1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 4 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 5 */ 6 7 #include <linux/bug.h> 8 #include <linux/cpu_pm.h> 9 #include <linux/entry-kvm.h> 10 #include <linux/errno.h> 11 #include <linux/err.h> 12 #include <linux/kvm_host.h> 13 #include <linux/list.h> 14 #include <linux/module.h> 15 #include <linux/vmalloc.h> 16 #include <linux/fs.h> 17 #include <linux/mman.h> 18 #include <linux/sched.h> 19 #include <linux/kvm.h> 20 #include <linux/kvm_irqfd.h> 21 #include <linux/irqbypass.h> 22 #include <linux/sched/stat.h> 23 #include <linux/psci.h> 24 #include <trace/events/kvm.h> 25 26 #define CREATE_TRACE_POINTS 27 #include "trace_arm.h" 28 29 #include <linux/uaccess.h> 30 #include <asm/ptrace.h> 31 #include <asm/mman.h> 32 #include <asm/tlbflush.h> 33 #include <asm/cacheflush.h> 34 #include <asm/cpufeature.h> 35 #include <asm/virt.h> 36 #include <asm/kvm_arm.h> 37 #include <asm/kvm_asm.h> 38 #include <asm/kvm_emulate.h> 39 #include <asm/kvm_mmu.h> 40 #include <asm/kvm_nested.h> 41 #include <asm/kvm_pkvm.h> 42 #include <asm/kvm_ptrauth.h> 43 #include <asm/sections.h> 44 45 #include <kvm/arm_hypercalls.h> 46 #include <kvm/arm_pmu.h> 47 #include <kvm/arm_psci.h> 48 49 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT; 50 51 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector); 52 53 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page); 54 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params); 55 56 DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt); 57 58 static bool vgic_present, kvm_arm_initialised; 59 60 static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized); 61 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use); 62 63 bool is_kvm_arm_initialised(void) 64 { 65 return kvm_arm_initialised; 66 } 67 68 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 69 { 70 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 71 } 72 73 /* 74 * This functions as an allow-list of protected VM capabilities. 75 * Features not explicitly allowed by this function are denied. 76 */ 77 static bool pkvm_ext_allowed(struct kvm *kvm, long ext) 78 { 79 switch (ext) { 80 case KVM_CAP_IRQCHIP: 81 case KVM_CAP_ARM_PSCI: 82 case KVM_CAP_ARM_PSCI_0_2: 83 case KVM_CAP_NR_VCPUS: 84 case KVM_CAP_MAX_VCPUS: 85 case KVM_CAP_MAX_VCPU_ID: 86 case KVM_CAP_MSI_DEVID: 87 case KVM_CAP_ARM_VM_IPA_SIZE: 88 case KVM_CAP_ARM_PMU_V3: 89 case KVM_CAP_ARM_SVE: 90 case KVM_CAP_ARM_PTRAUTH_ADDRESS: 91 case KVM_CAP_ARM_PTRAUTH_GENERIC: 92 return true; 93 default: 94 return false; 95 } 96 } 97 98 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 99 struct kvm_enable_cap *cap) 100 { 101 int r = -EINVAL; 102 103 if (cap->flags) 104 return -EINVAL; 105 106 if (kvm_vm_is_protected(kvm) && !pkvm_ext_allowed(kvm, cap->cap)) 107 return -EINVAL; 108 109 switch (cap->cap) { 110 case KVM_CAP_ARM_NISV_TO_USER: 111 r = 0; 112 set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER, 113 &kvm->arch.flags); 114 break; 115 case KVM_CAP_ARM_MTE: 116 mutex_lock(&kvm->lock); 117 if (system_supports_mte() && !kvm->created_vcpus) { 118 r = 0; 119 set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags); 120 } 121 mutex_unlock(&kvm->lock); 122 break; 123 case KVM_CAP_ARM_SYSTEM_SUSPEND: 124 r = 0; 125 set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags); 126 break; 127 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE: 128 mutex_lock(&kvm->slots_lock); 129 /* 130 * To keep things simple, allow changing the chunk 131 * size only when no memory slots have been created. 132 */ 133 if (kvm_are_all_memslots_empty(kvm)) { 134 u64 new_cap = cap->args[0]; 135 136 if (!new_cap || kvm_is_block_size_supported(new_cap)) { 137 r = 0; 138 kvm->arch.mmu.split_page_chunk_size = new_cap; 139 } 140 } 141 mutex_unlock(&kvm->slots_lock); 142 break; 143 default: 144 break; 145 } 146 147 return r; 148 } 149 150 static int kvm_arm_default_max_vcpus(void) 151 { 152 return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS; 153 } 154 155 /** 156 * kvm_arch_init_vm - initializes a VM data structure 157 * @kvm: pointer to the KVM struct 158 */ 159 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 160 { 161 int ret; 162 163 mutex_init(&kvm->arch.config_lock); 164 165 #ifdef CONFIG_LOCKDEP 166 /* Clue in lockdep that the config_lock must be taken inside kvm->lock */ 167 mutex_lock(&kvm->lock); 168 mutex_lock(&kvm->arch.config_lock); 169 mutex_unlock(&kvm->arch.config_lock); 170 mutex_unlock(&kvm->lock); 171 #endif 172 173 ret = kvm_share_hyp(kvm, kvm + 1); 174 if (ret) 175 return ret; 176 177 ret = pkvm_init_host_vm(kvm); 178 if (ret) 179 goto err_unshare_kvm; 180 181 if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) { 182 ret = -ENOMEM; 183 goto err_unshare_kvm; 184 } 185 cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask); 186 187 ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type); 188 if (ret) 189 goto err_free_cpumask; 190 191 kvm_vgic_early_init(kvm); 192 193 kvm_timer_init_vm(kvm); 194 195 /* The maximum number of VCPUs is limited by the host's GIC model */ 196 kvm->max_vcpus = kvm_arm_default_max_vcpus(); 197 198 kvm_arm_init_hypercalls(kvm); 199 200 bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES); 201 202 return 0; 203 204 err_free_cpumask: 205 free_cpumask_var(kvm->arch.supported_cpus); 206 err_unshare_kvm: 207 kvm_unshare_hyp(kvm, kvm + 1); 208 return ret; 209 } 210 211 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 212 { 213 return VM_FAULT_SIGBUS; 214 } 215 216 void kvm_arch_create_vm_debugfs(struct kvm *kvm) 217 { 218 kvm_sys_regs_create_debugfs(kvm); 219 } 220 221 /** 222 * kvm_arch_destroy_vm - destroy the VM data structure 223 * @kvm: pointer to the KVM struct 224 */ 225 void kvm_arch_destroy_vm(struct kvm *kvm) 226 { 227 bitmap_free(kvm->arch.pmu_filter); 228 free_cpumask_var(kvm->arch.supported_cpus); 229 230 kvm_vgic_destroy(kvm); 231 232 if (is_protected_kvm_enabled()) 233 pkvm_destroy_hyp_vm(kvm); 234 235 kfree(kvm->arch.mpidr_data); 236 kfree(kvm->arch.sysreg_masks); 237 kvm_destroy_vcpus(kvm); 238 239 kvm_unshare_hyp(kvm, kvm + 1); 240 241 kvm_arm_teardown_hypercalls(kvm); 242 } 243 244 static bool kvm_has_full_ptr_auth(void) 245 { 246 bool apa, gpa, api, gpi, apa3, gpa3; 247 u64 isar1, isar2, val; 248 249 /* 250 * Check that: 251 * 252 * - both Address and Generic auth are implemented for a given 253 * algorithm (Q5, IMPDEF or Q3) 254 * - only a single algorithm is implemented. 255 */ 256 if (!system_has_full_ptr_auth()) 257 return false; 258 259 isar1 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1); 260 isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1); 261 262 apa = !!FIELD_GET(ID_AA64ISAR1_EL1_APA_MASK, isar1); 263 val = FIELD_GET(ID_AA64ISAR1_EL1_GPA_MASK, isar1); 264 gpa = (val == ID_AA64ISAR1_EL1_GPA_IMP); 265 266 api = !!FIELD_GET(ID_AA64ISAR1_EL1_API_MASK, isar1); 267 val = FIELD_GET(ID_AA64ISAR1_EL1_GPI_MASK, isar1); 268 gpi = (val == ID_AA64ISAR1_EL1_GPI_IMP); 269 270 apa3 = !!FIELD_GET(ID_AA64ISAR2_EL1_APA3_MASK, isar2); 271 val = FIELD_GET(ID_AA64ISAR2_EL1_GPA3_MASK, isar2); 272 gpa3 = (val == ID_AA64ISAR2_EL1_GPA3_IMP); 273 274 return (apa == gpa && api == gpi && apa3 == gpa3 && 275 (apa + api + apa3) == 1); 276 } 277 278 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 279 { 280 int r; 281 282 if (kvm && kvm_vm_is_protected(kvm) && !pkvm_ext_allowed(kvm, ext)) 283 return 0; 284 285 switch (ext) { 286 case KVM_CAP_IRQCHIP: 287 r = vgic_present; 288 break; 289 case KVM_CAP_IOEVENTFD: 290 case KVM_CAP_USER_MEMORY: 291 case KVM_CAP_SYNC_MMU: 292 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 293 case KVM_CAP_ONE_REG: 294 case KVM_CAP_ARM_PSCI: 295 case KVM_CAP_ARM_PSCI_0_2: 296 case KVM_CAP_READONLY_MEM: 297 case KVM_CAP_MP_STATE: 298 case KVM_CAP_IMMEDIATE_EXIT: 299 case KVM_CAP_VCPU_EVENTS: 300 case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2: 301 case KVM_CAP_ARM_NISV_TO_USER: 302 case KVM_CAP_ARM_INJECT_EXT_DABT: 303 case KVM_CAP_SET_GUEST_DEBUG: 304 case KVM_CAP_VCPU_ATTRIBUTES: 305 case KVM_CAP_PTP_KVM: 306 case KVM_CAP_ARM_SYSTEM_SUSPEND: 307 case KVM_CAP_IRQFD_RESAMPLE: 308 case KVM_CAP_COUNTER_OFFSET: 309 r = 1; 310 break; 311 case KVM_CAP_SET_GUEST_DEBUG2: 312 return KVM_GUESTDBG_VALID_MASK; 313 case KVM_CAP_ARM_SET_DEVICE_ADDR: 314 r = 1; 315 break; 316 case KVM_CAP_NR_VCPUS: 317 /* 318 * ARM64 treats KVM_CAP_NR_CPUS differently from all other 319 * architectures, as it does not always bound it to 320 * KVM_CAP_MAX_VCPUS. It should not matter much because 321 * this is just an advisory value. 