xref: /linux/arch/arm64/kvm/arm.c (revision 70ab9ec9166db90ab8980aff4f7083512ecddd1f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/entry-kvm.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/vmalloc.h>
16 #include <linux/fs.h>
17 #include <linux/mman.h>
18 #include <linux/sched.h>
19 #include <linux/kvm.h>
20 #include <linux/kvm_irqfd.h>
21 #include <linux/irqbypass.h>
22 #include <linux/sched/stat.h>
23 #include <linux/psci.h>
24 #include <trace/events/kvm.h>
25 
26 #define CREATE_TRACE_POINTS
27 #include "trace_arm.h"
28 
29 #include <linux/uaccess.h>
30 #include <asm/ptrace.h>
31 #include <asm/mman.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpufeature.h>
35 #include <asm/virt.h>
36 #include <asm/kvm_arm.h>
37 #include <asm/kvm_asm.h>
38 #include <asm/kvm_mmu.h>
39 #include <asm/kvm_nested.h>
40 #include <asm/kvm_pkvm.h>
41 #include <asm/kvm_emulate.h>
42 #include <asm/sections.h>
43 
44 #include <kvm/arm_hypercalls.h>
45 #include <kvm/arm_pmu.h>
46 #include <kvm/arm_psci.h>
47 
48 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
49 
50 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
51 
52 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
54 
55 DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
56 
57 static bool vgic_present, kvm_arm_initialised;
58 
59 static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized);
60 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
61 
62 bool is_kvm_arm_initialised(void)
63 {
64 	return kvm_arm_initialised;
65 }
66 
67 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
68 {
69 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
70 }
71 
72 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
73 			    struct kvm_enable_cap *cap)
74 {
75 	int r;
76 	u64 new_cap;
77 
78 	if (cap->flags)
79 		return -EINVAL;
80 
81 	switch (cap->cap) {
82 	case KVM_CAP_ARM_NISV_TO_USER:
83 		r = 0;
84 		set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
85 			&kvm->arch.flags);
86 		break;
87 	case KVM_CAP_ARM_MTE:
88 		mutex_lock(&kvm->lock);
89 		if (!system_supports_mte() || kvm->created_vcpus) {
90 			r = -EINVAL;
91 		} else {
92 			r = 0;
93 			set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
94 		}
95 		mutex_unlock(&kvm->lock);
96 		break;
97 	case KVM_CAP_ARM_SYSTEM_SUSPEND:
98 		r = 0;
99 		set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
100 		break;
101 	case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
102 		new_cap = cap->args[0];
103 
104 		mutex_lock(&kvm->slots_lock);
105 		/*
106 		 * To keep things simple, allow changing the chunk
107 		 * size only when no memory slots have been created.
108 		 */
109 		if (!kvm_are_all_memslots_empty(kvm)) {
110 			r = -EINVAL;
111 		} else if (new_cap && !kvm_is_block_size_supported(new_cap)) {
112 			r = -EINVAL;
113 		} else {
114 			r = 0;
115 			kvm->arch.mmu.split_page_chunk_size = new_cap;
116 		}
117 		mutex_unlock(&kvm->slots_lock);
118 		break;
119 	default:
120 		r = -EINVAL;
121 		break;
122 	}
123 
124 	return r;
125 }
126 
127 static int kvm_arm_default_max_vcpus(void)
128 {
129 	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
130 }
131 
132 /**
133  * kvm_arch_init_vm - initializes a VM data structure
134  * @kvm:	pointer to the KVM struct
135  */
