xref: /linux/arch/arm64/kvm/arm.c (revision 7a309195d11cde854eb75559fbd6b48f9e518f25)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/errno.h>
10 #include <linux/err.h>
11 #include <linux/kvm_host.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/vmalloc.h>
15 #include <linux/fs.h>
16 #include <linux/mman.h>
17 #include <linux/sched.h>
18 #include <linux/kvm.h>
19 #include <linux/kvm_irqfd.h>
20 #include <linux/irqbypass.h>
21 #include <linux/sched/stat.h>
22 #include <trace/events/kvm.h>
23 
24 #define CREATE_TRACE_POINTS
25 #include "trace_arm.h"
26 
27 #include <linux/uaccess.h>
28 #include <asm/ptrace.h>
29 #include <asm/mman.h>
30 #include <asm/tlbflush.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cpufeature.h>
33 #include <asm/virt.h>
34 #include <asm/kvm_arm.h>
35 #include <asm/kvm_asm.h>
36 #include <asm/kvm_mmu.h>
37 #include <asm/kvm_emulate.h>
38 #include <asm/kvm_coproc.h>
39 #include <asm/sections.h>
40 
41 #include <kvm/arm_hypercalls.h>
42 #include <kvm/arm_pmu.h>
43 #include <kvm/arm_psci.h>
44 
45 #ifdef REQUIRES_VIRT
46 __asm__(".arch_extension	virt");
47 #endif
48 
49 DEFINE_PER_CPU(kvm_host_data_t, kvm_host_data);
50 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
51 
52 /* The VMID used in the VTTBR */
53 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
54 static u32 kvm_next_vmid;
55 static DEFINE_SPINLOCK(kvm_vmid_lock);
56 
57 static bool vgic_present;
58 
59 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
60 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
61 
62 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
63 {
64 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
65 }
66 
67 int kvm_arch_hardware_setup(void *opaque)
68 {
69 	return 0;
70 }
71 
72 int kvm_arch_check_processor_compat(void *opaque)
73 {
74 	return 0;
75 }
76 
77 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
78 			    struct kvm_enable_cap *cap)
79 {
80 	int r;
81 
82 	if (cap->flags)
83 		return -EINVAL;
84 
85 	switch (cap->cap) {
86 	case KVM_CAP_ARM_NISV_TO_USER:
87 		r = 0;
88 		kvm->arch.return_nisv_io_abort_to_user = true;
89 		break;
90 	default:
91 		r = -EINVAL;
92 		break;
93 	}
94 
95 	return r;
96 }
97 
98 static int kvm_arm_default_max_vcpus(void)
99 {
100 	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
101 }
102 
103 /**
104  * kvm_arch_init_vm - initializes a VM data structure
105  * @kvm:	pointer to the KVM struct
106  */
107 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
108 {
109 	int ret, cpu;
110 
111 	ret = kvm_arm_setup_stage2(kvm, type);
112 	if (ret)
113 		return ret;
114 
115 	kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
116 	if (!kvm->arch.last_vcpu_ran)
117 		return -ENOMEM;
118 
119 	for_each_possible_cpu(cpu)
120 		*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
121 
122 	ret = kvm_alloc_stage2_pgd(kvm);
123 	if (ret)
124 		goto out_fail_alloc;
125 
126 	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
127 	if (ret)
128 		goto out_free_stage2_pgd;
129 
130 	kvm_vgic_early_init(kvm);
131 
132 	/* Mark the initial VMID generation invalid */
133 	kvm->arch.vmid.vmid_gen = 0;
134 
135 	/* The maximum number of VCPUs is limited by the host's GIC model */
136 	kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
137 
138 	return ret;
139 out_free_stage2_pgd:
140 	kvm_free_stage2_pgd(kvm);
141 out_fail_alloc:
142 	free_percpu(kvm->arch.last_vcpu_ran);
143 	kvm->arch.last_vcpu_ran = NULL;
144 	return ret;
145 }
146 
147 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
148 {
149 	return VM_FAULT_SIGBUS;
150 }
151 
152 
153 /**
154  * kvm_arch_destroy_vm - destroy the VM data structure
155  * @kvm:	pointer to the KVM struct
156  */
157 void kvm_arch_destroy_vm(struct kvm *kvm)
158 {
159 	int i;
160 
161 	kvm_vgic_destroy(kvm);
162 
163 	free_percpu(kvm->arch.last_vcpu_ran);
164 	kvm->arch.last_vcpu_ran = NULL;
165 
166 	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
167 		if (kvm->vcpus[i]) {
168 			kvm_vcpu_destroy(kvm->vcpus[i]);
169 			kvm->vcpus[i] = NULL;
170 		}
171 	}
172 	atomic_set(&kvm->online_vcpus, 0);
173 }
174 
175 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
176 {
177 	int r;
178 	switch (ext) {
179 	case KVM_CAP_IRQCHIP:
180 		r = vgic_present;
181 		break;
182 	case KVM_CAP_IOEVENTFD:
183 	case KVM_CAP_DEVICE_CTRL:
184 	case KVM_CAP_USER_MEMORY:
185 	case KVM_CAP_SYNC_MMU:
186 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
187 	case KVM_CAP_ONE_REG:
188 	case KVM_CAP_ARM_PSCI:
189 	case KVM_CAP_ARM_PSCI_0_2:
190 	case KVM_CAP_READONLY_MEM:
191 	case KVM_CAP_MP_STATE:
192 	case KVM_CAP_IMMEDIATE_EXIT:
193 	case KVM_CAP_VCPU_EVENTS:
194 	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
195 	case KVM_CAP_ARM_NISV_TO_USER:
196 	case KVM_CAP_ARM_INJECT_EXT_DABT:
197 		r = 1;
198 		break;
199 	case KVM_CAP_ARM_SET_DEVICE_ADDR:
200 		r = 1;
201 		break;
202 	case KVM_CAP_NR_VCPUS:
203 		r = num_online_cpus();
204 		break;
205 	case KVM_CAP_MAX_VCPUS:
206 	case KVM_CAP_MAX_VCPU_ID:
207 		if (kvm)
208 			r = kvm->arch.max_vcpus;
209 		else
210 			r = kvm_arm_default_max_vcpus();
211 		break;
212 	case KVM_CAP_MSI_DEVID:
213 		if (!kvm)
214 			r = -EINVAL;
215 		else
216 			r = kvm->arch.vgic.msis_require_devid;
217 		break;
218 	case KVM_CAP_ARM_USER_IRQ:
219 		/*
220 		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
221 		 * (bump this number if adding more devices)
222 		 */
223 		r = 1;
224 		break;
225 	default:
226 		r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
227 		break;
228 	}
229 	return r;
230 }
231 
232 long kvm_arch_dev_ioctl(struct file *filp,
233 			unsigned int ioctl, unsigned long arg)
234 {
235 	return -EINVAL;
236 }
237 
238 struct kvm *kvm_arch_alloc_vm(void)
239 {
240 	if (!has_vhe())
241 		return kzalloc(sizeof(struct kvm), GFP_KERNEL);
242 
