return -EINVAL; 1343 1344 if (irq_num > KVM_ARM_IRQ_CPU_FIQ) 1345 return -EINVAL; 1346 1347 return vcpu_interrupt_line(vcpu, irq_num, level); 1348 case KVM_ARM_IRQ_TYPE_PPI: 1349 if (!irqchip_in_kernel(kvm)) 1350 return -ENXIO; 1351 1352 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); 1353 if (!vcpu) 1354 return -EINVAL; 1355 1356 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS) 1357 return -EINVAL; 1358 1359 return kvm_vgic_inject_irq(kvm, vcpu, irq_num, level, NULL); 1360 case KVM_ARM_IRQ_TYPE_SPI: 1361 if (!irqchip_in_kernel(kvm)) 1362 return -ENXIO; 1363 1364 if (irq_num < VGIC_NR_PRIVATE_IRQS) 1365 return -EINVAL; 1366 1367 return kvm_vgic_inject_irq(kvm, NULL, irq_num, level, NULL); 1368 } 1369 1370 return -EINVAL; 1371 } 1372 1373 static unsigned long system_supported_vcpu_features(void) 1374 { 1375 unsigned long features = KVM_VCPU_VALID_FEATURES; 1376 1377 if (!cpus_have_final_cap(ARM64_HAS_32BIT_EL1)) 1378 clear_bit(KVM_ARM_VCPU_EL1_32BIT, &features); 1379 1380 if (!kvm_arm_support_pmu_v3()) 1381 clear_bit(KVM_ARM_VCPU_PMU_V3, &features); 1382 1383 if (!system_supports_sve()) 1384 clear_bit(KVM_ARM_VCPU_SVE, &features); 1385 1386 if (!kvm_has_full_ptr_auth()) { 1387 clear_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features); 1388 clear_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features); 1389 } 1390 1391 if (!cpus_have_final_cap(ARM64_HAS_NESTED_VIRT)) 1392 clear_bit(KVM_ARM_VCPU_HAS_EL2, &features); 1393 1394 return features; 1395 } 1396 1397 static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu, 1398 const struct kvm_vcpu_init *init) 1399 { 1400 unsigned long features = init->features[0]; 1401 int i; 1402 1403 if (features & ~KVM_VCPU_VALID_FEATURES) 1404 return -ENOENT; 1405 1406 for (i = 1; i < ARRAY_SIZE(init->features); i++) { 1407 if (init->features[i]) 1408 return -ENOENT; 1409 } 1410 1411 if (features & ~system_supported_vcpu_features()) 1412 return -EINVAL; 1413 1414 /* 1415 * For now make sure that both address/generic pointer authentication 1416 * features are requested by the userspace together. 1417 */ 1418 if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features) != 1419 test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features)) 1420 return -EINVAL; 1421 1422 /* Disallow NV+SVE for the time being */ 1423 if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features) && 1424 test_bit(KVM_ARM_VCPU_SVE, &features)) 1425 return -EINVAL; 1426 1427 if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features)) 1428 return 0; 1429 1430 /* MTE is incompatible with AArch32 */ 1431 if (kvm_has_mte(vcpu->kvm)) 1432 return -EINVAL; 1433 1434 /* NV is incompatible with AArch32 */ 1435 if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features)) 1436 return -EINVAL; 1437 1438 return 0; 1439 } 1440 1441 static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu, 1442 const struct kvm_vcpu_init *init) 1443 { 1444 unsigned long features = init->features[0]; 1445 1446 return !bitmap_equal(vcpu->kvm->arch.vcpu_features, &features, 1447 KVM_VCPU_MAX_FEATURES); 1448 } 1449 1450 static int kvm_setup_vcpu(struct kvm_vcpu *vcpu) 1451 { 1452 struct kvm *kvm = vcpu->kvm; 1453 int ret = 0; 1454 1455 /* 1456 * When the vCPU has a PMU, but no PMU is set for the guest 1457 * yet, set the default one. 1458 */ 1459 if (kvm_vcpu_has_pmu(vcpu) && !kvm->arch.arm_pmu) 1460 ret = kvm_arm_set_default_pmu(kvm); 1461 1462 return ret; 1463 } 1464 1465 static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu, 1466 const struct kvm_vcpu_init *init) 1467 { 1468 unsigned long features = init->features[0]; 1469 struct kvm *kvm = vcpu->kvm; 1470 int ret = -EINVAL; 1471 1472 mutex_lock(&kvm->arch.config_lock); 1473 1474 if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) && 1475 kvm_vcpu_init_changed(vcpu, init)) 1476 goto out_unlock; 1477 1478 bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES); 1479 1480 ret = kvm_setup_vcpu(vcpu); 1481 if (ret) 1482 goto out_unlock; 1483 1484 /* Now we know what it is, we can reset it. */ 1485 kvm_reset_vcpu(vcpu); 1486 1487 set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags); 1488 vcpu_set_flag(vcpu, VCPU_INITIALIZED); 1489 ret = 0; 1490 out_unlock: 1491 mutex_unlock(&kvm->arch.config_lock); 1492 return ret; 1493 } 1494 1495 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu, 1496 const struct kvm_vcpu_init *init) 1497 { 1498 int ret; 1499 1500 if (init->target != KVM_ARM_TARGET_GENERIC_V8 && 1501 init->target != kvm_target_cpu()) 1502 return -EINVAL; 1503 1504 ret = kvm_vcpu_init_check_features(vcpu, init); 1505 if (ret) 1506 return ret; 1507 1508 if (!kvm_vcpu_initialized(vcpu)) 1509 return __kvm_vcpu_set_target(vcpu, init); 1510 1511 if (kvm_vcpu_init_changed(vcpu, init)) 1512 return -EINVAL; 1513 1514 kvm_reset_vcpu(vcpu); 1515 return 0; 1516 } 1517 1518 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu, 1519 struct kvm_vcpu_init *init) 1520 { 1521 bool power_off = false; 1522 int ret; 1523 1524 /* 1525 * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid 1526 * reflecting it in the finalized feature set, thus limiting its scope 1527 * to a single KVM_ARM_VCPU_INIT call. 1528 */ 1529 if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) { 1530 init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF); 1531 power_off = true; 1532 } 1533 1534 ret = kvm_vcpu_set_target(vcpu, init); 1535 if (ret) 1536 return ret; 1537 1538 /* 1539 * Ensure a rebooted VM will fault in RAM pages and detect if the 1540 * guest MMU is turned off and flush the caches as needed. 