1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 4 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 5 */ 6 7 #include <linux/bug.h> 8 #include <linux/cpu_pm.h> 9 #include <linux/errno.h> 10 #include <linux/err.h> 11 #include <linux/kvm_host.h> 12 #include <linux/list.h> 13 #include <linux/module.h> 14 #include <linux/vmalloc.h> 15 #include <linux/fs.h> 16 #include <linux/mman.h> 17 #include <linux/sched.h> 18 #include <linux/kvm.h> 19 #include <linux/kvm_irqfd.h> 20 #include <linux/irqbypass.h> 21 #include <linux/sched/stat.h> 22 #include <linux/psci.h> 23 #include <trace/events/kvm.h> 24 25 #define CREATE_TRACE_POINTS 26 #include "trace_arm.h" 27 28 #include <linux/uaccess.h> 29 #include <asm/ptrace.h> 30 #include <asm/mman.h> 31 #include <asm/tlbflush.h> 32 #include <asm/cacheflush.h> 33 #include <asm/cpufeature.h> 34 #include <asm/virt.h> 35 #include <asm/kvm_arm.h> 36 #include <asm/kvm_asm.h> 37 #include <asm/kvm_emulate.h> 38 #include <asm/kvm_mmu.h> 39 #include <asm/kvm_nested.h> 40 #include <asm/kvm_pkvm.h> 41 #include <asm/kvm_ptrauth.h> 42 #include <asm/sections.h> 43 44 #include <kvm/arm_hypercalls.h> 45 #include <kvm/arm_pmu.h> 46 #include <kvm/arm_psci.h> 47 48 #include "sys_regs.h" 49 50 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT; 51 52 enum kvm_wfx_trap_policy { 53 KVM_WFX_NOTRAP_SINGLE_TASK, /* Default option */ 54 KVM_WFX_NOTRAP, 55 KVM_WFX_TRAP, 56 }; 57 58 static enum kvm_wfx_trap_policy kvm_wfi_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK; 59 static enum kvm_wfx_trap_policy kvm_wfe_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK; 60 61 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector); 62 63 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_base); 64 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params); 65 66 DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt); 67 68 static bool vgic_present, kvm_arm_initialised; 69 70 static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized); 71 72 bool is_kvm_arm_initialised(void) 73 { 74 return kvm_arm_initialised; 75 } 76 77 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 78 { 79 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 80 } 81 82 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 83 struct kvm_enable_cap *cap) 84 { 85 int r = -EINVAL; 86 87 if (cap->flags) 88 return -EINVAL; 89 90 if (kvm_vm_is_protected(kvm) && !kvm_pvm_ext_allowed(cap->cap)) 91 return -EINVAL; 92 93 switch (cap->cap) { 94 case KVM_CAP_ARM_NISV_TO_USER: 95 r = 0; 96 set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER, 97 &kvm->arch.flags); 98 break; 99 case KVM_CAP_ARM_MTE: 100 mutex_lock(&kvm->lock); 101 if (system_supports_mte() && !kvm->created_vcpus) { 102 r = 0; 103 set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags); 104 } 105 mutex_unlock(&kvm->lock); 106 break; 107 case KVM_CAP_ARM_SYSTEM_SUSPEND: 108 r = 0; 109 set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags); 110 break; 111 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE: 112 mutex_lock(&kvm->slots_lock); 113 /* 114 * To keep things simple, allow changing the chunk 115 * size only when no memory slots have been created. 116 */ 117 if (kvm_are_all_memslots_empty(kvm)) { 118 u64 new_cap = cap->args[0]; 119 120 if (!new_cap || kvm_is_block_size_supported(new_cap)) { 121 r = 0; 122 kvm->arch.mmu.split_page_chunk_size = new_cap; 123 } 124 } 125 mutex_unlock(&kvm->slots_lock); 126 break; 127 case KVM_CAP_ARM_WRITABLE_IMP_ID_REGS: 128 mutex_lock(&kvm->lock); 129 if (!kvm->created_vcpus) { 130 r = 0; 131 set_bit(KVM_ARCH_FLAG_WRITABLE_IMP_ID_REGS, &kvm->arch.flags); 132 } 133 mutex_unlock(&kvm->lock); 134 break; 135 default: 136 break; 137 } 138 139 return r; 140 } 141 142 static int kvm_arm_default_max_vcpus(void) 143 { 144 return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS; 145 } 146 147 /** 148 * kvm_arch_init_vm - initializes a VM data structure 149 * @kvm: pointer to the KVM struct 150 * @type: kvm device type 151 */ 152 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 153 { 154 int ret; 155 156 mutex_init(&kvm->arch.config_lock); 157 158 #ifdef CONFIG_LOCKDEP 159 /* Clue in lockdep that the config_lock must be taken inside kvm->lock */ 160 mutex_lock(&kvm->lock); 161 mutex_lock(&kvm->arch.config_lock); 162 mutex_unlock(&kvm->arch.config_lock); 163 mutex_unlock(&kvm->lock); 164 #endif 165 166 kvm_init_nested(kvm); 167 168 ret = kvm_share_hyp(kvm, kvm + 1); 169 if (ret) 170 return ret; 171 172 if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) { 173 ret = -ENOMEM; 174 goto err_unshare_kvm; 175 } 176 cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask); 177 178 ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type); 179 if (ret) 180 goto err_free_cpumask; 181 182 if (is_protected_kvm_enabled()) { 183 /* 184 * If any failures occur after this is successful, make sure to 185 * call __pkvm_unreserve_vm to unreserve the VM in hyp. 186 */ 187 ret = pkvm_init_host_vm(kvm); 188 if (ret) 189 goto err_free_cpumask; 190 } 191 192 kvm_vgic_early_init(kvm); 193 194 kvm_timer_init_vm(kvm); 195 196 /* The maximum number of VCPUs is limited by the host's GIC model */ 197 kvm->max_vcpus = kvm_arm_default_max_vcpus(); 198 199 kvm_arm_init_hypercalls(kvm); 200 201 bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES); 202 203 return 0; 204 205 err_free_cpumask: 206 free_cpumask_var(kvm->arch.supported_cpus); 207 err_unshare_kvm: 208 kvm_unshare_hyp(kvm, kvm + 1); 209 return ret; 210 } 211 212 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 213 { 214 return VM_FAULT_SIGBUS; 215 } 216 217 void kvm_arch_create_vm_debugfs(struct kvm *kvm) 218 { 219 kvm_sys_regs_create_debugfs(kvm); 220 kvm_s2_ptdump_create_debugfs(kvm); 221 } 222 223 static void kvm_destroy_mpidr_data(struct kvm *kvm) 224 { 225 struct kvm_mpidr_data *data; 226 227 mutex_lock(&kvm->arch.config_lock); 228 229 data = rcu_dereference_protected(kvm->arch.mpidr_data, 230 lockdep_is_held(&kvm->arch.config_lock)); 231 if (data) { 232 rcu_assign_pointer(kvm->arch.mpidr_data, NULL); 233 synchronize_rcu(); 234 kfree(data); 235 } 236 237 mutex_unlock(&kvm->arch.config_lock); 238 } 239 240 /** 241 * kvm_arch_destroy_vm - destroy the VM data structure 242 * @kvm: pointer to the KVM struct 243 */ 244 void kvm_arch_destroy_vm(struct kvm *kvm) 245 { 246 bitmap_free(kvm->arch.pmu_filter); 247 free_cpumask_var(kvm->arch.supported_cpus); 248 249 kvm_vgic_destroy(kvm); 250 251 if (is_protected_kvm_enabled()) 252 pkvm_destroy_hyp_vm(kvm); 253 254 kvm_destroy_mpidr_data(kvm); 255 256 kfree(kvm->arch.sysreg_masks); 257 kvm_destroy_vcpus(kvm); 258 259 kvm_unshare_hyp(kvm, kvm + 1); 260 261 kvm_arm_teardown_hypercalls(kvm); 262 } 263 264 static bool kvm_has_full_ptr_auth(void) 265 { 266 bool apa, gpa, api, gpi, apa3, gpa3; 267 u64 isar1, isar2, val; 268 269 /* 270 * Check that: 271 * 272 * - both Address and Generic auth are implemented for a given 273 * algorithm (Q5, IMPDEF or Q3) 274 * - only a single algorithm is implemented. 275 */ 276 if (!system_has_full_ptr_auth()) 277 return false; 278 279 isar1 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1); 280 isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1); 281 282 apa = !!FIELD_GET(ID_AA64ISAR1_EL1_APA_MASK, isar1); 283 val = FIELD_GET(ID_AA64ISAR1_EL1_GPA_MASK, isar1); 284 gpa = (val == ID_AA64ISAR1_EL1_GPA_IMP); 285 286 api = !!FIELD_GET(ID_AA64ISAR1_EL1_API_MASK, isar1); 287 val = FIELD_GET(ID_AA64ISAR1_EL1_GPI_MASK, isar1); 288 gpi = (val == ID_AA64ISAR1_EL1_GPI_IMP); 289 290 apa3 = !!FIELD_GET(ID_AA64ISAR2_EL1_APA3_MASK, isar2); 291 val = FIELD_GET(ID_AA64ISAR2_EL1_GPA3_MASK, isar2); 292 gpa3 = (val == ID_AA64ISAR2_EL1_GPA3_IMP); 293 294 return (apa == gpa && api == gpi && apa3 == gpa3 && 295 (apa + api + apa3) == 1); 296 } 297 298 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 299 { 300 int r; 301 302 if (kvm && kvm_vm_is_protected(kvm) && !kvm_pvm_ext_allowed(ext)) 303 return 0; 304 305 switch (ext) { 306 case KVM_CAP_IRQCHIP: 307 r = vgic_present; 308 break; 309 case KVM_CAP_IOEVENTFD: 310 case KVM_CAP_USER_MEMORY: 311 case KVM_CAP_SYNC_MMU: 312 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 313 case KVM_CAP_ONE_REG: 314 case KVM_CAP_ARM_PSCI: 315 case KVM_CAP_ARM_PSCI_0_2: 316 case KVM_CAP_READONLY_MEM: 317 case KVM_CAP_MP_STATE: 318 case KVM_CAP_IMMEDIATE_EXIT: 319 case KVM_CAP_VCPU_EVENTS: 320 case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2: 321 case KVM_CAP_ARM_NISV_TO_USER: 322 case KVM_CAP_ARM_INJECT_EXT_DABT: 323 case KVM_CAP_SET_GUEST_DEBUG: 324 case KVM_CAP_VCPU_ATTRIBUTES: 325 case KVM_CAP_PTP_KVM: 326 case KVM_CAP_ARM_SYSTEM_SUSPEND: 327 case KVM_CAP_IRQFD_RESAMPLE: 328 case KVM_CAP_COUNTER_OFFSET: 329 case KVM_CAP_ARM_WRITABLE_IMP_ID_REGS: 330 r = 1; 331 break; 332 case KVM_CAP_SET_GUEST_DEBUG2: 333 return KVM_GUESTDBG_VALID_MASK; 334 case KVM_CAP_ARM_SET_DEVICE_ADDR: 335 r = 1; 336 break; 337 case KVM_CAP_NR_VCPUS: 338 /* 339 * ARM64 treats KVM_CAP_NR_CPUS differently from all other 340 * architectures, as it does not always bound it to 341 * KVM_CAP_MAX_VCPUS. It should not matter much because 342 * this is just an advisory value. 