322 */ 323 r = min_t(unsigned int, num_online_cpus(), 324 kvm_arm_default_max_vcpus()); 325 break; 326 case KVM_CAP_MAX_VCPUS: 327 case KVM_CAP_MAX_VCPU_ID: 328 if (kvm) 329 r = kvm->max_vcpus; 330 else 331 r = kvm_arm_default_max_vcpus(); 332 break; 333 case KVM_CAP_MSI_DEVID: 334 if (!kvm) 335 r = -EINVAL; 336 else 337 r = kvm->arch.vgic.msis_require_devid; 338 break; 339 case KVM_CAP_ARM_USER_IRQ: 340 /* 341 * 1: EL1_VTIMER, EL1_PTIMER, and PMU. 342 * (bump this number if adding more devices) 343 */ 344 r = 1; 345 break; 346 case KVM_CAP_ARM_MTE: 347 r = system_supports_mte(); 348 break; 349 case KVM_CAP_STEAL_TIME: 350 r = kvm_arm_pvtime_supported(); 351 break; 352 case KVM_CAP_ARM_EL1_32BIT: 353 r = cpus_have_final_cap(ARM64_HAS_32BIT_EL1); 354 break; 355 case KVM_CAP_GUEST_DEBUG_HW_BPS: 356 r = get_num_brps(); 357 break; 358 case KVM_CAP_GUEST_DEBUG_HW_WPS: 359 r = get_num_wrps(); 360 break; 361 case KVM_CAP_ARM_PMU_V3: 362 r = kvm_arm_support_pmu_v3(); 363 break; 364 case KVM_CAP_ARM_INJECT_SERROR_ESR: 365 r = cpus_have_final_cap(ARM64_HAS_RAS_EXTN); 366 break; 367 case KVM_CAP_ARM_VM_IPA_SIZE: 368 r = get_kvm_ipa_limit(); 369 break; 370 case KVM_CAP_ARM_SVE: 371 r = system_supports_sve(); 372 break; 373 case KVM_CAP_ARM_PTRAUTH_ADDRESS: 374 case KVM_CAP_ARM_PTRAUTH_GENERIC: 375 r = kvm_has_full_ptr_auth(); 376 break; 377 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE: 378 if (kvm) 379 r = kvm->arch.mmu.split_page_chunk_size; 380 else 381 r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT; 382 break; 383 case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES: 384 r = kvm_supported_block_sizes(); 385 break; 386 case KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES: 387 r = BIT(0); 388 break; 389 default: 390 r = 0; 391 } 392 393 return r; 394 } 395 396 long kvm_arch_dev_ioctl(struct file *filp, 397 unsigned int ioctl, unsigned long arg) 398 { 399 return -EINVAL; 400 } 401 402 struct kvm *kvm_arch_alloc_vm(void) 403 { 404 size_t sz = sizeof(struct kvm); 405 406 if (!has_vhe()) 407 return kzalloc(sz, GFP_KERNEL_ACCOUNT); 408 409 return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO); 410 } 411 412 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 413 { 414 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) 415 return -EBUSY; 416 417 if (id >= kvm->max_vcpus) 418 return -EINVAL; 419 420 return 0; 421 } 422 423 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 424 { 425 int err; 426 427 spin_lock_init(&vcpu->arch.mp_state_lock); 428 429 #ifdef CONFIG_LOCKDEP 430 /* Inform lockdep that the config_lock is acquired after vcpu->mutex */ 431 mutex_lock(&vcpu->mutex); 432 mutex_lock(&vcpu->kvm->arch.config_lock); 433 mutex_unlock(&vcpu->kvm->arch.config_lock); 434 mutex_unlock(&vcpu->mutex); 435 #endif 436 437 /* Force users to call KVM_ARM_VCPU_INIT */ 438 vcpu_clear_flag(vcpu, VCPU_INITIALIZED); 439 440 vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO; 441 442 /* Set up the timer */ 443 kvm_timer_vcpu_init(vcpu); 444 445 kvm_pmu_vcpu_init(vcpu); 446 447 kvm_arm_reset_debug_ptr(vcpu); 448 449 kvm_arm_pvtime_vcpu_init(&vcpu->arch); 450 451 vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu; 452 453 err = kvm_vgic_vcpu_init(vcpu); 454 if (err) 455 return err; 456 457 return kvm_share_hyp(vcpu, vcpu + 1); 458 } 459 460 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 461 { 462 } 463 464 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 465 { 466 if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm))) 467 static_branch_dec(&userspace_irqchip_in_use); 468 469 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); 470 kvm_timer_vcpu_terminate(vcpu); 471 kvm_pmu_vcpu_destroy(vcpu); 472 kvm_vgic_vcpu_destroy(vcpu); 473 kvm_arm_vcpu_destroy(vcpu); 474 } 475 476 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 477 { 478 479 } 480 481 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 482 { 483 484 } 485 486 static void vcpu_set_pauth_traps(struct kvm_vcpu *vcpu) 487 { 488 if (vcpu_has_ptrauth(vcpu)) { 489 /* 490 * Either we're running running an L2 guest, and the API/APK 491 * bits come from L1's HCR_EL2, or API/APK are both set. 492 */ 493 if (unlikely(vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu))) { 494 u64 val; 495 496 val = __vcpu_sys_reg(vcpu, HCR_EL2); 497 val &= (HCR_API | HCR_APK); 498 vcpu->arch.hcr_el2 &= ~(HCR_API | HCR_APK); 499 vcpu->arch.hcr_el2 |= val; 500 } else { 501 vcpu->arch.hcr_el2 |= (HCR_API | HCR_APK); 502 } 503 504 /* 505 * Save the host keys if there is any chance for the guest 506 * to use pauth, as the entry code will reload the guest 507 * keys in that case. 508 * Protected mode is the exception to that rule, as the 509 * entry into the EL2 code eagerly switch back and forth 510 * between host and hyp keys (and kvm_hyp_ctxt is out of 511 * reach anyway). 512 */ 513 if (is_protected_kvm_enabled()) 514 return; 515 516 if (vcpu->arch.hcr_el2 & (HCR_API | HCR_APK)) { 517 struct kvm_cpu_context *ctxt; 518 ctxt = this_cpu_ptr_hyp_sym(kvm_hyp_ctxt); 519 ptrauth_save_keys(ctxt); 520 } 521 } 522 } 523 524 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 525 { 526 struct kvm_s2_mmu *mmu; 527 int *last_ran; 528 529 mmu = vcpu->arch.hw_mmu; 530 last_ran = this_cpu_ptr(mmu->last_vcpu_ran); 531 532 /* 533 * We guarantee that both TLBs and I-cache are private to each 534 * vcpu. If detecting that a vcpu from the same VM has 535 * previously run on the same physical CPU, call into the 536 * hypervisor code to nuke the relevant contexts. 537 * 538 * We might get preempted before the vCPU actually runs, but 539 * over-invalidation doesn't affect correctness. 540 */ 541 if (*last_ran != vcpu->vcpu_idx) { 542 kvm_call_hyp(__kvm_flush_cpu_context, mmu); 543 *last_ran = vcpu->vcpu_idx; 544 } 545 546 vcpu->cpu = cpu; 547 548 kvm_vgic_load(vcpu); 549 kvm_timer_vcpu_load(vcpu); 550 if (has_vhe()) 551 kvm_vcpu_load_vhe(vcpu); 552 kvm_arch_vcpu_load_fp(vcpu); 553 kvm_vcpu_pmu_restore_guest(vcpu); 554 if (kvm_arm_is_pvtime_enabled(&vcpu->arch)) 555 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu); 556 557 if (single_task_running()) 558 vcpu_clear_wfx_traps(vcpu); 559 else 560 vcpu_set_wfx_traps(vcpu); 561 562 vcpu_set_pauth_traps(vcpu); 563 564 kvm_arch_vcpu_load_debug_state_flags(vcpu); 565 566 if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus)) 567 vcpu_set_on_unsupported_cpu(vcpu); 568 } 569 570 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 571 { 572 kvm_arch_vcpu_put_debug_state_flags(vcpu); 573 kvm_arch_vcpu_put_fp(vcpu); 574 if (has_vhe()) 575 kvm_vcpu_put_vhe(vcpu); 576 kvm_timer_vcpu_put(vcpu); 577 kvm_vgic_put(vcpu); 578 kvm_vcpu_pmu_restore_host(vcpu); 579 kvm_arm_vmid_clear_active(); 580 581 vcpu_clear_on_unsupported_cpu(vcpu); 582 vcpu->cpu = -1; 583 } 584 585 static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu) 586 { 587 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED); 588 kvm_make_request(KVM_REQ_SLEEP, vcpu); 589 kvm_vcpu_kick(vcpu); 590 } 591 592 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu) 593 { 594 spin_lock(&vcpu->arch.mp_state_lock); 595 __kvm_arm_vcpu_power_off(vcpu); 596 spin_unlock(&vcpu->arch.mp_state_lock); 597 } 598 599 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu) 600 { 601 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED; 602 } 603 604 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu) 605 { 606 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED); 607 kvm_make_request(KVM_REQ_SUSPEND, vcpu); 608 kvm_vcpu_kick(vcpu); 609 } 610 611 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu) 612 { 613 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED; 614 } 615 616 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 617 struct kvm_mp_state *mp_state) 618 { 619 *mp_state = READ_ONCE(vcpu->arch.mp_state); 620 621 return 0; 622 } 623 624 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 625 struct kvm_mp_state *mp_state) 626 { 627 int ret = 0; 628 629 spin_lock(&vcpu->arch.mp_state_lock); 630 631 switch (mp_state->mp_state) { 632 case KVM_MP_STATE_RUNNABLE: 633 WRITE_ONCE(vcpu->arch.mp_state, *mp_state); 634 break; 635 case KVM_MP_STATE_STOPPED: 636 __kvm_arm_vcpu_power_off(vcpu); 637 break; 638 case KVM_MP_STATE_SUSPENDED: 639 kvm_arm_vcpu_suspend(vcpu); 640 break; 641 default: 642 ret = -EINVAL; 643 } 644 645 spin_unlock(&vcpu->arch.mp_state_lock); 646 647 return ret; 648 } 649 650 /** 651 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled 652 * @v: The VCPU pointer 653 * 654 * If the guest CPU is not waiting for interrupts or an interrupt line is 655 * asserted, the CPU is by definition runnable. 656 */ 657 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 658 { 659 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF); 660 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v)) 661 && !kvm_arm_vcpu_stopped(v) && !v->arch.pause); 662 } 663 664 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 665 { 666 return vcpu_mode_priv(vcpu); 667 } 668 669 #ifdef CONFIG_GUEST_PERF_EVENTS 670 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 671 { 672 return *vcpu_pc(vcpu); 673 } 674 #endif 675 676 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu) 677 { 678 return vcpu_get_flag(vcpu, VCPU_INITIALIZED); 679 } 680 681 static void kvm_init_mpidr_data(struct kvm *kvm) 682 { 683 struct kvm_mpidr_data *data = NULL; 684 unsigned long c, mask, nr_entries; 685 u64 aff_set = 0, aff_clr = ~0UL; 686 struct kvm_vcpu *vcpu; 687 688 mutex_lock(&kvm->arch.config_lock); 689 690 if (kvm->arch.mpidr_data || atomic_read(&kvm->online_vcpus) == 1) 691 goto out; 692 693 kvm_for_each_vcpu(c, vcpu, kvm) { 694 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu); 695 aff_set |= aff; 696 aff_clr &= aff; 697 } 698 699 /* 700 * A significant bit can be either 0 or 1, and will only appear in 701 * aff_set. Use aff_clr to weed out the useless stuff. 702 */ 703 mask = aff_set ^ aff_clr; 704 nr_entries = BIT_ULL(hweight_long(mask)); 705 706 /* 707 * Don't let userspace fool us. If we need more than a single page 708 * to describe the compressed MPIDR array, just fall back to the 709 * iterative method. Single vcpu VMs do not need this either. 