136 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
137 {
138 	int ret;
139 
140 	mutex_init(&kvm->arch.config_lock);
141 
142 #ifdef CONFIG_LOCKDEP
143 	/* Clue in lockdep that the config_lock must be taken inside kvm->lock */
144 	mutex_lock(&kvm->lock);
145 	mutex_lock(&kvm->arch.config_lock);
146 	mutex_unlock(&kvm->arch.config_lock);
147 	mutex_unlock(&kvm->lock);
148 #endif
149 
150 	ret = kvm_share_hyp(kvm, kvm + 1);
151 	if (ret)
152 		return ret;
153 
154 	ret = pkvm_init_host_vm(kvm);
155 	if (ret)
156 		goto err_unshare_kvm;
157 
158 	if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) {
159 		ret = -ENOMEM;
160 		goto err_unshare_kvm;
161 	}
162 	cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
163 
164 	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type);
165 	if (ret)
166 		goto err_free_cpumask;
167 
168 	kvm_vgic_early_init(kvm);
169 
170 	kvm_timer_init_vm(kvm);
171 
172 	/* The maximum number of VCPUs is limited by the host's GIC model */
173 	kvm->max_vcpus = kvm_arm_default_max_vcpus();
174 
175 	kvm_arm_init_hypercalls(kvm);
176 
177 	bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES);
178 
179 	return 0;
180 
181 err_free_cpumask:
182 	free_cpumask_var(kvm->arch.supported_cpus);
183 err_unshare_kvm:
184 	kvm_unshare_hyp(kvm, kvm + 1);
185 	return ret;
186 }
187 
188 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
189 {
190 	return VM_FAULT_SIGBUS;
191 }
192 
193 
194 /**
195  * kvm_arch_destroy_vm - destroy the VM data structure
196  * @kvm:	pointer to the KVM struct
197  */
198 void kvm_arch_destroy_vm(struct kvm *kvm)
199 {
200 	bitmap_free(kvm->arch.pmu_filter);
201 	free_cpumask_var(kvm->arch.supported_cpus);
202 
203 	kvm_vgic_destroy(kvm);
204 
205 	if (is_protected_kvm_enabled())
206 		pkvm_destroy_hyp_vm(kvm);
207 
208 	kfree(kvm->arch.mpidr_data);
209 	kvm_destroy_vcpus(kvm);
210 
211 	kvm_unshare_hyp(kvm, kvm + 1);
212 
213 	kvm_arm_teardown_hypercalls(kvm);
214 }
215 
216 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
217 {
218 	int r;
219 	switch (ext) {
220 	case KVM_CAP_IRQCHIP:
221 		r = vgic_present;
222 		break;
223 	case KVM_CAP_IOEVENTFD:
224 	case KVM_CAP_DEVICE_CTRL:
225 	case KVM_CAP_USER_MEMORY:
226 	case KVM_CAP_SYNC_MMU:
227 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
228 	case KVM_CAP_ONE_REG:
229 	case KVM_CAP_ARM_PSCI:
230 	case KVM_CAP_ARM_PSCI_0_2:
231 	case KVM_CAP_READONLY_MEM:
232 	case KVM_CAP_MP_STATE:
233 	case KVM_CAP_IMMEDIATE_EXIT:
234 	case KVM_CAP_VCPU_EVENTS:
235 	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
236 	case KVM_CAP_ARM_NISV_TO_USER:
237 	case KVM_CAP_ARM_INJECT_EXT_DABT:
238 	case KVM_CAP_SET_GUEST_DEBUG:
239 	case KVM_CAP_VCPU_ATTRIBUTES:
240 	case KVM_CAP_PTP_KVM:
241 	case KVM_CAP_ARM_SYSTEM_SUSPEND:
242 	case KVM_CAP_IRQFD_RESAMPLE:
243 	case KVM_CAP_COUNTER_OFFSET:
244 		r = 1;
245 		break;
246 	case KVM_CAP_SET_GUEST_DEBUG2:
247 		return KVM_GUESTDBG_VALID_MASK;
248 	case KVM_CAP_ARM_SET_DEVICE_ADDR:
249 		r = 1;
250 		break;
251 	case KVM_CAP_NR_VCPUS:
252 		/*
253 		 * ARM64 treats KVM_CAP_NR_CPUS differently from all other
254 		 * architectures, as it does not always bound it to
255 		 * KVM_CAP_MAX_VCPUS. It should not matter much because
256 		 * this is just an advisory value.