343 */ 344 r = min_t(unsigned int, num_online_cpus(), 345 kvm_arm_default_max_vcpus()); 346 break; 347 case KVM_CAP_MAX_VCPUS: 348 case KVM_CAP_MAX_VCPU_ID: 349 if (kvm) 350 r = kvm->max_vcpus; 351 else 352 r = kvm_arm_default_max_vcpus(); 353 break; 354 case KVM_CAP_MSI_DEVID: 355 if (!kvm) 356 r = -EINVAL; 357 else 358 r = kvm->arch.vgic.msis_require_devid; 359 break; 360 case KVM_CAP_ARM_USER_IRQ: 361 /* 362 * 1: EL1_VTIMER, EL1_PTIMER, and PMU. 363 * (bump this number if adding more devices) 364 */ 365 r = 1; 366 break; 367 case KVM_CAP_ARM_MTE: 368 r = system_supports_mte(); 369 break; 370 case KVM_CAP_STEAL_TIME: 371 r = kvm_arm_pvtime_supported(); 372 break; 373 case KVM_CAP_ARM_EL1_32BIT: 374 r = cpus_have_final_cap(ARM64_HAS_32BIT_EL1); 375 break; 376 case KVM_CAP_ARM_EL2: 377 r = cpus_have_final_cap(ARM64_HAS_NESTED_VIRT); 378 break; 379 case KVM_CAP_ARM_EL2_E2H0: 380 r = cpus_have_final_cap(ARM64_HAS_HCR_NV1); 381 break; 382 case KVM_CAP_GUEST_DEBUG_HW_BPS: 383 r = get_num_brps(); 384 break; 385 case KVM_CAP_GUEST_DEBUG_HW_WPS: 386 r = get_num_wrps(); 387 break; 388 case KVM_CAP_ARM_PMU_V3: 389 r = kvm_supports_guest_pmuv3(); 390 break; 391 case KVM_CAP_ARM_INJECT_SERROR_ESR: 392 r = cpus_have_final_cap(ARM64_HAS_RAS_EXTN); 393 break; 394 case KVM_CAP_ARM_VM_IPA_SIZE: 395 r = get_kvm_ipa_limit(); 396 break; 397 case KVM_CAP_ARM_SVE: 398 r = system_supports_sve(); 399 break; 400 case KVM_CAP_ARM_PTRAUTH_ADDRESS: 401 case KVM_CAP_ARM_PTRAUTH_GENERIC: 402 r = kvm_has_full_ptr_auth(); 403 break; 404 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE: 405 if (kvm) 406 r = kvm->arch.mmu.split_page_chunk_size; 407 else 408 r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT; 409 break; 410 case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES: 411 r = kvm_supported_block_sizes(); 412 break; 413 case KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES: 414 r = BIT(0); 415 break; 416 case KVM_CAP_ARM_CACHEABLE_PFNMAP_SUPPORTED: 417 if (!kvm) 418 r = -EINVAL; 419 else 420 r = kvm_supports_cacheable_pfnmap(); 421 break; 422 423 default: 424 r = 0; 425 } 426 427 return r; 428 } 429 430 long kvm_arch_dev_ioctl(struct file *filp, 431 unsigned int ioctl, unsigned long arg) 432 { 433 return -EINVAL; 434 } 435 436 struct kvm *kvm_arch_alloc_vm(void) 437 { 438 size_t sz = sizeof(struct kvm); 439 440 if (!has_vhe()) 441 return kzalloc(sz, GFP_KERNEL_ACCOUNT); 442 443 return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO); 444 } 445 446 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 447 { 448 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) 449 return -EBUSY; 450 451 if (id >= kvm->max_vcpus) 452 return -EINVAL; 453 454 return 0; 455 } 456 457 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 458 { 459 int err; 460 461 spin_lock_init(&vcpu->arch.mp_state_lock); 462 463 #ifdef CONFIG_LOCKDEP 464 /* Inform lockdep that the config_lock is acquired after vcpu->mutex */ 465 mutex_lock(&vcpu->mutex); 466 mutex_lock(&vcpu->kvm->arch.config_lock); 467 mutex_unlock(&vcpu->kvm->arch.config_lock); 468 mutex_unlock(&vcpu->mutex); 469 #endif 470 471 /* Force users to call KVM_ARM_VCPU_INIT */ 472 vcpu_clear_flag(vcpu, VCPU_INITIALIZED); 473 474 vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO; 475 476 /* Set up the timer */ 477 kvm_timer_vcpu_init(vcpu); 478 479 kvm_pmu_vcpu_init(vcpu); 480 481 kvm_arm_pvtime_vcpu_init(&vcpu->arch); 482 483 vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu; 484 485 /* 486 * This vCPU may have been created after mpidr_data was initialized. 487 * Throw out the pre-computed mappings if that is the case which forces 488 * KVM to fall back to iteratively searching the vCPUs. 489 */ 490 kvm_destroy_mpidr_data(vcpu->kvm); 491 492 err = kvm_vgic_vcpu_init(vcpu); 493 if (err) 494 return err; 495 496 err = kvm_share_hyp(vcpu, vcpu + 1); 497 if (err) 498 kvm_vgic_vcpu_destroy(vcpu); 499 500 return err; 501 } 502 503 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 504 { 505 } 506 507 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 508 { 509 if (!is_protected_kvm_enabled()) 510 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); 511 else 512 free_hyp_memcache(&vcpu->arch.pkvm_memcache); 513 kvm_timer_vcpu_terminate(vcpu); 514 kvm_pmu_vcpu_destroy(vcpu); 515 kvm_vgic_vcpu_destroy(vcpu); 516 kvm_arm_vcpu_destroy(vcpu); 517 } 518 519 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 520 { 521 522 } 523 524 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 525 { 526 527 } 528 529 static void vcpu_set_pauth_traps(struct kvm_vcpu *vcpu) 530 { 531 if (vcpu_has_ptrauth(vcpu) && !is_protected_kvm_enabled()) { 532 /* 533 * Either we're running an L2 guest, and the API/APK bits come 534 * from L1's HCR_EL2, or API/APK are both set. 535 */ 536 if (unlikely(is_nested_ctxt(vcpu))) { 537 u64 val; 538 539 val = __vcpu_sys_reg(vcpu, HCR_EL2); 540 val &= (HCR_API | HCR_APK); 541 vcpu->arch.hcr_el2 &= ~(HCR_API | HCR_APK); 542 vcpu->arch.hcr_el2 |= val; 543 } else { 544 vcpu->arch.hcr_el2 |= (HCR_API | HCR_APK); 545 } 546 547 /* 548 * Save the host keys if there is any chance for the guest 549 * to use pauth, as the entry code will reload the guest 550 * keys in that case. 551 */ 552 if (vcpu->arch.hcr_el2 & (HCR_API | HCR_APK)) { 553 struct kvm_cpu_context *ctxt; 554 555 ctxt = this_cpu_ptr_hyp_sym(kvm_hyp_ctxt); 556 ptrauth_save_keys(ctxt); 557 } 558 } 559 } 560 561 static bool kvm_vcpu_should_clear_twi(struct kvm_vcpu *vcpu) 562 { 563 if (unlikely(kvm_wfi_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK)) 564 return kvm_wfi_trap_policy == KVM_WFX_NOTRAP; 565 566 return single_task_running() && 567 (atomic_read(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count) || 568 vcpu->kvm->arch.vgic.nassgireq); 569 } 570 571 static bool kvm_vcpu_should_clear_twe(struct kvm_vcpu *vcpu) 572 { 573 if (unlikely(kvm_wfe_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK)) 574 return kvm_wfe_trap_policy == KVM_WFX_NOTRAP; 575 576 return single_task_running(); 577 } 578 579 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 580 { 581 struct kvm_s2_mmu *mmu; 582 int *last_ran; 583 584 if (is_protected_kvm_enabled()) 585 goto nommu; 586 587 if (vcpu_has_nv(vcpu)) 588 kvm_vcpu_load_hw_mmu(vcpu); 589 590 mmu = vcpu->arch.hw_mmu; 591 last_ran = this_cpu_ptr(mmu->last_vcpu_ran); 592 593 /* 594 * Ensure a VMID is allocated for the MMU before programming VTTBR_EL2, 595 * which happens eagerly in VHE. 596 * 597 * Also, the VMID allocator only preserves VMIDs that are active at the 598 * time of rollover, so KVM might need to grab a new VMID for the MMU if 599 * this is called from kvm_sched_in(). 600 */ 601 kvm_arm_vmid_update(&mmu->vmid); 602 603 /* 604 * We guarantee that both TLBs and I-cache are private to each 605 * vcpu. If detecting that a vcpu from the same VM has 606 * previously run on the same physical CPU, call into the 607 * hypervisor code to nuke the relevant contexts. 608 * 609 * We might get preempted before the vCPU actually runs, but 610 * over-invalidation doesn't affect correctness. 611 */ 612 if (*last_ran != vcpu->vcpu_idx) { 613 kvm_call_hyp(__kvm_flush_cpu_context, mmu); 614 *last_ran = vcpu->vcpu_idx; 615 } 616 617 nommu: 618 vcpu->cpu = cpu; 619 620 /* 621 * The timer must be loaded before the vgic to correctly set up physical 622 * interrupt deactivation in nested state (e.g. timer interrupt). 623 */ 624 kvm_timer_vcpu_load(vcpu); 625 kvm_vgic_load(vcpu); 626 kvm_vcpu_load_debug(vcpu); 627 if (has_vhe()) 628 kvm_vcpu_load_vhe(vcpu); 629 kvm_arch_vcpu_load_fp(vcpu); 630 kvm_vcpu_pmu_restore_guest(vcpu); 631 if (kvm_arm_is_pvtime_enabled(&vcpu->arch)) 632 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu); 633 634 if (kvm_vcpu_should_clear_twe(vcpu)) 635 vcpu->arch.hcr_el2 &= ~HCR_TWE; 636 else 637 vcpu->arch.hcr_el2 |= HCR_TWE; 638 639 if (kvm_vcpu_should_clear_twi(vcpu)) 640 vcpu->arch.hcr_el2 &= ~HCR_TWI; 641 else 642 vcpu->arch.hcr_el2 |= HCR_TWI; 643 644 vcpu_set_pauth_traps(vcpu); 645 646 if (is_protected_kvm_enabled()) { 647 kvm_call_hyp_nvhe(__pkvm_vcpu_load, 648 vcpu->kvm->arch.pkvm.handle, 649 vcpu->vcpu_idx, vcpu->arch.hcr_el2); 650 kvm_call_hyp(__vgic_v3_restore_vmcr_aprs, 651 &vcpu->arch.vgic_cpu.vgic_v3); 652 } 653 654 if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus)) 655 vcpu_set_on_unsupported_cpu(vcpu); 656 } 657 658 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 659 { 660 if (is_protected_kvm_enabled()) { 661 kvm_call_hyp(__vgic_v3_save_vmcr_aprs, 662 &vcpu->arch.vgic_cpu.vgic_v3); 663 kvm_call_hyp_nvhe(__pkvm_vcpu_put); 664 } 665 666 kvm_vcpu_put_debug(vcpu); 667 kvm_arch_vcpu_put_fp(vcpu); 668 if (has_vhe()) 669 kvm_vcpu_put_vhe(vcpu); 670 kvm_timer_vcpu_put(vcpu); 671 kvm_vgic_put(vcpu); 672 kvm_vcpu_pmu_restore_host(vcpu); 673 if (vcpu_has_nv(vcpu)) 674 kvm_vcpu_put_hw_mmu(vcpu); 675 kvm_arm_vmid_clear_active(); 676 677 vcpu_clear_on_unsupported_cpu(vcpu); 678 vcpu->cpu = -1; 679 } 680 681 static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu) 682 { 683 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED); 684 kvm_make_request(KVM_REQ_SLEEP, vcpu); 685 kvm_vcpu_kick(vcpu); 686 } 687 688 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu) 689 { 690 spin_lock(&vcpu->arch.mp_state_lock); 691 __kvm_arm_vcpu_power_off(vcpu); 692 spin_unlock(&vcpu->arch.mp_state_lock); 693 } 694 695 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu) 696 { 697 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED; 698 } 699 700 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu) 701 { 702 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED); 703 kvm_make_request(KVM_REQ_SUSPEND, vcpu); 704 kvm_vcpu_kick(vcpu); 705 } 706 707 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu) 708 { 709 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED; 710 } 711 712 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 713 struct kvm_mp_state *mp_state) 714 { 715 *mp_state = READ_ONCE(vcpu->arch.mp_state); 716 717 return 0; 718 } 719 720 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 721 struct kvm_mp_state *mp_state) 722 { 723 int ret = 0; 724 725 spin_lock(&vcpu->arch.mp_state_lock); 726 727 switch (mp_state->mp_state) { 728 case KVM_MP_STATE_RUNNABLE: 729 WRITE_ONCE(vcpu->arch.mp_state, *mp_state); 730 break; 731 case KVM_MP_STATE_STOPPED: 732 __kvm_arm_vcpu_power_off(vcpu); 733 break; 734 case KVM_MP_STATE_SUSPENDED: 735 kvm_arm_vcpu_suspend(vcpu); 736 break; 737 default: 738 ret = -EINVAL; 739 } 740 741 spin_unlock(&vcpu->arch.mp_state_lock); 742 743 return ret; 744 } 745 746 /** 747 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled 748 * @v: The VCPU pointer 749 * 750 * If the guest CPU is not waiting for interrupts or an interrupt line is 751 * asserted, the CPU is by definition runnable. 752 */ 753 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 754 { 755 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF | HCR_VSE); 756 757 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v)) 758 && !kvm_arm_vcpu_stopped(v) && !v->arch.pause); 759 } 760 761 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 762 { 763 return vcpu_mode_priv(vcpu); 764 } 765 766 #ifdef CONFIG_GUEST_PERF_EVENTS 767 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 768 { 769 return *vcpu_pc(vcpu); 770 } 771 #endif 772 773 static void kvm_init_mpidr_data(struct kvm *kvm) 774 { 775 struct kvm_mpidr_data *data = NULL; 776 unsigned long c, mask, nr_entries; 777 u64 aff_set = 0, aff_clr = ~0UL; 778 struct kvm_vcpu *vcpu; 779 780 mutex_lock(&kvm->arch.config_lock); 781 782 if (rcu_access_pointer(kvm->arch.mpidr_data) || 783 atomic_read(&kvm->online_vcpus) == 1) 784 goto out; 785 786 kvm_for_each_vcpu(c, vcpu, kvm) { 787 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu); 788 aff_set |= aff; 789 aff_clr &= aff; 790 } 791 792 /* 793 * A significant bit can be either 0 or 1, and will only appear in 794 * aff_set. Use aff_clr to weed out the useless stuff. 