710 */ 711 if (struct_size(data, cmpidr_to_idx, nr_entries) <= PAGE_SIZE) 712 data = kzalloc(struct_size(data, cmpidr_to_idx, nr_entries), 713 GFP_KERNEL_ACCOUNT); 714 715 if (!data) 716 goto out; 717 718 data->mpidr_mask = mask; 719 720 kvm_for_each_vcpu(c, vcpu, kvm) { 721 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu); 722 u16 index = kvm_mpidr_index(data, aff); 723 724 data->cmpidr_to_idx[index] = c; 725 } 726 727 kvm->arch.mpidr_data = data; 728 out: 729 mutex_unlock(&kvm->arch.config_lock); 730 } 731 732 /* 733 * Handle both the initialisation that is being done when the vcpu is 734 * run for the first time, as well as the updates that must be 735 * performed each time we get a new thread dealing with this vcpu. 736 */ 737 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 738 { 739 struct kvm *kvm = vcpu->kvm; 740 int ret; 741 742 if (!kvm_vcpu_initialized(vcpu)) 743 return -ENOEXEC; 744 745 if (!kvm_arm_vcpu_is_finalized(vcpu)) 746 return -EPERM; 747 748 ret = kvm_arch_vcpu_run_map_fp(vcpu); 749 if (ret) 750 return ret; 751 752 if (likely(vcpu_has_run_once(vcpu))) 753 return 0; 754 755 kvm_init_mpidr_data(kvm); 756 757 kvm_arm_vcpu_init_debug(vcpu); 758 759 if (likely(irqchip_in_kernel(kvm))) { 760 /* 761 * Map the VGIC hardware resources before running a vcpu the 762 * first time on this VM. 763 */ 764 ret = kvm_vgic_map_resources(kvm); 765 if (ret) 766 return ret; 767 } 768 769 if (vcpu_has_nv(vcpu)) { 770 ret = kvm_init_nv_sysregs(vcpu->kvm); 771 if (ret) 772 return ret; 773 } 774 775 /* 776 * This needs to happen after NV has imposed its own restrictions on 777 * the feature set 778 */ 779 kvm_init_sysreg(vcpu); 780 781 ret = kvm_timer_enable(vcpu); 782 if (ret) 783 return ret; 784 785 ret = kvm_arm_pmu_v3_enable(vcpu); 786 if (ret) 787 return ret; 788 789 if (is_protected_kvm_enabled()) { 790 ret = pkvm_create_hyp_vm(kvm); 791 if (ret) 792 return ret; 793 } 794 795 if (!irqchip_in_kernel(kvm)) { 796 /* 797 * Tell the rest of the code that there are userspace irqchip 798 * VMs in the wild. 799 */ 800 static_branch_inc(&userspace_irqchip_in_use); 801 } 802 803 /* 804 * Initialize traps for protected VMs. 805 * NOTE: Move to run in EL2 directly, rather than via a hypercall, once 806 * the code is in place for first run initialization at EL2. 807 */ 808 if (kvm_vm_is_protected(kvm)) 809 kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu); 810 811 mutex_lock(&kvm->arch.config_lock); 812 set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags); 813 mutex_unlock(&kvm->arch.config_lock); 814 815 return ret; 816 } 817 818 bool kvm_arch_intc_initialized(struct kvm *kvm) 819 { 820 return vgic_initialized(kvm); 821 } 822 823 void kvm_arm_halt_guest(struct kvm *kvm) 824 { 825 unsigned long i; 826 struct kvm_vcpu *vcpu; 827 828 kvm_for_each_vcpu(i, vcpu, kvm) 829 vcpu->arch.pause = true; 830 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP); 831 } 832 833 void kvm_arm_resume_guest(struct kvm *kvm) 834 { 835 unsigned long i; 836 struct kvm_vcpu *vcpu; 837 838 kvm_for_each_vcpu(i, vcpu, kvm) { 839 vcpu->arch.pause = false; 840 __kvm_vcpu_wake_up(vcpu); 841 } 842 } 843 844 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu) 845 { 846 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 847 848 rcuwait_wait_event(wait, 849 (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause), 850 TASK_INTERRUPTIBLE); 851 852 if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) { 853 /* Awaken to handle a signal, request we sleep again later. */ 854 kvm_make_request(KVM_REQ_SLEEP, vcpu); 855 } 856 857 /* 858 * Make sure we will observe a potential reset request if we've 859 * observed a change to the power state. Pairs with the smp_wmb() in 860 * kvm_psci_vcpu_on(). 861 */ 862 smp_rmb(); 863 } 864 865 /** 866 * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior 867 * @vcpu: The VCPU pointer 868 * 869 * Suspend execution of a vCPU until a valid wake event is detected, i.e. until 870 * the vCPU is runnable. The vCPU may or may not be scheduled out, depending 871 * on when a wake event arrives, e.g. there may already be a pending wake event. 872 */ 873 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu) 874 { 875 /* 876 * Sync back the state of the GIC CPU interface so that we have 877 * the latest PMR and group enables. This ensures that 878 * kvm_arch_vcpu_runnable has up-to-date data to decide whether 879 * we have pending interrupts, e.g. when determining if the 880 * vCPU should block. 881 * 882 * For the same reason, we want to tell GICv4 that we need 883 * doorbells to be signalled, should an interrupt become pending. 884 */ 885 preempt_disable(); 886 vcpu_set_flag(vcpu, IN_WFI); 887 kvm_vgic_put(vcpu); 888 preempt_enable(); 889 890 kvm_vcpu_halt(vcpu); 891 vcpu_clear_flag(vcpu, IN_WFIT); 892 893 preempt_disable(); 894 vcpu_clear_flag(vcpu, IN_WFI); 895 kvm_vgic_load(vcpu); 896 preempt_enable(); 897 } 898 899 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu) 900 { 901 if (!kvm_arm_vcpu_suspended(vcpu)) 902 return 1; 903 904 kvm_vcpu_wfi(vcpu); 905 906 /* 907 * The suspend state is sticky; we do not leave it until userspace 908 * explicitly marks the vCPU as runnable. Request that we suspend again 909 * later. 910 */ 911 kvm_make_request(KVM_REQ_SUSPEND, vcpu); 912 913 /* 914 * Check to make sure the vCPU is actually runnable. If so, exit to 915 * userspace informing it of the wakeup condition. 916 */ 917 if (kvm_arch_vcpu_runnable(vcpu)) { 918 memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event)); 919 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP; 920 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 921 return 0; 922 } 923 924 /* 925 * Otherwise, we were unblocked to process a different event, such as a 926 * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to 927 * process the event. 928 */ 929 return 1; 930 } 931 932 /** 933 * check_vcpu_requests - check and handle pending vCPU requests 934 * @vcpu: the VCPU pointer 935 * 936 * Return: 1 if we should enter the guest 937 * 0 if we should exit to userspace 938 * < 0 if we should exit to userspace, where the return value indicates 939 * an error 940 */ 941 static int check_vcpu_requests(struct kvm_vcpu *vcpu) 942 { 943 if (kvm_request_pending(vcpu)) { 944 if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) 945 kvm_vcpu_sleep(vcpu); 946 947 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) 948 kvm_reset_vcpu(vcpu); 949 950 /* 951 * Clear IRQ_PENDING requests that were made to guarantee 952 * that a VCPU sees new virtual interrupts. 953 */ 954 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu); 955 956 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu)) 957 kvm_update_stolen_time(vcpu); 958 959 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) { 960 /* The distributor enable bits were changed */ 961 preempt_disable(); 962 vgic_v4_put(vcpu); 963 vgic_v4_load(vcpu); 964 preempt_enable(); 965 } 966 967 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu)) 968 kvm_vcpu_reload_pmu(vcpu); 969 970 if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu)) 971 kvm_vcpu_pmu_restore_guest(vcpu); 972 973 if (kvm_check_request(KVM_REQ_SUSPEND, vcpu)) 974 return kvm_vcpu_suspend(vcpu); 975 976 if (kvm_dirty_ring_check_request(vcpu)) 977 return 0; 978 } 979 980 return 1; 981 } 982 983 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu) 984 { 985 if (likely(!vcpu_mode_is_32bit(vcpu))) 986 return false; 987 988 if (vcpu_has_nv(vcpu)) 989 return true; 990 991 return !kvm_supports_32bit_el0(); 992 } 993 994 /** 995 * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest 996 * @vcpu: The VCPU pointer 997 * @ret: Pointer to write optional return code 998 * 999 * Returns: true if the VCPU needs to return to a preemptible + interruptible 1000 * and skip guest entry. 1001 * 1002 * This function disambiguates between two different types of exits: exits to a 1003 * preemptible + interruptible kernel context and exits to userspace. For an 1004 * exit to userspace, this function will write the return code to ret and return 1005 * true. For an exit to preemptible + interruptible kernel context (i.e. check 1006 * for pending work and re-enter), return true without writing to ret. 1007 */ 1008 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret) 1009 { 1010 struct kvm_run *run = vcpu->run; 1011 1012 /* 1013 * If we're using a userspace irqchip, then check if we need 1014 * to tell a userspace irqchip about timer or PMU level 1015 * changes and if so, exit to userspace (the actual level 1016 * state gets updated in kvm_timer_update_run and 1017 * kvm_pmu_update_run below). 1018 */ 1019 if (static_branch_unlikely(&userspace_irqchip_in_use)) { 1020 if (kvm_timer_should_notify_user(vcpu) || 1021 kvm_pmu_should_notify_user(vcpu)) { 1022 *ret = -EINTR; 1023 run->exit_reason = KVM_EXIT_INTR; 1024 return true; 1025 } 1026 } 1027 1028 if (unlikely(vcpu_on_unsupported_cpu(vcpu))) { 1029 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 1030 run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED; 1031 run->fail_entry.cpu = smp_processor_id(); 1032 *ret = 0; 1033 return true; 1034 } 1035 1036 return kvm_request_pending(vcpu) || 1037 xfer_to_guest_mode_work_pending(); 1038 } 1039 1040 /* 1041 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while 1042 * the vCPU is running. 