243 	return vzalloc(sizeof(struct kvm));
244 }
245 
246 void kvm_arch_free_vm(struct kvm *kvm)
247 {
248 	if (!has_vhe())
249 		kfree(kvm);
250 	else
251 		vfree(kvm);
252 }
253 
254 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
255 {
256 	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
257 		return -EBUSY;
258 
259 	if (id >= kvm->arch.max_vcpus)
260 		return -EINVAL;
261 
262 	return 0;
263 }
264 
265 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
266 {
267 	int err;
268 
269 	/* Force users to call KVM_ARM_VCPU_INIT */
270 	vcpu->arch.target = -1;
271 	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
272 
273 	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
274 
275 	/* Set up the timer */
276 	kvm_timer_vcpu_init(vcpu);
277 
278 	kvm_pmu_vcpu_init(vcpu);
279 
280 	kvm_arm_reset_debug_ptr(vcpu);
281 
282 	kvm_arm_pvtime_vcpu_init(&vcpu->arch);
283 
284 	err = kvm_vgic_vcpu_init(vcpu);
285 	if (err)
286 		return err;
287 
288 	return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
289 }
290 
291 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
292 {
293 }
294 
295 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
296 {
297 	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
298 		static_branch_dec(&userspace_irqchip_in_use);
299 
300 	kvm_mmu_free_memory_caches(vcpu);
301 	kvm_timer_vcpu_terminate(vcpu);
302 	kvm_pmu_vcpu_destroy(vcpu);
303 
304 	kvm_arm_vcpu_destroy(vcpu);
305 }
306 
307 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
308 {
309 	return kvm_timer_is_pending(vcpu);
310 }
311 
312 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
313 {
314 	/*
315 	 * If we're about to block (most likely because we've just hit a
316 	 * WFI), we need to sync back the state of the GIC CPU interface
317 	 * so that we have the latest PMR and group enables. This ensures
318 	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
319 	 * whether we have pending interrupts.
320 	 *
321 	 * For the same reason, we want to tell GICv4 that we need
322 	 * doorbells to be signalled, should an interrupt become pending.
323 	 */
324 	preempt_disable();
325 	kvm_vgic_vmcr_sync(vcpu);
326 	vgic_v4_put(vcpu, true);
327 	preempt_enable();
328 }
329 
330 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
331 {
332 	preempt_disable();
333 	vgic_v4_load(vcpu);
334 	preempt_enable();
335 }
336 
337 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
338 {
339 	int *last_ran;
340 
341 	last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
342 
343 	/*
344 	 * We might get preempted before the vCPU actually runs, but
345 	 * over-invalidation doesn't affect correctness.
346 	 */
347 	if (*last_ran != vcpu->vcpu_id) {
348 		kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
349 		*last_ran = vcpu->vcpu_id;
350 	}
351 
352 	vcpu->cpu = cpu;
353 
354 	kvm_vgic_load(vcpu);
355 	kvm_timer_vcpu_load(vcpu);
356 	kvm_vcpu_load_sysregs(vcpu);
357 	kvm_arch_vcpu_load_fp(vcpu);
358 	kvm_vcpu_pmu_restore_guest(vcpu);
359 	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
360 		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
361 
362 	if (single_task_running())
363 		vcpu_clear_wfx_traps(vcpu);
364 	else
365 		vcpu_set_wfx_traps(vcpu);
366 
367 	if (vcpu_has_ptrauth(vcpu))
368 		vcpu_ptrauth_disable(vcpu);
369 }
370 
371 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
372 {
373 	kvm_arch_vcpu_put_fp(vcpu);
374 	kvm_vcpu_put_sysregs(vcpu);
375 	kvm_timer_vcpu_put(vcpu);
376 	kvm_vgic_put(vcpu);
377 	kvm_vcpu_pmu_restore_host(vcpu);
378 
379 	vcpu->cpu = -1;
380 }
381 
382 static void vcpu_power_off(struct kvm_vcpu *vcpu)
383 {
384 	vcpu->arch.power_off = true;
385 	kvm_make_request(KVM_REQ_SLEEP, vcpu);
386 	kvm_vcpu_kick(vcpu);
387 }
388 
389 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
390 				    struct kvm_mp_state *mp_state)
391 {
392 	if (vcpu->arch.power_off)
393 		mp_state->mp_state = KVM_MP_STATE_STOPPED;
394 	else
395 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
396 
397 	return 0;
398 }
399 
400 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
401 				    struct kvm_mp_state *mp_state)
402 {
403 	int ret = 0;
404 
405 	switch (mp_state->mp_state) {
406 	case KVM_MP_STATE_RUNNABLE:
407 		vcpu->arch.power_off = false;
408 		break;
409 	case KVM_MP_STATE_STOPPED:
410 		vcpu_power_off(vcpu);
411 		break;
412 	default:
413 		ret = -EINVAL;
414 	}
415 
416 	return ret;
417 }
418 
419 /**
420  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
421  * @v:		The VCPU pointer
422  *
423  * If the guest CPU is not waiting for interrupts or an interrupt line is
424  * asserted, the CPU is by definition runnable.
425  */
426 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
427 {
428 	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
429 	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
430 		&& !v->arch.power_off && !v->arch.pause);
431 }
432 
433 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
434 {
435 	return vcpu_mode_priv(vcpu);
436 }
437 
438 /* Just ensure a guest exit from a particular CPU */
439 static void exit_vm_noop(void *info)
440 {
441 }
442 
443 void force_vm_exit(const cpumask_t *mask)
444 {
445 	preempt_disable();
446 	smp_call_function_many(mask, exit_vm_noop, NULL, true);
447 	preempt_enable();
448 }
449 
450 /**
451  * need_new_vmid_gen - check that the VMID is still valid
452  * @vmid: The VMID to check
453  *
454  * return true if there is a new generation of VMIDs being used
455  *
456  * The hardware supports a limited set of values with the value zero reserved
457  * for the host, so we check if an assigned value belongs to a previous
458  * generation, which requires us to assign a new value. If we're the first to
459  * use a VMID for the new generation, we must flush necessary caches and TLBs
460  * on all CPUs.