1541 * 1542 * S2FWB enforces all memory accesses to RAM being cacheable, 1543 * ensuring that the data side is always coherent. We still 1544 * need to invalidate the I-cache though, as FWB does *not* 1545 * imply CTR_EL0.DIC. 1546 */ 1547 if (vcpu_has_run_once(vcpu)) { 1548 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) 1549 stage2_unmap_vm(vcpu->kvm); 1550 else 1551 icache_inval_all_pou(); 1552 } 1553 1554 vcpu_reset_hcr(vcpu); 1555 vcpu->arch.cptr_el2 = kvm_get_reset_cptr_el2(vcpu); 1556 1557 /* 1558 * Handle the "start in power-off" case. 1559 */ 1560 spin_lock(&vcpu->arch.mp_state_lock); 1561 1562 if (power_off) 1563 __kvm_arm_vcpu_power_off(vcpu); 1564 else 1565 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE); 1566 1567 spin_unlock(&vcpu->arch.mp_state_lock); 1568 1569 return 0; 1570 } 1571 1572 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu, 1573 struct kvm_device_attr *attr) 1574 { 1575 int ret = -ENXIO; 1576 1577 switch (attr->group) { 1578 default: 1579 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr); 1580 break; 1581 } 1582 1583 return ret; 1584 } 1585 1586 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu, 1587 struct kvm_device_attr *attr) 1588 { 1589 int ret = -ENXIO; 1590 1591 switch (attr->group) { 1592 default: 1593 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr); 1594 break; 1595 } 1596 1597 return ret; 1598 } 1599 1600 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu, 1601 struct kvm_device_attr *attr) 1602 { 1603 int ret = -ENXIO; 1604 1605 switch (attr->group) { 1606 default: 1607 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr); 1608 break; 1609 } 1610 1611 return ret; 1612 } 1613 1614 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, 1615 struct kvm_vcpu_events *events) 1616 { 1617 memset(events, 0, sizeof(*events)); 1618 1619 return __kvm_arm_vcpu_get_events(vcpu, events); 1620 } 1621 1622 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, 1623 struct kvm_vcpu_events *events) 1624 { 1625 int i; 1626 1627 /* check whether the reserved field is zero */ 1628 for (i = 0; i < ARRAY_SIZE(events->reserved); i++) 1629 if (events->reserved[i]) 1630 return -EINVAL; 1631 1632 /* check whether the pad field is zero */ 1633 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++) 1634 if (events->exception.pad[i]) 1635 return -EINVAL; 1636 1637 return __kvm_arm_vcpu_set_events(vcpu, events); 1638 } 1639 1640 long kvm_arch_vcpu_ioctl(struct file *filp, 1641 unsigned int ioctl, unsigned long arg) 1642 { 1643 struct kvm_vcpu *vcpu = filp->private_data; 1644 void __user *argp = (void __user *)arg; 1645 struct kvm_device_attr attr; 1646 long r; 1647 1648 switch (ioctl) { 1649 case KVM_ARM_VCPU_INIT: { 1650 struct kvm_vcpu_init init; 1651 1652 r = -EFAULT; 1653 if (copy_from_user(&init, argp, sizeof(init))) 1654 break; 1655 1656 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init); 1657 break; 1658 } 1659 case KVM_SET_ONE_REG: 1660 case KVM_GET_ONE_REG: { 1661 struct kvm_one_reg reg; 1662 1663 r = -ENOEXEC; 1664 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1665 break; 1666 1667 r = -EFAULT; 1668 if (copy_from_user(®, argp, sizeof(reg))) 1669 break; 1670 1671 /* 1672 * We could owe a reset due to PSCI. Handle the pending reset 1673 * here to ensure userspace register accesses are ordered after 1674 * the reset. 1675 */ 1676 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) 1677 kvm_reset_vcpu(vcpu); 1678 1679 if (ioctl == KVM_SET_ONE_REG) 1680 r = kvm_arm_set_reg(vcpu, ®); 1681 else 1682 r = kvm_arm_get_reg(vcpu, ®); 1683 break; 1684 } 1685 case KVM_GET_REG_LIST: { 1686 struct kvm_reg_list __user *user_list = argp; 1687 struct kvm_reg_list reg_list; 1688 unsigned n; 1689 1690 r = -ENOEXEC; 1691 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1692 break; 1693 1694 r = -EPERM; 1695 if (!kvm_arm_vcpu_is_finalized(vcpu)) 1696 break; 1697 1698 r = -EFAULT; 1699 if (copy_from_user(®_list, user_list, sizeof(reg_list))) 1700 break; 1701 n = reg_list.n; 1702 reg_list.n = kvm_arm_num_regs(vcpu); 1703 if (copy_to_user(user_list, ®_list, sizeof(reg_list))) 1704 break; 1705 r = -E2BIG; 1706 if (n < reg_list.n) 1707 break; 1708 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg); 1709 break; 1710 } 1711 case KVM_SET_DEVICE_ATTR: { 1712 r = -EFAULT; 1713 if (copy_from_user(&attr, argp, sizeof(attr))) 1714 break; 1715 r = kvm_arm_vcpu_set_attr(vcpu, &attr); 1716 break; 1717 } 1718 case KVM_GET_DEVICE_ATTR: { 1719 r = -EFAULT; 1720 if (copy_from_user(&attr, argp, sizeof(attr))) 1721 break; 1722 r = kvm_arm_vcpu_get_attr(vcpu, &attr); 1723 break; 1724 } 1725 case KVM_HAS_DEVICE_ATTR: { 1726 r = -EFAULT; 1727 if (copy_from_user(&attr, argp, sizeof(attr))) 1728 break; 1729 r = kvm_arm_vcpu_has_attr(vcpu, &attr); 1730 break; 1731 } 1732 case KVM_GET_VCPU_EVENTS: { 1733 struct kvm_vcpu_events events; 1734 1735 