1043 * 1044 * This must be noinstr as instrumentation may make use of RCU, and this is not 1045 * safe during the EQS. 1046 */ 1047 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu) 1048 { 1049 int ret; 1050 1051 guest_state_enter_irqoff(); 1052 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu); 1053 guest_state_exit_irqoff(); 1054 1055 return ret; 1056 } 1057 1058 /** 1059 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code 1060 * @vcpu: The VCPU pointer 1061 * 1062 * This function is called through the VCPU_RUN ioctl called from user space. It 1063 * will execute VM code in a loop until the time slice for the process is used 1064 * or some emulation is needed from user space in which case the function will 1065 * return with return value 0 and with the kvm_run structure filled in with the 1066 * required data for the requested emulation. 1067 */ 1068 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 1069 { 1070 struct kvm_run *run = vcpu->run; 1071 int ret; 1072 1073 if (run->exit_reason == KVM_EXIT_MMIO) { 1074 ret = kvm_handle_mmio_return(vcpu); 1075 if (ret <= 0) 1076 return ret; 1077 } 1078 1079 vcpu_load(vcpu); 1080 1081 if (run->immediate_exit) { 1082 ret = -EINTR; 1083 goto out; 1084 } 1085 1086 kvm_sigset_activate(vcpu); 1087 1088 ret = 1; 1089 run->exit_reason = KVM_EXIT_UNKNOWN; 1090 run->flags = 0; 1091 while (ret > 0) { 1092 /* 1093 * Check conditions before entering the guest 1094 */ 1095 ret = xfer_to_guest_mode_handle_work(vcpu); 1096 if (!ret) 1097 ret = 1; 1098 1099 if (ret > 0) 1100 ret = check_vcpu_requests(vcpu); 1101 1102 /* 1103 * Preparing the interrupts to be injected also 1104 * involves poking the GIC, which must be done in a 1105 * non-preemptible context. 1106 */ 1107 preempt_disable(); 1108 1109 /* 1110 * The VMID allocator only tracks active VMIDs per 1111 * physical CPU, and therefore the VMID allocated may not be 1112 * preserved on VMID roll-over if the task was preempted, 1113 * making a thread's VMID inactive. So we need to call 1114 * kvm_arm_vmid_update() in non-premptible context. 1115 */ 1116 if (kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid) && 1117 has_vhe()) 1118 __load_stage2(vcpu->arch.hw_mmu, 1119 vcpu->arch.hw_mmu->arch); 1120 1121 kvm_pmu_flush_hwstate(vcpu); 1122 1123 local_irq_disable(); 1124 1125 kvm_vgic_flush_hwstate(vcpu); 1126 1127 kvm_pmu_update_vcpu_events(vcpu); 1128 1129 /* 1130 * Ensure we set mode to IN_GUEST_MODE after we disable 1131 * interrupts and before the final VCPU requests check. 1132 * See the comment in kvm_vcpu_exiting_guest_mode() and 1133 * Documentation/virt/kvm/vcpu-requests.rst 1134 */ 1135 smp_store_mb(vcpu->mode, IN_GUEST_MODE); 1136 1137 if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) { 1138 vcpu->mode = OUTSIDE_GUEST_MODE; 1139 isb(); /* Ensure work in x_flush_hwstate is committed */ 1140 kvm_pmu_sync_hwstate(vcpu); 1141 if (static_branch_unlikely(&userspace_irqchip_in_use)) 1142 kvm_timer_sync_user(vcpu); 1143 kvm_vgic_sync_hwstate(vcpu); 1144 local_irq_enable(); 1145 preempt_enable(); 1146 continue; 1147 } 1148 1149 kvm_arm_setup_debug(vcpu); 1150 kvm_arch_vcpu_ctxflush_fp(vcpu); 1151 1152 /************************************************************** 1153 * Enter the guest 1154 */ 1155 trace_kvm_entry(*vcpu_pc(vcpu)); 1156 guest_timing_enter_irqoff(); 1157 1158 ret = kvm_arm_vcpu_enter_exit(vcpu); 1159 1160 vcpu->mode = OUTSIDE_GUEST_MODE; 1161 vcpu->stat.exits++; 1162 /* 1163 * Back from guest 1164 *************************************************************/ 1165 1166 kvm_arm_clear_debug(vcpu); 1167 1168 /* 1169 * We must sync the PMU state before the vgic state so 1170 * that the vgic can properly sample the updated state of the 1171 * interrupt line. 1172 */ 1173 kvm_pmu_sync_hwstate(vcpu); 1174 1175 /* 1176 * Sync the vgic state before syncing the timer state because 1177 * the timer code needs to know if the virtual timer 1178 * interrupts are active. 1179 */ 1180 kvm_vgic_sync_hwstate(vcpu); 1181 1182 /* 1183 * Sync the timer hardware state before enabling interrupts as 1184 * we don't want vtimer interrupts to race with syncing the 1185 * timer virtual interrupt state. 1186 */ 1187 if (static_branch_unlikely(&userspace_irqchip_in_use)) 1188 kvm_timer_sync_user(vcpu); 1189 1190 kvm_arch_vcpu_ctxsync_fp(vcpu); 1191 1192 /* 1193 * We must ensure that any pending interrupts are taken before 1194 * we exit guest timing so that timer ticks are accounted as 1195 * guest time. Transiently unmask interrupts so that any 1196 * pending interrupts are taken. 1197 * 1198 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other 1199 * context synchronization event) is necessary to ensure that 1200 * pending interrupts are taken. 1201 */ 1202 if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) { 1203 local_irq_enable(); 1204 isb(); 1205 local_irq_disable(); 1206 } 1207 1208 guest_timing_exit_irqoff(); 1209 1210 local_irq_enable(); 1211 1212 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu)); 1213 1214 /* Exit types that need handling before we can be preempted */ 1215 handle_exit_early(vcpu, ret); 1216 1217 preempt_enable(); 1218 1219 /* 1220 * The ARMv8 architecture doesn't give the hypervisor 1221 * a mechanism to prevent a guest from dropping to AArch32 EL0 1222 * if implemented by the CPU. If we spot the guest in such 1223 * state and that we decided it wasn't supposed to do so (like 1224 * with the asymmetric AArch32 case), return to userspace with 1225 * a fatal error. 1226 */ 1227 if (vcpu_mode_is_bad_32bit(vcpu)) { 1228 /* 1229 * As we have caught the guest red-handed, decide that 1230 * it isn't fit for purpose anymore by making the vcpu 1231 * invalid. The VMM can try and fix it by issuing a 1232 * KVM_ARM_VCPU_INIT if it really wants to. 1233 */ 1234 vcpu_clear_flag(vcpu, VCPU_INITIALIZED); 1235 ret = ARM_EXCEPTION_IL; 1236 } 1237 1238 ret = handle_exit(vcpu, ret); 1239 } 1240 1241 /* Tell userspace about in-kernel device output levels */ 1242 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) { 1243 kvm_timer_update_run(vcpu); 1244 kvm_pmu_update_run(vcpu); 1245 } 1246 1247 kvm_sigset_deactivate(vcpu); 1248 1249 out: 1250 /* 1251 * In the unlikely event that we are returning to userspace 1252 * with pending exceptions or PC adjustment, commit these 1253 * adjustments in order to give userspace a consistent view of 1254 * the vcpu state. Note that this relies on __kvm_adjust_pc() 1255 * being preempt-safe on VHE. 1256 */ 1257 if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) || 1258 vcpu_get_flag(vcpu, INCREMENT_PC))) 1259 kvm_call_hyp(__kvm_adjust_pc, vcpu); 1260 1261 vcpu_put(vcpu); 1262 return ret; 1263 } 1264 1265 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level) 1266 { 1267 int bit_index; 1268 bool set; 1269 unsigned long *hcr; 1270 1271 if (number == KVM_ARM_IRQ_CPU_IRQ) 1272 bit_index = __ffs(HCR_VI); 1273 else /* KVM_ARM_IRQ_CPU_FIQ */ 1274 bit_index = __ffs(HCR_VF); 1275 1276 hcr = vcpu_hcr(vcpu); 1277 if (level) 1278 set = test_and_set_bit(bit_index, hcr); 1279 else 1280 set = test_and_clear_bit(bit_index, hcr); 1281 1282 /* 1283 * If we didn't change anything, no need to wake up or kick other CPUs 1284 */ 1285 if (set == level) 1286 return 0; 1287 1288 /* 1289 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and 1290 * trigger a world-switch round on the running physical CPU to set the 1291 * virtual IRQ/FIQ fields in the HCR appropriately. 1292 */ 1293 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); 1294 kvm_vcpu_kick(vcpu); 1295 1296 return 0; 1297 } 1298 1299 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1300 bool line_status) 1301 { 1302 u32 irq = irq_level->irq; 1303 unsigned int irq_type, vcpu_id, irq_num; 1304 struct kvm_vcpu *vcpu = NULL; 1305 bool level = irq_level->level; 1306 1307 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK; 1308 vcpu_id = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK; 1309 vcpu_id += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1); 1310 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK; 1311 1312 trace_kvm_irq_line(irq_type, vcpu_id, irq_num, irq_level->level); 1313 1314 switch (irq_type) { 1315 case KVM_ARM_IRQ_TYPE_CPU: 1316 if (irqchip_in_kernel(kvm)) 1317 return -ENXIO; 1318 1319 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); 1320 if (!vcpu) 1321 return -EINVAL; 1322 1323 if (irq_num > KVM_ARM_IRQ_CPU_FIQ) 1324 return -EINVAL; 1325 1326 return vcpu_interrupt_line(vcpu, irq_num, level); 1327 case KVM_ARM_IRQ_TYPE_PPI: 1328 if (!irqchip_in_kernel(kvm)) 1329 return -ENXIO; 1330 1331 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); 1332 if (!vcpu) 1333 return -EINVAL; 1334 1335 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS) 1336 return -EINVAL; 1337 1338 return kvm_vgic_inject_irq(kvm, vcpu, irq_num, level, NULL); 1339 case KVM_ARM_IRQ_TYPE_SPI: 1340 if (!irqchip_in_kernel(kvm)) 1341 return -ENXIO; 1342 1343 if (irq_num < VGIC_NR_PRIVATE_IRQS) 1344 return -EINVAL; 1345 1346 return kvm_vgic_inject_irq(kvm, NULL, irq_num, level, NULL); 1347 } 1348 1349 return -EINVAL; 1350 } 1351 1352 static unsigned long system_supported_vcpu_features(void) 1353 { 1354 unsigned long features = KVM_VCPU_VALID_FEATURES; 1355 1356 if (!cpus_have_final_cap(ARM64_HAS_32BIT_EL1)) 1357 clear_bit(KVM_ARM_VCPU_EL1_32BIT, &features); 1358 1359 if (!kvm_arm_support_pmu_v3()) 1360 clear_bit(KVM_ARM_VCPU_PMU_V3, &features); 1361 1362 if (!system_supports_sve()) 1363 clear_bit(KVM_ARM_VCPU_SVE, &features); 1364 1365 if (!kvm_has_full_ptr_auth()) { 1366 clear_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features); 1367 clear_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features); 1368 } 1369 1370 if (!cpus_have_final_cap(ARM64_HAS_NESTED_VIRT)) 1371 clear_bit(KVM_ARM_VCPU_HAS_EL2, &features); 1372 1373 return features; 1374 } 1375 1376 static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu, 1377 const struct kvm_vcpu_init *init) 1378 { 1379 unsigned long features = init->features[0]; 1380 int i; 1381 1382 if (features & ~KVM_VCPU_VALID_FEATURES) 1383 return -ENOENT; 1384 1385 for (i = 1; i < ARRAY_SIZE(init->features); i++) { 1386 if (init->features[i]) 1387 return -ENOENT; 1388 } 1389 1390 if (features & ~system_supported_vcpu_features()) 1391 return -EINVAL; 1392 1393 /* 1394 * For now make sure that both address/generic pointer authentication 1395 * features are requested by the userspace together. 