461  */
462 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
463 {
464 	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
465 	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
466 	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
467 }
468 
469 /**
470  * update_vmid - Update the vmid with a valid VMID for the current generation
471  * @kvm: The guest that struct vmid belongs to
472  * @vmid: The stage-2 VMID information struct
473  */
474 static void update_vmid(struct kvm_vmid *vmid)
475 {
476 	if (!need_new_vmid_gen(vmid))
477 		return;
478 
479 	spin_lock(&kvm_vmid_lock);
480 
481 	/*
482 	 * We need to re-check the vmid_gen here to ensure that if another vcpu
483 	 * already allocated a valid vmid for this vm, then this vcpu should
484 	 * use the same vmid.
485 	 */
486 	if (!need_new_vmid_gen(vmid)) {
487 		spin_unlock(&kvm_vmid_lock);
488 		return;
489 	}
490 
491 	/* First user of a new VMID generation? */
492 	if (unlikely(kvm_next_vmid == 0)) {
493 		atomic64_inc(&kvm_vmid_gen);
494 		kvm_next_vmid = 1;
495 
496 		/*
497 		 * On SMP we know no other CPUs can use this CPU's or each
498 		 * other's VMID after force_vm_exit returns since the
499 		 * kvm_vmid_lock blocks them from reentry to the guest.
500 		 */
501 		force_vm_exit(cpu_all_mask);
502 		/*
503 		 * Now broadcast TLB + ICACHE invalidation over the inner
504 		 * shareable domain to make sure all data structures are
505 		 * clean.
506 		 */
507 		kvm_call_hyp(__kvm_flush_vm_context);
508 	}
509 
510 	vmid->vmid = kvm_next_vmid;
511 	kvm_next_vmid++;
512 	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
513 
514 	smp_wmb();
515 	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
516 
517 	spin_unlock(&kvm_vmid_lock);
518 }
519 
520 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
521 {
522 	struct kvm *kvm = vcpu->kvm;
523 	int ret = 0;
524 
525 	if (likely(vcpu->arch.has_run_once))
526 		return 0;
527 
528 	if (!kvm_arm_vcpu_is_finalized(vcpu))
529 		return -EPERM;
530 
531 	vcpu->arch.has_run_once = true;
532 
533 	if (likely(irqchip_in_kernel(kvm))) {
534 		/*
535 		 * Map the VGIC hardware resources before running a vcpu the
536 		 * first time on this VM.
537 		 */
538 		if (unlikely(!vgic_ready(kvm))) {
539 			ret = kvm_vgic_map_resources(kvm);
540 			if (ret)
541 				return ret;
542 		}
543 	} else {
544 		/*
545 		 * Tell the rest of the code that there are userspace irqchip
546 		 * VMs in the wild.
547 		 */
548 		static_branch_inc(&userspace_irqchip_in_use);
549 	}
550 
551 	ret = kvm_timer_enable(vcpu);
552 	if (ret)
553 		return ret;
554 
555 	ret = kvm_arm_pmu_v3_enable(vcpu);
556 
557 	return ret;
558 }
559 
560 bool kvm_arch_intc_initialized(struct kvm *kvm)
561 {
562 	return vgic_initialized(kvm);
563 }
564 
565 void kvm_arm_halt_guest(struct kvm *kvm)
566 {
567 	int i;
568 	struct kvm_vcpu *vcpu;
569 
570 	kvm_for_each_vcpu(i, vcpu, kvm)
571 		vcpu->arch.pause = true;
572 	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
573 }
574 
575 void kvm_arm_resume_guest(struct kvm *kvm)
576 {
577 	int i;
578 	struct kvm_vcpu *vcpu;
579 
580 	kvm_for_each_vcpu(i, vcpu, kvm) {
581 		vcpu->arch.pause = false;
582 		rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
583 	}
584 }
585 
586 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
587 {
588 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
589 
590 	rcuwait_wait_event(wait,
591 			   (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
592 			   TASK_INTERRUPTIBLE);
593 
594 	if (vcpu->arch.power_off || vcpu->arch.pause) {
595 		/* Awaken to handle a signal, request we sleep again later. */
596 		kvm_make_request(KVM_REQ_SLEEP, vcpu);
597 	}
598 
599 	/*
600 	 * Make sure we will observe a potential reset request if we've
601 	 * observed a change to the power state. Pairs with the smp_wmb() in
602 	 * kvm_psci_vcpu_on().
603 	 */
604 	smp_rmb();
605 }
606 
607 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
608 {
609 	return vcpu->arch.target >= 0;
610 }
611 
612 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
613 {
614 	if (kvm_request_pending(vcpu)) {
615 		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
616 			vcpu_req_sleep(vcpu);
617 
618 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
619 			kvm_reset_vcpu(vcpu);
620 
621 		/*
622 		 * Clear IRQ_PENDING requests that were made to guarantee
623 		 * that a VCPU sees new virtual interrupts.
624 		 */
625 		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
626 
627 		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
628 			kvm_update_stolen_time(vcpu);
629 
630 		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
631 			/* The distributor enable bits were changed */
632 			preempt_disable();
633 			vgic_v4_put(vcpu, false);
634 			vgic_v4_load(vcpu);
635 			preempt_enable();
636 		}
637 	}
638 }
639 
640 /**
641  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
642  * @vcpu:	The VCPU pointer
643  *
644  * This function is called through the VCPU_RUN ioctl called from user space. It
645  * will execute VM code in a loop until the time slice for the process is used
646  * or some emulation is needed from user space in which case the function will
647  * return with return value 0 and with the kvm_run structure filled in with the
648  * required data for the requested emulation.