if (kvm_arm_vcpu_get_events(vcpu, &events)) 1736 return -EINVAL; 1737 1738 if (copy_to_user(argp, &events, sizeof(events))) 1739 return -EFAULT; 1740 1741 return 0; 1742 } 1743 case KVM_SET_VCPU_EVENTS: { 1744 struct kvm_vcpu_events events; 1745 1746 if (copy_from_user(&events, argp, sizeof(events))) 1747 return -EFAULT; 1748 1749 return kvm_arm_vcpu_set_events(vcpu, &events); 1750 } 1751 case KVM_ARM_VCPU_FINALIZE: { 1752 int what; 1753 1754 if (!kvm_vcpu_initialized(vcpu)) 1755 return -ENOEXEC; 1756 1757 if (get_user(what, (const int __user *)argp)) 1758 return -EFAULT; 1759 1760 return kvm_arm_vcpu_finalize(vcpu, what); 1761 } 1762 default: 1763 r = -EINVAL; 1764 } 1765 1766 return r; 1767 } 1768 1769 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 1770 { 1771 1772 } 1773 1774 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm, 1775 struct kvm_arm_device_addr *dev_addr) 1776 { 1777 switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) { 1778 case KVM_ARM_DEVICE_VGIC_V2: 1779 if (!vgic_present) 1780 return -ENXIO; 1781 return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr); 1782 default: 1783 return -ENODEV; 1784 } 1785 } 1786 1787 static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1788 { 1789 switch (attr->group) { 1790 case KVM_ARM_VM_SMCCC_CTRL: 1791 return kvm_vm_smccc_has_attr(kvm, attr); 1792 default: 1793 return -ENXIO; 1794 } 1795 } 1796 1797 static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1798 { 1799 switch (attr->group) { 1800 case KVM_ARM_VM_SMCCC_CTRL: 1801 return kvm_vm_smccc_set_attr(kvm, attr); 1802 default: 1803 return -ENXIO; 1804 } 1805 } 1806 1807 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 1808 { 1809 struct kvm *kvm = filp->private_data; 1810 void __user *argp = (void __user *)arg; 1811 struct kvm_device_attr attr; 1812 1813 switch (ioctl) { 1814 case KVM_CREATE_IRQCHIP: { 1815 int ret; 1816 if (!vgic_present) 1817 return -ENXIO; 1818 mutex_lock(&kvm->lock); 1819 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2); 1820 mutex_unlock(&kvm->lock); 1821 return ret; 1822 } 1823 case KVM_ARM_SET_DEVICE_ADDR: { 1824 struct kvm_arm_device_addr dev_addr; 1825 1826 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr))) 1827 return -EFAULT; 1828 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr); 1829 } 1830 case KVM_ARM_PREFERRED_TARGET: { 1831 struct kvm_vcpu_init init = { 1832 .target = KVM_ARM_TARGET_GENERIC_V8, 1833 }; 1834 1835 if (copy_to_user(argp, &init, sizeof(init))) 1836 return -EFAULT; 1837 1838 return 0; 1839 } 1840 case KVM_ARM_MTE_COPY_TAGS: { 1841 struct kvm_arm_copy_mte_tags copy_tags; 1842 1843 if (copy_from_user(©_tags, argp, sizeof(copy_tags))) 1844 return -EFAULT; 1845 return kvm_vm_ioctl_mte_copy_tags(kvm, ©_tags); 1846 } 1847 case KVM_ARM_SET_COUNTER_OFFSET: { 1848 struct kvm_arm_counter_offset offset; 1849 1850 if (copy_from_user(&offset, argp, sizeof(offset))) 1851 return -EFAULT; 1852 return kvm_vm_ioctl_set_counter_offset(kvm, &offset); 1853 } 1854 case KVM_HAS_DEVICE_ATTR: { 1855 if (copy_from_user(&attr, argp, sizeof(attr))) 1856 return -EFAULT; 1857 1858 return kvm_vm_has_attr(kvm, &attr); 1859 } 1860 case KVM_SET_DEVICE_ATTR: { 1861 if (copy_from_user(&attr, argp, sizeof(attr))) 1862 return -EFAULT; 1863 1864 return kvm_vm_set_attr(kvm, &attr); 1865 } 1866 case KVM_ARM_GET_REG_WRITABLE_MASKS: { 1867 struct reg_mask_range range; 1868 1869 if (copy_from_user(&range, argp, sizeof(range))) 1870 return -EFAULT; 1871 return kvm_vm_ioctl_get_reg_writable_masks(kvm, &range); 1872 } 1873 default: 1874 return -EINVAL; 1875 } 1876 } 1877 1878 /* unlocks vcpus from @vcpu_lock_idx and smaller */ 1879 static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx) 1880 { 1881 struct kvm_vcpu *tmp_vcpu; 1882 1883 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) { 1884 tmp_vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx); 1885 mutex_unlock(&tmp_vcpu->mutex); 1886 } 1887 } 1888 1889 void unlock_all_vcpus(struct kvm *kvm) 1890 { 1891 lockdep_assert_held(&kvm->lock); 1892 1893 unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1); 1894 } 1895 1896 /* Returns true if all vcpus were locked, false otherwise */ 1897 bool lock_all_vcpus(struct kvm *kvm) 1898 { 1899 struct kvm_vcpu *tmp_vcpu; 1900 unsigned long c; 1901 1902 lockdep_assert_held(&kvm->lock); 1903 1904 /* 1905 * Any time a vcpu is in an ioctl (including running), the 1906 * core KVM code tries to grab the vcpu->mutex. 