795 */ 796 mask = aff_set ^ aff_clr; 797 nr_entries = BIT_ULL(hweight_long(mask)); 798 799 /* 800 * Don't let userspace fool us. If we need more than a single page 801 * to describe the compressed MPIDR array, just fall back to the 802 * iterative method. Single vcpu VMs do not need this either. 803 */ 804 if (struct_size(data, cmpidr_to_idx, nr_entries) <= PAGE_SIZE) 805 data = kzalloc(struct_size(data, cmpidr_to_idx, nr_entries), 806 GFP_KERNEL_ACCOUNT); 807 808 if (!data) 809 goto out; 810 811 data->mpidr_mask = mask; 812 813 kvm_for_each_vcpu(c, vcpu, kvm) { 814 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu); 815 u16 index = kvm_mpidr_index(data, aff); 816 817 data->cmpidr_to_idx[index] = c; 818 } 819 820 rcu_assign_pointer(kvm->arch.mpidr_data, data); 821 out: 822 mutex_unlock(&kvm->arch.config_lock); 823 } 824 825 /* 826 * Handle both the initialisation that is being done when the vcpu is 827 * run for the first time, as well as the updates that must be 828 * performed each time we get a new thread dealing with this vcpu. 829 */ 830 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 831 { 832 struct kvm *kvm = vcpu->kvm; 833 int ret; 834 835 if (!kvm_vcpu_initialized(vcpu)) 836 return -ENOEXEC; 837 838 if (!kvm_arm_vcpu_is_finalized(vcpu)) 839 return -EPERM; 840 841 if (likely(vcpu_has_run_once(vcpu))) 842 return 0; 843 844 kvm_init_mpidr_data(kvm); 845 846 if (likely(irqchip_in_kernel(kvm))) { 847 /* 848 * Map the VGIC hardware resources before running a vcpu the 849 * first time on this VM. 850 */ 851 ret = kvm_vgic_map_resources(kvm); 852 if (ret) 853 return ret; 854 } 855 856 ret = kvm_finalize_sys_regs(vcpu); 857 if (ret) 858 return ret; 859 860 if (vcpu_has_nv(vcpu)) { 861 ret = kvm_vcpu_allocate_vncr_tlb(vcpu); 862 if (ret) 863 return ret; 864 865 ret = kvm_vgic_vcpu_nv_init(vcpu); 866 if (ret) 867 return ret; 868 } 869 870 /* 871 * This needs to happen after any restriction has been applied 872 * to the feature set. 873 */ 874 kvm_calculate_traps(vcpu); 875 876 ret = kvm_timer_enable(vcpu); 877 if (ret) 878 return ret; 879 880 if (kvm_vcpu_has_pmu(vcpu)) { 881 ret = kvm_arm_pmu_v3_enable(vcpu); 882 if (ret) 883 return ret; 884 } 885 886 if (is_protected_kvm_enabled()) { 887 ret = pkvm_create_hyp_vm(kvm); 888 if (ret) 889 return ret; 890 891 ret = pkvm_create_hyp_vcpu(vcpu); 892 if (ret) 893 return ret; 894 } 895 896 mutex_lock(&kvm->arch.config_lock); 897 set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags); 898 mutex_unlock(&kvm->arch.config_lock); 899 900 return ret; 901 } 902 903 bool kvm_arch_intc_initialized(struct kvm *kvm) 904 { 905 return vgic_initialized(kvm); 906 } 907 908 void kvm_arm_halt_guest(struct kvm *kvm) 909 { 910 unsigned long i; 911 struct kvm_vcpu *vcpu; 912 913 kvm_for_each_vcpu(i, vcpu, kvm) 914 vcpu->arch.pause = true; 915 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP); 916 } 917 918 void kvm_arm_resume_guest(struct kvm *kvm) 919 { 920 unsigned long i; 921 struct kvm_vcpu *vcpu; 922 923 kvm_for_each_vcpu(i, vcpu, kvm) { 924 vcpu->arch.pause = false; 925 __kvm_vcpu_wake_up(vcpu); 926 } 927 } 928 929 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu) 930 { 931 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 932 933 rcuwait_wait_event(wait, 934 (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause), 935 TASK_INTERRUPTIBLE); 936 937 if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) { 938 /* Awaken to handle a signal, request we sleep again later. */ 939 kvm_make_request(KVM_REQ_SLEEP, vcpu); 940 } 941 942 /* 943 * Make sure we will observe a potential reset request if we've 944 * observed a change to the power state. Pairs with the smp_wmb() in 945 * kvm_psci_vcpu_on(). 946 */ 947 smp_rmb(); 948 } 949 950 /** 951 * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior 952 * @vcpu: The VCPU pointer 953 * 954 * Suspend execution of a vCPU until a valid wake event is detected, i.e. until 955 * the vCPU is runnable. The vCPU may or may not be scheduled out, depending 956 * on when a wake event arrives, e.g. there may already be a pending wake event. 957 */ 958 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu) 959 { 960 /* 961 * Sync back the state of the GIC CPU interface so that we have 962 * the latest PMR and group enables. This ensures that 963 * kvm_arch_vcpu_runnable has up-to-date data to decide whether 964 * we have pending interrupts, e.g. when determining if the 965 * vCPU should block. 966 * 967 * For the same reason, we want to tell GICv4 that we need 968 * doorbells to be signalled, should an interrupt become pending. 969 */ 970 preempt_disable(); 971 vcpu_set_flag(vcpu, IN_WFI); 972 kvm_vgic_put(vcpu); 973 preempt_enable(); 974 975 kvm_vcpu_halt(vcpu); 976 vcpu_clear_flag(vcpu, IN_WFIT); 977 978 preempt_disable(); 979 vcpu_clear_flag(vcpu, IN_WFI); 980 kvm_vgic_load(vcpu); 981 preempt_enable(); 982 } 983 984 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu) 985 { 986 if (!kvm_arm_vcpu_suspended(vcpu)) 987 return 1; 988 989 kvm_vcpu_wfi(vcpu); 990 991 /* 992 * The suspend state is sticky; we do not leave it until userspace 993 * explicitly marks the vCPU as runnable. Request that we suspend again 994 * later. 995 */ 996 kvm_make_request(KVM_REQ_SUSPEND, vcpu); 997 998 /* 999 * Check to make sure the vCPU is actually runnable. If so, exit to 1000 * userspace informing it of the wakeup condition. 1001 */ 1002 if (kvm_arch_vcpu_runnable(vcpu)) { 1003 memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event)); 1004 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP; 1005 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 1006 return 0; 1007 } 1008 1009 /* 1010 * Otherwise, we were unblocked to process a different event, such as a 1011 * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to 1012 * process the event. 1013 */ 1014 return 1; 1015 } 1016 1017 /** 1018 * check_vcpu_requests - check and handle pending vCPU requests 1019 * @vcpu: the VCPU pointer 1020 * 1021 * Return: 1 if we should enter the guest 1022 * 0 if we should exit to userspace 1023 * < 0 if we should exit to userspace, where the return value indicates 1024 * an error 1025 */ 1026 static int check_vcpu_requests(struct kvm_vcpu *vcpu) 1027 { 1028 if (kvm_request_pending(vcpu)) { 1029 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) 1030 return -EIO; 1031 1032 if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) 1033 kvm_vcpu_sleep(vcpu); 1034 1035 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) 1036 kvm_reset_vcpu(vcpu); 1037 1038 /* 1039 * Clear IRQ_PENDING requests that were made to guarantee 1040 * that a VCPU sees new virtual interrupts. 1041 */ 1042 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu); 1043 1044 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu)) 1045 kvm_update_stolen_time(vcpu); 1046 1047 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) { 1048 /* The distributor enable bits were changed */ 1049 preempt_disable(); 1050 vgic_v4_put(vcpu); 1051 vgic_v4_load(vcpu); 1052 preempt_enable(); 1053 } 1054 1055 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu)) 1056 kvm_vcpu_reload_pmu(vcpu); 1057 1058 if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu)) 1059 kvm_vcpu_pmu_restore_guest(vcpu); 1060 1061 if (kvm_check_request(KVM_REQ_SUSPEND, vcpu)) 1062 return kvm_vcpu_suspend(vcpu); 1063 1064 if (kvm_dirty_ring_check_request(vcpu)) 1065 return 0; 1066 1067 check_nested_vcpu_requests(vcpu); 1068 } 1069 1070 return 1; 1071 } 1072 1073 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu) 1074 { 1075 if (likely(!vcpu_mode_is_32bit(vcpu))) 1076 return false; 1077 1078 if (vcpu_has_nv(vcpu)) 1079 return true; 1080 1081 return !kvm_supports_32bit_el0(); 1082 } 1083 1084 /** 1085 * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest 1086 * @vcpu: The VCPU pointer 1087 * @ret: Pointer to write optional return code 1088 * 1089 * Returns: true if the VCPU needs to return to a preemptible + interruptible 1090 * and skip guest entry. 1091 * 1092 * This function disambiguates between two different types of exits: exits to a 1093 * preemptible + interruptible kernel context and exits to userspace. For an 1094 * exit to userspace, this function will write the return code to ret and return 1095 * true. For an exit to preemptible + interruptible kernel context (i.e. check 1096 * for pending work and re-enter), return true without writing to ret. 1097 */ 1098 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret) 1099 { 1100 struct kvm_run *run = vcpu->run; 1101 1102 /* 1103 * If we're using a userspace irqchip, then check if we need 1104 * to tell a userspace irqchip about timer or PMU level 1105 * changes and if so, exit to userspace (the actual level 1106 * state gets updated in kvm_timer_update_run and 1107 * kvm_pmu_update_run below). 1108 */ 1109 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) { 1110 if (kvm_timer_should_notify_user(vcpu) || 1111 kvm_pmu_should_notify_user(vcpu)) { 1112 *ret = -EINTR; 1113 run->exit_reason = KVM_EXIT_INTR; 1114 return true; 1115 } 1116 } 1117 1118 if (unlikely(vcpu_on_unsupported_cpu(vcpu))) { 1119 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 1120 run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED; 1121 run->fail_entry.cpu = smp_processor_id(); 1122 *ret = 0; 1123 return true; 1124 } 1125 1126 return kvm_request_pending(vcpu) || 1127 xfer_to_guest_mode_work_pending(); 1128 } 1129 1130 /* 1131 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while 1132 * the vCPU is running. 