257 		 */
258 		r = min_t(unsigned int, num_online_cpus(),
259 			  kvm_arm_default_max_vcpus());
260 		break;
261 	case KVM_CAP_MAX_VCPUS:
262 	case KVM_CAP_MAX_VCPU_ID:
263 		if (kvm)
264 			r = kvm->max_vcpus;
265 		else
266 			r = kvm_arm_default_max_vcpus();
267 		break;
268 	case KVM_CAP_MSI_DEVID:
269 		if (!kvm)
270 			r = -EINVAL;
271 		else
272 			r = kvm->arch.vgic.msis_require_devid;
273 		break;
274 	case KVM_CAP_ARM_USER_IRQ:
275 		/*
276 		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
277 		 * (bump this number if adding more devices)
278 		 */
279 		r = 1;
280 		break;
281 	case KVM_CAP_ARM_MTE:
282 		r = system_supports_mte();
283 		break;
284 	case KVM_CAP_STEAL_TIME:
285 		r = kvm_arm_pvtime_supported();
286 		break;
287 	case KVM_CAP_ARM_EL1_32BIT:
288 		r = cpus_have_final_cap(ARM64_HAS_32BIT_EL1);
289 		break;
290 	case KVM_CAP_GUEST_DEBUG_HW_BPS:
291 		r = get_num_brps();
292 		break;
293 	case KVM_CAP_GUEST_DEBUG_HW_WPS:
294 		r = get_num_wrps();
295 		break;
296 	case KVM_CAP_ARM_PMU_V3:
297 		r = kvm_arm_support_pmu_v3();
298 		break;
299 	case KVM_CAP_ARM_INJECT_SERROR_ESR:
300 		r = cpus_have_final_cap(ARM64_HAS_RAS_EXTN);
301 		break;
302 	case KVM_CAP_ARM_VM_IPA_SIZE:
303 		r = get_kvm_ipa_limit();
304 		break;
305 	case KVM_CAP_ARM_SVE:
306 		r = system_supports_sve();
307 		break;
308 	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
309 	case KVM_CAP_ARM_PTRAUTH_GENERIC:
310 		r = system_has_full_ptr_auth();
311 		break;
312 	case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
313 		if (kvm)
314 			r = kvm->arch.mmu.split_page_chunk_size;
315 		else
316 			r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
317 		break;
318 	case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES:
319 		r = kvm_supported_block_sizes();
320 		break;
321 	case KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES:
322 		r = BIT(0);
323 		break;
324 	default:
325 		r = 0;
326 	}
327 
328 	return r;
329 }
330 
331 long kvm_arch_dev_ioctl(struct file *filp,
332 			unsigned int ioctl, unsigned long arg)
333 {
334 	return -EINVAL;
335 }
336 
337 struct kvm *kvm_arch_alloc_vm(void)
338 {
339 	size_t sz = sizeof(struct kvm);
340 
341 	if (!has_vhe())
342 		return kzalloc(sz, GFP_KERNEL_ACCOUNT);
343 
344 	return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
345 }
346 
347 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
348 {
349 	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
350 		return -EBUSY;
351 
352 	if (id >= kvm->max_vcpus)
353 		return -EINVAL;
354 
355 	return 0;
356 }
357 
358 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
359 {
360 	int err;
361 
362 	spin_lock_init(&vcpu->arch.mp_state_lock);
363 
364 #ifdef CONFIG_LOCKDEP
365 	/* Inform lockdep that the config_lock is acquired after vcpu->mutex */
366 	mutex_lock(&vcpu->mutex);
367 	mutex_lock(&vcpu->kvm->arch.config_lock);
368 	mutex_unlock(&vcpu->kvm->arch.config_lock);
369 	mutex_unlock(&vcpu->mutex);
370 #endif
371 
372 	/* Force users to call KVM_ARM_VCPU_INIT */
373 	vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
374 
375 	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
376 
377 	/*
378 	 * Default value for the FP state, will be overloaded at load
379 	 * time if we support FP (pretty likely)
380 	 */
381 	vcpu->arch.fp_state = FP_STATE_FREE;
382 
383 	/* Set up the timer */
384 	kvm_timer_vcpu_init(vcpu);
385 
386 	kvm_pmu_vcpu_init(vcpu);
387 
388 	kvm_arm_reset_debug_ptr(vcpu);
389 
390 	kvm_arm_pvtime_vcpu_init(&vcpu->arch);
391 
392 	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
393 
394 	err = kvm_vgic_vcpu_init(vcpu);
395 	if (err)
396 		return err;
397 
398 	return kvm_share_hyp(vcpu, vcpu + 1);
399 }
400 
401 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
402 {
403 }
404 
405 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
406 {
407 	if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm)))
408 		static_branch_dec(&userspace_irqchip_in_use);
409 
410 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
411 	kvm_timer_vcpu_terminate(vcpu);
412 	kvm_pmu_vcpu_destroy(vcpu);
413 
414 	kvm_arm_vcpu_destroy(vcpu);
415 }
416 
417 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
418 {
419 
420 }
421 
422 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
423 {
424 
425 }
426 
427 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
428 {
429 	struct kvm_s2_mmu *mmu;
430 	int *last_ran;
431 
432 	mmu = vcpu->arch.hw_mmu;
433 	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
434 
435 	/*
436 	 * We guarantee that both TLBs and I-cache are private to each
437 	 * vcpu. If detecting that a vcpu from the same VM has
438 	 * previously run on the same physical CPU, call into the
439 	 * hypervisor code to nuke the relevant contexts.
