1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 4 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 5 */ 6 7 #include <linux/bug.h> 8 #include <linux/cpu_pm.h> 9 #include <linux/entry-kvm.h> 10 #include <linux/errno.h> 11 #include <linux/err.h> 12 #include <linux/kvm_host.h> 13 #include <linux/list.h> 14 #include <linux/module.h> 15 #include <linux/vmalloc.h> 16 #include <linux/fs.h> 17 #include <linux/mman.h> 18 #include <linux/sched.h> 19 #include <linux/kmemleak.h> 20 #include <linux/kvm.h> 21 #include <linux/kvm_irqfd.h> 22 #include <linux/irqbypass.h> 23 #include <linux/sched/stat.h> 24 #include <linux/psci.h> 25 #include <trace/events/kvm.h> 26 27 #define CREATE_TRACE_POINTS 28 #include "trace_arm.h" 29 30 #include <linux/uaccess.h> 31 #include <asm/ptrace.h> 32 #include <asm/mman.h> 33 #include <asm/tlbflush.h> 34 #include <asm/cacheflush.h> 35 #include <asm/cpufeature.h> 36 #include <asm/virt.h> 37 #include <asm/kvm_arm.h> 38 #include <asm/kvm_asm.h> 39 #include <asm/kvm_mmu.h> 40 #include <asm/kvm_emulate.h> 41 #include <asm/sections.h> 42 43 #include <kvm/arm_hypercalls.h> 44 #include <kvm/arm_pmu.h> 45 #include <kvm/arm_psci.h> 46 47 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT; 48 DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized); 49 50 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector); 51 52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page); 53 unsigned long kvm_arm_hyp_percpu_base[NR_CPUS]; 54 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params); 55 56 /* The VMID used in the VTTBR */ 57 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1); 58 static u32 kvm_next_vmid; 59 static DEFINE_SPINLOCK(kvm_vmid_lock); 60 61 static bool vgic_present; 62 63 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled); 64 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use); 65 66 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 67 { 68 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 69 } 70 71 int kvm_arch_hardware_setup(void *opaque) 72 { 73 return 0; 74 } 75 76 int kvm_arch_check_processor_compat(void *opaque) 77 { 78 return 0; 79 } 80 81 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 82 struct kvm_enable_cap *cap) 83 { 84 int r; 85 86 if (cap->flags) 87 return -EINVAL; 88 89 switch (cap->cap) { 90 case KVM_CAP_ARM_NISV_TO_USER: 91 r = 0; 92 kvm->arch.return_nisv_io_abort_to_user = true; 93 break; 94 case KVM_CAP_ARM_MTE: 95 mutex_lock(&kvm->lock); 96 if (!system_supports_mte() || kvm->created_vcpus) { 97 r = -EINVAL; 98 } else { 99 r = 0; 100 kvm->arch.mte_enabled = true; 101 } 102 mutex_unlock(&kvm->lock); 103 break; 104 default: 105 r = -EINVAL; 106 break; 107 } 108 109 return r; 110 } 111 112 static int kvm_arm_default_max_vcpus(void) 113 { 114 return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS; 115 } 116 117 static void set_default_spectre(struct kvm *kvm) 118 { 119 /* 120 * The default is to expose CSV2 == 1 if the HW isn't affected. 121 * Although this is a per-CPU feature, we make it global because 122 * asymmetric systems are just a nuisance. 123 * 124 * Userspace can override this as long as it doesn't promise 125 * the impossible. 126 */ 127 if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) 128 kvm->arch.pfr0_csv2 = 1; 129 if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) 130 kvm->arch.pfr0_csv3 = 1; 131 } 132 133 /** 134 * kvm_arch_init_vm - initializes a VM data structure 135 * @kvm: pointer to the KVM struct 136 */ 137 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 138 { 139 int ret; 140 141 ret = kvm_arm_setup_stage2(kvm, type); 142 if (ret) 143 return ret; 144 145 ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu); 146 if (ret) 147 return ret; 148 149 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP); 150 if (ret) 151 goto out_free_stage2_pgd; 152 153 kvm_vgic_early_init(kvm); 154 155 /* The maximum number of VCPUs is limited by the host's GIC model */ 156 kvm->arch.max_vcpus = kvm_arm_default_max_vcpus(); 157 158 set_default_spectre(kvm); 159 160 return ret; 161 out_free_stage2_pgd: 162 kvm_free_stage2_pgd(&kvm->arch.mmu); 163 return ret; 164 } 165 166 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 167 { 168 return VM_FAULT_SIGBUS; 169 } 170 171 172 /** 173 * kvm_arch_destroy_vm - destroy the VM data structure 174 * @kvm: pointer to the KVM struct 175 */ 176 void kvm_arch_destroy_vm(struct kvm *kvm) 177 { 178 int i; 179 180 bitmap_free(kvm->arch.pmu_filter); 181 182 kvm_vgic_destroy(kvm); 183 184 for (i = 0; i < KVM_MAX_VCPUS; ++i) { 185 if (kvm->vcpus[i]) { 186 kvm_vcpu_destroy(kvm->vcpus[i]); 187 kvm->vcpus[i] = NULL; 188 } 189 } 190 atomic_set(&kvm->online_vcpus, 0); 191 } 192 193 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 194 { 195 int r; 196 switch (ext) { 197 case KVM_CAP_IRQCHIP: 198 r = vgic_present; 199 break; 200 case KVM_CAP_IOEVENTFD: 201 case KVM_CAP_DEVICE_CTRL: 202 case KVM_CAP_USER_MEMORY: 203 case KVM_CAP_SYNC_MMU: 204 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 205 case KVM_CAP_ONE_REG: 206 case KVM_CAP_ARM_PSCI: 207 case KVM_CAP_ARM_PSCI_0_2: 208 case KVM_CAP_READONLY_MEM: 209 case KVM_CAP_MP_STATE: 210 case KVM_CAP_IMMEDIATE_EXIT: 211 case KVM_CAP_VCPU_EVENTS: 212 case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2: 213 case KVM_CAP_ARM_NISV_TO_USER: 214 case KVM_CAP_ARM_INJECT_EXT_DABT: 215 case KVM_CAP_SET_GUEST_DEBUG: 216 case KVM_CAP_VCPU_ATTRIBUTES: 217 case KVM_CAP_PTP_KVM: 218 r = 1; 219 break; 220 case KVM_CAP_SET_GUEST_DEBUG2: 221 return KVM_GUESTDBG_VALID_MASK; 222 case KVM_CAP_ARM_SET_DEVICE_ADDR: 223 r = 1; 224 break; 225 case KVM_CAP_NR_VCPUS: 226 r = num_online_cpus(); 227 break; 228 case KVM_CAP_MAX_VCPUS: 229 case KVM_CAP_MAX_VCPU_ID: 230 if (kvm) 231 r = kvm->arch.max_vcpus; 232 else 233 r = kvm_arm_default_max_vcpus(); 234 break; 235 case KVM_CAP_MSI_DEVID: 236 if (!kvm) 237 r = -EINVAL; 238 else 239 r = kvm->arch.vgic.msis_require_devid; 240 break; 241 case KVM_CAP_ARM_USER_IRQ: 242 /* 243 * 1: EL1_VTIMER, EL1_PTIMER, and PMU. 244 * (bump this number if adding more devices) 245 */ 246 r = 1; 247 break; 248 case KVM_CAP_ARM_MTE: 249 r = system_supports_mte(); 250 break; 251 case KVM_CAP_STEAL_TIME: 252 r = kvm_arm_pvtime_supported(); 253 break; 254 case KVM_CAP_ARM_EL1_32BIT: 255 r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1); 256 break; 257 case KVM_CAP_GUEST_DEBUG_HW_BPS: 258 r = get_num_brps(); 259 break; 260 case KVM_CAP_GUEST_DEBUG_HW_WPS: 261 r = get_num_wrps(); 262 break; 263 case KVM_CAP_ARM_PMU_V3: 264 r = kvm_arm_support_pmu_v3(); 265 break; 266 case KVM_CAP_ARM_INJECT_SERROR_ESR: 267 r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN); 268 break; 269 case KVM_CAP_ARM_VM_IPA_SIZE: 270 r = get_kvm_ipa_limit(); 271 break; 272 case KVM_CAP_ARM_SVE: 273 r = system_supports_sve(); 274 break; 275 case KVM_CAP_ARM_PTRAUTH_ADDRESS: 276 case KVM_CAP_ARM_PTRAUTH_GENERIC: 277 r = system_has_full_ptr_auth(); 278 break; 279 default: 280 r = 0; 281 } 282 283 return r; 284 } 285 286 long kvm_arch_dev_ioctl(struct file *filp, 287 unsigned int ioctl, unsigned long arg) 288 { 289 return -EINVAL; 290 } 291 292 struct kvm *kvm_arch_alloc_vm(void) 293 { 294 if (!has_vhe()) 295 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 296 297 return vzalloc(sizeof(struct kvm)); 298 } 299 300 void kvm_arch_free_vm(struct kvm *kvm) 301 { 302 if (!has_vhe()) 303 kfree(kvm); 304 else 305 vfree(kvm); 306 } 307 308 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 309 { 310 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) 311 return -EBUSY; 312 313 if (id >= kvm->arch.max_vcpus) 314 return -EINVAL; 315 316 return 0; 317 } 318 319 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 320 { 321 int err; 322 323 /* Force users to call KVM_ARM_VCPU_INIT */ 324 vcpu->arch.target = -1; 325 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES); 326 327 vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO; 328 329 /* Set up the timer */ 330 kvm_timer_vcpu_init(vcpu); 331 332 kvm_pmu_vcpu_init(vcpu); 333 334 kvm_arm_reset_debug_ptr(vcpu); 335 336 kvm_arm_pvtime_vcpu_init(&vcpu->arch); 337 338 vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu; 339 340 err = kvm_vgic_vcpu_init(vcpu); 341 if (err) 342 return err; 343 344 return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP); 345 } 346 347 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 348 { 349 } 350 351 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 352 { 353 if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm))) 354 static_branch_dec(&userspace_irqchip_in_use); 355 356 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); 357 kvm_timer_vcpu_terminate(vcpu); 358 kvm_pmu_vcpu_destroy(vcpu); 359 360 kvm_arm_vcpu_destroy(vcpu); 361 } 362 363 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 364 { 365 return kvm_timer_is_pending(vcpu); 366 } 367 368 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 369 { 370 /* 371 * If we're about to block (most likely because we've just hit a 372 * WFI), we need to sync back the state of the GIC CPU interface 373 * so that we have the latest PMR and group enables. This ensures 374 * that kvm_arch_vcpu_runnable has up-to-date data to decide 375 * whether we have pending interrupts. 376 * 377 * For the same reason, we want to tell GICv4 that we need 378 * doorbells to be signalled, should an interrupt become pending. 379 */ 380 preempt_disable(); 381 kvm_vgic_vmcr_sync(vcpu); 382 vgic_v4_put(vcpu, true); 383 preempt_enable(); 384 } 385 386 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 387 { 388 preempt_disable(); 389 vgic_v4_load(vcpu); 390 preempt_enable(); 391 } 392 393 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 394 { 395 struct kvm_s2_mmu *mmu; 396 int *last_ran; 397 398 mmu = vcpu->arch.hw_mmu; 399 last_ran = this_cpu_ptr(mmu->last_vcpu_ran); 400 401 /* 402 * We guarantee that both TLBs and I-cache are private to each 403 * vcpu. If detecting that a vcpu from the same VM has 404 * previously run on the same physical CPU, call into the 405 * hypervisor code to nuke the relevant contexts. 406 * 407 * We might get preempted before the vCPU actually runs, but 408 * over-invalidation doesn't affect correctness. 409 */ 410 if (*last_ran != vcpu->vcpu_id) { 411 kvm_call_hyp(__kvm_flush_cpu_context, mmu); 412 *last_ran = vcpu->vcpu_id; 413 } 414 415 vcpu->cpu = cpu; 416 417 kvm_vgic_load(vcpu); 418 kvm_timer_vcpu_load(vcpu); 419 if (has_vhe()) 420 kvm_vcpu_load_sysregs_vhe(vcpu); 421 kvm_arch_vcpu_load_fp(vcpu); 422 kvm_vcpu_pmu_restore_guest(vcpu); 423 if (kvm_arm_is_pvtime_enabled(&vcpu->arch)) 424 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu); 425 426 if (single_task_running()) 427 vcpu_clear_wfx_traps(vcpu); 428 else 429 vcpu_set_wfx_traps(vcpu); 430 431 if (vcpu_has_ptrauth(vcpu)) 432 vcpu_ptrauth_disable(vcpu); 433 kvm_arch_vcpu_load_debug_state_flags(vcpu); 434 } 435 436 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 437 { 438 kvm_arch_vcpu_put_debug_state_flags(vcpu); 439 kvm_arch_vcpu_put_fp(vcpu); 440 if (has_vhe()) 441 kvm_vcpu_put_sysregs_vhe(vcpu); 442 kvm_timer_vcpu_put(vcpu); 443 kvm_vgic_put(vcpu); 444 kvm_vcpu_pmu_restore_host(vcpu); 445 446 vcpu->cpu = -1; 447 } 448 449 static void vcpu_power_off(struct kvm_vcpu *vcpu) 450 { 451 vcpu->arch.power_off = true; 452 kvm_make_request(KVM_REQ_SLEEP, vcpu); 453 kvm_vcpu_kick(vcpu); 454 } 455 456 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 457 struct kvm_mp_state *mp_state) 458 { 459 if (vcpu->arch.power_off) 460 mp_state->mp_state = KVM_MP_STATE_STOPPED; 461 else 462 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 463 464 return 0; 465 } 466 467 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 468 struct kvm_mp_state *mp_state) 469 { 470 int ret = 0; 471 472 switch (mp_state->mp_state) { 473 case KVM_MP_STATE_RUNNABLE: 474 vcpu->arch.power_off = false; 475 break; 476 case KVM_MP_STATE_STOPPED: 477 vcpu_power_off(vcpu); 478 break; 479 default: 480 ret = -EINVAL; 481 } 482 483 return ret; 484 } 485 486 /** 487 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled 488 * @v: The VCPU pointer 489 * 490 * If the guest CPU is not waiting for interrupts or an interrupt line is 491 * asserted, the CPU is by definition runnable. 492 */ 493 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 494 { 495 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF); 496 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v)) 497 && !v->arch.power_off && !v->arch.pause); 498 } 499 500 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 501 { 502 return vcpu_mode_priv(vcpu); 503 } 504 505 /* Just ensure a guest exit from a particular CPU */ 506 static void exit_vm_noop(void *info) 507 { 508 } 509 510 void force_vm_exit(const cpumask_t *mask) 511 { 512 preempt_disable(); 513 smp_call_function_many(mask, exit_vm_noop, NULL, true); 514 preempt_enable(); 515 } 516 517 /** 518 * need_new_vmid_gen - check that the VMID is still valid 519 * @vmid: The VMID to check 520 * 521 * return true if there is a new generation of VMIDs being used 522 * 523 * The hardware supports a limited set of values with the value zero reserved 524 * for the host, so we check if an assigned value belongs to a previous 525 * generation, which requires us to assign a new value. If we're the first to 526 * use a VMID for the new generation, we must flush necessary caches and TLBs 527 * on all CPUs. 528 */ 529 static bool need_new_vmid_gen(struct kvm_vmid *vmid) 530 { 531 u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen); 532 smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */ 533 return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen); 534 } 535 536 /** 537 * update_vmid - Update the vmid with a valid VMID for the current generation 538 * @vmid: The stage-2 VMID information struct 539 */ 540 static void update_vmid(struct kvm_vmid *vmid) 541 { 542 if (!need_new_vmid_gen(vmid)) 543 return; 544 545 spin_lock(&kvm_vmid_lock); 546 547 /* 548 * We need to re-check the vmid_gen here to ensure that if another vcpu 549 * already allocated a valid vmid for this vm, then this vcpu should 550 * use the same vmid. 551 */ 552 if (!need_new_vmid_gen(vmid)) { 553 spin_unlock(&kvm_vmid_lock); 554 return; 555 } 556 557 /* First user of a new VMID generation? */ 558 if (unlikely(kvm_next_vmid == 0)) { 559 atomic64_inc(&kvm_vmid_gen); 560 kvm_next_vmid = 1; 561 562 /* 563 * On SMP we know no other CPUs can use this CPU's or each 564 * other's VMID after force_vm_exit returns since the 565 * kvm_vmid_lock blocks them from reentry to the guest. 