1133 * 1134 * This must be noinstr as instrumentation may make use of RCU, and this is not 1135 * safe during the EQS. 1136 */ 1137 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu) 1138 { 1139 int ret; 1140 1141 guest_state_enter_irqoff(); 1142 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu); 1143 guest_state_exit_irqoff(); 1144 1145 return ret; 1146 } 1147 1148 /** 1149 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code 1150 * @vcpu: The VCPU pointer 1151 * 1152 * This function is called through the VCPU_RUN ioctl called from user space. It 1153 * will execute VM code in a loop until the time slice for the process is used 1154 * or some emulation is needed from user space in which case the function will 1155 * return with return value 0 and with the kvm_run structure filled in with the 1156 * required data for the requested emulation. 1157 */ 1158 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 1159 { 1160 struct kvm_run *run = vcpu->run; 1161 int ret; 1162 1163 if (run->exit_reason == KVM_EXIT_MMIO) { 1164 ret = kvm_handle_mmio_return(vcpu); 1165 if (ret <= 0) 1166 return ret; 1167 } 1168 1169 vcpu_load(vcpu); 1170 1171 if (!vcpu->wants_to_run) { 1172 ret = -EINTR; 1173 goto out; 1174 } 1175 1176 kvm_sigset_activate(vcpu); 1177 1178 ret = 1; 1179 run->exit_reason = KVM_EXIT_UNKNOWN; 1180 run->flags = 0; 1181 while (ret > 0) { 1182 /* 1183 * Check conditions before entering the guest 1184 */ 1185 ret = kvm_xfer_to_guest_mode_handle_work(vcpu); 1186 if (!ret) 1187 ret = 1; 1188 1189 if (ret > 0) 1190 ret = check_vcpu_requests(vcpu); 1191 1192 /* 1193 * Preparing the interrupts to be injected also 1194 * involves poking the GIC, which must be done in a 1195 * non-preemptible context. 1196 */ 1197 preempt_disable(); 1198 1199 kvm_nested_flush_hwstate(vcpu); 1200 1201 if (kvm_vcpu_has_pmu(vcpu)) 1202 kvm_pmu_flush_hwstate(vcpu); 1203 1204 local_irq_disable(); 1205 1206 kvm_vgic_flush_hwstate(vcpu); 1207 1208 kvm_pmu_update_vcpu_events(vcpu); 1209 1210 /* 1211 * Ensure we set mode to IN_GUEST_MODE after we disable 1212 * interrupts and before the final VCPU requests check. 1213 * See the comment in kvm_vcpu_exiting_guest_mode() and 1214 * Documentation/virt/kvm/vcpu-requests.rst 1215 */ 1216 smp_store_mb(vcpu->mode, IN_GUEST_MODE); 1217 1218 if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) { 1219 vcpu->mode = OUTSIDE_GUEST_MODE; 1220 isb(); /* Ensure work in x_flush_hwstate is committed */ 1221 if (kvm_vcpu_has_pmu(vcpu)) 1222 kvm_pmu_sync_hwstate(vcpu); 1223 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) 1224 kvm_timer_sync_user(vcpu); 1225 kvm_vgic_sync_hwstate(vcpu); 1226 local_irq_enable(); 1227 preempt_enable(); 1228 continue; 1229 } 1230 1231 kvm_arch_vcpu_ctxflush_fp(vcpu); 1232 1233 /************************************************************** 1234 * Enter the guest 1235 */ 1236 trace_kvm_entry(*vcpu_pc(vcpu)); 1237 guest_timing_enter_irqoff(); 1238 1239 ret = kvm_arm_vcpu_enter_exit(vcpu); 1240 1241 vcpu->mode = OUTSIDE_GUEST_MODE; 1242 vcpu->stat.exits++; 1243 /* 1244 * Back from guest 1245 *************************************************************/ 1246 1247 /* 1248 * We must sync the PMU state before the vgic state so 1249 * that the vgic can properly sample the updated state of the 1250 * interrupt line. 1251 */ 1252 if (kvm_vcpu_has_pmu(vcpu)) 1253 kvm_pmu_sync_hwstate(vcpu); 1254 1255 /* 1256 * Sync the vgic state before syncing the timer state because 1257 * the timer code needs to know if the virtual timer 1258 * interrupts are active. 1259 */ 1260 kvm_vgic_sync_hwstate(vcpu); 1261 1262 /* 1263 * Sync the timer hardware state before enabling interrupts as 1264 * we don't want vtimer interrupts to race with syncing the 1265 * timer virtual interrupt state. 1266 */ 1267 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) 1268 kvm_timer_sync_user(vcpu); 1269 1270 if (is_hyp_ctxt(vcpu)) 1271 kvm_timer_sync_nested(vcpu); 1272 1273 kvm_arch_vcpu_ctxsync_fp(vcpu); 1274 1275 /* 1276 * We must ensure that any pending interrupts are taken before 1277 * we exit guest timing so that timer ticks are accounted as 1278 * guest time. Transiently unmask interrupts so that any 1279 * pending interrupts are taken. 1280 * 1281 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other 1282 * context synchronization event) is necessary to ensure that 1283 * pending interrupts are taken. 1284 */ 1285 if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) { 1286 local_irq_enable(); 1287 isb(); 1288 local_irq_disable(); 1289 } 1290 1291 guest_timing_exit_irqoff(); 1292 1293 local_irq_enable(); 1294 1295 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu)); 1296 1297 /* Exit types that need handling before we can be preempted */ 1298 handle_exit_early(vcpu, ret); 1299 1300 kvm_nested_sync_hwstate(vcpu); 1301 1302 preempt_enable(); 1303 1304 /* 1305 * The ARMv8 architecture doesn't give the hypervisor 1306 * a mechanism to prevent a guest from dropping to AArch32 EL0 1307 * if implemented by the CPU. If we spot the guest in such 1308 * state and that we decided it wasn't supposed to do so (like 1309 * with the asymmetric AArch32 case), return to userspace with 1310 * a fatal error. 1311 */ 1312 if (vcpu_mode_is_bad_32bit(vcpu)) { 1313 /* 1314 * As we have caught the guest red-handed, decide that 1315 * it isn't fit for purpose anymore by making the vcpu 1316 * invalid. The VMM can try and fix it by issuing a 1317 * KVM_ARM_VCPU_INIT if it really wants to. 1318 */ 1319 vcpu_clear_flag(vcpu, VCPU_INITIALIZED); 1320 ret = ARM_EXCEPTION_IL; 1321 } 1322 1323 ret = handle_exit(vcpu, ret); 1324 } 1325 1326 /* Tell userspace about in-kernel device output levels */ 1327 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) { 1328 kvm_timer_update_run(vcpu); 1329 kvm_pmu_update_run(vcpu); 1330 } 1331 1332 kvm_sigset_deactivate(vcpu); 1333 1334 out: 1335 /* 1336 * In the unlikely event that we are returning to userspace 1337 * with pending exceptions or PC adjustment, commit these 1338 * adjustments in order to give userspace a consistent view of 1339 * the vcpu state. Note that this relies on __kvm_adjust_pc() 1340 * being preempt-safe on VHE. 1341 */ 1342 if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) || 1343 vcpu_get_flag(vcpu, INCREMENT_PC))) 1344 kvm_call_hyp(__kvm_adjust_pc, vcpu); 1345 1346 vcpu_put(vcpu); 1347 return ret; 1348 } 1349 1350 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level) 1351 { 1352 int bit_index; 1353 bool set; 1354 unsigned long *hcr; 1355 1356 if (number == KVM_ARM_IRQ_CPU_IRQ) 1357 bit_index = __ffs(HCR_VI); 1358 else /* KVM_ARM_IRQ_CPU_FIQ */ 1359 bit_index = __ffs(HCR_VF); 1360 1361 hcr = vcpu_hcr(vcpu); 1362 if (level) 1363 set = test_and_set_bit(bit_index, hcr); 1364 else 1365 set = test_and_clear_bit(bit_index, hcr); 1366 1367 /* 1368 * If we didn't change anything, no need to wake up or kick other CPUs 1369 */ 1370 if (set == level) 1371 return 0; 1372 1373 /* 1374 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and 1375 * trigger a world-switch round on the running physical CPU to set the 1376 * virtual IRQ/FIQ fields in the HCR appropriately. 1377 */ 1378 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); 1379 kvm_vcpu_kick(vcpu); 1380 1381 return 0; 1382 } 1383 1384 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1385 bool line_status) 1386 { 1387 u32 irq = irq_level->irq; 1388 unsigned int irq_type, vcpu_id, irq_num; 1389 struct kvm_vcpu *vcpu = NULL; 1390 bool level = irq_level->level; 1391 1392 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK; 1393 vcpu_id = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK; 1394 vcpu_id += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1); 1395 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK; 1396 1397 trace_kvm_irq_line(irq_type, vcpu_id, irq_num, irq_level->level); 1398 1399 switch (irq_type) { 1400 case KVM_ARM_IRQ_TYPE_CPU: 1401 if (irqchip_in_kernel(kvm)) 1402 return -ENXIO; 1403 1404 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); 1405 if (!vcpu) 1406 return -EINVAL; 1407 1408 if (irq_num > KVM_ARM_IRQ_CPU_FIQ) 1409 return -EINVAL; 1410 1411 return vcpu_interrupt_line(vcpu, irq_num, level); 1412 case KVM_ARM_IRQ_TYPE_PPI: 1413 if (!irqchip_in_kernel(kvm)) 1414 return -ENXIO; 1415 1416 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); 1417 if (!vcpu) 1418 return -EINVAL; 1419 1420 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS) 1421 return -EINVAL; 1422 1423 return kvm_vgic_inject_irq(kvm, vcpu, irq_num, level, NULL); 1424 case KVM_ARM_IRQ_TYPE_SPI: 1425 if (!irqchip_in_kernel(kvm)) 1426 return -ENXIO; 1427 1428 if (irq_num < VGIC_NR_PRIVATE_IRQS) 1429 return -EINVAL; 1430 1431 return kvm_vgic_inject_irq(kvm, NULL, irq_num, level, NULL); 1432 } 1433 1434 return -EINVAL; 1435 } 1436 1437 static unsigned long system_supported_vcpu_features(void) 1438 { 1439 unsigned long features = KVM_VCPU_VALID_FEATURES; 1440 1441 if (!cpus_have_final_cap(ARM64_HAS_32BIT_EL1)) 1442 clear_bit(KVM_ARM_VCPU_EL1_32BIT, &features); 1443 1444 if (!kvm_supports_guest_pmuv3()) 1445 clear_bit(KVM_ARM_VCPU_PMU_V3, &features); 1446 1447 if (!system_supports_sve()) 1448 clear_bit(KVM_ARM_VCPU_SVE, &features); 1449 1450 if (!kvm_has_full_ptr_auth()) { 1451 clear_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features); 1452 clear_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features); 1453 } 1454 1455 if (!cpus_have_final_cap(ARM64_HAS_NESTED_VIRT)) 1456 clear_bit(KVM_ARM_VCPU_HAS_EL2, &features); 1457 1458 return features; 1459 } 1460 1461 static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu, 1462 const struct kvm_vcpu_init *init) 1463 { 1464 unsigned long features = init->features[0]; 1465 int i; 1466 1467 if (features & ~KVM_VCPU_VALID_FEATURES) 1468 return -ENOENT; 1469 1470 for (i = 1; i < ARRAY_SIZE(init->features); i++) { 1471 if (init->features[i]) 1472 return -ENOENT; 1473 } 1474 1475 if (features & ~system_supported_vcpu_features()) 1476 return -EINVAL; 1477 1478 /* 1479 * For now make sure that both address/generic pointer authentication 1480 * features are requested by the userspace together. 