440 	 *
441 	 * We might get preempted before the vCPU actually runs, but
442 	 * over-invalidation doesn't affect correctness.
443 	 */
444 	if (*last_ran != vcpu->vcpu_idx) {
445 		kvm_call_hyp(__kvm_flush_cpu_context, mmu);
446 		*last_ran = vcpu->vcpu_idx;
447 	}
448 
449 	vcpu->cpu = cpu;
450 
451 	kvm_vgic_load(vcpu);
452 	kvm_timer_vcpu_load(vcpu);
453 	if (has_vhe())
454 		kvm_vcpu_load_vhe(vcpu);
455 	kvm_arch_vcpu_load_fp(vcpu);
456 	kvm_vcpu_pmu_restore_guest(vcpu);
457 	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
458 		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
459 
460 	if (single_task_running())
461 		vcpu_clear_wfx_traps(vcpu);
462 	else
463 		vcpu_set_wfx_traps(vcpu);
464 
465 	if (vcpu_has_ptrauth(vcpu))
466 		vcpu_ptrauth_disable(vcpu);
467 	kvm_arch_vcpu_load_debug_state_flags(vcpu);
468 
469 	if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus))
470 		vcpu_set_on_unsupported_cpu(vcpu);
471 }
472 
473 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
474 {
475 	kvm_arch_vcpu_put_debug_state_flags(vcpu);
476 	kvm_arch_vcpu_put_fp(vcpu);
477 	if (has_vhe())
478 		kvm_vcpu_put_vhe(vcpu);
479 	kvm_timer_vcpu_put(vcpu);
480 	kvm_vgic_put(vcpu);
481 	kvm_vcpu_pmu_restore_host(vcpu);
482 	kvm_arm_vmid_clear_active();
483 
484 	vcpu_clear_on_unsupported_cpu(vcpu);
485 	vcpu->cpu = -1;
486 }
487 
488 static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
489 {
490 	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
491 	kvm_make_request(KVM_REQ_SLEEP, vcpu);
492 	kvm_vcpu_kick(vcpu);
493 }
494 
495 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
496 {
497 	spin_lock(&vcpu->arch.mp_state_lock);
498 	__kvm_arm_vcpu_power_off(vcpu);
499 	spin_unlock(&vcpu->arch.mp_state_lock);
500 }
501 
502 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
503 {
504 	return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED;
505 }
506 
507 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
508 {
509 	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED);
510 	kvm_make_request(KVM_REQ_SUSPEND, vcpu);
511 	kvm_vcpu_kick(vcpu);
512 }
513 
514 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
515 {
516 	return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED;
517 }
518 
519 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
520 				    struct kvm_mp_state *mp_state)
521 {
522 	*mp_state = READ_ONCE(vcpu->arch.mp_state);
523 
524 	return 0;
525 }
526 
527 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
528 				    struct kvm_mp_state *mp_state)
529 {
530 	int ret = 0;
531 
532 	spin_lock(&vcpu->arch.mp_state_lock);
533 
534 	switch (mp_state->mp_state) {
535 	case KVM_MP_STATE_RUNNABLE:
536 		WRITE_ONCE(vcpu->arch.mp_state, *mp_state);
537 		break;
538 	case KVM_MP_STATE_STOPPED:
539 		__kvm_arm_vcpu_power_off(vcpu);
540 		break;
541 	case KVM_MP_STATE_SUSPENDED:
542 		kvm_arm_vcpu_suspend(vcpu);
543 		break;
544 	default:
545 		ret = -EINVAL;
546 	}
547 
548 	spin_unlock(&vcpu->arch.mp_state_lock);
549 
550 	return ret;
551 }
552 
553 /**
554  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
555  * @v:		The VCPU pointer
556  *
557  * If the guest CPU is not waiting for interrupts or an interrupt line is
558  * asserted, the CPU is by definition runnable.