566 */ 567 force_vm_exit(cpu_all_mask); 568 /* 569 * Now broadcast TLB + ICACHE invalidation over the inner 570 * shareable domain to make sure all data structures are 571 * clean. 572 */ 573 kvm_call_hyp(__kvm_flush_vm_context); 574 } 575 576 WRITE_ONCE(vmid->vmid, kvm_next_vmid); 577 kvm_next_vmid++; 578 kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1; 579 580 smp_wmb(); 581 WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen)); 582 583 spin_unlock(&kvm_vmid_lock); 584 } 585 586 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu) 587 { 588 struct kvm *kvm = vcpu->kvm; 589 int ret = 0; 590 591 if (likely(vcpu->arch.has_run_once)) 592 return 0; 593 594 if (!kvm_arm_vcpu_is_finalized(vcpu)) 595 return -EPERM; 596 597 vcpu->arch.has_run_once = true; 598 599 kvm_arm_vcpu_init_debug(vcpu); 600 601 if (likely(irqchip_in_kernel(kvm))) { 602 /* 603 * Map the VGIC hardware resources before running a vcpu the 604 * first time on this VM. 605 */ 606 ret = kvm_vgic_map_resources(kvm); 607 if (ret) 608 return ret; 609 } else { 610 /* 611 * Tell the rest of the code that there are userspace irqchip 612 * VMs in the wild. 613 */ 614 static_branch_inc(&userspace_irqchip_in_use); 615 } 616 617 ret = kvm_timer_enable(vcpu); 618 if (ret) 619 return ret; 620 621 ret = kvm_arm_pmu_v3_enable(vcpu); 622 623 return ret; 624 } 625 626 bool kvm_arch_intc_initialized(struct kvm *kvm) 627 { 628 return vgic_initialized(kvm); 629 } 630 631 void kvm_arm_halt_guest(struct kvm *kvm) 632 { 633 int i; 634 struct kvm_vcpu *vcpu; 635 636 kvm_for_each_vcpu(i, vcpu, kvm) 637 vcpu->arch.pause = true; 638 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP); 639 } 640 641 void kvm_arm_resume_guest(struct kvm *kvm) 642 { 643 int i; 644 struct kvm_vcpu *vcpu; 645 646 kvm_for_each_vcpu(i, vcpu, kvm) { 647 vcpu->arch.pause = false; 648 rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu)); 649 } 650 } 651 652 static void vcpu_req_sleep(struct kvm_vcpu *vcpu) 653 { 654 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 655 656 rcuwait_wait_event(wait, 657 (!vcpu->arch.power_off) &&(!vcpu->arch.pause), 658 TASK_INTERRUPTIBLE); 659 660 if (vcpu->arch.power_off || vcpu->arch.pause) { 661 /* Awaken to handle a signal, request we sleep again later. */ 662 kvm_make_request(KVM_REQ_SLEEP, vcpu); 663 } 664 665 /* 666 * Make sure we will observe a potential reset request if we've 667 * observed a change to the power state. Pairs with the smp_wmb() in 668 * kvm_psci_vcpu_on(). 669 */ 670 smp_rmb(); 671 } 672 673 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu) 674 { 675 return vcpu->arch.target >= 0; 676 } 677 678 static void check_vcpu_requests(struct kvm_vcpu *vcpu) 679 { 680 if (kvm_request_pending(vcpu)) { 681 if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) 682 vcpu_req_sleep(vcpu); 683 684 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) 685 kvm_reset_vcpu(vcpu); 686 687 /* 688 * Clear IRQ_PENDING requests that were made to guarantee 689 * that a VCPU sees new virtual interrupts. 690 */ 691 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu); 692 693 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu)) 694 kvm_update_stolen_time(vcpu); 695 696 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) { 697 /* The distributor enable bits were changed */ 698 preempt_disable(); 699 vgic_v4_put(vcpu, false); 700 vgic_v4_load(vcpu); 701 preempt_enable(); 702 } 703 704 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu)) 705 kvm_pmu_handle_pmcr(vcpu, 706 __vcpu_sys_reg(vcpu, PMCR_EL0)); 707 } 708 } 709 710 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu) 711 { 712 if (likely(!vcpu_mode_is_32bit(vcpu))) 713 return false; 714 715 return !system_supports_32bit_el0() || 716 static_branch_unlikely(&arm64_mismatched_32bit_el0); 717 } 718 719 /** 720 * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest 721 * @vcpu: The VCPU pointer 722 * @ret: Pointer to write optional return code 723 * 724 * Returns: true if the VCPU needs to return to a preemptible + interruptible 725 * and skip guest entry. 726 * 727 * This function disambiguates between two different types of exits: exits to a 728 * preemptible + interruptible kernel context and exits to userspace. For an 729 * exit to userspace, this function will write the return code to ret and return 730 * true. For an exit to preemptible + interruptible kernel context (i.e. check 731 * for pending work and re-enter), return true without writing to ret. 732 */ 733 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret) 734 { 735 struct kvm_run *run = vcpu->run; 736 737 /* 738 * If we're using a userspace irqchip, then check if we need 739 * to tell a userspace irqchip about timer or PMU level 740 * changes and if so, exit to userspace (the actual level 741 * state gets updated in kvm_timer_update_run and 742 * kvm_pmu_update_run below). 743 */ 744 if (static_branch_unlikely(&userspace_irqchip_in_use)) { 745 if (kvm_timer_should_notify_user(vcpu) || 746 kvm_pmu_should_notify_user(vcpu)) { 747 *ret = -EINTR; 748 run->exit_reason = KVM_EXIT_INTR; 749 return true; 750 } 751 } 752 753 return kvm_request_pending(vcpu) || 754 need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) || 755 xfer_to_guest_mode_work_pending(); 756 } 757 758 /** 759 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code 760 * @vcpu: The VCPU pointer 761 * 762 * This function is called through the VCPU_RUN ioctl called from user space. It 763 * will execute VM code in a loop until the time slice for the process is used 764 * or some emulation is needed from user space in which case the function will 765 * return with return value 0 and with the kvm_run structure filled in with the 766 * required data for the requested emulation. 767 */ 768 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 769 { 770 struct kvm_run *run = vcpu->run; 771 int ret; 772 773 if (unlikely(!kvm_vcpu_initialized(vcpu))) 774 return -ENOEXEC; 775 776 ret = kvm_vcpu_first_run_init(vcpu); 777 if (ret) 778 return ret; 779 780 if (run->exit_reason == KVM_EXIT_MMIO) { 781 ret = kvm_handle_mmio_return(vcpu); 782 if (ret) 783 return ret; 784 } 785 786 vcpu_load(vcpu); 787 788 if (run->immediate_exit) { 789 ret = -EINTR; 790 goto out; 791 } 792 793 kvm_sigset_activate(vcpu); 794 795 ret = 1; 796 run->exit_reason = KVM_EXIT_UNKNOWN; 797 while (ret > 0) { 798 /* 799 * Check conditions before entering the guest 800 */ 801 ret = xfer_to_guest_mode_handle_work(vcpu); 802 if (!ret) 803 ret = 1; 804 805 update_vmid(&vcpu->arch.hw_mmu->vmid); 806 807 check_vcpu_requests(vcpu); 808 809 /* 810 * Preparing the interrupts to be injected also 811 * involves poking the GIC, which must be done in a 812 * non-preemptible context. 813 */ 814 preempt_disable(); 815 816 kvm_pmu_flush_hwstate(vcpu); 817 818 local_irq_disable(); 819 820 kvm_vgic_flush_hwstate(vcpu); 821 822 /* 823 * Ensure we set mode to IN_GUEST_MODE after we disable 824 * interrupts and before the final VCPU requests check. 