1396 */ 1397 if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features) != 1398 test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features)) 1399 return -EINVAL; 1400 1401 /* Disallow NV+SVE for the time being */ 1402 if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features) && 1403 test_bit(KVM_ARM_VCPU_SVE, &features)) 1404 return -EINVAL; 1405 1406 if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features)) 1407 return 0; 1408 1409 /* MTE is incompatible with AArch32 */ 1410 if (kvm_has_mte(vcpu->kvm)) 1411 return -EINVAL; 1412 1413 /* NV is incompatible with AArch32 */ 1414 if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features)) 1415 return -EINVAL; 1416 1417 return 0; 1418 } 1419 1420 static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu, 1421 const struct kvm_vcpu_init *init) 1422 { 1423 unsigned long features = init->features[0]; 1424 1425 return !bitmap_equal(vcpu->kvm->arch.vcpu_features, &features, 1426 KVM_VCPU_MAX_FEATURES); 1427 } 1428 1429 static int kvm_setup_vcpu(struct kvm_vcpu *vcpu) 1430 { 1431 struct kvm *kvm = vcpu->kvm; 1432 int ret = 0; 1433 1434 /* 1435 * When the vCPU has a PMU, but no PMU is set for the guest 1436 * yet, set the default one. 1437 */ 1438 if (kvm_vcpu_has_pmu(vcpu) && !kvm->arch.arm_pmu) 1439 ret = kvm_arm_set_default_pmu(kvm); 1440 1441 return ret; 1442 } 1443 1444 static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu, 1445 const struct kvm_vcpu_init *init) 1446 { 1447 unsigned long features = init->features[0]; 1448 struct kvm *kvm = vcpu->kvm; 1449 int ret = -EINVAL; 1450 1451 mutex_lock(&kvm->arch.config_lock); 1452 1453 if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) && 1454 kvm_vcpu_init_changed(vcpu, init)) 1455 goto out_unlock; 1456 1457 bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES); 1458 1459 ret = kvm_setup_vcpu(vcpu); 1460 if (ret) 1461 goto out_unlock; 1462 1463 /* Now we know what it is, we can reset it. */ 1464 kvm_reset_vcpu(vcpu); 1465 1466 set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags); 1467 vcpu_set_flag(vcpu, VCPU_INITIALIZED); 1468 ret = 0; 1469 out_unlock: 1470 mutex_unlock(&kvm->arch.config_lock); 1471 return ret; 1472 } 1473 1474 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu, 1475 const struct kvm_vcpu_init *init) 1476 { 1477 int ret; 1478 1479 if (init->target != KVM_ARM_TARGET_GENERIC_V8 && 1480 init->target != kvm_target_cpu()) 1481 return -EINVAL; 1482 1483 ret = kvm_vcpu_init_check_features(vcpu, init); 1484 if (ret) 1485 return ret; 1486 1487 if (!kvm_vcpu_initialized(vcpu)) 1488 return __kvm_vcpu_set_target(vcpu, init); 1489 1490 if (kvm_vcpu_init_changed(vcpu, init)) 1491 return -EINVAL; 1492 1493 kvm_reset_vcpu(vcpu); 1494 return 0; 1495 } 1496 1497 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu, 1498 struct kvm_vcpu_init *init) 1499 { 1500 bool power_off = false; 1501 int ret; 1502 1503 /* 1504 * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid 1505 * reflecting it in the finalized feature set, thus limiting its scope 1506 * to a single KVM_ARM_VCPU_INIT call. 1507 */ 1508 if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) { 1509 init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF); 1510 power_off = true; 1511 } 1512 1513 ret = kvm_vcpu_set_target(vcpu, init); 1514 if (ret) 1515 return ret; 1516 1517 /* 1518 * Ensure a rebooted VM will fault in RAM pages and detect if the 1519 * guest MMU is turned off and flush the caches as needed. 1520 * 1521 * S2FWB enforces all memory accesses to RAM being cacheable, 1522 * ensuring that the data side is always coherent. We still 1523 * need to invalidate the I-cache though, as FWB does *not* 1524 * imply CTR_EL0.DIC. 1525 */ 1526 if (vcpu_has_run_once(vcpu)) { 1527 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) 1528 stage2_unmap_vm(vcpu->kvm); 1529 else 1530 icache_inval_all_pou(); 1531 } 1532 1533 vcpu_reset_hcr(vcpu); 1534 vcpu->arch.cptr_el2 = kvm_get_reset_cptr_el2(vcpu); 1535 1536 /* 1537 * Handle the "start in power-off" case. 1538 */ 1539 spin_lock(&vcpu->arch.mp_state_lock); 1540 1541 if (power_off) 1542 __kvm_arm_vcpu_power_off(vcpu); 1543 else 1544 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE); 1545 1546 spin_unlock(&vcpu->arch.mp_state_lock); 1547 1548 return 0; 1549 } 1550 1551 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu, 1552 struct kvm_device_attr *attr) 1553 { 1554 int ret = -ENXIO; 1555 1556 switch (attr->group) { 1557 default: 1558 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr); 1559 break; 1560 } 1561 1562 return ret; 1563 } 1564 1565 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu, 1566 struct kvm_device_attr *attr) 1567 { 1568 int ret = -ENXIO; 1569 1570 switch (attr->group) { 1571 default: 1572 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr); 1573 break; 1574 } 1575 1576 return ret; 1577 } 1578 1579 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu, 1580 struct kvm_device_attr *attr) 1581 { 1582 int ret = -ENXIO; 1583 1584 switch (attr->group) { 1585 default: 1586 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr); 1587 break; 1588 } 1589 1590 return ret; 1591 } 1592 1593 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, 1594 struct kvm_vcpu_events *events) 1595 { 1596 memset(events, 0, sizeof(*events)); 1597 1598 return __kvm_arm_vcpu_get_events(vcpu, events); 1599 } 1600 1601 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, 1602 struct kvm_vcpu_events *events) 1603 { 1604 int i; 1605 1606 /* check whether the reserved field is zero */ 1607 for (i = 0; i < ARRAY_SIZE(events->reserved); i++) 1608 if (events->reserved[i]) 1609 return -EINVAL; 1610 1611 /* check whether the pad field is zero */ 1612 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++) 1613 if (events->exception.pad[i]) 1614 return -EINVAL; 1615 1616 return __kvm_arm_vcpu_set_events(vcpu, events); 1617 } 1618 1619 long kvm_arch_vcpu_ioctl(struct file *filp, 1620 unsigned int ioctl, unsigned long arg) 1621 { 1622 struct kvm_vcpu *vcpu = filp->private_data; 1623 void __user *argp = (void __user *)arg; 1624 struct kvm_device_attr attr; 1625 long r; 1626 1627 switch (ioctl) { 1628 case KVM_ARM_VCPU_INIT: { 1629 struct kvm_vcpu_init init; 1630 1631 r = -EFAULT; 1632 if (copy_from_user(&init, argp, sizeof(init))) 1633 break; 1634 1635 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init); 1636 break; 1637 } 1638 case KVM_SET_ONE_REG: 1639 case KVM_GET_ONE_REG: { 1640 struct kvm_one_reg reg; 1641 1642 r = -ENOEXEC; 1643 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1644 break; 1645 1646 r = -EFAULT; 1647 if (copy_from_user(®, argp, sizeof(reg))) 1648 break; 1649 1650 /* 1651 * We could owe a reset due to PSCI. Handle the pending reset 1652 * here to ensure userspace register accesses are ordered after 1653 * the reset. 1654 */ 1655 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) 1656 kvm_reset_vcpu(vcpu); 1657 1658 if (ioctl == KVM_SET_ONE_REG) 1659 r = kvm_arm_set_reg(vcpu, ®); 1660 else 1661 r = kvm_arm_get_reg(vcpu, ®); 1662 break; 1663 } 1664 case KVM_GET_REG_LIST: { 1665 struct kvm_reg_list __user *user_list = argp; 1666 struct kvm_reg_list reg_list; 1667 unsigned n; 1668 1669 r = -ENOEXEC; 1670 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1671 break; 1672 1673 r = -EPERM; 1674 if (!kvm_arm_vcpu_is_finalized(vcpu)) 1675 break; 1676 1677 r = -EFAULT; 1678 if (copy_from_user(®_list, user_list, sizeof(reg_list))) 1679 break; 1680 n = reg_list.n; 1681 reg_list.n = kvm_arm_num_regs(vcpu); 1682 if (copy_to_user(user_list, ®_list, sizeof(reg_list))) 1683 break; 1684 r = -E2BIG; 1685 if (n < reg_list.n) 1686 break; 1687 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg); 1688 break; 1689 } 1690 case KVM_SET_DEVICE_ATTR: { 1691 r = -EFAULT; 1692 if (copy_from_user(&attr, argp, sizeof(attr))) 1693 break; 1694 r = kvm_arm_vcpu_set_attr(vcpu, &attr); 1695 break; 1696 } 1697 case KVM_GET_DEVICE_ATTR: { 1698 r = -EFAULT; 1699 if (copy_from_user(&attr, argp, sizeof(attr))) 1700 break; 1701 r = kvm_arm_vcpu_get_attr(vcpu, &attr); 1702 break; 1703 } 1704 case KVM_HAS_DEVICE_ATTR: { 1705 r = -EFAULT; 1706 if (copy_from_user(&attr, argp, sizeof(attr))) 1707 break; 1708 r = kvm_arm_vcpu_has_attr(vcpu, &attr); 1709 break; 1710 } 1711 case KVM_GET_VCPU_EVENTS: { 1712 struct kvm_vcpu_events events; 1713 1714 if (kvm_arm_vcpu_get_events(vcpu, &events)) 1715 return -EINVAL; 1716 1717 if (copy_to_user(argp, &events, sizeof(events))) 1718 return -EFAULT; 1719 1720 return 0; 1721 } 1722 case KVM_SET_VCPU_EVENTS: { 1723 struct kvm_vcpu_events events; 1724 1725 if (copy_from_user(&events, argp, sizeof(events))) 1726 return -EFAULT; 1727 1728 return kvm_arm_vcpu_set_events(vcpu, &events); 1729 } 1730 case KVM_ARM_VCPU_FINALIZE: { 1731 int what; 1732 1733 if (!kvm_vcpu_initialized(vcpu)) 1734 return -ENOEXEC; 1735 1736 if (get_user(what, (const int __user *)argp)) 