559  */
560 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
561 {
562 	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
563 	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
564 		&& !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
565 }
566 
567 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
568 {
569 	return vcpu_mode_priv(vcpu);
570 }
571 
572 #ifdef CONFIG_GUEST_PERF_EVENTS
573 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
574 {
575 	return *vcpu_pc(vcpu);
576 }
577 #endif
578 
579 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
580 {
581 	return vcpu_get_flag(vcpu, VCPU_INITIALIZED);
582 }
583 
584 static void kvm_init_mpidr_data(struct kvm *kvm)
585 {
586 	struct kvm_mpidr_data *data = NULL;
587 	unsigned long c, mask, nr_entries;
588 	u64 aff_set = 0, aff_clr = ~0UL;
589 	struct kvm_vcpu *vcpu;
590 
591 	mutex_lock(&kvm->arch.config_lock);
592 
593 	if (kvm->arch.mpidr_data || atomic_read(&kvm->online_vcpus) == 1)
594 		goto out;
595 
596 	kvm_for_each_vcpu(c, vcpu, kvm) {
597 		u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
598 		aff_set |= aff;
599 		aff_clr &= aff;
600 	}
601 
602 	/*
603 	 * A significant bit can be either 0 or 1, and will only appear in
604 	 * aff_set. Use aff_clr to weed out the useless stuff.
605 	 */
606 	mask = aff_set ^ aff_clr;
607 	nr_entries = BIT_ULL(hweight_long(mask));
608 
609 	/*
610 	 * Don't let userspace fool us. If we need more than a single page
611 	 * to describe the compressed MPIDR array, just fall back to the
612 	 * iterative method. Single vcpu VMs do not need this either.
613 	 */
614 	if (struct_size(data, cmpidr_to_idx, nr_entries) <= PAGE_SIZE)
615 		data = kzalloc(struct_size(data, cmpidr_to_idx, nr_entries),
616 			       GFP_KERNEL_ACCOUNT);
617 
618 	if (!data)
619 		goto out;
620 
621 	data->mpidr_mask = mask;
622 
623 	kvm_for_each_vcpu(c, vcpu, kvm) {
624 		u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
625 		u16 index = kvm_mpidr_index(data, aff);
626 
627 		data->cmpidr_to_idx[index] = c;
628 	}
629 
630 	kvm->arch.mpidr_data = data;
631 out:
632 	mutex_unlock(&kvm->arch.config_lock);
633 }
634 
635 /*
636  * Handle both the initialisation that is being done when the vcpu is
637  * run for the first time, as well as the updates that must be
638  * performed each time we get a new thread dealing with this vcpu.
639  */
640 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
641 {
642 	struct kvm *kvm = vcpu->kvm;
643 	int ret;
644 
645 	if (!kvm_vcpu_initialized(vcpu))
646 		return -ENOEXEC;
647 
648 	if (!kvm_arm_vcpu_is_finalized(vcpu))
649 		return -EPERM;
650 
651 	ret = kvm_arch_vcpu_run_map_fp(vcpu);
652 	if (ret)
653 		return ret;
654 
655 	if (likely(vcpu_has_run_once(vcpu)))
656 		return 0;
657 
658 	kvm_init_mpidr_data(kvm);
659 
660 	kvm_arm_vcpu_init_debug(vcpu);
661 
662 	if (likely(irqchip_in_kernel(kvm))) {
663 		/*
664 		 * Map the VGIC hardware resources before running a vcpu the
665 		 * first time on this VM.