1907 * 1908 * By grabbing the vcpu->mutex of all VCPUs we ensure that no 1909 * other VCPUs can fiddle with the state while we access it. 1910 */ 1911 kvm_for_each_vcpu(c, tmp_vcpu, kvm) { 1912 if (!mutex_trylock(&tmp_vcpu->mutex)) { 1913 unlock_vcpus(kvm, c - 1); 1914 return false; 1915 } 1916 } 1917 1918 return true; 1919 } 1920 1921 static unsigned long nvhe_percpu_size(void) 1922 { 1923 return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) - 1924 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start); 1925 } 1926 1927 static unsigned long nvhe_percpu_order(void) 1928 { 1929 unsigned long size = nvhe_percpu_size(); 1930 1931 return size ? get_order(size) : 0; 1932 } 1933 1934 static size_t pkvm_host_sve_state_order(void) 1935 { 1936 return get_order(pkvm_host_sve_state_size()); 1937 } 1938 1939 /* A lookup table holding the hypervisor VA for each vector slot */ 1940 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS]; 1941 1942 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot) 1943 { 1944 hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot); 1945 } 1946 1947 static int kvm_init_vector_slots(void) 1948 { 1949 int err; 1950 void *base; 1951 1952 base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector)); 1953 kvm_init_vector_slot(base, HYP_VECTOR_DIRECT); 1954 1955 base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs)); 1956 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT); 1957 1958 if (kvm_system_needs_idmapped_vectors() && 1959 !is_protected_kvm_enabled()) { 1960 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs), 1961 __BP_HARDEN_HYP_VECS_SZ, &base); 1962 if (err) 1963 return err; 1964 } 1965 1966 kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT); 1967 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT); 1968 return 0; 1969 } 1970 1971 static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits) 1972 { 1973 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu); 1974 u64 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 1975 unsigned long tcr; 1976 1977 /* 1978 * Calculate the raw per-cpu offset without a translation from the 1979 * kernel's mapping to the linear mapping, and store it in tpidr_el2 1980 * so that we can use adr_l to access per-cpu variables in EL2. 1981 * Also drop the KASAN tag which gets in the way... 1982 */ 1983 params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) - 1984 (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start)); 1985 1986 params->mair_el2 = read_sysreg(mair_el1); 1987 1988 tcr = read_sysreg(tcr_el1); 1989 if (cpus_have_final_cap(ARM64_KVM_HVHE)) { 1990 tcr |= TCR_EPD1_MASK; 1991 } else { 1992 tcr &= TCR_EL2_MASK; 1993 tcr |= TCR_EL2_RES1; 1994 } 1995 tcr &= ~TCR_T0SZ_MASK; 1996 tcr |= TCR_T0SZ(hyp_va_bits); 1997 tcr &= ~TCR_EL2_PS_MASK; 1998 tcr |= FIELD_PREP(TCR_EL2_PS_MASK, kvm_get_parange(mmfr0)); 1999 if (kvm_lpa2_is_enabled()) 2000 tcr |= TCR_EL2_DS; 2001 params->tcr_el2 = tcr; 2002 2003 params->pgd_pa = kvm_mmu_get_httbr(); 2004 if (is_protected_kvm_enabled()) 2005 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS; 2006 else 2007 params->hcr_el2 = HCR_HOST_NVHE_FLAGS; 2008 if (cpus_have_final_cap(ARM64_KVM_HVHE)) 2009 params->hcr_el2 |= HCR_E2H; 2010 params->vttbr = params->vtcr = 0; 2011 2012 /* 2013 * Flush the init params from the data cache because the struct will 2014 * be read while the MMU is off. 2015 */ 2016 kvm_flush_dcache_to_poc(params, sizeof(*params)); 2017 } 2018 2019 static void hyp_install_host_vector(void) 2020 { 2021 struct kvm_nvhe_init_params *params; 2022 struct arm_smccc_res res; 2023 2024 /* Switch from the HYP stub to our own HYP init vector */ 2025 __hyp_set_vectors(kvm_get_idmap_vector()); 2026 2027 /* 2028 * Call initialization code, and switch to the full blown HYP code. 2029 * If the cpucaps haven't been finalized yet, something has gone very 2030 * wrong, and hyp will crash and burn when it uses any 2031 * cpus_have_*_cap() wrapper. 2032 */ 2033 BUG_ON(!system_capabilities_finalized()); 2034 params = this_cpu_ptr_nvhe_sym(kvm_init_params); 2035 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res); 2036 WARN_ON(res.a0 != SMCCC_RET_SUCCESS); 2037 } 2038 2039 static void cpu_init_hyp_mode(void) 2040 { 2041 hyp_install_host_vector(); 2042 2043 /* 2044 * Disabling SSBD on a non-VHE system requires us to enable SSBS 2045 * at EL2. 2046 */ 2047 if (this_cpu_has_cap(ARM64_SSBS) && 2048 arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) { 2049 kvm_call_hyp_nvhe(__kvm_enable_ssbs); 2050 } 2051 } 2052 2053 static void cpu_hyp_reset(void) 2054 { 2055 if (!is_kernel_in_hyp_mode()) 2056 __hyp_reset_vectors(); 2057 } 2058 2059 /* 2060 * EL2 vectors can be mapped and rerouted in a number of ways, 2061 * depending on the kernel configuration and CPU present: 2062 * 2063 * - If the CPU is affected by Spectre-v2, the hardening sequence is 2064 * placed in one of the vector slots, which is executed before jumping 2065 * to the real vectors. 2066 * 2067 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot 2068 * containing the hardening sequence is mapped next to the idmap page, 2069 * and executed before jumping to the real vectors. 2070 * 2071 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an 2072 * empty slot is selected, mapped next to the idmap page, and 2073 * executed before jumping to the real vectors. 2074 * 2075 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with 2076 * VHE, as we don't have hypervisor-specific mappings. If the system 2077 * is VHE and yet selects this capability, it will be ignored. 