1737 return -EFAULT; 1738 1739 return kvm_arm_vcpu_finalize(vcpu, what); 1740 } 1741 default: 1742 r = -EINVAL; 1743 } 1744 1745 return r; 1746 } 1747 1748 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 1749 { 1750 1751 } 1752 1753 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm, 1754 struct kvm_arm_device_addr *dev_addr) 1755 { 1756 switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) { 1757 case KVM_ARM_DEVICE_VGIC_V2: 1758 if (!vgic_present) 1759 return -ENXIO; 1760 return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr); 1761 default: 1762 return -ENODEV; 1763 } 1764 } 1765 1766 static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1767 { 1768 switch (attr->group) { 1769 case KVM_ARM_VM_SMCCC_CTRL: 1770 return kvm_vm_smccc_has_attr(kvm, attr); 1771 default: 1772 return -ENXIO; 1773 } 1774 } 1775 1776 static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1777 { 1778 switch (attr->group) { 1779 case KVM_ARM_VM_SMCCC_CTRL: 1780 return kvm_vm_smccc_set_attr(kvm, attr); 1781 default: 1782 return -ENXIO; 1783 } 1784 } 1785 1786 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 1787 { 1788 struct kvm *kvm = filp->private_data; 1789 void __user *argp = (void __user *)arg; 1790 struct kvm_device_attr attr; 1791 1792 switch (ioctl) { 1793 case KVM_CREATE_IRQCHIP: { 1794 int ret; 1795 if (!vgic_present) 1796 return -ENXIO; 1797 mutex_lock(&kvm->lock); 1798 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2); 1799 mutex_unlock(&kvm->lock); 1800 return ret; 1801 } 1802 case KVM_ARM_SET_DEVICE_ADDR: { 1803 struct kvm_arm_device_addr dev_addr; 1804 1805 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr))) 1806 return -EFAULT; 1807 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr); 1808 } 1809 case KVM_ARM_PREFERRED_TARGET: { 1810 struct kvm_vcpu_init init = { 1811 .target = KVM_ARM_TARGET_GENERIC_V8, 1812 }; 1813 1814 if (copy_to_user(argp, &init, sizeof(init))) 1815 return -EFAULT; 1816 1817 return 0; 1818 } 1819 case KVM_ARM_MTE_COPY_TAGS: { 1820 struct kvm_arm_copy_mte_tags copy_tags; 1821 1822 if (copy_from_user(©_tags, argp, sizeof(copy_tags))) 1823 return -EFAULT; 1824 return kvm_vm_ioctl_mte_copy_tags(kvm, ©_tags); 1825 } 1826 case KVM_ARM_SET_COUNTER_OFFSET: { 1827 struct kvm_arm_counter_offset offset; 1828 1829 if (copy_from_user(&offset, argp, sizeof(offset))) 1830 return -EFAULT; 1831 return kvm_vm_ioctl_set_counter_offset(kvm, &offset); 1832 } 1833 case KVM_HAS_DEVICE_ATTR: { 1834 if (copy_from_user(&attr, argp, sizeof(attr))) 1835 return -EFAULT; 1836 1837 return kvm_vm_has_attr(kvm, &attr); 1838 } 1839 case KVM_SET_DEVICE_ATTR: { 1840 if (copy_from_user(&attr, argp, sizeof(attr))) 1841 return -EFAULT; 1842 1843 return kvm_vm_set_attr(kvm, &attr); 1844 } 1845 case KVM_ARM_GET_REG_WRITABLE_MASKS: { 1846 struct reg_mask_range range; 1847 1848 if (copy_from_user(&range, argp, sizeof(range))) 1849 return -EFAULT; 1850 return kvm_vm_ioctl_get_reg_writable_masks(kvm, &range); 1851 } 1852 default: 1853 return -EINVAL; 1854 } 1855 } 1856 1857 /* unlocks vcpus from @vcpu_lock_idx and smaller */ 1858 static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx) 1859 { 1860 struct kvm_vcpu *tmp_vcpu; 1861 1862 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) { 1863 tmp_vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx); 1864 mutex_unlock(&tmp_vcpu->mutex); 1865 } 1866 } 1867 1868 void unlock_all_vcpus(struct kvm *kvm) 1869 { 1870 lockdep_assert_held(&kvm->lock); 1871 1872 unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1); 1873 } 1874 1875 /* Returns true if all vcpus were locked, false otherwise */ 1876 bool lock_all_vcpus(struct kvm *kvm) 1877 { 1878 struct kvm_vcpu *tmp_vcpu; 1879 unsigned long c; 1880 1881 lockdep_assert_held(&kvm->lock); 1882 1883 /* 1884 * Any time a vcpu is in an ioctl (including running), the 1885 * core KVM code tries to grab the vcpu->mutex. 1886 * 1887 * By grabbing the vcpu->mutex of all VCPUs we ensure that no 1888 * other VCPUs can fiddle with the state while we access it. 1889 */ 1890 kvm_for_each_vcpu(c, tmp_vcpu, kvm) { 1891 if (!mutex_trylock(&tmp_vcpu->mutex)) { 1892 unlock_vcpus(kvm, c - 1); 1893 return false; 1894 } 1895 } 1896 1897 return true; 1898 } 1899 1900 static unsigned long nvhe_percpu_size(void) 1901 { 1902 return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) - 1903 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start); 1904 } 1905 1906 static unsigned long nvhe_percpu_order(void) 1907 { 1908 unsigned long size = nvhe_percpu_size(); 1909 1910 return size ? get_order(size) : 0; 1911 } 1912 1913 /* A lookup table holding the hypervisor VA for each vector slot */ 1914 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS]; 1915 1916 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot) 1917 { 1918 hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot); 1919 } 1920 1921 static int kvm_init_vector_slots(void) 1922 { 1923 int err; 1924 void *base; 1925 1926 base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector)); 1927 kvm_init_vector_slot(base, HYP_VECTOR_DIRECT); 1928 1929 base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs)); 1930 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT); 1931 1932 if (kvm_system_needs_idmapped_vectors() && 1933 !is_protected_kvm_enabled()) { 1934 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs), 1935 __BP_HARDEN_HYP_VECS_SZ, &base); 1936 if (err) 1937 return err; 1938 } 1939 1940 kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT); 1941 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT); 1942 return 0; 1943 } 1944 1945 static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits) 1946 { 1947 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu); 1948 u64 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 1949 unsigned long tcr; 1950 1951 /* 1952 * Calculate the raw per-cpu offset without a translation from the 1953 * kernel's mapping to the linear mapping, and store it in tpidr_el2 1954 * so that we can use adr_l to access per-cpu variables in EL2. 1955 * Also drop the KASAN tag which gets in the way... 1956 */ 1957 params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) - 1958 (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start)); 1959 1960 params->mair_el2 = read_sysreg(mair_el1); 1961 1962 tcr = read_sysreg(tcr_el1); 1963 if (cpus_have_final_cap(ARM64_KVM_HVHE)) { 1964 tcr |= TCR_EPD1_MASK; 1965 } else { 1966 tcr &= TCR_EL2_MASK; 1967 tcr |= TCR_EL2_RES1; 1968 } 1969 tcr &= ~TCR_T0SZ_MASK; 1970 tcr |= TCR_T0SZ(hyp_va_bits); 1971 tcr &= ~TCR_EL2_PS_MASK; 1972 tcr |= FIELD_PREP(TCR_EL2_PS_MASK, kvm_get_parange(mmfr0)); 1973 if (kvm_lpa2_is_enabled()) 1974 tcr |= TCR_EL2_DS; 1975 params->tcr_el2 = tcr; 1976 1977 params->pgd_pa = kvm_mmu_get_httbr(); 1978 if (is_protected_kvm_enabled()) 1979 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS; 1980 else 1981 params->hcr_el2 = HCR_HOST_NVHE_FLAGS; 1982 if (cpus_have_final_cap(ARM64_KVM_HVHE)) 1983 params->hcr_el2 |= HCR_E2H; 1984 params->vttbr = params->vtcr = 0; 1985 1986 /* 1987 * Flush the init params from the data cache because the struct will 1988 * be read while the MMU is off. 1989 */ 1990 kvm_flush_dcache_to_poc(params, sizeof(*params)); 1991 } 1992 1993 static void hyp_install_host_vector(void) 1994 { 1995 struct kvm_nvhe_init_params *params; 1996 struct arm_smccc_res res; 1997 1998 /* Switch from the HYP stub to our own HYP init vector */ 1999 __hyp_set_vectors(kvm_get_idmap_vector()); 2000 2001 /* 2002 * Call initialization code, and switch to the full blown HYP code. 2003 * If the cpucaps haven't been finalized yet, something has gone very 2004 * wrong, and hyp will crash and burn when it uses any 2005 * cpus_have_*_cap() wrapper. 2006 */ 2007 BUG_ON(!system_capabilities_finalized()); 2008 params = this_cpu_ptr_nvhe_sym(kvm_init_params); 2009 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res); 2010 WARN_ON(res.a0 != SMCCC_RET_SUCCESS); 2011 } 2012 2013 static void cpu_init_hyp_mode(void) 2014 { 2015 hyp_install_host_vector(); 2016 2017 /* 2018 * Disabling SSBD on a non-VHE system requires us to enable SSBS 2019 * at EL2. 2020 */ 2021 if (this_cpu_has_cap(ARM64_SSBS) && 2022 arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) { 2023 kvm_call_hyp_nvhe(__kvm_enable_ssbs); 2024 } 2025 } 2026 2027 static void cpu_hyp_reset(void) 2028 { 2029 if (!is_kernel_in_hyp_mode()) 2030 __hyp_reset_vectors(); 2031 } 2032 2033 /* 2034 * EL2 vectors can be mapped and rerouted in a number of ways, 2035 * depending on the kernel configuration and CPU present: 2036 * 2037 * - If the CPU is affected by Spectre-v2, the hardening sequence is 2038 * placed in one of the vector slots, which is executed before jumping 2039 * to the real vectors. 2040 * 2041 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot 2042 * containing the hardening sequence is mapped next to the idmap page, 2043 * and executed before jumping to the real vectors. 2044 * 2045 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an 2046 * empty slot is selected, mapped next to the idmap page, and 2047 * executed before jumping to the real vectors. 2048 * 2049 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with 2050 * VHE, as we don't have hypervisor-specific mappings. If the system 2051 * is VHE and yet selects this capability, it will be ignored. 