649  */
650 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
651 {
652 	struct kvm_run *run = vcpu->run;
653 	int ret;
654 
655 	if (unlikely(!kvm_vcpu_initialized(vcpu)))
656 		return -ENOEXEC;
657 
658 	ret = kvm_vcpu_first_run_init(vcpu);
659 	if (ret)
660 		return ret;
661 
662 	if (run->exit_reason == KVM_EXIT_MMIO) {
663 		ret = kvm_handle_mmio_return(vcpu);
664 		if (ret)
665 			return ret;
666 	}
667 
668 	if (run->immediate_exit)
669 		return -EINTR;
670 
671 	vcpu_load(vcpu);
672 
673 	kvm_sigset_activate(vcpu);
674 
675 	ret = 1;
676 	run->exit_reason = KVM_EXIT_UNKNOWN;
677 	while (ret > 0) {
678 		/*
679 		 * Check conditions before entering the guest
680 		 */
681 		cond_resched();
682 
683 		update_vmid(&vcpu->kvm->arch.vmid);
684 
685 		check_vcpu_requests(vcpu);
686 
687 		/*
688 		 * Preparing the interrupts to be injected also
689 		 * involves poking the GIC, which must be done in a
690 		 * non-preemptible context.
691 		 */
692 		preempt_disable();
693 
694 		kvm_pmu_flush_hwstate(vcpu);
695 
696 		local_irq_disable();
697 
698 		kvm_vgic_flush_hwstate(vcpu);
699 
700 		/*
701 		 * Exit if we have a signal pending so that we can deliver the
702 		 * signal to user space.
703 		 */
704 		if (signal_pending(current)) {
705 			ret = -EINTR;
706 			run->exit_reason = KVM_EXIT_INTR;
707 		}
708 
709 		/*
710 		 * If we're using a userspace irqchip, then check if we need
711 		 * to tell a userspace irqchip about timer or PMU level
712 		 * changes and if so, exit to userspace (the actual level
713 		 * state gets updated in kvm_timer_update_run and
714 		 * kvm_pmu_update_run below).
715 		 */
716 		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
717 			if (kvm_timer_should_notify_user(vcpu) ||
718 			    kvm_pmu_should_notify_user(vcpu)) {
719 				ret = -EINTR;
720 				run->exit_reason = KVM_EXIT_INTR;
721 			}
722 		}
723 
724 		/*
725 		 * Ensure we set mode to IN_GUEST_MODE after we disable
726 		 * interrupts and before the final VCPU requests check.
727 		 * See the comment in kvm_vcpu_exiting_guest_mode() and
728 		 * Documentation/virt/kvm/vcpu-requests.rst
729 		 */
730 		smp_store_mb(vcpu->mode, IN_GUEST_MODE);
731 
732 		if (ret <= 0 || need_new_vmid_gen(&vcpu->kvm->arch.vmid) ||
733 		    kvm_request_pending(vcpu)) {
734 			vcpu->mode = OUTSIDE_GUEST_MODE;
735 			isb(); /* Ensure work in x_flush_hwstate is committed */
736 			kvm_pmu_sync_hwstate(vcpu);
737 			if (static_branch_unlikely(&userspace_irqchip_in_use))
738 				kvm_timer_sync_hwstate(vcpu);
739 			kvm_vgic_sync_hwstate(vcpu);
740 			local_irq_enable();
741 			preempt_enable();
742 			continue;
743 		}
744 
745 		kvm_arm_setup_debug(vcpu);
746 
747 		/**************************************************************
748 		 * Enter the guest
749 		 */
750 		trace_kvm_entry(*vcpu_pc(vcpu));
751 		guest_enter_irqoff();
752 
753 		if (has_vhe()) {
754 			ret = kvm_vcpu_run_vhe(vcpu);
755 		} else {
756 			ret = kvm_call_hyp_ret(__kvm_vcpu_run_nvhe, vcpu);
757 		}
758 
759 		vcpu->mode = OUTSIDE_GUEST_MODE;
760 		vcpu->stat.exits++;
761 		/*
762 		 * Back from guest
763 		 *************************************************************/
764 
765 		kvm_arm_clear_debug(vcpu);
766 
767 		/*
768 		 * We must sync the PMU state before the vgic state so
769 		 * that the vgic can properly sample the updated state of the
770 		 * interrupt line.
771 		 */
772 		kvm_pmu_sync_hwstate(vcpu);
773 
774 		/*
775 		 * Sync the vgic state before syncing the timer state because
776 		 * the timer code needs to know if the virtual timer
777 		 * interrupts are active.
778 		 */
779 		kvm_vgic_sync_hwstate(vcpu);
780 
781 		/*
782 		 * Sync the timer hardware state before enabling interrupts as
783 		 * we don't want vtimer interrupts to race with syncing the
784 		 * timer virtual interrupt state.
785 		 */
786 		if (static_branch_unlikely(&userspace_irqchip_in_use))
787 			kvm_timer_sync_hwstate(vcpu);
788 
789 		kvm_arch_vcpu_ctxsync_fp(vcpu);
790 
791 		/*
792 		 * We may have taken a host interrupt in HYP mode (ie
793 		 * while executing the guest). This interrupt is still
794 		 * pending, as we haven't serviced it yet!
795 		 *
796 		 * We're now back in SVC mode, with interrupts
797 		 * disabled.  Enabling the interrupts now will have
798 		 * the effect of taking the interrupt again, in SVC
799 		 * mode this time.
800 		 */
801 		local_irq_enable();
802 
803 		/*
804 		 * We do local_irq_enable() before calling guest_exit() so
805 		 * that if a timer interrupt hits while running the guest we
806 		 * account that tick as being spent in the guest.  We enable
807 		 * preemption after calling guest_exit() so that if we get
808 		 * preempted we make sure ticks after that is not counted as
809 		 * guest time.
810 		 */
811 		guest_exit();
812 		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
813 
814 		/* Exit types that need handling before we can be preempted */
815 		handle_exit_early(vcpu, ret);
816 
817 		preempt_enable();
818 
819 		ret = handle_exit(vcpu, ret);
820 	}
821 
822 	/* Tell userspace about in-kernel device output levels */
823 	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
824 		kvm_timer_update_run(vcpu);
825 		kvm_pmu_update_run(vcpu);
826 	}
827 
828 	kvm_sigset_deactivate(vcpu);
829 
830 	vcpu_put(vcpu);
831 	return ret;
832 }
833 
834 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
835 {
836 	int bit_index;
837 	bool set;
838 	unsigned long *hcr;
839 
840 	if (number == KVM_ARM_IRQ_CPU_IRQ)
841 		bit_index = __ffs(HCR_VI);
842 	else /* KVM_ARM_IRQ_CPU_FIQ */
843 		bit_index = __ffs(HCR_VF);
844 
845 	hcr = vcpu_hcr(vcpu);
846 	if (level)
847 		set = test_and_set_bit(bit_index, hcr);
848 	else
849 		set = test_and_clear_bit(bit_index, hcr);
850 
851 	/*
852 	 * If we didn't change anything, no need to wake up or kick other CPUs
853 	 */
854 	if (set == level)
855 		return 0;
856 
857 	/*
858 	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
859 	 * trigger a world-switch round on the running physical CPU to set the
860 	 * virtual IRQ/FIQ fields in the HCR appropriately.