825 * See the comment in kvm_vcpu_exiting_guest_mode() and 826 * Documentation/virt/kvm/vcpu-requests.rst 827 */ 828 smp_store_mb(vcpu->mode, IN_GUEST_MODE); 829 830 if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) { 831 vcpu->mode = OUTSIDE_GUEST_MODE; 832 isb(); /* Ensure work in x_flush_hwstate is committed */ 833 kvm_pmu_sync_hwstate(vcpu); 834 if (static_branch_unlikely(&userspace_irqchip_in_use)) 835 kvm_timer_sync_user(vcpu); 836 kvm_vgic_sync_hwstate(vcpu); 837 local_irq_enable(); 838 preempt_enable(); 839 continue; 840 } 841 842 kvm_arm_setup_debug(vcpu); 843 844 /************************************************************** 845 * Enter the guest 846 */ 847 trace_kvm_entry(*vcpu_pc(vcpu)); 848 guest_enter_irqoff(); 849 850 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu); 851 852 vcpu->mode = OUTSIDE_GUEST_MODE; 853 vcpu->stat.exits++; 854 /* 855 * Back from guest 856 *************************************************************/ 857 858 kvm_arm_clear_debug(vcpu); 859 860 /* 861 * We must sync the PMU state before the vgic state so 862 * that the vgic can properly sample the updated state of the 863 * interrupt line. 864 */ 865 kvm_pmu_sync_hwstate(vcpu); 866 867 /* 868 * Sync the vgic state before syncing the timer state because 869 * the timer code needs to know if the virtual timer 870 * interrupts are active. 871 */ 872 kvm_vgic_sync_hwstate(vcpu); 873 874 /* 875 * Sync the timer hardware state before enabling interrupts as 876 * we don't want vtimer interrupts to race with syncing the 877 * timer virtual interrupt state. 878 */ 879 if (static_branch_unlikely(&userspace_irqchip_in_use)) 880 kvm_timer_sync_user(vcpu); 881 882 kvm_arch_vcpu_ctxsync_fp(vcpu); 883 884 /* 885 * We may have taken a host interrupt in HYP mode (ie 886 * while executing the guest). This interrupt is still 887 * pending, as we haven't serviced it yet! 888 * 889 * We're now back in SVC mode, with interrupts 890 * disabled. Enabling the interrupts now will have 891 * the effect of taking the interrupt again, in SVC 892 * mode this time. 893 */ 894 local_irq_enable(); 895 896 /* 897 * We do local_irq_enable() before calling guest_exit() so 898 * that if a timer interrupt hits while running the guest we 899 * account that tick as being spent in the guest. We enable 900 * preemption after calling guest_exit() so that if we get 901 * preempted we make sure ticks after that is not counted as 902 * guest time. 903 */ 904 guest_exit(); 905 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu)); 906 907 /* Exit types that need handling before we can be preempted */ 908 handle_exit_early(vcpu, ret); 909 910 preempt_enable(); 911 912 /* 913 * The ARMv8 architecture doesn't give the hypervisor 914 * a mechanism to prevent a guest from dropping to AArch32 EL0 915 * if implemented by the CPU. If we spot the guest in such 916 * state and that we decided it wasn't supposed to do so (like 917 * with the asymmetric AArch32 case), return to userspace with 918 * a fatal error. 919 */ 920 if (vcpu_mode_is_bad_32bit(vcpu)) { 921 /* 922 * As we have caught the guest red-handed, decide that 923 * it isn't fit for purpose anymore by making the vcpu 924 * invalid. The VMM can try and fix it by issuing a 925 * KVM_ARM_VCPU_INIT if it really wants to. 926 */ 927 vcpu->arch.target = -1; 928 ret = ARM_EXCEPTION_IL; 929 } 930 931 ret = handle_exit(vcpu, ret); 932 } 933 934 /* Tell userspace about in-kernel device output levels */ 935 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) { 936 kvm_timer_update_run(vcpu); 937 kvm_pmu_update_run(vcpu); 938 } 939 940 kvm_sigset_deactivate(vcpu); 941 942 out: 943 /* 944 * In the unlikely event that we are returning to userspace 945 * with pending exceptions or PC adjustment, commit these 946 * adjustments in order to give userspace a consistent view of 947 * the vcpu state. Note that this relies on __kvm_adjust_pc() 948 * being preempt-safe on VHE. 949 */ 950 if (unlikely(vcpu->arch.flags & (KVM_ARM64_PENDING_EXCEPTION | 951 KVM_ARM64_INCREMENT_PC))) 952 kvm_call_hyp(__kvm_adjust_pc, vcpu); 953 954 vcpu_put(vcpu); 955 return ret; 956 } 957 958 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level) 959 { 960 int bit_index; 961 bool set; 962 unsigned long *hcr; 963 964 if (number == KVM_ARM_IRQ_CPU_IRQ) 965 bit_index = __ffs(HCR_VI); 966 else /* KVM_ARM_IRQ_CPU_FIQ */ 967 bit_index = __ffs(HCR_VF); 968 969 hcr = vcpu_hcr(vcpu); 970 if (level) 971 set = test_and_set_bit(bit_index, hcr); 972 else 973 set = test_and_clear_bit(bit_index, hcr); 974 975 /* 976 * If we didn't change anything, no need to wake up or kick other CPUs 977 */ 978 if (set == level) 979 return 0; 980 981 /* 982 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and 983 * trigger a world-switch round on the running physical CPU to set the 984 * virtual IRQ/FIQ fields in the HCR appropriately. 985 */ 986 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); 987 kvm_vcpu_kick(vcpu); 988 989 return 0; 990 } 991 992 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 993 bool line_status) 994 { 995 u32 irq = irq_level->irq; 996 unsigned int irq_type, vcpu_idx, irq_num; 997 int nrcpus = atomic_read(&kvm->online_vcpus); 998 struct kvm_vcpu *vcpu = NULL; 999 bool level = irq_level->level; 1000 1001 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK; 1002 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK; 1003 vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1); 1004 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK; 1005 1006 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level); 1007 1008 switch (irq_type) { 1009 case KVM_ARM_IRQ_TYPE_CPU: 1010 if (irqchip_in_kernel(kvm)) 1011 return -ENXIO; 1012 1013 if (vcpu_idx >= nrcpus) 1014 return -EINVAL; 1015 1016 vcpu = kvm_get_vcpu(kvm, vcpu_idx); 1017 if (!vcpu) 1018 return -EINVAL; 1019 1020 if (irq_num > KVM_ARM_IRQ_CPU_FIQ) 1021 return -EINVAL; 1022 1023 return vcpu_interrupt_line(vcpu, irq_num, level); 1024 case KVM_ARM_IRQ_TYPE_PPI: 1025 if (!irqchip_in_kernel(kvm)) 1026 return -ENXIO; 1027 1028 if (vcpu_idx >= nrcpus) 1029 return -EINVAL; 1030 1031 vcpu = kvm_get_vcpu(kvm, vcpu_idx); 1032 if (!vcpu) 1033 return -EINVAL; 1034 1035 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS) 1036 return -EINVAL; 1037 1038 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL); 1039 case KVM_ARM_IRQ_TYPE_SPI: 1040 if (!irqchip_in_kernel(kvm)) 1041 return -ENXIO; 1042 1043 if (irq_num < VGIC_NR_PRIVATE_IRQS) 1044 return -EINVAL; 1045 1046 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL); 1047 } 1048 1049 return -EINVAL; 1050 } 1051 1052 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu, 1053 const struct kvm_vcpu_init *init) 1054 { 1055 unsigned int i, ret; 1056 u32 phys_target = kvm_target_cpu(); 1057 1058 if (init->target != phys_target) 1059 return -EINVAL; 1060 1061 /* 1062 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must 1063 * use the same target. 