1481 */ 1482 if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features) != 1483 test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features)) 1484 return -EINVAL; 1485 1486 if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features)) 1487 return 0; 1488 1489 /* MTE is incompatible with AArch32 */ 1490 if (kvm_has_mte(vcpu->kvm)) 1491 return -EINVAL; 1492 1493 /* NV is incompatible with AArch32 */ 1494 if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features)) 1495 return -EINVAL; 1496 1497 return 0; 1498 } 1499 1500 static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu, 1501 const struct kvm_vcpu_init *init) 1502 { 1503 unsigned long features = init->features[0]; 1504 1505 return !bitmap_equal(vcpu->kvm->arch.vcpu_features, &features, 1506 KVM_VCPU_MAX_FEATURES); 1507 } 1508 1509 static int kvm_setup_vcpu(struct kvm_vcpu *vcpu) 1510 { 1511 struct kvm *kvm = vcpu->kvm; 1512 int ret = 0; 1513 1514 /* 1515 * When the vCPU has a PMU, but no PMU is set for the guest 1516 * yet, set the default one. 1517 */ 1518 if (kvm_vcpu_has_pmu(vcpu) && !kvm->arch.arm_pmu) 1519 ret = kvm_arm_set_default_pmu(kvm); 1520 1521 /* Prepare for nested if required */ 1522 if (!ret && vcpu_has_nv(vcpu)) 1523 ret = kvm_vcpu_init_nested(vcpu); 1524 1525 return ret; 1526 } 1527 1528 static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu, 1529 const struct kvm_vcpu_init *init) 1530 { 1531 unsigned long features = init->features[0]; 1532 struct kvm *kvm = vcpu->kvm; 1533 int ret = -EINVAL; 1534 1535 mutex_lock(&kvm->arch.config_lock); 1536 1537 if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) && 1538 kvm_vcpu_init_changed(vcpu, init)) 1539 goto out_unlock; 1540 1541 bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES); 1542 1543 ret = kvm_setup_vcpu(vcpu); 1544 if (ret) 1545 goto out_unlock; 1546 1547 /* Now we know what it is, we can reset it. */ 1548 kvm_reset_vcpu(vcpu); 1549 1550 set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags); 1551 vcpu_set_flag(vcpu, VCPU_INITIALIZED); 1552 ret = 0; 1553 out_unlock: 1554 mutex_unlock(&kvm->arch.config_lock); 1555 return ret; 1556 } 1557 1558 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu, 1559 const struct kvm_vcpu_init *init) 1560 { 1561 int ret; 1562 1563 if (init->target != KVM_ARM_TARGET_GENERIC_V8 && 1564 init->target != kvm_target_cpu()) 1565 return -EINVAL; 1566 1567 ret = kvm_vcpu_init_check_features(vcpu, init); 1568 if (ret) 1569 return ret; 1570 1571 if (!kvm_vcpu_initialized(vcpu)) 1572 return __kvm_vcpu_set_target(vcpu, init); 1573 1574 if (kvm_vcpu_init_changed(vcpu, init)) 1575 return -EINVAL; 1576 1577 kvm_reset_vcpu(vcpu); 1578 return 0; 1579 } 1580 1581 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu, 1582 struct kvm_vcpu_init *init) 1583 { 1584 bool power_off = false; 1585 int ret; 1586 1587 /* 1588 * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid 1589 * reflecting it in the finalized feature set, thus limiting its scope 1590 * to a single KVM_ARM_VCPU_INIT call. 1591 */ 1592 if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) { 1593 init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF); 1594 power_off = true; 1595 } 1596 1597 ret = kvm_vcpu_set_target(vcpu, init); 1598 if (ret) 1599 return ret; 1600 1601 /* 1602 * Ensure a rebooted VM will fault in RAM pages and detect if the 1603 * guest MMU is turned off and flush the caches as needed. 1604 * 1605 * S2FWB enforces all memory accesses to RAM being cacheable, 1606 * ensuring that the data side is always coherent. We still 1607 * need to invalidate the I-cache though, as FWB does *not* 1608 * imply CTR_EL0.DIC. 1609 */ 1610 if (vcpu_has_run_once(vcpu)) { 1611 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) 1612 stage2_unmap_vm(vcpu->kvm); 1613 else 1614 icache_inval_all_pou(); 1615 } 1616 1617 vcpu_reset_hcr(vcpu); 1618 1619 /* 1620 * Handle the "start in power-off" case. 1621 */ 1622 spin_lock(&vcpu->arch.mp_state_lock); 1623 1624 if (power_off) 1625 __kvm_arm_vcpu_power_off(vcpu); 1626 else 1627 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE); 1628 1629 spin_unlock(&vcpu->arch.mp_state_lock); 1630 1631 return 0; 1632 } 1633 1634 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu, 1635 struct kvm_device_attr *attr) 1636 { 1637 int ret = -ENXIO; 1638 1639 switch (attr->group) { 1640 default: 1641 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr); 1642 break; 1643 } 1644 1645 return ret; 1646 } 1647 1648 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu, 1649 struct kvm_device_attr *attr) 1650 { 1651 int ret = -ENXIO; 1652 1653 switch (attr->group) { 1654 default: 1655 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr); 1656 break; 1657 } 1658 1659 return ret; 1660 } 1661 1662 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu, 1663 struct kvm_device_attr *attr) 1664 { 1665 int ret = -ENXIO; 1666 1667 switch (attr->group) { 1668 default: 1669 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr); 1670 break; 1671 } 1672 1673 return ret; 1674 } 1675 1676 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, 1677 struct kvm_vcpu_events *events) 1678 { 1679 memset(events, 0, sizeof(*events)); 1680 1681 return __kvm_arm_vcpu_get_events(vcpu, events); 1682 } 1683 1684 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, 1685 struct kvm_vcpu_events *events) 1686 { 1687 int i; 1688 1689 /* check whether the reserved field is zero */ 1690 for (i = 0; i < ARRAY_SIZE(events->reserved); i++) 1691 if (events->reserved[i]) 1692 return -EINVAL; 1693 1694 /* check whether the pad field is zero */ 1695 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++) 1696 if (events->exception.pad[i]) 1697 return -EINVAL; 1698 1699 return __kvm_arm_vcpu_set_events(vcpu, events); 1700 } 1701 1702 long kvm_arch_vcpu_ioctl(struct file *filp, 1703 unsigned int ioctl, unsigned long arg) 1704 { 1705 struct kvm_vcpu *vcpu = filp->private_data; 1706 void __user *argp = (void __user *)arg; 1707 struct kvm_device_attr attr; 1708 long r; 1709 1710 switch (ioctl) { 1711 case KVM_ARM_VCPU_INIT: { 1712 struct kvm_vcpu_init init; 1713 1714 r = -EFAULT; 1715 if (copy_from_user(&init, argp, sizeof(init))) 1716 break; 1717 1718 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init); 1719 break; 1720 } 1721 case KVM_SET_ONE_REG: 1722 case KVM_GET_ONE_REG: { 1723 struct kvm_one_reg reg; 1724 1725 r = -ENOEXEC; 1726 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1727 break; 1728 1729 r = -EFAULT; 1730 if (copy_from_user(®, argp, sizeof(reg))) 1731 break; 1732 1733 /* 1734 * We could owe a reset due to PSCI. Handle the pending reset 1735 * here to ensure userspace register accesses are ordered after 1736 * the reset. 1737 */ 1738 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) 1739 kvm_reset_vcpu(vcpu); 1740 1741 if (ioctl == KVM_SET_ONE_REG) 1742 r = kvm_arm_set_reg(vcpu, ®); 1743 else 1744 r = kvm_arm_get_reg(vcpu, ®); 1745 break; 1746 } 1747 case KVM_GET_REG_LIST: { 1748 struct kvm_reg_list __user *user_list = argp; 1749 struct kvm_reg_list reg_list; 1750 unsigned n; 1751 1752 r = -ENOEXEC; 1753 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1754 break; 1755 1756 r = -EPERM; 1757 if (!kvm_arm_vcpu_is_finalized(vcpu)) 1758 break; 1759 1760 r = -EFAULT; 1761 if (copy_from_user(®_list, user_list, sizeof(reg_list))) 1762 break; 1763 n = reg_list.n; 1764 reg_list.n = kvm_arm_num_regs(vcpu); 1765 if (copy_to_user(user_list, ®_list, sizeof(reg_list))) 1766 break; 1767 r = -E2BIG; 1768 if (n < reg_list.n) 1769 break; 1770 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg); 1771 break; 1772 } 1773 case KVM_SET_DEVICE_ATTR: { 1774 r = -EFAULT; 1775 if (copy_from_user(&attr, argp, sizeof(attr))) 1776 break; 1777 r = kvm_arm_vcpu_set_attr(vcpu, &attr); 1778 break; 1779 } 1780 case KVM_GET_DEVICE_ATTR: { 1781 r = -EFAULT; 1782 if (copy_from_user(&attr, argp, sizeof(attr))) 1783 break; 1784 r = kvm_arm_vcpu_get_attr(vcpu, &attr); 1785 break; 1786 } 1787 case KVM_HAS_DEVICE_ATTR: { 1788 r = -EFAULT; 1789 if (copy_from_user(&attr, argp, sizeof(attr))) 1790 break; 1791 r = kvm_arm_vcpu_has_attr(vcpu, &attr); 1792 break; 1793 } 1794 case KVM_GET_VCPU_EVENTS: { 1795 struct kvm_vcpu_events events; 1796 1797 if (kvm_arm_vcpu_get_events(vcpu, &events)) 1798 return -EINVAL; 1799 1800 if (copy_to_user(argp, &events, sizeof(events))) 1801 return -EFAULT; 1802 1803 return 0; 1804 } 1805 case KVM_SET_VCPU_EVENTS: { 1806 struct kvm_vcpu_events events; 1807 1808 if (copy_from_user(&events, argp, sizeof(events))) 1809 return -EFAULT; 1810 1811 return kvm_arm_vcpu_set_events(vcpu, &events); 1812 } 1813 case KVM_ARM_VCPU_FINALIZE: { 1814 int what; 1815 1816 if (!kvm_vcpu_initialized(vcpu)) 1817 return -ENOEXEC; 1818 1819 if (get_user(what, (const int __user *)argp)) 1820 return -EFAULT; 1821 1822 return kvm_arm_vcpu_finalize(vcpu, what); 1823 } 1824 default: 1825 r = -EINVAL; 1826 } 1827 1828 return r; 1829 } 1830 1831 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 1832 { 1833 1834 } 1835 1836 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm, 1837 struct kvm_arm_device_addr *dev_addr) 1838 { 1839 switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) { 1840 case KVM_ARM_DEVICE_VGIC_V2: 1841 if (!vgic_present) 1842 return -ENXIO; 1843 return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr); 1844 default: 1845 return -ENODEV; 1846 } 1847 } 1848 1849 static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1850 { 1851 switch (attr->group) { 1852 case KVM_ARM_VM_SMCCC_CTRL: 1853 return kvm_vm_smccc_has_attr(kvm, attr); 1854 default: 1855 return -ENXIO; 1856 } 1857 } 1858 1859 static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1860 { 1861 switch (attr->group) { 1862 case KVM_ARM_VM_SMCCC_CTRL: 1863 return kvm_vm_smccc_set_attr(kvm, attr); 1864 default: 1865 return -ENXIO; 1866 } 1867 } 1868 1869 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 1870 { 1871 struct kvm *kvm = filp->private_data; 1872 void __user *argp = (void __user *)arg; 1873 struct kvm_device_attr attr; 1874 1875 switch (ioctl) { 1876 case KVM_CREATE_IRQCHIP: { 1877 int ret; 1878 if (!vgic_present) 1879 return -ENXIO; 1880 mutex_lock(&kvm->lock); 1881 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2); 1882 mutex_unlock(&kvm->lock); 1883 return ret; 1884 } 1885 case KVM_ARM_SET_DEVICE_ADDR: { 1886 struct kvm_arm_device_addr dev_addr; 1887 1888 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr))) 1889 return -EFAULT; 1890 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr); 1891 } 1892 case KVM_ARM_PREFERRED_TARGET: { 1893 struct kvm_vcpu_init init = { 1894 .target = KVM_ARM_TARGET_GENERIC_V8, 1895 }; 1896 1897 if (copy_to_user(argp, &init, sizeof(init))) 1898 return -EFAULT; 1899 1900 return 0; 1901 } 1902 case KVM_ARM_MTE_COPY_TAGS: { 1903 struct kvm_arm_copy_mte_tags