2078 */ 2079 static void cpu_set_hyp_vector(void) 2080 { 2081 struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data); 2082 void *vector = hyp_spectre_vector_selector[data->slot]; 2083 2084 if (!is_protected_kvm_enabled()) 2085 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector; 2086 else 2087 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot); 2088 } 2089 2090 static void cpu_hyp_init_context(void) 2091 { 2092 kvm_init_host_cpu_context(host_data_ptr(host_ctxt)); 2093 2094 if (!is_kernel_in_hyp_mode()) 2095 cpu_init_hyp_mode(); 2096 } 2097 2098 static void cpu_hyp_init_features(void) 2099 { 2100 cpu_set_hyp_vector(); 2101 kvm_arm_init_debug(); 2102 2103 if (is_kernel_in_hyp_mode()) 2104 kvm_timer_init_vhe(); 2105 2106 if (vgic_present) 2107 kvm_vgic_init_cpu_hardware(); 2108 } 2109 2110 static void cpu_hyp_reinit(void) 2111 { 2112 cpu_hyp_reset(); 2113 cpu_hyp_init_context(); 2114 cpu_hyp_init_features(); 2115 } 2116 2117 static void cpu_hyp_init(void *discard) 2118 { 2119 if (!__this_cpu_read(kvm_hyp_initialized)) { 2120 cpu_hyp_reinit(); 2121 __this_cpu_write(kvm_hyp_initialized, 1); 2122 } 2123 } 2124 2125 static void cpu_hyp_uninit(void *discard) 2126 { 2127 if (__this_cpu_read(kvm_hyp_initialized)) { 2128 cpu_hyp_reset(); 2129 __this_cpu_write(kvm_hyp_initialized, 0); 2130 } 2131 } 2132 2133 int kvm_arch_hardware_enable(void) 2134 { 2135 /* 2136 * Most calls to this function are made with migration 2137 * disabled, but not with preemption disabled. The former is 2138 * enough to ensure correctness, but most of the helpers 2139 * expect the later and will throw a tantrum otherwise. 2140 */ 2141 preempt_disable(); 2142 2143 cpu_hyp_init(NULL); 2144 2145 kvm_vgic_cpu_up(); 2146 kvm_timer_cpu_up(); 2147 2148 preempt_enable(); 2149 2150 return 0; 2151 } 2152 2153 void kvm_arch_hardware_disable(void) 2154 { 2155 kvm_timer_cpu_down(); 2156 kvm_vgic_cpu_down(); 2157 2158 if (!is_protected_kvm_enabled()) 2159 cpu_hyp_uninit(NULL); 2160 } 2161 2162 #ifdef CONFIG_CPU_PM 2163 static int hyp_init_cpu_pm_notifier(struct notifier_block *self, 2164 unsigned long cmd, 2165 void *v) 2166 { 2167 /* 2168 * kvm_hyp_initialized is left with its old value over 2169 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should 2170 * re-enable hyp. 2171 */ 2172 switch (cmd) { 2173 case CPU_PM_ENTER: 2174 if (__this_cpu_read(kvm_hyp_initialized)) 2175 /* 2176 * don't update kvm_hyp_initialized here 2177 * so that the hyp will be re-enabled 2178 * when we resume. See below. 2179 */ 2180 cpu_hyp_reset(); 2181 2182 return NOTIFY_OK; 2183 case CPU_PM_ENTER_FAILED: 2184 case CPU_PM_EXIT: 2185 if (__this_cpu_read(kvm_hyp_initialized)) 2186 /* The hyp was enabled before suspend. */ 2187 cpu_hyp_reinit(); 2188 2189 return NOTIFY_OK; 2190 2191 default: 2192 return NOTIFY_DONE; 2193 } 2194 } 2195 2196 static struct notifier_block hyp_init_cpu_pm_nb = { 2197 .notifier_call = hyp_init_cpu_pm_notifier, 2198 }; 2199 2200 static void __init hyp_cpu_pm_init(void) 2201 { 2202 if (!is_protected_kvm_enabled()) 2203 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb); 2204 } 2205 static void __init hyp_cpu_pm_exit(void) 2206 { 2207 if (!is_protected_kvm_enabled()) 2208 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb); 2209 } 2210 #else 2211 static inline void __init hyp_cpu_pm_init(void) 2212 { 2213 } 2214 static inline void __init hyp_cpu_pm_exit(void) 2215 { 2216 } 2217 #endif 2218 2219 static void __init init_cpu_logical_map(void) 2220 { 2221 unsigned int cpu; 2222 2223 /* 2224 * Copy the MPIDR <-> logical CPU ID mapping to hyp. 2225 * Only copy the set of online CPUs whose features have been checked 2226 * against the finalized system capabilities. The hypervisor will not 2227 * allow any other CPUs from the `possible` set to boot. 2228 */ 2229 for_each_online_cpu(cpu) 2230 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu); 2231 } 2232 2233 #define init_psci_0_1_impl_state(config, what) \ 2234 config.psci_0_1_ ## what ## _implemented = psci_ops.what 2235 2236 static bool __init init_psci_relay(void) 2237 { 2238 /* 2239 * If PSCI has not been initialized, protected KVM cannot install 2240 * itself on newly booted CPUs. 2241 */ 2242 if (!psci_ops.get_version) { 2243 kvm_err("Cannot initialize protected mode without PSCI\n"); 2244 return false; 2245 } 2246 2247 kvm_host_psci_config.version = psci_ops.get_version(); 2248 kvm_host_psci_config.smccc_version = arm_smccc_get_version(); 2249 2250 if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) { 2251 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids(); 2252 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend); 2253 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on); 2254 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off); 2255 init_psci_0_1_impl_state(kvm_host_psci_config, migrate); 2256 } 2257 return true; 2258 } 2259 2260 static int __init init_subsystems(void) 2261 { 2262 int err = 0; 2263 2264 /* 2265 * Enable hardware so that subsystem initialisation can access EL2. 