2052 */ 2053 static void cpu_set_hyp_vector(void) 2054 { 2055 struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data); 2056 void *vector = hyp_spectre_vector_selector[data->slot]; 2057 2058 if (!is_protected_kvm_enabled()) 2059 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector; 2060 else 2061 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot); 2062 } 2063 2064 static void cpu_hyp_init_context(void) 2065 { 2066 kvm_init_host_cpu_context(host_data_ptr(host_ctxt)); 2067 2068 if (!is_kernel_in_hyp_mode()) 2069 cpu_init_hyp_mode(); 2070 } 2071 2072 static void cpu_hyp_init_features(void) 2073 { 2074 cpu_set_hyp_vector(); 2075 kvm_arm_init_debug(); 2076 2077 if (is_kernel_in_hyp_mode()) 2078 kvm_timer_init_vhe(); 2079 2080 if (vgic_present) 2081 kvm_vgic_init_cpu_hardware(); 2082 } 2083 2084 static void cpu_hyp_reinit(void) 2085 { 2086 cpu_hyp_reset(); 2087 cpu_hyp_init_context(); 2088 cpu_hyp_init_features(); 2089 } 2090 2091 static void cpu_hyp_init(void *discard) 2092 { 2093 if (!__this_cpu_read(kvm_hyp_initialized)) { 2094 cpu_hyp_reinit(); 2095 __this_cpu_write(kvm_hyp_initialized, 1); 2096 } 2097 } 2098 2099 static void cpu_hyp_uninit(void *discard) 2100 { 2101 if (__this_cpu_read(kvm_hyp_initialized)) { 2102 cpu_hyp_reset(); 2103 __this_cpu_write(kvm_hyp_initialized, 0); 2104 } 2105 } 2106 2107 int kvm_arch_hardware_enable(void) 2108 { 2109 /* 2110 * Most calls to this function are made with migration 2111 * disabled, but not with preemption disabled. The former is 2112 * enough to ensure correctness, but most of the helpers 2113 * expect the later and will throw a tantrum otherwise. 2114 */ 2115 preempt_disable(); 2116 2117 cpu_hyp_init(NULL); 2118 2119 kvm_vgic_cpu_up(); 2120 kvm_timer_cpu_up(); 2121 2122 preempt_enable(); 2123 2124 return 0; 2125 } 2126 2127 void kvm_arch_hardware_disable(void) 2128 { 2129 kvm_timer_cpu_down(); 2130 kvm_vgic_cpu_down(); 2131 2132 if (!is_protected_kvm_enabled()) 2133 cpu_hyp_uninit(NULL); 2134 } 2135 2136 #ifdef CONFIG_CPU_PM 2137 static int hyp_init_cpu_pm_notifier(struct notifier_block *self, 2138 unsigned long cmd, 2139 void *v) 2140 { 2141 /* 2142 * kvm_hyp_initialized is left with its old value over 2143 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should 2144 * re-enable hyp. 2145 */ 2146 switch (cmd) { 2147 case CPU_PM_ENTER: 2148 if (__this_cpu_read(kvm_hyp_initialized)) 2149 /* 2150 * don't update kvm_hyp_initialized here 2151 * so that the hyp will be re-enabled 2152 * when we resume. See below. 2153 */ 2154 cpu_hyp_reset(); 2155 2156 return NOTIFY_OK; 2157 case CPU_PM_ENTER_FAILED: 2158 case CPU_PM_EXIT: 2159 if (__this_cpu_read(kvm_hyp_initialized)) 2160 /* The hyp was enabled before suspend. */ 2161 cpu_hyp_reinit(); 2162 2163 return NOTIFY_OK; 2164 2165 default: 2166 return NOTIFY_DONE; 2167 } 2168 } 2169 2170 static struct notifier_block hyp_init_cpu_pm_nb = { 2171 .notifier_call = hyp_init_cpu_pm_notifier, 2172 }; 2173 2174 static void __init hyp_cpu_pm_init(void) 2175 { 2176 if (!is_protected_kvm_enabled()) 2177 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb); 2178 } 2179 static void __init hyp_cpu_pm_exit(void) 2180 { 2181 if (!is_protected_kvm_enabled()) 2182 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb); 2183 } 2184 #else 2185 static inline void __init hyp_cpu_pm_init(void) 2186 { 2187 } 2188 static inline void __init hyp_cpu_pm_exit(void) 2189 { 2190 } 2191 #endif 2192 2193 static void __init init_cpu_logical_map(void) 2194 { 2195 unsigned int cpu; 2196 2197 /* 2198 * Copy the MPIDR <-> logical CPU ID mapping to hyp. 2199 * Only copy the set of online CPUs whose features have been checked 2200 * against the finalized system capabilities. The hypervisor will not 2201 * allow any other CPUs from the `possible` set to boot. 2202 */ 2203 for_each_online_cpu(cpu) 2204 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu); 2205 } 2206 2207 #define init_psci_0_1_impl_state(config, what) \ 2208 config.psci_0_1_ ## what ## _implemented = psci_ops.what 2209 2210 static bool __init init_psci_relay(void) 2211 { 2212 /* 2213 * If PSCI has not been initialized, protected KVM cannot install 2214 * itself on newly booted CPUs. 2215 */ 2216 if (!psci_ops.get_version) { 2217 kvm_err("Cannot initialize protected mode without PSCI\n"); 2218 return false; 2219 } 2220 2221 kvm_host_psci_config.version = psci_ops.get_version(); 2222 kvm_host_psci_config.smccc_version = arm_smccc_get_version(); 2223 2224 if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) { 2225 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids(); 2226 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend); 2227 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on); 2228 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off); 2229 init_psci_0_1_impl_state(kvm_host_psci_config, migrate); 2230 } 2231 return true; 2232 } 2233 2234 static int __init init_subsystems(void) 2235 { 2236 int err = 0; 2237 2238 /* 2239 * Enable hardware so that subsystem initialisation can access EL2. 2240 */ 2241 on_each_cpu(cpu_hyp_init, NULL, 1); 2242 2243 /* 2244 * Register CPU lower-power notifier 2245 */ 2246 hyp_cpu_pm_init(); 2247 2248 /* 2249 * Init HYP view of VGIC 2250 */ 2251 err = kvm_vgic_hyp_init(); 2252 switch (err) { 2253 case 0: 2254 vgic_present = true; 2255 break; 2256 case -ENODEV: 2257 case -ENXIO: 2258 vgic_present = false; 2259 err = 0; 2260 break; 2261 default: 2262 goto out; 2263 } 2264 2265 /* 2266 * Init HYP architected timer support 2267 */ 2268 err = kvm_timer_hyp_init(vgic_present); 2269 if (err) 2270 goto out; 2271 2272 kvm_register_perf_callbacks(NULL); 2273 2274 out: 2275 if (err) 2276 hyp_cpu_pm_exit(); 2277 2278 if (err || !is_protected_kvm_enabled()) 2279 on_each_cpu(cpu_hyp_uninit, NULL, 1); 2280 2281 return err; 2282 } 2283 2284 static void __init teardown_subsystems(void) 2285 { 2286 kvm_unregister_perf_callbacks(); 2287 hyp_cpu_pm_exit(); 2288 } 2289 2290 static void __init teardown_hyp_mode(void) 2291 { 2292 int cpu; 2293 2294 free_hyp_pgds(); 2295 for_each_possible_cpu(cpu) { 2296 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu)); 2297 free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order()); 2298 } 2299 } 2300 2301 static int __init do_pkvm_init(u32 hyp_va_bits) 2302 { 2303 void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)); 2304 int ret; 2305 2306 preempt_disable(); 2307 cpu_hyp_init_context(); 2308 ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size, 2309 num_possible_cpus(), kern_hyp_va(per_cpu_base), 2310 hyp_va_bits); 2311 cpu_hyp_init_features(); 2312 2313 /* 2314 * The stub hypercalls are now disabled, so set our local flag to 2315 * prevent a later re-init attempt in kvm_arch_hardware_enable(). 2316 */ 2317 __this_cpu_write(kvm_hyp_initialized, 1); 2318 preempt_enable(); 2319 2320 return ret; 2321 } 2322 2323 static u64 get_hyp_id_aa64pfr0_el1(void) 2324 { 2325 /* 2326 * Track whether the system isn't affected by spectre/meltdown in the 2327 * hypervisor's view of id_aa64pfr0_el1, used for protected VMs. 2328 * Although this is per-CPU, we make it global for simplicity, e.g., not 2329 * to have to worry about vcpu migration. 2330 * 2331 * Unlike for non-protected VMs, userspace cannot override this for 2332 * protected VMs. 2333 */ 2334 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); 2335 2336 val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) | 2337 ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3)); 2338 2339 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2), 2340 arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED); 2341 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3), 2342 arm64_get_meltdown_state() == SPECTRE_UNAFFECTED); 2343 2344 return val; 2345 } 2346 2347 static void kvm_hyp_init_symbols(void) 2348 { 2349 kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1(); 2350 kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1); 2351 kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1); 2352 kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1); 2353 kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1); 2354 kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 2355 kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 2356 kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1); 2357 kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1); 2358 kvm_nvhe_sym(__icache_flags) = __icache_flags; 2359 kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits; 2360 } 2361 2362 static int __init kvm_hyp_init_protection(u32 hyp_va_bits) 2363 { 2364 void *addr = phys_to_virt(hyp_mem_base); 2365 int ret; 2366 2367 ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP); 2368 if (ret) 2369 return ret; 2370 2371 ret = do_pkvm_init(hyp_va_bits); 2372 if (ret) 2373 return ret; 2374 2375 free_hyp_pgds(); 2376 2377 return 0; 2378 } 2379 2380 static void pkvm_hyp_init_ptrauth(void) 2381 { 2382 struct kvm_cpu_context *hyp_ctxt; 2383 int cpu; 2384 2385 for_each_possible_cpu(cpu) { 2386 hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu); 2387 hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long(); 2388 hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long(); 2389 hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long(); 2390 hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long(); 2391 hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long(); 2392 hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long(); 2393 hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long(); 2394 hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long(); 2395 hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long(); 2396 hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long(); 2397 } 2398 } 2399 2400 /* Inits Hyp-mode on all online CPUs */ 2401 static int __init init_hyp_mode(void) 2402 { 2403 u32 hyp_va_bits; 2404 int cpu; 2405 int err = -ENOMEM; 2406 2407 /* 2408 * The protected Hyp-mode cannot be initialized if the memory pool 2409 * allocation has failed. 