666 		 */
667 		ret = kvm_vgic_map_resources(kvm);
668 		if (ret)
669 			return ret;
670 	}
671 
672 	ret = kvm_timer_enable(vcpu);
673 	if (ret)
674 		return ret;
675 
676 	ret = kvm_arm_pmu_v3_enable(vcpu);
677 	if (ret)
678 		return ret;
679 
680 	if (is_protected_kvm_enabled()) {
681 		ret = pkvm_create_hyp_vm(kvm);
682 		if (ret)
683 			return ret;
684 	}
685 
686 	if (!irqchip_in_kernel(kvm)) {
687 		/*
688 		 * Tell the rest of the code that there are userspace irqchip
689 		 * VMs in the wild.
690 		 */
691 		static_branch_inc(&userspace_irqchip_in_use);
692 	}
693 
694 	/*
695 	 * Initialize traps for protected VMs.
696 	 * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
697 	 * the code is in place for first run initialization at EL2.
698 	 */
699 	if (kvm_vm_is_protected(kvm))
700 		kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);
701 
702 	mutex_lock(&kvm->arch.config_lock);
703 	set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
704 	mutex_unlock(&kvm->arch.config_lock);
705 
706 	return ret;
707 }
708 
709 bool kvm_arch_intc_initialized(struct kvm *kvm)
710 {
711 	return vgic_initialized(kvm);
712 }
713 
714 void kvm_arm_halt_guest(struct kvm *kvm)
715 {
716 	unsigned long i;
717 	struct kvm_vcpu *vcpu;
718 
719 	kvm_for_each_vcpu(i, vcpu, kvm)
720 		vcpu->arch.pause = true;
721 	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
722 }
723 
724 void kvm_arm_resume_guest(struct kvm *kvm)
725 {
726 	unsigned long i;
727 	struct kvm_vcpu *vcpu;
728 
729 	kvm_for_each_vcpu(i, vcpu, kvm) {
730 		vcpu->arch.pause = false;
731 		__kvm_vcpu_wake_up(vcpu);
732 	}
733 }
734 
735 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
736 {
737 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
738 
739 	rcuwait_wait_event(wait,
740 			   (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
741 			   TASK_INTERRUPTIBLE);
742 
743 	if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
744 		/* Awaken to handle a signal, request we sleep again later. */
745 		kvm_make_request(KVM_REQ_SLEEP, vcpu);
746 	}
747 
748 	/*
749 	 * Make sure we will observe a potential reset request if we've
750 	 * observed a change to the power state. Pairs with the smp_wmb() in
751 	 * kvm_psci_vcpu_on().
752 	 */
753 	smp_rmb();
754 }
755 
756 /**
757  * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
758  * @vcpu:	The VCPU pointer
759  *
760  * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
761  * the vCPU is runnable.  The vCPU may or may not be scheduled out, depending
762  * on when a wake event arrives, e.g. there may already be a pending wake event.
763  */
764 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
765 {
766 	/*
767 	 * Sync back the state of the GIC CPU interface so that we have
768 	 * the latest PMR and group enables. This ensures that
769 	 * kvm_arch_vcpu_runnable has up-to-date data to decide whether
770 	 * we have pending interrupts, e.g. when determining if the
771 	 * vCPU should block.
772 	 *
773 	 * For the same reason, we want to tell GICv4 that we need
774 	 * doorbells to be signalled, should an interrupt become pending.
775 	 */
776 	preempt_disable();
777 	kvm_vgic_vmcr_sync(vcpu);
778 	vcpu_set_flag(vcpu, IN_WFI);
779 	vgic_v4_put(vcpu);
780 	preempt_enable();
781 
782 	kvm_vcpu_halt(vcpu);
783 	vcpu_clear_flag(vcpu, IN_WFIT);
784 
785 	preempt_disable();
786 	vcpu_clear_flag(vcpu, IN_WFI);
787 	vgic_v4_load(vcpu);
788 	preempt_enable();
789 }
790 
791 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
792 {
793 	if (!kvm_arm_vcpu_suspended(vcpu))
794 		return 1;
795 
796 	kvm_vcpu_wfi(vcpu);
797 
798 	/*
799 	 * The suspend state is sticky; we do not leave it until userspace
800 	 * explicitly marks the vCPU as runnable. Request that we suspend again
801 	 * later.
802 	 */
803 	kvm_make_request(KVM_REQ_SUSPEND, vcpu);
804 
805 	/*
806 	 * Check to make sure the vCPU is actually runnable. If so, exit to
807 	 * userspace informing it of the wakeup condition.