2266 */ 2267 on_each_cpu(cpu_hyp_init, NULL, 1); 2268 2269 /* 2270 * Register CPU lower-power notifier 2271 */ 2272 hyp_cpu_pm_init(); 2273 2274 /* 2275 * Init HYP view of VGIC 2276 */ 2277 err = kvm_vgic_hyp_init(); 2278 switch (err) { 2279 case 0: 2280 vgic_present = true; 2281 break; 2282 case -ENODEV: 2283 case -ENXIO: 2284 vgic_present = false; 2285 err = 0; 2286 break; 2287 default: 2288 goto out; 2289 } 2290 2291 /* 2292 * Init HYP architected timer support 2293 */ 2294 err = kvm_timer_hyp_init(vgic_present); 2295 if (err) 2296 goto out; 2297 2298 kvm_register_perf_callbacks(NULL); 2299 2300 out: 2301 if (err) 2302 hyp_cpu_pm_exit(); 2303 2304 if (err || !is_protected_kvm_enabled()) 2305 on_each_cpu(cpu_hyp_uninit, NULL, 1); 2306 2307 return err; 2308 } 2309 2310 static void __init teardown_subsystems(void) 2311 { 2312 kvm_unregister_perf_callbacks(); 2313 hyp_cpu_pm_exit(); 2314 } 2315 2316 static void __init teardown_hyp_mode(void) 2317 { 2318 bool free_sve = system_supports_sve() && is_protected_kvm_enabled(); 2319 int cpu; 2320 2321 free_hyp_pgds(); 2322 for_each_possible_cpu(cpu) { 2323 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu)); 2324 free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order()); 2325 2326 if (free_sve) { 2327 struct cpu_sve_state *sve_state; 2328 2329 sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state; 2330 free_pages((unsigned long) sve_state, pkvm_host_sve_state_order()); 2331 } 2332 } 2333 } 2334 2335 static int __init do_pkvm_init(u32 hyp_va_bits) 2336 { 2337 void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)); 2338 int ret; 2339 2340 preempt_disable(); 2341 cpu_hyp_init_context(); 2342 ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size, 2343 num_possible_cpus(), kern_hyp_va(per_cpu_base), 2344 hyp_va_bits); 2345 cpu_hyp_init_features(); 2346 2347 /* 2348 * The stub hypercalls are now disabled, so set our local flag to 2349 * prevent a later re-init attempt in kvm_arch_hardware_enable(). 2350 */ 2351 __this_cpu_write(kvm_hyp_initialized, 1); 2352 preempt_enable(); 2353 2354 return ret; 2355 } 2356 2357 static u64 get_hyp_id_aa64pfr0_el1(void) 2358 { 2359 /* 2360 * Track whether the system isn't affected by spectre/meltdown in the 2361 * hypervisor's view of id_aa64pfr0_el1, used for protected VMs. 2362 * Although this is per-CPU, we make it global for simplicity, e.g., not 2363 * to have to worry about vcpu migration. 2364 * 2365 * Unlike for non-protected VMs, userspace cannot override this for 2366 * protected VMs. 2367 */ 2368 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); 2369 2370 val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) | 2371 ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3)); 2372 2373 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2), 2374 arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED); 2375 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3), 2376 arm64_get_meltdown_state() == SPECTRE_UNAFFECTED); 2377 2378 return val; 2379 } 2380 2381 static void kvm_hyp_init_symbols(void) 2382 { 2383 kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1(); 2384 kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1); 2385 kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1); 2386 kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1); 2387 kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1); 2388 kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 2389 kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 2390 kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1); 2391 kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1); 2392 kvm_nvhe_sym(__icache_flags) = __icache_flags; 2393 kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits; 2394 } 2395 2396 static int __init kvm_hyp_init_protection(u32 hyp_va_bits) 2397 { 2398 void *addr = phys_to_virt(hyp_mem_base); 2399 int ret; 2400 2401 ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP); 2402 if (ret) 2403 return ret; 2404 2405 ret = do_pkvm_init(hyp_va_bits); 2406 if (ret) 2407 return ret; 2408 2409 free_hyp_pgds(); 2410 2411 return 0; 2412 } 2413 2414 static int init_pkvm_host_sve_state(void) 2415 { 2416 int cpu; 2417 2418 if (!system_supports_sve()) 2419 return 0; 2420 2421 /* Allocate pages for host sve state in protected mode. */ 2422 for_each_possible_cpu(cpu) { 2423 struct page *page = alloc_pages(GFP_KERNEL, pkvm_host_sve_state_order()); 2424 2425 if (!page) 2426 return -ENOMEM; 2427 2428 per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state = page_address(page); 2429 } 2430 2431 /* 2432 * Don't map the pages in hyp since these are only used in protected 2433 * mode, which will (re)create its own mapping when initialized. 2434 */ 2435 2436 return 0; 2437 } 2438 2439 /* 2440 * Finalizes the initialization of hyp mode, once everything else is initialized 2441 * and the initialziation process cannot fail. 2442 */ 2443 static void finalize_init_hyp_mode(void) 2444 { 2445 int cpu; 2446 2447 if (system_supports_sve() && is_protected_kvm_enabled()) { 2448 for_each_possible_cpu(cpu) { 2449 struct cpu_sve_state *sve_state; 2450 2451 sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state; 2452 per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state = 2453 kern_hyp_va(sve_state); 2454 } 2455 } else { 2456 for_each_possible_cpu(cpu) { 2457 struct user_fpsimd_state *fpsimd_state; 2458 2459 fpsimd_state = &per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->host_ctxt.fp_regs; 2460 per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->fpsimd_state = 2461 kern_hyp_va(fpsimd_state); 2462 } 2463 } 2464 } 2465 2466 static void pkvm_hyp_init_ptrauth(void) 2467 { 2468 struct kvm_cpu_context *hyp_ctxt; 2469 int cpu; 2470 2471 for_each_possible_cpu(cpu) { 2472 hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu); 