1064 */ 1065 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target) 1066 return -EINVAL; 1067 1068 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */ 1069 for (i = 0; i < sizeof(init->features) * 8; i++) { 1070 bool set = (init->features[i / 32] & (1 << (i % 32))); 1071 1072 if (set && i >= KVM_VCPU_MAX_FEATURES) 1073 return -ENOENT; 1074 1075 /* 1076 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must 1077 * use the same feature set. 1078 */ 1079 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES && 1080 test_bit(i, vcpu->arch.features) != set) 1081 return -EINVAL; 1082 1083 if (set) 1084 set_bit(i, vcpu->arch.features); 1085 } 1086 1087 vcpu->arch.target = phys_target; 1088 1089 /* Now we know what it is, we can reset it. */ 1090 ret = kvm_reset_vcpu(vcpu); 1091 if (ret) { 1092 vcpu->arch.target = -1; 1093 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES); 1094 } 1095 1096 return ret; 1097 } 1098 1099 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu, 1100 struct kvm_vcpu_init *init) 1101 { 1102 int ret; 1103 1104 ret = kvm_vcpu_set_target(vcpu, init); 1105 if (ret) 1106 return ret; 1107 1108 /* 1109 * Ensure a rebooted VM will fault in RAM pages and detect if the 1110 * guest MMU is turned off and flush the caches as needed. 1111 * 1112 * S2FWB enforces all memory accesses to RAM being cacheable, 1113 * ensuring that the data side is always coherent. We still 1114 * need to invalidate the I-cache though, as FWB does *not* 1115 * imply CTR_EL0.DIC. 1116 */ 1117 if (vcpu->arch.has_run_once) { 1118 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) 1119 stage2_unmap_vm(vcpu->kvm); 1120 else 1121 icache_inval_all_pou(); 1122 } 1123 1124 vcpu_reset_hcr(vcpu); 1125 vcpu->arch.cptr_el2 = CPTR_EL2_DEFAULT; 1126 1127 /* 1128 * Handle the "start in power-off" case. 1129 */ 1130 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features)) 1131 vcpu_power_off(vcpu); 1132 else 1133 vcpu->arch.power_off = false; 1134 1135 return 0; 1136 } 1137 1138 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu, 1139 struct kvm_device_attr *attr) 1140 { 1141 int ret = -ENXIO; 1142 1143 switch (attr->group) { 1144 default: 1145 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr); 1146 break; 1147 } 1148 1149 return ret; 1150 } 1151 1152 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu, 1153 struct kvm_device_attr *attr) 1154 { 1155 int ret = -ENXIO; 1156 1157 switch (attr->group) { 1158 default: 1159 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr); 1160 break; 1161 } 1162 1163 return ret; 1164 } 1165 1166 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu, 1167 struct kvm_device_attr *attr) 1168 { 1169 int ret = -ENXIO; 1170 1171 switch (attr->group) { 1172 default: 1173 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr); 1174 break; 1175 } 1176 1177 return ret; 1178 } 1179 1180 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, 1181 struct kvm_vcpu_events *events) 1182 { 1183 memset(events, 0, sizeof(*events)); 1184 1185 return __kvm_arm_vcpu_get_events(vcpu, events); 1186 } 1187 1188 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, 1189 struct kvm_vcpu_events *events) 1190 { 1191 int i; 1192 1193 /* check whether the reserved field is zero */ 1194 for (i = 0; i < ARRAY_SIZE(events->reserved); i++) 1195 if (events->reserved[i]) 1196 return -EINVAL; 1197 1198 /* check whether the pad field is zero */ 1199 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++) 1200 if (events->exception.pad[i]) 1201 return -EINVAL; 1202 1203 return __kvm_arm_vcpu_set_events(vcpu, events); 1204 } 1205 1206 long kvm_arch_vcpu_ioctl(struct file *filp, 1207 unsigned int ioctl, unsigned long arg) 1208 { 1209 struct kvm_vcpu *vcpu = filp->private_data; 1210 void __user *argp = (void __user *)arg; 1211 struct kvm_device_attr attr; 1212 long r; 1213 1214 switch (ioctl) { 1215 case KVM_ARM_VCPU_INIT: { 1216 struct kvm_vcpu_init init; 1217 1218 r = -EFAULT; 1219 if (copy_from_user(&init, argp, sizeof(init))) 1220 break; 1221 1222 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init); 1223 break; 1224 } 1225 case KVM_SET_ONE_REG: 1226 case KVM_GET_ONE_REG: { 1227 struct kvm_one_reg reg; 1228 1229 r = -ENOEXEC; 1230 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1231 break; 1232 1233 r = -EFAULT; 1234 if (copy_from_user(®, argp, sizeof(reg))) 1235 break; 1236 1237 /* 1238 * We could owe a reset due to PSCI. Handle the pending reset 1239 * here to ensure userspace register accesses are ordered after 1240 * the reset. 1241 */ 1242 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) 1243 kvm_reset_vcpu(vcpu); 1244 1245 if (ioctl == KVM_SET_ONE_REG) 1246 r = kvm_arm_set_reg(vcpu, ®); 1247 else 1248 r = kvm_arm_get_reg(vcpu, ®); 1249 break; 1250 } 1251 case KVM_GET_REG_LIST: { 1252 struct kvm_reg_list __user *user_list = argp; 1253 struct kvm_reg_list reg_list; 1254 unsigned n; 1255 1256 r = -ENOEXEC; 1257 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1258 break; 1259 1260 r = -EPERM; 1261 if (!kvm_arm_vcpu_is_finalized(vcpu)) 1262 break; 1263 1264 r = -EFAULT; 1265 if (copy_from_user(®_list, user_list, sizeof(reg_list))) 1266 break; 1267 n = reg_list.n; 1268 reg_list.n = kvm_arm_num_regs(vcpu); 1269 if (copy_to_user(user_list, ®_list, sizeof(reg_list))) 1270 break; 1271 r = -E2BIG; 1272 if (n < reg_list.n) 1273 break; 1274 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg); 1275 break; 1276 } 1277 case KVM_SET_DEVICE_ATTR: { 1278 r = -EFAULT; 1279 if (copy_from_user(&attr, argp, sizeof(attr))) 1280 break; 1281 r = kvm_arm_vcpu_set_attr(vcpu, &attr); 1282 break; 1283 } 1284 case KVM_GET_DEVICE_ATTR: { 1285 r = -EFAULT; 1286 if (copy_from_user(&attr, argp, sizeof(attr))) 1287 break; 1288 r = kvm_arm_vcpu_get_attr(vcpu, &attr); 1289 break; 1290 } 1291 case KVM_HAS_DEVICE_ATTR: { 1292 r = -EFAULT; 1293 if (copy_from_user(&attr, argp, sizeof(attr))) 1294 break; 1295 r = kvm_arm_vcpu_has_attr(vcpu, &attr); 1296 break; 1297 } 1298 case KVM_GET_VCPU_EVENTS: { 1299 struct kvm_vcpu_events events; 1300 1301 if (kvm_arm_vcpu_get_events(vcpu, &events)) 1302 return -EINVAL; 1303 1304 if (copy_to_user(argp, &events, sizeof(events))) 1305 return -EFAULT; 1306 1307 return 0; 1308 } 1309 case KVM_SET_VCPU_EVENTS: { 1310 struct kvm_vcpu_events events; 1311 1312 if (copy_from_user(&events, argp, sizeof(events))) 1313 return -EFAULT; 1314 1315 return kvm_arm_vcpu_set_events(vcpu, &events); 1316 } 1317 case KVM_ARM_VCPU_FINALIZE: { 1318 int what; 1319 1320 if (!kvm_vcpu_initialized(vcpu)) 1321 return -ENOEXEC; 1322 1323 if (get_user(what, (const int __user *)argp)) 1324 return -EFAULT; 1325 1326 return kvm_arm_vcpu_finalize(vcpu, what); 1327 } 1328 default: 1329 r = -EINVAL; 1330 } 1331 1332 return r; 1333 } 1334 1335 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 1336 { 1337 1338 } 1339 1340 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 1341 const struct kvm_memory_slot *memslot) 1342 { 1343 kvm_flush_remote_tlbs(kvm); 1344 } 1345 1346 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm, 1347 struct kvm_arm_device_addr *dev_addr) 1348 { 1349 unsigned long dev_id, type; 1350 1351 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >> 1352 KVM_ARM_DEVICE_ID_SHIFT; 1353 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >> 1354 KVM_ARM_DEVICE_TYPE_SHIFT; 1355 1356 switch (dev_id) { 1357 case KVM_ARM_DEVICE_VGIC_V2: 1358 if (!vgic_present) 1359 return -ENXIO; 1360 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true); 