861 	 */
862 	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
863 	kvm_vcpu_kick(vcpu);
864 
865 	return 0;
866 }
867 
868 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
869 			  bool line_status)
870 {
871 	u32 irq = irq_level->irq;
872 	unsigned int irq_type, vcpu_idx, irq_num;
873 	int nrcpus = atomic_read(&kvm->online_vcpus);
874 	struct kvm_vcpu *vcpu = NULL;
875 	bool level = irq_level->level;
876 
877 	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
878 	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
879 	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
880 	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
881 
882 	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
883 
884 	switch (irq_type) {
885 	case KVM_ARM_IRQ_TYPE_CPU:
886 		if (irqchip_in_kernel(kvm))
887 			return -ENXIO;
888 
889 		if (vcpu_idx >= nrcpus)
890 			return -EINVAL;
891 
892 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
893 		if (!vcpu)
894 			return -EINVAL;
895 
896 		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
897 			return -EINVAL;
898 
899 		return vcpu_interrupt_line(vcpu, irq_num, level);
900 	case KVM_ARM_IRQ_TYPE_PPI:
901 		if (!irqchip_in_kernel(kvm))
902 			return -ENXIO;
903 
904 		if (vcpu_idx >= nrcpus)
905 			return -EINVAL;
906 
907 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
908 		if (!vcpu)
909 			return -EINVAL;
910 
911 		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
912 			return -EINVAL;
913 
914 		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
915 	case KVM_ARM_IRQ_TYPE_SPI:
916 		if (!irqchip_in_kernel(kvm))
917 			return -ENXIO;
918 
919 		if (irq_num < VGIC_NR_PRIVATE_IRQS)
920 			return -EINVAL;
921 
922 		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
923 	}
924 
925 	return -EINVAL;
926 }
927 
928 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
929 			       const struct kvm_vcpu_init *init)
930 {
931 	unsigned int i, ret;
932 	int phys_target = kvm_target_cpu();
933 
934 	if (init->target != phys_target)
935 		return -EINVAL;
936 
937 	/*
938 	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
939 	 * use the same target.
940 	 */
941 	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
942 		return -EINVAL;
943 
944 	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
945 	for (i = 0; i < sizeof(init->features) * 8; i++) {
946 		bool set = (init->features[i / 32] & (1 << (i % 32)));
947 
948 		if (set && i >= KVM_VCPU_MAX_FEATURES)
949 			return -ENOENT;
950 
951 		/*
952 		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
953 		 * use the same feature set.
954 		 */
955 		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
956 		    test_bit(i, vcpu->arch.features) != set)
957 			return -EINVAL;
958 
959 		if (set)
960 			set_bit(i, vcpu->arch.features);
961 	}
962 
963 	vcpu->arch.target = phys_target;
964 
965 	/* Now we know what it is, we can reset it. */
966 	ret = kvm_reset_vcpu(vcpu);
967 	if (ret) {
968 		vcpu->arch.target = -1;
969 		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
970 	}
971 
972 	return ret;
973 }
974 
975 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
976 					 struct kvm_vcpu_init *init)
977 {
978 	int ret;
979 
980 	ret = kvm_vcpu_set_target(vcpu, init);
981 	if (ret)
982 		return ret;
983 
984 	/*
985 	 * Ensure a rebooted VM will fault in RAM pages and detect if the
986 	 * guest MMU is turned off and flush the caches as needed.
987 	 *
988 	 * S2FWB enforces all memory accesses to RAM being cacheable,
989 	 * ensuring that the data side is always coherent. We still
990 	 * need to invalidate the I-cache though, as FWB does *not*
991 	 * imply CTR_EL0.DIC.
992 	 */
993 	if (vcpu->arch.has_run_once) {
994 		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
995 			stage2_unmap_vm(vcpu->kvm);
996 		else
997 			__flush_icache_all();
998 	}
999 
1000 	vcpu_reset_hcr(vcpu);
1001 
1002 	/*
1003 	 * Handle the "start in power-off" case.