copy_tags; 1904 1905 if (copy_from_user(©_tags, argp, sizeof(copy_tags))) 1906 return -EFAULT; 1907 return kvm_vm_ioctl_mte_copy_tags(kvm, ©_tags); 1908 } 1909 case KVM_ARM_SET_COUNTER_OFFSET: { 1910 struct kvm_arm_counter_offset offset; 1911 1912 if (copy_from_user(&offset, argp, sizeof(offset))) 1913 return -EFAULT; 1914 return kvm_vm_ioctl_set_counter_offset(kvm, &offset); 1915 } 1916 case KVM_HAS_DEVICE_ATTR: { 1917 if (copy_from_user(&attr, argp, sizeof(attr))) 1918 return -EFAULT; 1919 1920 return kvm_vm_has_attr(kvm, &attr); 1921 } 1922 case KVM_SET_DEVICE_ATTR: { 1923 if (copy_from_user(&attr, argp, sizeof(attr))) 1924 return -EFAULT; 1925 1926 return kvm_vm_set_attr(kvm, &attr); 1927 } 1928 case KVM_ARM_GET_REG_WRITABLE_MASKS: { 1929 struct reg_mask_range range; 1930 1931 if (copy_from_user(&range, argp, sizeof(range))) 1932 return -EFAULT; 1933 return kvm_vm_ioctl_get_reg_writable_masks(kvm, &range); 1934 } 1935 default: 1936 return -EINVAL; 1937 } 1938 } 1939 1940 static unsigned long nvhe_percpu_size(void) 1941 { 1942 return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) - 1943 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start); 1944 } 1945 1946 static unsigned long nvhe_percpu_order(void) 1947 { 1948 unsigned long size = nvhe_percpu_size(); 1949 1950 return size ? get_order(size) : 0; 1951 } 1952 1953 static size_t pkvm_host_sve_state_order(void) 1954 { 1955 return get_order(pkvm_host_sve_state_size()); 1956 } 1957 1958 /* A lookup table holding the hypervisor VA for each vector slot */ 1959 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS]; 1960 1961 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot) 1962 { 1963 hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot); 1964 } 1965 1966 static int kvm_init_vector_slots(void) 1967 { 1968 int err; 1969 void *base; 1970 1971 base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector)); 1972 kvm_init_vector_slot(base, HYP_VECTOR_DIRECT); 1973 1974 base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs)); 1975 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT); 1976 1977 if (kvm_system_needs_idmapped_vectors() && 1978 !is_protected_kvm_enabled()) { 1979 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs), 1980 __BP_HARDEN_HYP_VECS_SZ, &base); 1981 if (err) 1982 return err; 1983 } 1984 1985 kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT); 1986 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT); 1987 return 0; 1988 } 1989 1990 static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits) 1991 { 1992 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu); 1993 unsigned long tcr; 1994 1995 /* 1996 * Calculate the raw per-cpu offset without a translation from the 1997 * kernel's mapping to the linear mapping, and store it in tpidr_el2 1998 * so that we can use adr_l to access per-cpu variables in EL2. 1999 * Also drop the KASAN tag which gets in the way... 2000 */ 2001 params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) - 2002 (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start)); 2003 2004 params->mair_el2 = read_sysreg(mair_el1); 2005 2006 tcr = read_sysreg(tcr_el1); 2007 if (cpus_have_final_cap(ARM64_KVM_HVHE)) { 2008 tcr &= ~(TCR_HD | TCR_HA | TCR_A1 | TCR_T0SZ_MASK); 2009 tcr |= TCR_EPD1_MASK; 2010 } else { 2011 unsigned long ips = FIELD_GET(TCR_IPS_MASK, tcr); 2012 2013 tcr &= TCR_EL2_MASK; 2014 tcr |= TCR_EL2_RES1 | FIELD_PREP(TCR_EL2_PS_MASK, ips); 2015 if (lpa2_is_enabled()) 2016 tcr |= TCR_EL2_DS; 2017 } 2018 tcr |= TCR_T0SZ(hyp_va_bits); 2019 params->tcr_el2 = tcr; 2020 2021 params->pgd_pa = kvm_mmu_get_httbr(); 2022 if (is_protected_kvm_enabled()) 2023 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS; 2024 else 2025 params->hcr_el2 = HCR_HOST_NVHE_FLAGS; 2026 if (cpus_have_final_cap(ARM64_KVM_HVHE)) 2027 params->hcr_el2 |= HCR_E2H; 2028 params->vttbr = params->vtcr = 0; 2029 2030 /* 2031 * Flush the init params from the data cache because the struct will 2032 * be read while the MMU is off. 2033 */ 2034 kvm_flush_dcache_to_poc(params, sizeof(*params)); 2035 } 2036 2037 static void hyp_install_host_vector(void) 2038 { 2039 struct kvm_nvhe_init_params *params; 2040 struct arm_smccc_res res; 2041 2042 /* Switch from the HYP stub to our own HYP init vector */ 2043 __hyp_set_vectors(kvm_get_idmap_vector()); 2044 2045 /* 2046 * Call initialization code, and switch to the full blown HYP code. 2047 * If the cpucaps haven't been finalized yet, something has gone very 2048 * wrong, and hyp will crash and burn when it uses any 2049 * cpus_have_*_cap() wrapper. 2050 */ 2051 BUG_ON(!system_capabilities_finalized()); 2052 params = this_cpu_ptr_nvhe_sym(kvm_init_params); 2053 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res); 2054 WARN_ON(res.a0 != SMCCC_RET_SUCCESS); 2055 } 2056 2057 static void cpu_init_hyp_mode(void) 2058 { 2059 hyp_install_host_vector(); 2060 2061 /* 2062 * Disabling SSBD on a non-VHE system requires us to enable SSBS 2063 * at EL2. 2064 */ 2065 if (this_cpu_has_cap(ARM64_SSBS) && 2066 arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) { 2067 kvm_call_hyp_nvhe(__kvm_enable_ssbs); 2068 } 2069 } 2070 2071 static void cpu_hyp_reset(void) 2072 { 2073 if (!is_kernel_in_hyp_mode()) 2074 __hyp_reset_vectors(); 2075 } 2076 2077 /* 2078 * EL2 vectors can be mapped and rerouted in a number of ways, 2079 * depending on the kernel configuration and CPU present: 2080 * 2081 * - If the CPU is affected by Spectre-v2, the hardening sequence is 2082 * placed in one of the vector slots, which is executed before jumping 2083 * to the real vectors. 2084 * 2085 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot 2086 * containing the hardening sequence is mapped next to the idmap page, 2087 * and executed before jumping to the real vectors. 2088 * 2089 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an 2090 * empty slot is selected, mapped next to the idmap page, and 2091 * executed before jumping to the real vectors. 2092 * 2093 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with 2094 * VHE, as we don't have hypervisor-specific mappings. If the system 2095 * is VHE and yet selects this capability, it will be ignored. 2096 */ 2097 static void cpu_set_hyp_vector(void) 2098 { 2099 struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data); 2100 void *vector = hyp_spectre_vector_selector[data->slot]; 2101 2102 if (!is_protected_kvm_enabled()) 2103 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector; 2104 else 2105 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot); 2106 } 2107 2108 static void cpu_hyp_init_context(void) 2109 { 2110 kvm_init_host_cpu_context(host_data_ptr(host_ctxt)); 2111 kvm_init_host_debug_data(); 2112 2113 if (!is_kernel_in_hyp_mode()) 2114 cpu_init_hyp_mode(); 2115 } 2116 2117 static void cpu_hyp_init_features(void) 2118 { 2119 cpu_set_hyp_vector(); 2120 2121 if (is_kernel_in_hyp_mode()) { 2122 kvm_timer_init_vhe(); 2123 kvm_debug_init_vhe(); 2124 } 2125 2126 if (vgic_present) 2127 kvm_vgic_init_cpu_hardware(); 2128 } 2129 2130 static void cpu_hyp_reinit(void) 2131 { 2132 cpu_hyp_reset(); 2133 cpu_hyp_init_context(); 2134 cpu_hyp_init_features(); 2135 } 2136 2137 static void cpu_hyp_init(void *discard) 2138 { 2139 if (!__this_cpu_read(kvm_hyp_initialized)) { 2140 cpu_hyp_reinit(); 2141 __this_cpu_write(kvm_hyp_initialized, 1); 2142 } 2143 } 2144 2145 static void cpu_hyp_uninit(void *discard) 2146 { 2147 if (!is_protected_kvm_enabled() && __this_cpu_read(kvm_hyp_initialized)) { 2148 cpu_hyp_reset(); 2149 __this_cpu_write(kvm_hyp_initialized, 0); 2150 } 2151 } 2152 2153 int kvm_arch_enable_virtualization_cpu(void) 2154 { 2155 /* 2156 * Most calls to this function are made with migration 2157 * disabled, but not with preemption disabled. The former is 2158 * enough to ensure correctness, but most of the helpers 2159 * expect the later and will throw a tantrum otherwise. 2160 */ 2161 preempt_disable(); 2162 2163 cpu_hyp_init(NULL); 2164 2165 kvm_vgic_cpu_up(); 2166 kvm_timer_cpu_up(); 2167 2168 preempt_enable(); 2169 2170 return 0; 2171 } 2172 2173 void kvm_arch_disable_virtualization_cpu(void) 2174 { 2175 kvm_timer_cpu_down(); 2176 kvm_vgic_cpu_down(); 2177 2178 if (!is_protected_kvm_enabled()) 2179 cpu_hyp_uninit(NULL); 2180 } 2181 2182 #ifdef CONFIG_CPU_PM 2183 static int hyp_init_cpu_pm_notifier(struct notifier_block *self, 2184 unsigned long cmd, 2185 void *v) 2186 { 2187 /* 2188 * kvm_hyp_initialized is left with its old value over 2189 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should 2190 * re-enable hyp. 2191 */ 2192 switch (cmd) { 2193 case CPU_PM_ENTER: 2194 if (__this_cpu_read(kvm_hyp_initialized)) 2195 /* 2196 * don't update kvm_hyp_initialized here 2197 * so that the hyp will be re-enabled 2198 * when we resume. See below. 2199 */ 2200 cpu_hyp_reset(); 2201 2202 return NOTIFY_OK; 2203 case CPU_PM_ENTER_FAILED: 2204 case CPU_PM_EXIT: 2205 if (__this_cpu_read(kvm_hyp_initialized)) 2206 /* The hyp was enabled before suspend. */ 2207 cpu_hyp_reinit(); 2208 2209 return NOTIFY_OK; 2210 2211 default: 2212 return NOTIFY_DONE; 2213 } 2214 } 2215 2216 static struct notifier_block hyp_init_cpu_pm_nb = { 2217 .notifier_call = hyp_init_cpu_pm_notifier, 2218 }; 2219 2220 static void __init hyp_cpu_pm_init(void) 2221 { 2222 if (!is_protected_kvm_enabled()) 2223 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb); 2224 } 2225 static void __init hyp_cpu_pm_exit(void) 2226 { 2227 if (!is_protected_kvm_enabled()) 2228 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb); 2229 } 2230 #else 2231 static inline void __init hyp_cpu_pm_init(void) 2232 { 2233 } 2234 static inline void __init hyp_cpu_pm_exit(void) 2235 { 2236 } 2237 #endif 2238 2239 static void __init init_cpu_logical_map(void) 2240 { 2241 unsigned int cpu; 2242 2243 /* 2244 * Copy the MPIDR <-> logical CPU ID mapping to hyp. 2245 * Only copy the set of online CPUs whose features have been checked 2246 * against the finalized system capabilities. The hypervisor will not 2247 * allow any other CPUs from the `possible` set to boot. 2248 */ 2249 for_each_online_cpu(cpu) 2250 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu); 2251 } 2252 2253 #define init_psci_0_1_impl_state(config, what) \ 2254 config.psci_0_1_ ## what ## _implemented = psci_ops.what 2255 2256 static bool __init init_psci_relay(void) 2257 { 2258 /* 2259 * If PSCI has not been initialized, protected KVM cannot install 2260 * itself on newly booted CPUs. 2261 */ 2262 if (!psci_ops.get_version) { 2263 kvm_err("Cannot initialize protected mode without PSCI\n"); 2264 return false; 2265 } 2266 2267 kvm_host_psci_config.version = psci_ops.get_version(); 2268 kvm_host_psci_config.smccc_version = arm_smccc_get_version(); 2269 2270 if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) { 2271 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids(); 2272 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend); 2273 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on); 2274 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off); 2275 init_psci_0_1_impl_state(kvm_host_psci_config, migrate); 2276 } 2277 return true; 2278 } 2279 2280 static int __init init_subsystems(void) 2281 { 2282 int err = 0; 2283 2284 /* 2285 * Enable hardware so that subsystem initialisation can access EL2. 