1361 default: 1362 return -ENODEV; 1363 } 1364 } 1365 1366 long kvm_arch_vm_ioctl(struct file *filp, 1367 unsigned int ioctl, unsigned long arg) 1368 { 1369 struct kvm *kvm = filp->private_data; 1370 void __user *argp = (void __user *)arg; 1371 1372 switch (ioctl) { 1373 case KVM_CREATE_IRQCHIP: { 1374 int ret; 1375 if (!vgic_present) 1376 return -ENXIO; 1377 mutex_lock(&kvm->lock); 1378 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2); 1379 mutex_unlock(&kvm->lock); 1380 return ret; 1381 } 1382 case KVM_ARM_SET_DEVICE_ADDR: { 1383 struct kvm_arm_device_addr dev_addr; 1384 1385 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr))) 1386 return -EFAULT; 1387 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr); 1388 } 1389 case KVM_ARM_PREFERRED_TARGET: { 1390 int err; 1391 struct kvm_vcpu_init init; 1392 1393 err = kvm_vcpu_preferred_target(&init); 1394 if (err) 1395 return err; 1396 1397 if (copy_to_user(argp, &init, sizeof(init))) 1398 return -EFAULT; 1399 1400 return 0; 1401 } 1402 case KVM_ARM_MTE_COPY_TAGS: { 1403 struct kvm_arm_copy_mte_tags copy_tags; 1404 1405 if (copy_from_user(©_tags, argp, sizeof(copy_tags))) 1406 return -EFAULT; 1407 return kvm_vm_ioctl_mte_copy_tags(kvm, ©_tags); 1408 } 1409 default: 1410 return -EINVAL; 1411 } 1412 } 1413 1414 static unsigned long nvhe_percpu_size(void) 1415 { 1416 return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) - 1417 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start); 1418 } 1419 1420 static unsigned long nvhe_percpu_order(void) 1421 { 1422 unsigned long size = nvhe_percpu_size(); 1423 1424 return size ? get_order(size) : 0; 1425 } 1426 1427 /* A lookup table holding the hypervisor VA for each vector slot */ 1428 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS]; 1429 1430 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot) 1431 { 1432 hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot); 1433 } 1434 1435 static int kvm_init_vector_slots(void) 1436 { 1437 int err; 1438 void *base; 1439 1440 base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector)); 1441 kvm_init_vector_slot(base, HYP_VECTOR_DIRECT); 1442 1443 base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs)); 1444 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT); 1445 1446 if (!cpus_have_const_cap(ARM64_SPECTRE_V3A)) 1447 return 0; 1448 1449 if (!has_vhe()) { 1450 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs), 1451 __BP_HARDEN_HYP_VECS_SZ, &base); 1452 if (err) 1453 return err; 1454 } 1455 1456 kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT); 1457 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT); 1458 return 0; 1459 } 1460 1461 static void cpu_prepare_hyp_mode(int cpu) 1462 { 1463 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu); 1464 unsigned long tcr; 1465 1466 /* 1467 * Calculate the raw per-cpu offset without a translation from the 1468 * kernel's mapping to the linear mapping, and store it in tpidr_el2 1469 * so that we can use adr_l to access per-cpu variables in EL2. 1470 * Also drop the KASAN tag which gets in the way... 1471 */ 1472 params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) - 1473 (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start)); 1474 1475 params->mair_el2 = read_sysreg(mair_el1); 1476 1477 /* 1478 * The ID map may be configured to use an extended virtual address 1479 * range. This is only the case if system RAM is out of range for the 1480 * currently configured page size and VA_BITS, in which case we will 1481 * also need the extended virtual range for the HYP ID map, or we won't 1482 * be able to enable the EL2 MMU. 1483 * 1484 * However, at EL2, there is only one TTBR register, and we can't switch 1485 * between translation tables *and* update TCR_EL2.T0SZ at the same 1486 * time. Bottom line: we need to use the extended range with *both* our 1487 * translation tables. 1488 * 1489 * So use the same T0SZ value we use for the ID map. 1490 */ 1491 tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1; 1492 tcr &= ~TCR_T0SZ_MASK; 1493 tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET; 1494 params->tcr_el2 = tcr; 1495 1496 params->stack_hyp_va = kern_hyp_va(per_cpu(kvm_arm_hyp_stack_page, cpu) + PAGE_SIZE); 1497 params->pgd_pa = kvm_mmu_get_httbr(); 1498 if (is_protected_kvm_enabled()) 1499 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS; 1500 else 1501 params->hcr_el2 = HCR_HOST_NVHE_FLAGS; 1502 params->vttbr = params->vtcr = 0; 1503 1504 /* 1505 * Flush the init params from the data cache because the struct will 1506 * be read while the MMU is off. 1507 */ 1508 kvm_flush_dcache_to_poc(params, sizeof(*params)); 1509 } 1510 1511 static void hyp_install_host_vector(void) 1512 { 1513 struct kvm_nvhe_init_params *params; 1514 struct arm_smccc_res res; 1515 1516 /* Switch from the HYP stub to our own HYP init vector */ 1517 __hyp_set_vectors(kvm_get_idmap_vector()); 1518 1519 /* 1520 * Call initialization code, and switch to the full blown HYP code. 1521 * If the cpucaps haven't been finalized yet, something has gone very 1522 * wrong, and hyp will crash and burn when it uses any 1523 * cpus_have_const_cap() wrapper. 1524 */ 1525 BUG_ON(!system_capabilities_finalized()); 1526 params = this_cpu_ptr_nvhe_sym(kvm_init_params); 1527 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res); 1528 WARN_ON(res.a0 != SMCCC_RET_SUCCESS); 1529 } 1530 1531 static void cpu_init_hyp_mode(void) 1532 { 1533 hyp_install_host_vector(); 1534 1535 /* 1536 * Disabling SSBD on a non-VHE system requires us to enable SSBS 1537 * at EL2. 1538 */ 1539 if (this_cpu_has_cap(ARM64_SSBS) && 1540 arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) { 1541 kvm_call_hyp_nvhe(__kvm_enable_ssbs); 1542 } 1543 } 1544 1545 static void cpu_hyp_reset(void) 1546 { 1547 if (!is_kernel_in_hyp_mode()) 1548 __hyp_reset_vectors(); 1549 } 1550 1551 /* 1552 * EL2 vectors can be mapped and rerouted in a number of ways, 1553 * depending on the kernel configuration and CPU present: 1554 * 1555 * - If the CPU is affected by Spectre-v2, the hardening sequence is 1556 * placed in one of the vector slots, which is executed before jumping 1557 * to the real vectors. 1558 * 1559 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot 1560 * containing the hardening sequence is mapped next to the idmap page, 1561 * and executed before jumping to the real vectors. 1562 * 1563 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an 1564 * empty slot is selected, mapped next to the idmap page, and 1565 * executed before jumping to the real vectors. 1566 * 1567 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with 1568 * VHE, as we don't have hypervisor-specific mappings. If the system 1569 * is VHE and yet selects this capability, it will be ignored. 1570 */ 1571 static void cpu_set_hyp_vector(void) 1572 { 1573 struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data); 1574 void *vector = hyp_spectre_vector_selector[data->slot]; 1575 1576 if (!is_protected_kvm_enabled()) 1577 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector; 1578 else 1579 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot); 1580 } 1581 1582 static void cpu_hyp_reinit(void) 1583 { 1584 kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt); 1585 1586 cpu_hyp_reset(); 1587 1588 if (is_kernel_in_hyp_mode()) 1589 kvm_timer_init_vhe(); 1590 else 1591 cpu_init_hyp_mode(); 1592 1593 cpu_set_hyp_vector(); 1594 1595 kvm_arm_init_debug(); 1596 1597 if (vgic_present) 1598 kvm_vgic_init_cpu_hardware(); 1599 } 1600 1601 static void _kvm_arch_hardware_enable(void *discard) 1602 { 1603 if (!