2473 hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long(); 2474 hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long(); 2475 hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long(); 2476 hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long(); 2477 hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long(); 2478 hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long(); 2479 hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long(); 2480 hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long(); 2481 hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long(); 2482 hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long(); 2483 } 2484 } 2485 2486 /* Inits Hyp-mode on all online CPUs */ 2487 static int __init init_hyp_mode(void) 2488 { 2489 u32 hyp_va_bits; 2490 int cpu; 2491 int err = -ENOMEM; 2492 2493 /* 2494 * The protected Hyp-mode cannot be initialized if the memory pool 2495 * allocation has failed. 2496 */ 2497 if (is_protected_kvm_enabled() && !hyp_mem_base) 2498 goto out_err; 2499 2500 /* 2501 * Allocate Hyp PGD and setup Hyp identity mapping 2502 */ 2503 err = kvm_mmu_init(&hyp_va_bits); 2504 if (err) 2505 goto out_err; 2506 2507 /* 2508 * Allocate stack pages for Hypervisor-mode 2509 */ 2510 for_each_possible_cpu(cpu) { 2511 unsigned long stack_page; 2512 2513 stack_page = __get_free_page(GFP_KERNEL); 2514 if (!stack_page) { 2515 err = -ENOMEM; 2516 goto out_err; 2517 } 2518 2519 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page; 2520 } 2521 2522 /* 2523 * Allocate and initialize pages for Hypervisor-mode percpu regions. 2524 */ 2525 for_each_possible_cpu(cpu) { 2526 struct page *page; 2527 void *page_addr; 2528 2529 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order()); 2530 if (!page) { 2531 err = -ENOMEM; 2532 goto out_err; 2533 } 2534 2535 page_addr = page_address(page); 2536 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size()); 2537 kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr; 2538 } 2539 2540 /* 2541 * Map the Hyp-code called directly from the host 2542 */ 2543 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start), 2544 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC); 2545 if (err) { 2546 kvm_err("Cannot map world-switch code\n"); 2547 goto out_err; 2548 } 2549 2550 err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start), 2551 kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO); 2552 if (err) { 2553 kvm_err("Cannot map .hyp.rodata section\n"); 2554 goto out_err; 2555 } 2556 2557 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata), 2558 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO); 2559 if (err) { 2560 kvm_err("Cannot map rodata section\n"); 2561 goto out_err; 2562 } 2563 2564 /* 2565 * .hyp.bss is guaranteed to be placed at the beginning of the .bss 2566 * section thanks to an assertion in the linker script. Map it RW and 2567 * the rest of .bss RO. 2568 */ 2569 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start), 2570 kvm_ksym_ref(__hyp_bss_end), PAGE_HYP); 2571 if (err) { 2572 kvm_err("Cannot map hyp bss section: %d\n", err); 2573 goto out_err; 2574 } 2575 2576 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end), 2577 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO); 2578 if (err) { 2579 kvm_err("Cannot map bss section\n"); 2580 goto out_err; 2581 } 2582 2583 /* 2584 * Map the Hyp stack pages 2585 */ 2586 for_each_possible_cpu(cpu) { 2587 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu); 2588 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu); 2589 2590 err = create_hyp_stack(__pa(stack_page), ¶ms->stack_hyp_va); 2591 if (err) { 2592 kvm_err("Cannot map hyp stack\n"); 2593 goto out_err; 2594 } 2595 2596 /* 2597 * Save the stack PA in nvhe_init_params. This will be needed 2598 * to recreate the stack mapping in protected nVHE mode. 2599 * __hyp_pa() won't do the right thing there, since the stack 2600 * has been mapped in the flexible private VA space. 2601 */ 2602 params->stack_pa = __pa(stack_page); 2603 } 2604 2605 for_each_possible_cpu(cpu) { 2606 char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu]; 2607 char *percpu_end = percpu_begin + nvhe_percpu_size(); 2608 2609 /* Map Hyp percpu pages */ 2610 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP); 2611 if (err) { 2612 kvm_err("Cannot map hyp percpu region\n"); 2613 goto out_err; 2614 } 2615 2616 /* Prepare the CPU initialization parameters */ 2617 cpu_prepare_hyp_mode(cpu, hyp_va_bits); 2618 } 2619 2620 kvm_hyp_init_symbols(); 2621 2622 if (is_protected_kvm_enabled()) { 2623 if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) && 2624 cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH)) 2625 pkvm_hyp_init_ptrauth(); 2626 2627 init_cpu_logical_map(); 2628 2629 if (!init_psci_relay()) { 2630 err = -ENODEV; 2631 goto out_err; 2632 } 2633 2634 err = init_pkvm_host_sve_state(); 2635 if (err) 2636 goto out_err; 2637 2638 err = kvm_hyp_init_protection(hyp_va_bits); 2639 if (err) { 2640 kvm_err("Failed to init hyp memory protection\n"); 2641 goto out_err; 2642 } 2643 } 2644 2645 return 0; 2646 2647 out_err: 2648 teardown_hyp_mode(); 2649 kvm_err("error initializing Hyp mode: %d\n", err); 2650 return