1004 	 */
1005 	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1006 		vcpu_power_off(vcpu);
1007 	else
1008 		vcpu->arch.power_off = false;
1009 
1010 	return 0;
1011 }
1012 
1013 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1014 				 struct kvm_device_attr *attr)
1015 {
1016 	int ret = -ENXIO;
1017 
1018 	switch (attr->group) {
1019 	default:
1020 		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1021 		break;
1022 	}
1023 
1024 	return ret;
1025 }
1026 
1027 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1028 				 struct kvm_device_attr *attr)
1029 {
1030 	int ret = -ENXIO;
1031 
1032 	switch (attr->group) {
1033 	default:
1034 		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1035 		break;
1036 	}
1037 
1038 	return ret;
1039 }
1040 
1041 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1042 				 struct kvm_device_attr *attr)
1043 {
1044 	int ret = -ENXIO;
1045 
1046 	switch (attr->group) {
1047 	default:
1048 		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1049 		break;
1050 	}
1051 
1052 	return ret;
1053 }
1054 
1055 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1056 				   struct kvm_vcpu_events *events)
1057 {
1058 	memset(events, 0, sizeof(*events));
1059 
1060 	return __kvm_arm_vcpu_get_events(vcpu, events);
1061 }
1062 
1063 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1064 				   struct kvm_vcpu_events *events)
1065 {
1066 	int i;
1067 
1068 	/* check whether the reserved field is zero */
1069 	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1070 		if (events->reserved[i])
1071 			return -EINVAL;
1072 
1073 	/* check whether the pad field is zero */
1074 	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1075 		if (events->exception.pad[i])
1076 			return -EINVAL;
1077 
1078 	return __kvm_arm_vcpu_set_events(vcpu, events);
1079 }
1080 
1081 long kvm_arch_vcpu_ioctl(struct file *filp,
1082 			 unsigned int ioctl, unsigned long arg)
1083 {
1084 	struct kvm_vcpu *vcpu = filp->private_data;
1085 	void __user *argp = (void __user *)arg;
1086 	struct kvm_device_attr attr;
1087 	long r;
1088 
1089 	switch (ioctl) {
1090 	case KVM_ARM_VCPU_INIT: {
1091 		struct kvm_vcpu_init init;
1092 
1093 		r = -EFAULT;
1094 		if (copy_from_user(&init, argp, sizeof(init)))
1095 			break;
1096 
1097 		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1098 		break;
1099 	}
1100 	case KVM_SET_ONE_REG:
1101 	case KVM_GET_ONE_REG: {
1102 		struct kvm_one_reg reg;
1103 
1104 		r = -ENOEXEC;
1105 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1106 			break;
1107 
1108 		r = -EFAULT;
1109 		if (copy_from_user(&reg, argp, sizeof(reg)))
1110 			break;
1111 
1112 		if (ioctl == KVM_SET_ONE_REG)
1113 			r = kvm_arm_set_reg(vcpu, &reg);
1114 		else
1115 			r = kvm_arm_get_reg(vcpu, &reg);
1116 		break;
1117 	}
1118 	case KVM_GET_REG_LIST: {
1119 		struct kvm_reg_list __user *user_list = argp;
1120 		struct kvm_reg_list reg_list;
1121 		unsigned n;
1122 
1123 		r = -ENOEXEC;
1124 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1125 			break;
1126 
1127 		r = -EPERM;
1128 		if (!kvm_arm_vcpu_is_finalized(vcpu))
1129 			break;
1130 
1131 		r = -EFAULT;
1132 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1133 			break;
1134 		n = reg_list.n;
1135 		reg_list.n = kvm_arm_num_regs(vcpu);
1136 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1137 			break;
1138 		r = -E2BIG;
1139 		if (n < reg_list.n)
1140 			break;
1141 		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1142 		break;
1143 	}
1144 	case KVM_SET_DEVICE_ATTR: {
1145 		r = -EFAULT;
1146 		if (copy_from_user(&attr, argp, sizeof(attr)))
1147 			break;
1148 		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1149 		break;
1150 	}
1151 	case KVM_GET_DEVICE_ATTR: {
1152 		r = -EFAULT;
1153 		if (copy_from_user(&attr, argp, sizeof(attr)))
1154 			break;
1155 		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1156 		break;
1157 	}
1158 	case KVM_HAS_DEVICE_ATTR: {
1159 		r = -EFAULT;
1160 		if (copy_from_user(&attr, argp, sizeof(attr)))
1161 			break;
1162 		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1163 		break;
1164 	}
1165 	case KVM_GET_VCPU_EVENTS: {
1166 		struct kvm_vcpu_events events;
1167 
1168 		if (kvm_arm_vcpu_get_events(vcpu, &events))
1169 			return -EINVAL;
1170 
1171 		if (copy_to_user(argp, &events, sizeof(events)))
1172 			return -EFAULT;
1173 
1174 		return 0;
1175 	}
1176 	case KVM_SET_VCPU_EVENTS: {
1177 		struct kvm_vcpu_events events;
1178 
1179 		if (copy_from_user(&events, argp, sizeof(events)))
1180 			return -EFAULT;
1181 
1182 		return kvm_arm_vcpu_set_events(vcpu, &events);
1183 	}
1184 	case KVM_ARM_VCPU_FINALIZE: {
1185 		int what;
1186 
1187 		if (!kvm_vcpu_initialized(vcpu))
1188 			return -ENOEXEC;
1189 
1190 		if (get_user(what, (const int __user *)argp))
1191 			return -EFAULT;
1192 
1193 		return kvm_arm_vcpu_finalize(vcpu, what);
1194 	}
1195 	default:
1196 		r = -EINVAL;
1197 	}
1198 
1199 	return r;
1200 }
1201 
1202 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1203 {
1204 
1205 }
1206 
1207 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1208 					struct kvm_memory_slot *memslot)
1209 {
1210 	kvm_flush_remote_tlbs(kvm);
1211 }
1212 
1213 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1214 					struct kvm_arm_device_addr *dev_addr)
1215 {
1216 	unsigned long dev_id, type;
1217 
1218 	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1219 		KVM_ARM_DEVICE_ID_SHIFT;
1220 	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1221 		KVM_ARM_DEVICE_TYPE_SHIFT;
1222 
1223 	switch (dev_id) {
1224 	case KVM_ARM_DEVICE_VGIC_V2:
1225 		if (!vgic_present)
1226 			return -ENXIO;
1227 		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1228 	default:
1229 		return -ENODEV;
1230 	}
1231 }
1232 
1233 long kvm_arch_vm_ioctl(struct file *filp,
1234 		       unsigned int ioctl, unsigned long arg)
1235 {
1236 	struct kvm *kvm = filp->private_data;
1237 	void __user *argp = (void __user *)arg;
1238 
1239 	switch (ioctl) {
1240 	case KVM_CREATE_IRQCHIP: {
1241 		int ret;
1242 		if (!vgic_present)
1243 			return -ENXIO;
1244 		mutex_lock(&kvm->lock);
1245 		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1246 		mutex_unlock(&kvm->lock);
1247 		return ret;
1248 	}
1249 	case KVM_ARM_SET_DEVICE_ADDR: {
1250 		struct kvm_arm_device_addr dev_addr;
1251 
1252 		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1253 			return -EFAULT;
1254 		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1255 	}
1256 	case KVM_ARM_PREFERRED_TARGET: {
1257 		int err;
1258 		struct kvm_vcpu_init init;
1259 
1260 		err = kvm_vcpu_preferred_target(&init);
1261 		if (err)
1262 			return err;
1263 
1264 		if (copy_to_user(argp, &init, sizeof(init)))
1265 			return -EFAULT;
1266 
1267 		return 0;
1268 	}
1269 	default:
1270 		return -EINVAL;
1271 	}
1272 }
1273 
1274 static void cpu_init_hyp_mode(void)
1275 {
1276 	phys_addr_t pgd_ptr;
1277 	unsigned long hyp_stack_ptr;
1278 	unsigned long vector_ptr;
1279 	unsigned long tpidr_el2;
1280 
1281 	/* Switch from the HYP stub to our own HYP init vector */
1282 	__hyp_set_vectors(kvm_get_idmap_vector());
1283 
1284 	/*
1285 	 * Calculate the raw per-cpu offset without a translation from the
1286 	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
1287 	 * so that we can use adr_l to access per-cpu variables in EL2.