__this_cpu_read(kvm_arm_hardware_enabled)) { 1604 cpu_hyp_reinit(); 1605 __this_cpu_write(kvm_arm_hardware_enabled, 1); 1606 } 1607 } 1608 1609 int kvm_arch_hardware_enable(void) 1610 { 1611 _kvm_arch_hardware_enable(NULL); 1612 return 0; 1613 } 1614 1615 static void _kvm_arch_hardware_disable(void *discard) 1616 { 1617 if (__this_cpu_read(kvm_arm_hardware_enabled)) { 1618 cpu_hyp_reset(); 1619 __this_cpu_write(kvm_arm_hardware_enabled, 0); 1620 } 1621 } 1622 1623 void kvm_arch_hardware_disable(void) 1624 { 1625 if (!is_protected_kvm_enabled()) 1626 _kvm_arch_hardware_disable(NULL); 1627 } 1628 1629 #ifdef CONFIG_CPU_PM 1630 static int hyp_init_cpu_pm_notifier(struct notifier_block *self, 1631 unsigned long cmd, 1632 void *v) 1633 { 1634 /* 1635 * kvm_arm_hardware_enabled is left with its old value over 1636 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should 1637 * re-enable hyp. 1638 */ 1639 switch (cmd) { 1640 case CPU_PM_ENTER: 1641 if (__this_cpu_read(kvm_arm_hardware_enabled)) 1642 /* 1643 * don't update kvm_arm_hardware_enabled here 1644 * so that the hardware will be re-enabled 1645 * when we resume. See below. 1646 */ 1647 cpu_hyp_reset(); 1648 1649 return NOTIFY_OK; 1650 case CPU_PM_ENTER_FAILED: 1651 case CPU_PM_EXIT: 1652 if (__this_cpu_read(kvm_arm_hardware_enabled)) 1653 /* The hardware was enabled before suspend. */ 1654 cpu_hyp_reinit(); 1655 1656 return NOTIFY_OK; 1657 1658 default: 1659 return NOTIFY_DONE; 1660 } 1661 } 1662 1663 static struct notifier_block hyp_init_cpu_pm_nb = { 1664 .notifier_call = hyp_init_cpu_pm_notifier, 1665 }; 1666 1667 static void hyp_cpu_pm_init(void) 1668 { 1669 if (!is_protected_kvm_enabled()) 1670 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb); 1671 } 1672 static void hyp_cpu_pm_exit(void) 1673 { 1674 if (!is_protected_kvm_enabled()) 1675 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb); 1676 } 1677 #else 1678 static inline void hyp_cpu_pm_init(void) 1679 { 1680 } 1681 static inline void hyp_cpu_pm_exit(void) 1682 { 1683 } 1684 #endif 1685 1686 static void init_cpu_logical_map(void) 1687 { 1688 unsigned int cpu; 1689 1690 /* 1691 * Copy the MPIDR <-> logical CPU ID mapping to hyp. 1692 * Only copy the set of online CPUs whose features have been chacked 1693 * against the finalized system capabilities. The hypervisor will not 1694 * allow any other CPUs from the `possible` set to boot. 1695 */ 1696 for_each_online_cpu(cpu) 1697 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu); 1698 } 1699 1700 #define init_psci_0_1_impl_state(config, what) \ 1701 config.psci_0_1_ ## what ## _implemented = psci_ops.what 1702 1703 static bool init_psci_relay(void) 1704 { 1705 /* 1706 * If PSCI has not been initialized, protected KVM cannot install 1707 * itself on newly booted CPUs. 1708 */ 1709 if (!psci_ops.get_version) { 1710 kvm_err("Cannot initialize protected mode without PSCI\n"); 1711 return false; 1712 } 1713 1714 kvm_host_psci_config.version = psci_ops.get_version(); 1715 1716 if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) { 1717 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids(); 1718 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend); 1719 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on); 1720 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off); 1721 init_psci_0_1_impl_state(kvm_host_psci_config, migrate); 1722 } 1723 return true; 1724 } 1725 1726 static int init_subsystems(void) 1727 { 1728 int err = 0; 1729 1730 /* 1731 * Enable hardware so that subsystem initialisation can access EL2. 1732 */ 1733 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1); 1734 1735 /* 1736 * Register CPU lower-power notifier 1737 */ 1738 hyp_cpu_pm_init(); 1739 1740 /* 1741 * Init HYP view of VGIC 1742 */ 1743 err = kvm_vgic_hyp_init(); 1744 switch (err) { 1745 case 0: 1746 vgic_present = true; 1747 break; 1748 case -ENODEV: 1749 case -ENXIO: 1750 vgic_present = false; 1751 err = 0; 1752 break; 1753 default: 1754 goto out; 1755 } 1756 1757 /* 1758 * Init HYP architected timer support 1759 */ 1760 err = kvm_timer_hyp_init(vgic_present); 1761 if (err) 1762 goto out; 1763 1764 kvm_perf_init(); 1765 kvm_sys_reg_table_init(); 1766 1767 out: 1768 if (err || !is_protected_kvm_enabled()) 1769 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1); 1770 1771 return err; 1772 } 1773 1774 static void teardown_hyp_mode(void) 1775 { 1776 int cpu; 1777 1778 free_hyp_pgds(); 1779 for_each_possible_cpu(cpu) { 1780 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu)); 1781 free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order()); 1782 } 1783 } 1784 1785 static int do_pkvm_init(u32 hyp_va_bits) 1786 { 1787 void *per_cpu_base = kvm_ksym_ref(kvm_arm_hyp_percpu_base); 1788 int ret; 1789 1790 preempt_disable(); 1791 hyp_install_host_vector(); 1792 ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size, 1793 num_possible_cpus(), kern_hyp_va(per_cpu_base), 1794 hyp_va_bits); 1795 preempt_enable(); 1796 1797 return ret; 1798 } 1799 1800 static int kvm_hyp_init_protection(u32 hyp_va_bits) 1801 { 1802 void *addr = phys_to_virt(hyp_mem_base); 1803 int ret; 1804 1805 kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 1806 kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 1807 1808 ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP); 1809 if (ret) 1810 return ret; 1811 1812 ret = do_pkvm_init(hyp_va_bits); 1813 if (ret) 1814 return ret; 1815 1816 free_hyp_pgds(); 1817 1818 return 0; 1819 } 1820 1821 /** 1822 * Inits Hyp-mode on all online CPUs 1823 */ 1824 static int init_hyp_mode(void) 1825 { 1826 u32 hyp_va_bits; 1827 int cpu; 1828 int err = -ENOMEM; 1829 1830 /* 1831 * The protected Hyp-mode cannot be initialized if the memory pool 1832 * allocation has failed. 1833 */ 1834 if (is_protected_kvm_enabled() && !hyp_mem_base) 1835 goto out_err; 1836 1837 /* 1838 * Allocate Hyp PGD and setup Hyp identity mapping 1839 */ 1840 err = kvm_mmu_init(&hyp_va_bits); 1841 if (err) 1842 goto out_err; 1843 1844 /* 1845 * Allocate stack pages for Hypervisor-mode 1846 */ 1847 for_each_possible_cpu(cpu) { 1848 unsigned long stack_page; 1849 1850 stack_page = __get_free_page(GFP_KERNEL); 1851 if (!stack_page) { 1852 err = -ENOMEM; 1853 goto out_err; 1854 } 1855 1856 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page; 1857 } 1858 1859 /* 1860 * Allocate and initialize pages for Hypervisor-mode percpu regions. 