err; 2651 } 2652 2653 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr) 2654 { 2655 struct kvm_vcpu *vcpu = NULL; 2656 struct kvm_mpidr_data *data; 2657 unsigned long i; 2658 2659 mpidr &= MPIDR_HWID_BITMASK; 2660 2661 rcu_read_lock(); 2662 data = rcu_dereference(kvm->arch.mpidr_data); 2663 2664 if (data) { 2665 u16 idx = kvm_mpidr_index(data, mpidr); 2666 2667 vcpu = kvm_get_vcpu(kvm, data->cmpidr_to_idx[idx]); 2668 if (mpidr != kvm_vcpu_get_mpidr_aff(vcpu)) 2669 vcpu = NULL; 2670 } 2671 2672 rcu_read_unlock(); 2673 2674 if (vcpu) 2675 return vcpu; 2676 2677 kvm_for_each_vcpu(i, vcpu, kvm) { 2678 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu)) 2679 return vcpu; 2680 } 2681 return NULL; 2682 } 2683 2684 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm) 2685 { 2686 return irqchip_in_kernel(kvm); 2687 } 2688 2689 bool kvm_arch_has_irq_bypass(void) 2690 { 2691 return true; 2692 } 2693 2694 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 2695 struct irq_bypass_producer *prod) 2696 { 2697 struct kvm_kernel_irqfd *irqfd = 2698 container_of(cons, struct kvm_kernel_irqfd, consumer); 2699 2700 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq, 2701 &irqfd->irq_entry); 2702 } 2703 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 2704 struct irq_bypass_producer *prod) 2705 { 2706 struct kvm_kernel_irqfd *irqfd = 2707 container_of(cons, struct kvm_kernel_irqfd, consumer); 2708 2709 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq, 2710 &irqfd->irq_entry); 2711 } 2712 2713 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons) 2714 { 2715 struct kvm_kernel_irqfd *irqfd = 2716 container_of(cons, struct kvm_kernel_irqfd, consumer); 2717 2718 kvm_arm_halt_guest(irqfd->kvm); 2719 } 2720 2721 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons) 2722 { 2723 struct kvm_kernel_irqfd *irqfd = 2724 container_of(cons, struct kvm_kernel_irqfd, consumer); 2725 2726 kvm_arm_resume_guest(irqfd->kvm); 2727 } 2728 2729 /* Initialize Hyp-mode and memory mappings on all CPUs */ 2730 static __init int kvm_arm_init(void) 2731 { 2732 int err; 2733 bool in_hyp_mode; 2734 2735 if (!is_hyp_mode_available()) { 2736 kvm_info("HYP mode not available\n"); 2737 return -ENODEV; 2738 } 2739 2740 if (kvm_get_mode() == KVM_MODE_NONE) { 2741 kvm_info("KVM disabled from command line\n"); 2742 return -ENODEV; 2743 } 2744 2745 err = kvm_sys_reg_table_init(); 2746 if (err) { 2747 kvm_info("Error initializing system register tables"); 2748 return err; 2749 } 2750 2751 in_hyp_mode = is_kernel_in_hyp_mode(); 2752 2753 if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) || 2754 cpus_have_final_cap(ARM64_WORKAROUND_1508412)) 2755 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \ 2756 "Only trusted guests should be used on this system.\n"); 2757 2758 err = kvm_set_ipa_limit(); 2759 if (err) 2760 return err; 2761 2762 err = kvm_arm_init_sve(); 2763 if (err) 2764 return err; 2765 2766 err = kvm_arm_vmid_alloc_init(); 2767 if (err) { 2768 kvm_err("Failed to initialize VMID allocator.\n"); 2769 return err; 2770 } 2771 2772 if (!in_hyp_mode) { 2773 err = init_hyp_mode(); 2774 if (err) 2775 goto out_err; 2776 } 2777 2778 err = kvm_init_vector_slots(); 2779 if (err) { 2780 kvm_err("Cannot initialise vector slots\n"); 2781 goto out_hyp; 2782 } 2783 2784 err = init_subsystems(); 2785 if (err) 2786 goto out_hyp; 2787 2788 kvm_info("%s%sVHE mode initialized successfully\n", 2789 in_hyp_mode ? "" : (is_protected_kvm_enabled() ? 2790 "Protected " : "Hyp "), 2791 in_hyp_mode ? "" : (cpus_have_final_cap(ARM64_KVM_HVHE) ? 2792 "h" : "n")); 2793 2794 /* 2795 * FIXME: Do something reasonable if kvm_init() fails after pKVM 2796 * hypervisor protection is finalized. 2797 */ 2798 err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE); 2799 if (err) 2800 goto out_subs; 2801 2802 /* 2803 * This should be called after initialization is done and failure isn't 2804 * possible anymore. 2805 */ 2806 if (!in_hyp_mode) 2807 finalize_init_hyp_mode(); 2808 2809 kvm_arm_initialised = true; 2810 2811 return 0; 2812 2813 out_subs: 2814 teardown_subsystems(); 2815 out_hyp: 2816 if (!in_hyp_mode) 2817 teardown_hyp_mode(); 2818 out_err: 2819 kvm_arm_vmid_alloc_free(); 2820 return err; 2821 } 2822 2823 static int __init early_kvm_mode_cfg(char *arg) 2824 { 2825 if (!arg) 2826 return -EINVAL; 2827 2828 if (strcmp(arg, "none") == 0) { 2829 kvm_mode = KVM_MODE_NONE; 2830 return 0; 2831 } 2832 2833 if (!is_hyp_mode_available()) { 2834 pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n"); 2835 return 0; 2836 } 2837 2838 if (strcmp(arg, "protected") == 0) { 2839 if (!is_kernel_in_hyp_mode()) 2840 kvm_mode = KVM_MODE_PROTECTED; 2841 else 2842 pr_warn_once("Protected KVM not available with VHE\n"); 2843 2844 return 0; 2845 } 2846 2847 if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) { 2848 kvm_mode = KVM_MODE_DEFAULT; 2849 return 0; 2850 } 2851 2852 if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) { 2853 kvm_mode = KVM_MODE_NV; 2854 return 0; 2855 } 2856 2857 return -EINVAL; 2858 } 2859 early_param("kvm-arm.mode", early_kvm_mode_cfg); 2860 2861 enum kvm_mode kvm_get_mode(void) 2862 { 2863 return kvm_mode; 2864 } 2865 2866 module_init(kvm_arm_init); 2867