2286 */ 2287 on_each_cpu(cpu_hyp_init, NULL, 1); 2288 2289 /* 2290 * Register CPU lower-power notifier 2291 */ 2292 hyp_cpu_pm_init(); 2293 2294 /* 2295 * Init HYP view of VGIC 2296 */ 2297 err = kvm_vgic_hyp_init(); 2298 switch (err) { 2299 case 0: 2300 vgic_present = true; 2301 break; 2302 case -ENODEV: 2303 case -ENXIO: 2304 /* 2305 * No VGIC? No pKVM for you. 2306 * 2307 * Protected mode assumes that VGICv3 is present, so no point 2308 * in trying to hobble along if vgic initialization fails. 2309 */ 2310 if (is_protected_kvm_enabled()) 2311 goto out; 2312 2313 /* 2314 * Otherwise, userspace could choose to implement a GIC for its 2315 * guest on non-cooperative hardware. 2316 */ 2317 vgic_present = false; 2318 err = 0; 2319 break; 2320 default: 2321 goto out; 2322 } 2323 2324 if (kvm_mode == KVM_MODE_NV && 2325 !(vgic_present && (kvm_vgic_global_state.type == VGIC_V3 || 2326 kvm_vgic_global_state.has_gcie_v3_compat))) { 2327 kvm_err("NV support requires GICv3 or GICv5 with legacy support, giving up\n"); 2328 err = -EINVAL; 2329 goto out; 2330 } 2331 2332 /* 2333 * Init HYP architected timer support 2334 */ 2335 err = kvm_timer_hyp_init(vgic_present); 2336 if (err) 2337 goto out; 2338 2339 kvm_register_perf_callbacks(NULL); 2340 2341 out: 2342 if (err) 2343 hyp_cpu_pm_exit(); 2344 2345 if (err || !is_protected_kvm_enabled()) 2346 on_each_cpu(cpu_hyp_uninit, NULL, 1); 2347 2348 return err; 2349 } 2350 2351 static void __init teardown_subsystems(void) 2352 { 2353 kvm_unregister_perf_callbacks(); 2354 hyp_cpu_pm_exit(); 2355 } 2356 2357 static void __init teardown_hyp_mode(void) 2358 { 2359 bool free_sve = system_supports_sve() && is_protected_kvm_enabled(); 2360 int cpu; 2361 2362 free_hyp_pgds(); 2363 for_each_possible_cpu(cpu) { 2364 if (per_cpu(kvm_hyp_initialized, cpu)) 2365 continue; 2366 2367 free_pages(per_cpu(kvm_arm_hyp_stack_base, cpu), NVHE_STACK_SHIFT - PAGE_SHIFT); 2368 2369 if (!kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu]) 2370 continue; 2371 2372 if (free_sve) { 2373 struct cpu_sve_state *sve_state; 2374 2375 sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state; 2376 free_pages((unsigned long) sve_state, pkvm_host_sve_state_order()); 2377 } 2378 2379 free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order()); 2380 2381 } 2382 } 2383 2384 static int __init do_pkvm_init(u32 hyp_va_bits) 2385 { 2386 void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)); 2387 int ret; 2388 2389 preempt_disable(); 2390 cpu_hyp_init_context(); 2391 ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size, 2392 num_possible_cpus(), kern_hyp_va(per_cpu_base), 2393 hyp_va_bits); 2394 cpu_hyp_init_features(); 2395 2396 /* 2397 * The stub hypercalls are now disabled, so set our local flag to 2398 * prevent a later re-init attempt in kvm_arch_enable_virtualization_cpu(). 2399 */ 2400 __this_cpu_write(kvm_hyp_initialized, 1); 2401 preempt_enable(); 2402 2403 return ret; 2404 } 2405 2406 static u64 get_hyp_id_aa64pfr0_el1(void) 2407 { 2408 /* 2409 * Track whether the system isn't affected by spectre/meltdown in the 2410 * hypervisor's view of id_aa64pfr0_el1, used for protected VMs. 2411 * Although this is per-CPU, we make it global for simplicity, e.g., not 2412 * to have to worry about vcpu migration. 2413 * 2414 * Unlike for non-protected VMs, userspace cannot override this for 2415 * protected VMs. 2416 */ 2417 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); 2418 2419 val &= ~(ID_AA64PFR0_EL1_CSV2 | 2420 ID_AA64PFR0_EL1_CSV3); 2421 2422 val |= FIELD_PREP(ID_AA64PFR0_EL1_CSV2, 2423 arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED); 2424 val |= FIELD_PREP(ID_AA64PFR0_EL1_CSV3, 2425 arm64_get_meltdown_state() == SPECTRE_UNAFFECTED); 2426 2427 return val; 2428 } 2429 2430 static void kvm_hyp_init_symbols(void) 2431 { 2432 kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1(); 2433 kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1); 2434 kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1); 2435 kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1); 2436 kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1); 2437 kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 2438 kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 2439 kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1); 2440 kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1); 2441 kvm_nvhe_sym(__icache_flags) = __icache_flags; 2442 kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits; 2443 2444 /* Propagate the FGT state to the the nVHE side */ 2445 kvm_nvhe_sym(hfgrtr_masks) = hfgrtr_masks; 2446 kvm_nvhe_sym(hfgwtr_masks) = hfgwtr_masks; 2447 kvm_nvhe_sym(hfgitr_masks) = hfgitr_masks; 2448 kvm_nvhe_sym(hdfgrtr_masks) = hdfgrtr_masks; 2449 kvm_nvhe_sym(hdfgwtr_masks) = hdfgwtr_masks; 2450 kvm_nvhe_sym(hafgrtr_masks) = hafgrtr_masks; 2451 kvm_nvhe_sym(hfgrtr2_masks) = hfgrtr2_masks; 2452 kvm_nvhe_sym(hfgwtr2_masks) = hfgwtr2_masks; 2453 kvm_nvhe_sym(hfgitr2_masks) = hfgitr2_masks; 2454 kvm_nvhe_sym(hdfgrtr2_masks)= hdfgrtr2_masks; 2455 kvm_nvhe_sym(hdfgwtr2_masks)= hdfgwtr2_masks; 2456 2457 /* 2458 * Flush entire BSS since part of its data containing init symbols is read 2459 * while the MMU is off. 2460 */ 2461 kvm_flush_dcache_to_poc(kvm_ksym_ref(__hyp_bss_start), 2462 kvm_ksym_ref(__hyp_bss_end) - kvm_ksym_ref(__hyp_bss_start)); 2463 } 2464 2465 static int __init kvm_hyp_init_protection(u32 hyp_va_bits) 2466 { 2467 void *addr = phys_to_virt(hyp_mem_base); 2468 int ret; 2469 2470 ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP); 2471 if (ret) 2472 return ret; 2473 2474 ret = do_pkvm_init(hyp_va_bits); 2475 if (ret) 2476 return ret; 2477 2478 free_hyp_pgds(); 2479 2480 return 0; 2481 } 2482 2483 static int init_pkvm_host_sve_state(void) 2484 { 2485 int cpu; 2486 2487 if (!system_supports_sve()) 2488 return 0; 2489 2490 /* Allocate pages for host sve state in protected mode. */ 2491 for_each_possible_cpu(cpu) { 2492 struct page *page = alloc_pages(GFP_KERNEL, pkvm_host_sve_state_order()); 2493 2494 if (!page) 2495 return -ENOMEM; 2496 2497 per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state = page_address(page); 2498 } 2499 2500 /* 2501 * Don't map the pages in hyp since these are only used in protected 2502 * mode, which will (re)create its own mapping when initialized. 2503 */ 2504 2505 return 0; 2506 } 2507 2508 /* 2509 * Finalizes the initialization of hyp mode, once everything else is initialized 2510 * and the initialziation process cannot fail. 2511 */ 2512 static void finalize_init_hyp_mode(void) 2513 { 2514 int cpu; 2515 2516 if (system_supports_sve() && is_protected_kvm_enabled()) { 2517 for_each_possible_cpu(cpu) { 2518 struct cpu_sve_state *sve_state; 2519 2520 sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state; 2521 per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state = 2522 kern_hyp_va(sve_state); 2523 } 2524 } 2525 } 2526 2527 static void pkvm_hyp_init_ptrauth(void) 2528 { 2529 struct kvm_cpu_context *hyp_ctxt; 2530 int cpu; 2531 2532 for_each_possible_cpu(cpu) { 2533 hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu); 2534 hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long(); 2535 hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long(); 2536 hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long(); 2537 hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long(); 2538 hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long(); 2539 hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long(); 2540 hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long(); 2541 hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long(); 2542 hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long(); 2543 hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long(); 2544 } 2545 } 2546 2547 /* Inits Hyp-mode on all online CPUs */ 2548 static int __init init_hyp_mode(void) 2549 { 2550 u32 hyp_va_bits; 2551 int cpu; 2552 int err = -ENOMEM; 2553 2554 /* 2555 * The protected Hyp-mode cannot be initialized if the memory pool 2556 * allocation has failed. 2557 */ 2558 if (is_protected_kvm_enabled() && !hyp_mem_base) 2559 goto out_err; 2560 2561 /* 2562 * Allocate Hyp PGD and setup Hyp identity mapping 2563 */ 2564 err = kvm_mmu_init(&hyp_va_bits); 2565 if (err) 2566 goto out_err; 2567 2568 /* 2569 * Allocate stack pages for Hypervisor-mode 2570 */ 2571 for_each_possible_cpu(cpu) { 2572 unsigned long stack_base; 2573 2574 stack_base = __get_free_pages(GFP_KERNEL, NVHE_STACK_SHIFT - PAGE_SHIFT); 2575 if (!stack_base) { 2576 err = -ENOMEM; 2577 goto out_err; 2578 } 2579 2580 per_cpu(kvm_arm_hyp_stack_base, cpu) = stack_base; 2581 } 2582 2583 /* 2584 * Allocate and initialize pages for Hypervisor-mode percpu regions. 