1861 */ 1862 for_each_possible_cpu(cpu) { 1863 struct page *page; 1864 void *page_addr; 1865 1866 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order()); 1867 if (!page) { 1868 err = -ENOMEM; 1869 goto out_err; 1870 } 1871 1872 page_addr = page_address(page); 1873 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size()); 1874 kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr; 1875 } 1876 1877 /* 1878 * Map the Hyp-code called directly from the host 1879 */ 1880 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start), 1881 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC); 1882 if (err) { 1883 kvm_err("Cannot map world-switch code\n"); 1884 goto out_err; 1885 } 1886 1887 err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start), 1888 kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO); 1889 if (err) { 1890 kvm_err("Cannot map .hyp.rodata section\n"); 1891 goto out_err; 1892 } 1893 1894 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata), 1895 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO); 1896 if (err) { 1897 kvm_err("Cannot map rodata section\n"); 1898 goto out_err; 1899 } 1900 1901 /* 1902 * .hyp.bss is guaranteed to be placed at the beginning of the .bss 1903 * section thanks to an assertion in the linker script. Map it RW and 1904 * the rest of .bss RO. 1905 */ 1906 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start), 1907 kvm_ksym_ref(__hyp_bss_end), PAGE_HYP); 1908 if (err) { 1909 kvm_err("Cannot map hyp bss section: %d\n", err); 1910 goto out_err; 1911 } 1912 1913 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end), 1914 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO); 1915 if (err) { 1916 kvm_err("Cannot map bss section\n"); 1917 goto out_err; 1918 } 1919 1920 /* 1921 * Map the Hyp stack pages 1922 */ 1923 for_each_possible_cpu(cpu) { 1924 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu); 1925 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE, 1926 PAGE_HYP); 1927 1928 if (err) { 1929 kvm_err("Cannot map hyp stack\n"); 1930 goto out_err; 1931 } 1932 } 1933 1934 for_each_possible_cpu(cpu) { 1935 char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu]; 1936 char *percpu_end = percpu_begin + nvhe_percpu_size(); 1937 1938 /* Map Hyp percpu pages */ 1939 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP); 1940 if (err) { 1941 kvm_err("Cannot map hyp percpu region\n"); 1942 goto out_err; 1943 } 1944 1945 /* Prepare the CPU initialization parameters */ 1946 cpu_prepare_hyp_mode(cpu); 1947 } 1948 1949 if (is_protected_kvm_enabled()) { 1950 init_cpu_logical_map(); 1951 1952 if (!init_psci_relay()) { 1953 err = -ENODEV; 1954 goto out_err; 1955 } 1956 } 1957 1958 if (is_protected_kvm_enabled()) { 1959 err = kvm_hyp_init_protection(hyp_va_bits); 1960 if (err) { 1961 kvm_err("Failed to init hyp memory protection\n"); 1962 goto out_err; 1963 } 1964 } 1965 1966 return 0; 1967 1968 out_err: 1969 teardown_hyp_mode(); 1970 kvm_err("error initializing Hyp mode: %d\n", err); 1971 return err; 1972 } 1973 1974 static void _kvm_host_prot_finalize(void *discard) 1975 { 1976 WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize)); 1977 } 1978 1979 static int finalize_hyp_mode(void) 1980 { 1981 if (!is_protected_kvm_enabled()) 1982 return 0; 1983 1984 /* 1985 * Exclude HYP BSS from kmemleak so that it doesn't get peeked 1986 * at, which would end badly once the section is inaccessible. 1987 * None of other sections should ever be introspected. 1988 */ 1989 kmemleak_free_part(__hyp_bss_start, __hyp_bss_end - __hyp_bss_start); 1990 1991 /* 1992 * Flip the static key upfront as that may no longer be possible 1993 * once the host stage 2 is installed. 1994 */ 1995 static_branch_enable(&kvm_protected_mode_initialized); 1996 on_each_cpu(_kvm_host_prot_finalize, NULL, 1); 1997 1998 return 0; 1999 } 2000 2001 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr) 2002 { 2003 struct kvm_vcpu *vcpu; 2004 int i; 2005 2006 mpidr &= MPIDR_HWID_BITMASK; 2007 kvm_for_each_vcpu(i, vcpu, kvm) { 2008 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu)) 2009 return vcpu; 2010 } 2011 return NULL; 2012 } 2013 2014 bool kvm_arch_has_irq_bypass(void) 2015 { 2016 return true; 2017 } 2018 2019 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 2020 struct irq_bypass_producer *prod) 2021 { 2022 struct kvm_kernel_irqfd *irqfd = 2023 container_of(cons, struct kvm_kernel_irqfd, consumer); 2024 2025 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq, 2026 &irqfd->irq_entry); 2027 } 2028 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 2029 struct irq_bypass_producer *prod) 2030 { 2031 struct kvm_kernel_irqfd *irqfd = 2032 container_of(cons, struct kvm_kernel_irqfd, consumer); 2033 2034 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq, 2035 &irqfd->irq_entry); 2036 } 2037 2038 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons) 2039 { 2040 struct kvm_kernel_irqfd *irqfd = 2041 container_of(cons, struct kvm_kernel_irqfd, consumer); 2042 2043 kvm_arm_halt_guest(irqfd->kvm); 2044 } 2045 2046 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons) 2047 { 2048 struct kvm_kernel_irqfd *irqfd = 2049 container_of(cons, struct kvm_kernel_irqfd, consumer); 2050 2051 kvm_arm_resume_guest(irqfd->kvm); 2052 } 2053 2054 /** 2055 * Initialize Hyp-mode and memory mappings on all CPUs. 2056 */ 2057 int kvm_arch_init(void *opaque) 2058 { 2059 int err; 2060 bool in_hyp_mode; 2061 2062 if (!is_hyp_mode_available()) { 2063 kvm_info("HYP mode not available\n"); 2064 return -ENODEV; 2065 } 2066 2067 in_hyp_mode = is_kernel_in_hyp_mode(); 2068 2069 if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) || 2070 cpus_have_final_cap(ARM64_WORKAROUND_1508412)) 2071 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \ 2072 "Only trusted guests should be used on this system.\n"); 2073 2074 err = kvm_set_ipa_limit(); 2075 if (err) 2076 return err; 2077 2078 err = kvm_arm_init_sve(); 2079 if (err) 2080 return err; 2081 2082 if (!in_hyp_mode) { 2083 err = init_hyp_mode(); 2084 if (err) 2085 goto out_err; 2086 } 2087 2088 err = kvm_init_vector_slots(); 2089 if (err) { 2090 kvm_err("Cannot initialise vector slots\n"); 2091 goto out_err; 2092 } 2093 2094 err = init_subsystems(); 2095 if (err) 2096 goto out_hyp; 2097 2098 if (!in_hyp_mode) { 2099 err = finalize_hyp_mode(); 2100 if (err) { 2101 kvm_err("Failed to finalize Hyp protection\n"); 2102 goto out_hyp; 2103 } 2104 } 2105 2106 if (is_protected_kvm_enabled()) { 2107 kvm_info("Protected nVHE mode initialized successfully\n"); 2108 } else if (in_hyp_mode) { 2109 kvm_info("VHE mode initialized successfully\n"); 2110 } else { 2111 kvm_info("Hyp mode initialized successfully\n"); 2112 } 2113 2114 return 0; 2115 2116 out_hyp: 2117 hyp_cpu_pm_exit(); 2118 if (!in_hyp_mode) 2119 teardown_hyp_mode(); 2120 out_err: 2121 return err; 2122 } 2123 2124 /* NOP: Compiling as a module not supported */ 2125 void kvm_arch_exit(void) 2126 { 2127 kvm_perf_teardown(); 2128 } 2129 2130 static int __init early_kvm_mode_cfg(char *arg) 2131 { 2132 if (!arg) 2133 return -EINVAL; 2134 2135 if (strcmp(arg, "protected") == 0) { 2136 kvm_mode = KVM_MODE_PROTECTED; 2137 return 0; 2138 } 2139 2140 if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) 2141 return 0; 2142 2143 return -EINVAL; 2144 } 2145 early_param("kvm-arm.mode", early_kvm_mode_cfg); 2146 2147 enum kvm_mode kvm_get_mode(void) 2148 { 2149 return kvm_mode; 2150 } 2151 2152 static int arm_init(void) 2153 { 2154 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); 2155 return rc; 2156 } 2157 2158 module_init(arm_init); 2159