1288 	 */
1289 	tpidr_el2 = ((unsigned long)this_cpu_ptr(&kvm_host_data) -
1290 		     (unsigned long)kvm_ksym_ref(kvm_host_data));
1291 
1292 	pgd_ptr = kvm_mmu_get_httbr();
1293 	hyp_stack_ptr = __this_cpu_read(kvm_arm_hyp_stack_page) + PAGE_SIZE;
1294 	vector_ptr = (unsigned long)kvm_get_hyp_vector();
1295 
1296 	/*
1297 	 * Call initialization code, and switch to the full blown HYP code.
1298 	 * If the cpucaps haven't been finalized yet, something has gone very
1299 	 * wrong, and hyp will crash and burn when it uses any
1300 	 * cpus_have_const_cap() wrapper.
1301 	 */
1302 	BUG_ON(!system_capabilities_finalized());
1303 	__kvm_call_hyp((void *)pgd_ptr, hyp_stack_ptr, vector_ptr, tpidr_el2);
1304 
1305 	/*
1306 	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
1307 	 * at EL2.
1308 	 */
1309 	if (this_cpu_has_cap(ARM64_SSBS) &&
1310 	    arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
1311 		kvm_call_hyp(__kvm_enable_ssbs);
1312 	}
1313 }
1314 
1315 static void cpu_hyp_reset(void)
1316 {
1317 	if (!is_kernel_in_hyp_mode())
1318 		__hyp_reset_vectors();
1319 }
1320 
1321 static void cpu_hyp_reinit(void)
1322 {
1323 	kvm_init_host_cpu_context(&this_cpu_ptr(&kvm_host_data)->host_ctxt);
1324 
1325 	cpu_hyp_reset();
1326 
1327 	if (is_kernel_in_hyp_mode())
1328 		kvm_timer_init_vhe();
1329 	else
1330 		cpu_init_hyp_mode();
1331 
1332 	kvm_arm_init_debug();
1333 
1334 	if (vgic_present)
1335 		kvm_vgic_init_cpu_hardware();
1336 }
1337 
1338 static void _kvm_arch_hardware_enable(void *discard)
1339 {
1340 	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1341 		cpu_hyp_reinit();
1342 		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1343 	}
1344 }
1345 
1346 int kvm_arch_hardware_enable(void)
1347 {
1348 	_kvm_arch_hardware_enable(NULL);
1349 	return 0;
1350 }
1351 
1352 static void _kvm_arch_hardware_disable(void *discard)
1353 {
1354 	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1355 		cpu_hyp_reset();
1356 		__this_cpu_write(kvm_arm_hardware_enabled, 0);
1357 	}
1358 }
1359 
1360 void kvm_arch_hardware_disable(void)
1361 {
1362 	_kvm_arch_hardware_disable(NULL);
1363 }
1364 
1365 #ifdef CONFIG_CPU_PM
1366 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1367 				    unsigned long cmd,
1368 				    void *v)
1369 {
1370 	/*
1371 	 * kvm_arm_hardware_enabled is left with its old value over
1372 	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1373 	 * re-enable hyp.
1374 	 */
1375 	switch (cmd) {
1376 	case CPU_PM_ENTER:
1377 		if (__this_cpu_read(kvm_arm_hardware_enabled))
1378 			/*
1379 			 * don't update kvm_arm_hardware_enabled here
1380 			 * so that the hardware will be re-enabled
1381 			 * when we resume. See below.
1382 			 */
1383 			cpu_hyp_reset();
1384 
1385 		return NOTIFY_OK;
1386 	case CPU_PM_ENTER_FAILED:
1387 	case CPU_PM_EXIT:
1388 		if (__this_cpu_read(kvm_arm_hardware_enabled))
1389 			/* The hardware was enabled before suspend. */
1390 			cpu_hyp_reinit();
1391 
1392 		return NOTIFY_OK;
1393 
1394 	default:
1395 		return NOTIFY_DONE;
1396 	}
1397 }
1398 
1399 static struct notifier_block hyp_init_cpu_pm_nb = {
1400 	.notifier_call = hyp_init_cpu_pm_notifier,
1401 };
1402 
1403 static void __init hyp_cpu_pm_init(void)
1404 {
1405 	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1406 }
1407 static void __init hyp_cpu_pm_exit(void)
1408 {
1409 	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1410 }
1411 #else
1412 static inline void hyp_cpu_pm_init(void)
1413 {
1414 }
1415 static inline void hyp_cpu_pm_exit(void)
1416 {
1417 }
1418 #endif
1419 
1420 static int init_common_resources(void)
1421 {
1422 	return kvm_set_ipa_limit();
1423 }
1424 
1425 static int init_subsystems(void)
1426 {
1427 	int err = 0;
1428 
1429 	/*
1430 	 * Enable hardware so that subsystem initialisation can access EL2.