2585 */ 2586 for_each_possible_cpu(cpu) { 2587 struct page *page; 2588 void *page_addr; 2589 2590 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order()); 2591 if (!page) { 2592 err = -ENOMEM; 2593 goto out_err; 2594 } 2595 2596 page_addr = page_address(page); 2597 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size()); 2598 kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr; 2599 } 2600 2601 /* 2602 * Map the Hyp-code called directly from the host 2603 */ 2604 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start), 2605 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC); 2606 if (err) { 2607 kvm_err("Cannot map world-switch code\n"); 2608 goto out_err; 2609 } 2610 2611 err = create_hyp_mappings(kvm_ksym_ref(__hyp_data_start), 2612 kvm_ksym_ref(__hyp_data_end), PAGE_HYP); 2613 if (err) { 2614 kvm_err("Cannot map .hyp.data section\n"); 2615 goto out_err; 2616 } 2617 2618 err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start), 2619 kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO); 2620 if (err) { 2621 kvm_err("Cannot map .hyp.rodata section\n"); 2622 goto out_err; 2623 } 2624 2625 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata), 2626 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO); 2627 if (err) { 2628 kvm_err("Cannot map rodata section\n"); 2629 goto out_err; 2630 } 2631 2632 /* 2633 * .hyp.bss is guaranteed to be placed at the beginning of the .bss 2634 * section thanks to an assertion in the linker script. Map it RW and 2635 * the rest of .bss RO. 2636 */ 2637 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start), 2638 kvm_ksym_ref(__hyp_bss_end), PAGE_HYP); 2639 if (err) { 2640 kvm_err("Cannot map hyp bss section: %d\n", err); 2641 goto out_err; 2642 } 2643 2644 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end), 2645 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO); 2646 if (err) { 2647 kvm_err("Cannot map bss section\n"); 2648 goto out_err; 2649 } 2650 2651 /* 2652 * Map the Hyp stack pages 2653 */ 2654 for_each_possible_cpu(cpu) { 2655 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu); 2656 char *stack_base = (char *)per_cpu(kvm_arm_hyp_stack_base, cpu); 2657 2658 err = create_hyp_stack(__pa(stack_base), ¶ms->stack_hyp_va); 2659 if (err) { 2660 kvm_err("Cannot map hyp stack\n"); 2661 goto out_err; 2662 } 2663 2664 /* 2665 * Save the stack PA in nvhe_init_params. This will be needed 2666 * to recreate the stack mapping in protected nVHE mode. 2667 * __hyp_pa() won't do the right thing there, since the stack 2668 * has been mapped in the flexible private VA space. 2669 */ 2670 params->stack_pa = __pa(stack_base); 2671 } 2672 2673 for_each_possible_cpu(cpu) { 2674 char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu]; 2675 char *percpu_end = percpu_begin + nvhe_percpu_size(); 2676 2677 /* Map Hyp percpu pages */ 2678 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP); 2679 if (err) { 2680 kvm_err("Cannot map hyp percpu region\n"); 2681 goto out_err; 2682 } 2683 2684 /* Prepare the CPU initialization parameters */ 2685 cpu_prepare_hyp_mode(cpu, hyp_va_bits); 2686 } 2687 2688 kvm_hyp_init_symbols(); 2689 2690 if (is_protected_kvm_enabled()) { 2691 if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) && 2692 cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH)) 2693 pkvm_hyp_init_ptrauth(); 2694 2695 init_cpu_logical_map(); 2696 2697 if (!init_psci_relay()) { 2698 err = -ENODEV; 2699 goto out_err; 2700 } 2701 2702 err = init_pkvm_host_sve_state(); 2703 if (err) 2704 goto out_err; 2705 2706 err = kvm_hyp_init_protection(hyp_va_bits); 2707 if (err) { 2708 kvm_err("Failed to init hyp memory protection\n"); 2709 goto out_err; 2710 } 2711 } 2712 2713 return 0; 2714 2715 out_err: 2716 teardown_hyp_mode(); 2717 kvm_err("error initializing Hyp mode: %d\n", err); 2718 return err; 2719 } 2720 2721 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr) 2722 { 2723 struct kvm_vcpu *vcpu = NULL; 2724 struct kvm_mpidr_data *data; 2725 unsigned long i; 2726 2727 mpidr &= MPIDR_HWID_BITMASK; 2728 2729 rcu_read_lock(); 2730 data = rcu_dereference(kvm->arch.mpidr_data); 2731 2732 if (data) { 2733 u16 idx = kvm_mpidr_index(data, mpidr); 2734 2735 vcpu = kvm_get_vcpu(kvm, data->cmpidr_to_idx[idx]); 2736 if (mpidr != kvm_vcpu_get_mpidr_aff(vcpu)) 2737 vcpu = NULL; 2738 } 2739 2740 rcu_read_unlock(); 2741 2742 if (vcpu) 2743 return vcpu; 2744 2745 kvm_for_each_vcpu(i, vcpu, kvm) { 2746 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu)) 2747 return vcpu; 2748 } 2749 return NULL; 2750 } 2751 2752 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm) 2753 { 2754 return irqchip_in_kernel(kvm); 2755 } 2756 2757 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 2758 struct irq_bypass_producer *prod) 2759 { 2760 struct kvm_kernel_irqfd *irqfd = 2761 container_of(cons, struct kvm_kernel_irqfd, consumer); 2762 struct kvm_kernel_irq_routing_entry *irq_entry = &irqfd->irq_entry; 2763 2764 /* 2765 * The only thing we have a chance of directly-injecting is LPIs. Maybe 2766 * one day... 2767 */ 2768 if (irq_entry->type != KVM_IRQ_ROUTING_MSI) 2769 return 0; 2770 2771 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq, 2772 &irqfd->irq_entry); 2773 } 2774 2775 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 2776 struct irq_bypass_producer *prod) 2777 { 2778 struct kvm_kernel_irqfd *irqfd = 2779 container_of(cons, struct kvm_kernel_irqfd, consumer); 2780 struct kvm_kernel_irq_routing_entry *irq_entry = &irqfd->irq_entry; 2781 2782 if (irq_entry->type != KVM_IRQ_ROUTING_MSI) 2783 return; 2784 2785 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq); 2786 } 2787 2788 void kvm_arch_update_irqfd_routing(struct kvm_kernel_irqfd *irqfd, 2789 struct kvm_kernel_irq_routing_entry *old, 2790 struct kvm_kernel_irq_routing_entry *new) 2791 { 2792 if (old->type == KVM_IRQ_ROUTING_MSI && 2793 new->type == KVM_IRQ_ROUTING_MSI && 2794 !memcmp(&old->msi, &new->msi, sizeof(new->msi))) 2795 return; 2796 2797 /* 2798 * Remapping the vLPI requires taking the its_lock mutex to resolve 2799 * the new translation. We're in spinlock land at this point, so no 2800 * chance of resolving the translation. 2801 * 2802 * Unmap the vLPI and fall back to software LPI injection. 2803 */ 2804 return kvm_vgic_v4_unset_forwarding(irqfd->kvm, irqfd->producer->irq); 2805 } 2806 2807 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons) 2808 { 2809 struct kvm_kernel_irqfd *irqfd = 2810 container_of(cons, struct kvm_kernel_irqfd, consumer); 2811 2812 kvm_arm_halt_guest(irqfd->kvm); 2813 } 2814 2815 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons) 2816 { 2817 struct kvm_kernel_irqfd *irqfd = 2818 container_of(cons, struct kvm_kernel_irqfd, consumer); 2819 2820 kvm_arm_resume_guest(irqfd->kvm); 2821 } 2822 2823 /* Initialize Hyp-mode and memory mappings on all CPUs */ 2824 static __init int kvm_arm_init(void) 2825 { 2826 int err; 2827 bool in_hyp_mode; 2828 2829 if (!is_hyp_mode_available()) { 2830 kvm_info("HYP mode not available\n"); 2831 return -ENODEV; 2832 } 2833 2834 if (kvm_get_mode() == KVM_MODE_NONE) { 2835 kvm_info("KVM disabled from command line\n"); 2836 return -ENODEV; 2837 } 2838 2839 err = kvm_sys_reg_table_init(); 2840 if (err) { 2841 kvm_info("Error initializing system register tables"); 2842 return err; 2843 } 2844 2845 in_hyp_mode = is_kernel_in_hyp_mode(); 2846 2847 if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) || 2848 cpus_have_final_cap(ARM64_WORKAROUND_1508412)) 2849 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \ 2850 "Only trusted guests should be used on this system.\n"); 2851 2852 err = kvm_set_ipa_limit(); 2853 if (err) 2854 return err; 2855 2856 err = kvm_arm_init_sve(); 2857 if (err) 2858 return err; 2859 2860 err = kvm_arm_vmid_alloc_init(); 2861 if (err) { 2862 kvm_err("Failed to initialize VMID allocator.\n"); 2863 return err; 2864 } 2865 2866 if (!in_hyp_mode) { 2867 err = init_hyp_mode(); 2868 if (err) 2869 goto out_err; 2870 } 2871 2872 err = kvm_init_vector_slots(); 2873 if (err) { 2874 kvm_err("Cannot initialise vector slots\n"); 2875 goto out_hyp; 2876 } 2877 2878 err = init_subsystems(); 2879 if (err) 2880 goto out_hyp; 2881 2882 kvm_info("%s%sVHE%s mode initialized successfully\n", 2883 in_hyp_mode ? "" : (is_protected_kvm_enabled() ? 2884 "Protected " : "Hyp "), 2885 in_hyp_mode ? "" : (cpus_have_final_cap(ARM64_KVM_HVHE) ? 2886 "h" : "n"), 2887 cpus_have_final_cap(ARM64_HAS_NESTED_VIRT) ? "+NV2": ""); 2888 2889 /* 2890 * FIXME: Do something reasonable if kvm_init() fails after pKVM 2891 * hypervisor protection is finalized. 2892 */ 2893 err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE); 2894 if (err) 2895 goto out_subs; 2896 2897 /* 2898 * This should be called after initialization is done and failure isn't 2899 * possible anymore. 2900 */ 2901 if (!in_hyp_mode) 2902 finalize_init_hyp_mode(); 2903 2904 kvm_arm_initialised = true; 2905 2906 return 0; 2907 2908 out_subs: 2909 teardown_subsystems(); 2910 out_hyp: 2911 if (!in_hyp_mode) 2912 teardown_hyp_mode(); 2913 out_err: 2914 kvm_arm_vmid_alloc_free(); 2915 return err; 2916 } 2917 2918 static int __init early_kvm_mode_cfg(char *arg) 2919 { 2920 if (!arg) 2921 return -EINVAL; 2922 2923 if (strcmp(arg, "none") == 0) { 2924 kvm_mode = KVM_MODE_NONE; 2925 return 0; 2926 } 2927 2928 if (!is_hyp_mode_available()) { 2929 pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n"); 2930 return 0; 2931 } 2932 2933 if (strcmp(arg, "protected") == 0) { 2934 if (!is_kernel_in_hyp_mode()) 2935 kvm_mode = KVM_MODE_PROTECTED; 2936 else 2937 pr_warn_once("Protected KVM not available with VHE\n"); 2938 2939 return 0; 2940 } 2941 2942 if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) { 2943 kvm_mode = KVM_MODE_DEFAULT; 2944 return 0; 2945 } 2946 2947 if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) { 2948 kvm_mode = KVM_MODE_NV; 2949 return 0; 2950 } 2951 2952 return -EINVAL; 2953 } 2954 early_param("kvm-arm.mode", early_kvm_mode_cfg); 2955 2956 static int __init early_kvm_wfx_trap_policy_cfg(char *arg, enum kvm_wfx_trap_policy *p) 2957 { 2958 if (!arg) 2959 return -EINVAL; 2960 2961 if (strcmp(arg, "trap") == 0) { 2962 *p = KVM_WFX_TRAP; 2963 return 0; 2964 } 2965 2966 if (strcmp(arg, "notrap") == 0) { 2967 *p = KVM_WFX_NOTRAP; 2968 return 0; 2969 } 2970 2971 return -EINVAL; 2972 } 2973 2974 static int __init early_kvm_wfi_trap_policy_cfg(char *arg) 2975 { 2976 return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfi_trap_policy); 2977 } 2978 early_param("kvm-arm.wfi_trap_policy", early_kvm_wfi_trap_policy_cfg); 2979 2980 static int __init early_kvm_wfe_trap_policy_cfg(char *arg) 2981 { 2982 return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfe_trap_policy); 2983 } 2984 early_param("kvm-arm.wfe_trap_policy", early_kvm_wfe_trap_policy_cfg); 2985 2986 enum kvm_mode kvm_get_mode(void) 2987 { 2988 return kvm_mode; 2989 } 2990 2991 module_init(kvm_arm_init); 2992