2410 */ 2411 if (is_protected_kvm_enabled() && !hyp_mem_base) 2412 goto out_err; 2413 2414 /* 2415 * Allocate Hyp PGD and setup Hyp identity mapping 2416 */ 2417 err = kvm_mmu_init(&hyp_va_bits); 2418 if (err) 2419 goto out_err; 2420 2421 /* 2422 * Allocate stack pages for Hypervisor-mode 2423 */ 2424 for_each_possible_cpu(cpu) { 2425 unsigned long stack_page; 2426 2427 stack_page = __get_free_page(GFP_KERNEL); 2428 if (!stack_page) { 2429 err = -ENOMEM; 2430 goto out_err; 2431 } 2432 2433 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page; 2434 } 2435 2436 /* 2437 * Allocate and initialize pages for Hypervisor-mode percpu regions. 2438 */ 2439 for_each_possible_cpu(cpu) { 2440 struct page *page; 2441 void *page_addr; 2442 2443 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order()); 2444 if (!page) { 2445 err = -ENOMEM; 2446 goto out_err; 2447 } 2448 2449 page_addr = page_address(page); 2450 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size()); 2451 kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr; 2452 } 2453 2454 /* 2455 * Map the Hyp-code called directly from the host 2456 */ 2457 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start), 2458 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC); 2459 if (err) { 2460 kvm_err("Cannot map world-switch code\n"); 2461 goto out_err; 2462 } 2463 2464 err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start), 2465 kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO); 2466 if (err) { 2467 kvm_err("Cannot map .hyp.rodata section\n"); 2468 goto out_err; 2469 } 2470 2471 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata), 2472 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO); 2473 if (err) { 2474 kvm_err("Cannot map rodata section\n"); 2475 goto out_err; 2476 } 2477 2478 /* 2479 * .hyp.bss is guaranteed to be placed at the beginning of the .bss 2480 * section thanks to an assertion in the linker script. Map it RW and 2481 * the rest of .bss RO. 2482 */ 2483 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start), 2484 kvm_ksym_ref(__hyp_bss_end), PAGE_HYP); 2485 if (err) { 2486 kvm_err("Cannot map hyp bss section: %d\n", err); 2487 goto out_err; 2488 } 2489 2490 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end), 2491 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO); 2492 if (err) { 2493 kvm_err("Cannot map bss section\n"); 2494 goto out_err; 2495 } 2496 2497 /* 2498 * Map the Hyp stack pages 2499 */ 2500 for_each_possible_cpu(cpu) { 2501 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu); 2502 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu); 2503 2504 err = create_hyp_stack(__pa(stack_page), ¶ms->stack_hyp_va); 2505 if (err) { 2506 kvm_err("Cannot map hyp stack\n"); 2507 goto out_err; 2508 } 2509 2510 /* 2511 * Save the stack PA in nvhe_init_params. This will be needed 2512 * to recreate the stack mapping in protected nVHE mode. 2513 * __hyp_pa() won't do the right thing there, since the stack 2514 * has been mapped in the flexible private VA space. 2515 */ 2516 params->stack_pa = __pa(stack_page); 2517 } 2518 2519 for_each_possible_cpu(cpu) { 2520 char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu]; 2521 char *percpu_end = percpu_begin + nvhe_percpu_size(); 2522 2523 /* Map Hyp percpu pages */ 2524 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP); 2525 if (err) { 2526 kvm_err("Cannot map hyp percpu region\n"); 2527 goto out_err; 2528 } 2529 2530 /* Prepare the CPU initialization parameters */ 2531 cpu_prepare_hyp_mode(cpu, hyp_va_bits); 2532 } 2533 2534 kvm_hyp_init_symbols(); 2535 2536 if (is_protected_kvm_enabled()) { 2537 if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) && 2538 cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH)) 2539 pkvm_hyp_init_ptrauth(); 2540 2541 init_cpu_logical_map(); 2542 2543 if (!init_psci_relay()) { 2544 err = -ENODEV; 2545 goto out_err; 2546 } 2547 2548 err = kvm_hyp_init_protection(hyp_va_bits); 2549 if (err) { 2550 kvm_err("Failed to init hyp memory protection\n"); 2551 goto out_err; 2552 } 2553 } 2554 2555 return 0; 2556 2557 out_err: 2558 teardown_hyp_mode(); 2559 kvm_err("error initializing Hyp mode: %d\n", err); 2560 return err; 2561 } 2562 2563 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr) 2564 { 2565 struct kvm_vcpu *vcpu; 2566 unsigned long i; 2567 2568 mpidr &= MPIDR_HWID_BITMASK; 2569 2570 if (kvm->arch.mpidr_data) { 2571 u16 idx = kvm_mpidr_index(kvm->arch.mpidr_data, mpidr); 2572 2573 vcpu = kvm_get_vcpu(kvm, 2574 kvm->arch.mpidr_data->cmpidr_to_idx[idx]); 2575 if (mpidr != kvm_vcpu_get_mpidr_aff(vcpu)) 2576 vcpu = NULL; 2577 2578 return vcpu; 2579 } 2580 2581 kvm_for_each_vcpu(i, vcpu, kvm) { 2582 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu)) 2583 return vcpu; 2584 } 2585 return NULL; 2586 } 2587 2588 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm) 2589 { 2590 return irqchip_in_kernel(kvm); 2591 } 2592 2593 bool kvm_arch_has_irq_bypass(void) 2594 { 2595 return true; 2596 } 2597 2598 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 2599 struct irq_bypass_producer *prod) 2600 { 2601 struct kvm_kernel_irqfd *irqfd = 2602 container_of(cons, struct kvm_kernel_irqfd, consumer); 2603 2604 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq, 2605 &irqfd->irq_entry); 2606 } 2607 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 2608 struct irq_bypass_producer *prod) 2609 { 2610 struct kvm_kernel_irqfd *irqfd = 2611 container_of(cons, struct kvm_kernel_irqfd, consumer); 2612 2613 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq, 2614 &irqfd->irq_entry); 2615 } 2616 2617 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons) 2618 { 2619 struct kvm_kernel_irqfd *irqfd = 2620 container_of(cons, struct kvm_kernel_irqfd, consumer); 2621 2622 kvm_arm_halt_guest(irqfd->kvm); 2623 } 2624 2625 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons) 2626 { 2627 struct kvm_kernel_irqfd *irqfd = 2628 container_of(cons, struct kvm_kernel_irqfd, consumer); 2629 2630 kvm_arm_resume_guest(irqfd->kvm); 2631 } 2632 2633 /* Initialize Hyp-mode and memory mappings on all CPUs */ 2634 static __init int kvm_arm_init(void) 2635 { 2636 int err; 2637 bool in_hyp_mode; 2638 2639 if (!is_hyp_mode_available()) { 2640 kvm_info("HYP mode not available\n"); 2641 return -ENODEV; 2642 } 2643 2644 if (kvm_get_mode() == KVM_MODE_NONE) { 2645 kvm_info("KVM disabled from command line\n"); 2646 return -ENODEV; 2647 } 2648 2649 err = kvm_sys_reg_table_init(); 2650 if (err) { 2651 kvm_info("Error initializing system register tables"); 2652 return err; 2653 } 2654 2655 in_hyp_mode = is_kernel_in_hyp_mode(); 2656 2657 if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) || 2658 cpus_have_final_cap(ARM64_WORKAROUND_1508412)) 2659 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \ 2660 "Only trusted guests should be used on this system.\n"); 2661 2662 err = kvm_set_ipa_limit(); 2663 if (err) 2664 return err; 2665 2666 err = kvm_arm_init_sve(); 2667 if (err) 2668 return err; 2669 2670 err = kvm_arm_vmid_alloc_init(); 2671 if (err) { 2672 kvm_err("Failed to initialize VMID allocator.\n"); 2673 return err; 2674 } 2675 2676 if (!in_hyp_mode) { 2677 err = init_hyp_mode(); 2678 if (err) 2679 goto out_err; 2680 } 2681 2682 err = kvm_init_vector_slots(); 2683 if (err) { 2684 kvm_err("Cannot initialise vector slots\n"); 2685 goto out_hyp; 2686 } 2687 2688 err = init_subsystems(); 2689 if (err) 2690 goto out_hyp; 2691 2692 kvm_info("%s%sVHE mode initialized successfully\n", 2693 in_hyp_mode ? "" : (is_protected_kvm_enabled() ? 2694 "Protected " : "Hyp "), 2695 in_hyp_mode ? "" : (cpus_have_final_cap(ARM64_KVM_HVHE) ? 2696 "h" : "n")); 2697 2698 /* 2699 * FIXME: Do something reasonable if kvm_init() fails after pKVM 2700 * hypervisor protection is finalized. 2701 */ 2702 err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE); 2703 if (err) 2704 goto out_subs; 2705 2706 kvm_arm_initialised = true; 2707 2708 return 0; 2709 2710 out_subs: 2711 teardown_subsystems(); 2712 out_hyp: 2713 if (!in_hyp_mode) 2714 teardown_hyp_mode(); 2715 out_err: 2716 kvm_arm_vmid_alloc_free(); 2717 return err; 2718 } 2719 2720 static int __init early_kvm_mode_cfg(char *arg) 2721 { 2722 if (!arg) 2723 return -EINVAL; 2724 2725 if (strcmp(arg, "none") == 0) { 2726 kvm_mode = KVM_MODE_NONE; 2727 return 0; 2728 } 2729 2730 if (!is_hyp_mode_available()) { 2731 pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n"); 2732 return 0; 2733 } 2734 2735 if (strcmp(arg, "protected") == 0) { 2736 if (!is_kernel_in_hyp_mode()) 2737 kvm_mode = KVM_MODE_PROTECTED; 2738 else 2739 pr_warn_once("Protected KVM not available with VHE\n"); 2740 2741 return 0; 2742 } 2743 2744 if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) { 2745 kvm_mode = KVM_MODE_DEFAULT; 2746 return 0; 2747 } 2748 2749 if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) { 2750 kvm_mode = KVM_MODE_NV; 2751 return 0; 2752 } 2753 2754 return -EINVAL; 2755 } 2756 early_param("kvm-arm.mode", early_kvm_mode_cfg); 2757 2758 enum kvm_mode kvm_get_mode(void) 2759 { 2760 return kvm_mode; 2761 } 2762 2763 module_init(kvm_arm_init); 2764