1431 	 */
1432 	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1433 
1434 	/*
1435 	 * Register CPU lower-power notifier
1436 	 */
1437 	hyp_cpu_pm_init();
1438 
1439 	/*
1440 	 * Init HYP view of VGIC
1441 	 */
1442 	err = kvm_vgic_hyp_init();
1443 	switch (err) {
1444 	case 0:
1445 		vgic_present = true;
1446 		break;
1447 	case -ENODEV:
1448 	case -ENXIO:
1449 		vgic_present = false;
1450 		err = 0;
1451 		break;
1452 	default:
1453 		goto out;
1454 	}
1455 
1456 	/*
1457 	 * Init HYP architected timer support
1458 	 */
1459 	err = kvm_timer_hyp_init(vgic_present);
1460 	if (err)
1461 		goto out;
1462 
1463 	kvm_perf_init();
1464 	kvm_coproc_table_init();
1465 
1466 out:
1467 	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1468 
1469 	return err;
1470 }
1471 
1472 static void teardown_hyp_mode(void)
1473 {
1474 	int cpu;
1475 
1476 	free_hyp_pgds();
1477 	for_each_possible_cpu(cpu)
1478 		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1479 }
1480 
1481 /**
1482  * Inits Hyp-mode on all online CPUs
1483  */
1484 static int init_hyp_mode(void)
1485 {
1486 	int cpu;
1487 	int err = 0;
1488 
1489 	/*
1490 	 * Allocate Hyp PGD and setup Hyp identity mapping
1491 	 */
1492 	err = kvm_mmu_init();
1493 	if (err)
1494 		goto out_err;
1495 
1496 	/*
1497 	 * Allocate stack pages for Hypervisor-mode
1498 	 */
1499 	for_each_possible_cpu(cpu) {
1500 		unsigned long stack_page;
1501 
1502 		stack_page = __get_free_page(GFP_KERNEL);
1503 		if (!stack_page) {
1504 			err = -ENOMEM;
1505 			goto out_err;
1506 		}
1507 
1508 		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1509 	}
1510 
1511 	/*
1512 	 * Map the Hyp-code called directly from the host
1513 	 */
1514 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1515 				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1516 	if (err) {
1517 		kvm_err("Cannot map world-switch code\n");
1518 		goto out_err;
1519 	}
1520 
1521 	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1522 				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1523 	if (err) {
1524 		kvm_err("Cannot map rodata section\n");
1525 		goto out_err;
1526 	}
1527 
1528 	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1529 				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1530 	if (err) {
1531 		kvm_err("Cannot map bss section\n");
1532 		goto out_err;
1533 	}
1534 
1535 	err = kvm_map_vectors();
1536 	if (err) {
1537 		kvm_err("Cannot map vectors\n");
1538 		goto out_err;
1539 	}
1540 
1541 	/*
1542 	 * Map the Hyp stack pages
1543 	 */
1544 	for_each_possible_cpu(cpu) {
1545 		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1546 		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1547 					  PAGE_HYP);
1548 
1549 		if (err) {
1550 			kvm_err("Cannot map hyp stack\n");
1551 			goto out_err;
1552 		}
1553 	}
1554 
1555 	for_each_possible_cpu(cpu) {
1556 		kvm_host_data_t *cpu_data;
1557 
1558 		cpu_data = per_cpu_ptr(&kvm_host_data, cpu);
1559 		err = create_hyp_mappings(cpu_data, cpu_data + 1, PAGE_HYP);
1560 
1561 		if (err) {
1562 			kvm_err("Cannot map host CPU state: %d\n", err);
1563 			goto out_err;
1564 		}
1565 	}
1566 
1567 	err = hyp_map_aux_data();
1568 	if (err)
1569 		kvm_err("Cannot map host auxiliary data: %d\n", err);
1570 
1571 	return 0;
1572 
1573 out_err:
1574 	teardown_hyp_mode();
1575 	kvm_err("error initializing Hyp mode: %d\n", err);
1576 	return err;
1577 }
1578 
1579 static void check_kvm_target_cpu(void *ret)
1580 {
1581 	*(int *)ret = kvm_target_cpu();
1582 }
1583 
1584 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1585 {
1586 	struct kvm_vcpu *vcpu;
1587 	int i;
1588 
1589 	mpidr &= MPIDR_HWID_BITMASK;
1590 	kvm_for_each_vcpu(i, vcpu, kvm) {
1591 		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1592 			return vcpu;
1593 	}
1594 	return NULL;
1595 }
1596 
1597 bool kvm_arch_has_irq_bypass(void)
1598 {
1599 	return true;
1600 }
1601 
1602 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1603 				      struct irq_bypass_producer *prod)
1604 {
1605 	struct kvm_kernel_irqfd *irqfd =
1606 		container_of(cons, struct kvm_kernel_irqfd, consumer);
1607 
1608 	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1609 					  &irqfd->irq_entry);
1610 }
1611 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1612 				      struct irq_bypass_producer *prod)
1613 {
1614 	struct kvm_kernel_irqfd *irqfd =
1615 		container_of(cons, struct kvm_kernel_irqfd, consumer);
1616 
1617 	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1618 				     &irqfd->irq_entry);
1619 }
1620 
1621 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1622 {
1623 	struct kvm_kernel_irqfd *irqfd =
1624 		container_of(cons, struct kvm_kernel_irqfd, consumer);
1625 
1626 	kvm_arm_halt_guest(irqfd->kvm);
1627 }
1628 
1629 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1630 {
1631 	struct kvm_kernel_irqfd *irqfd =
1632 		container_of(cons, struct kvm_kernel_irqfd, consumer);
1633 
1634 	kvm_arm_resume_guest(irqfd->kvm);
1635 }
1636 
1637 /**
1638  * Initialize Hyp-mode and memory mappings on all CPUs.
1639  */
1640 int kvm_arch_init(void *opaque)
1641 {
1642 	int err;
1643 	int ret, cpu;
1644 	bool in_hyp_mode;
1645 
1646 	if (!is_hyp_mode_available()) {
1647 		kvm_info("HYP mode not available\n");
1648 		return -ENODEV;
1649 	}
1650 
1651 	in_hyp_mode = is_kernel_in_hyp_mode();
1652 
1653 	if (!in_hyp_mode && kvm_arch_requires_vhe()) {
1654 		kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1655 		return -ENODEV;
1656 	}
1657 
1658 	for_each_online_cpu(cpu) {
1659 		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1660 		if (ret < 0) {
1661 			kvm_err("Error, CPU %d not supported!\n", cpu);
1662 			return -ENODEV;
1663 		}
1664 	}
1665 
1666 	err = init_common_resources();
1667 	if (err)
1668 		return err;
1669 
1670 	err = kvm_arm_init_sve();
1671 	if (err)
1672 		return err;
1673 
1674 	if (!in_hyp_mode) {
1675 		err = init_hyp_mode();
1676 		if (err)
1677 			goto out_err;
1678 	}
1679 
1680 	err = init_subsystems();
1681 	if (err)
1682 		goto out_hyp;
1683 
1684 	if (in_hyp_mode)
1685 		kvm_info("VHE mode initialized successfully\n");
1686 	else
1687 		kvm_info("Hyp mode initialized successfully\n");
1688 
1689 	return 0;
1690 
1691 out_hyp:
1692 	hyp_cpu_pm_exit();
1693 	if (!in_hyp_mode)
1694 		teardown_hyp_mode();
1695 out_err:
1696 	return err;
1697 }
1698 
1699 /* NOP: Compiling as a module not supported */
1700 void kvm_arch_exit(void)
1701 {
1702 	kvm_perf_teardown();
1703 }
1704 
1705 static int arm_init(void)
1706 {
1707 	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1708 	return rc;
1709 }
1710 
1711 module_init(arm_init);
1712