808 	 */
809 	if (kvm_arch_vcpu_runnable(vcpu)) {
810 		memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
811 		vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
812 		vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
813 		return 0;
814 	}
815 
816 	/*
817 	 * Otherwise, we were unblocked to process a different event, such as a
818 	 * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
819 	 * process the event.
820 	 */
821 	return 1;
822 }
823 
824 /**
825  * check_vcpu_requests - check and handle pending vCPU requests
826  * @vcpu:	the VCPU pointer
827  *
828  * Return: 1 if we should enter the guest
829  *	   0 if we should exit to userspace
830  *	   < 0 if we should exit to userspace, where the return value indicates
831  *	   an error
832  */
833 static int check_vcpu_requests(struct kvm_vcpu *vcpu)
834 {
835 	if (kvm_request_pending(vcpu)) {
836 		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
837 			kvm_vcpu_sleep(vcpu);
838 
839 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
840 			kvm_reset_vcpu(vcpu);
841 
842 		/*
843 		 * Clear IRQ_PENDING requests that were made to guarantee
844 		 * that a VCPU sees new virtual interrupts.
845 		 */
846 		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
847 
848 		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
849 			kvm_update_stolen_time(vcpu);
850 
851 		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
852 			/* The distributor enable bits were changed */
853 			preempt_disable();
854 			vgic_v4_put(vcpu);
855 			vgic_v4_load(vcpu);
856 			preempt_enable();
857 		}
858 
859 		if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
860 			kvm_vcpu_reload_pmu(vcpu);
861 
862 		if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu))
863 			kvm_vcpu_pmu_restore_guest(vcpu);
864 
865 		if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
866 			return kvm_vcpu_suspend(vcpu);
867 
868 		if (kvm_dirty_ring_check_request(vcpu))
869 			return 0;
870 	}
871 
872 	return 1;
873 }
874 
875 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
876 {
877 	if (likely(!vcpu_mode_is_32bit(vcpu)))
878 		return false;
879 
880 	if (vcpu_has_nv(vcpu))
881 		return true;
882 
883 	return !kvm_supports_32bit_el0();
884 }
885 
886 /**
887  * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
888  * @vcpu:	The VCPU pointer
889  * @ret:	Pointer to write optional return code
890  *
891  * Returns: true if the VCPU needs to return to a preemptible + interruptible
892  *	    and skip guest entry.
893  *
894  * This function disambiguates between two different types of exits: exits to a
895  * preemptible + interruptible kernel context and exits to userspace. For an
896  * exit to userspace, this function will write the return code to ret and return
897  * true. For an exit to preemptible + interruptible kernel context (i.e. check
898  * for pending work and re-enter), return true without writing to ret.
899  */
900 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
901 {
902 	struct kvm_run *run = vcpu->run;
903 
904 	/*
905 	 * If we're using a userspace irqchip, then check if we need
906 	 * to tell a userspace irqchip about timer or PMU level
907 	 * changes and if so, exit to userspace (the actual level
908 	 * state gets updated in kvm_timer_update_run and
909 	 * kvm_pmu_update_run below).
910 	 */
911 	if (static_branch_unlikely(&userspace_irqchip_in_use)) {
912 		if (kvm_timer_should_notify_user(vcpu) ||
913 		    kvm_pmu_should_notify_user(vcpu)) {
914 			*ret = -EINTR;
915 			run->exit_reason = KVM_EXIT_INTR;
916 			return true;
917 		}
918 	}
919 
920 	if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
921 		run->exit_reason = KVM_EXIT_FAIL_ENTRY;
922 		run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
923 		run->fail_entry.cpu = smp_processor_id();
924 		*ret = 0;
925 		return true;
926 	}
927 
928 	return kvm_request_pending(vcpu) ||
929 			xfer_to_guest_mode_work_pending();
930 }
931 
932 /*
933  * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
934  * the vCPU is running.
935  *
936  * This must be noinstr as instrumentation may make use of RCU, and this is not
937  * safe during the EQS.
938  */
939 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
940 {
941 	int ret;
942 
943 	guest_state_enter_irqoff();
944 	ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
945 	guest_state_exit_irqoff();
946 
947 	return ret;
948 }
949 
950 /**
951  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
952  * @vcpu:	The VCPU pointer
953  *
954  * This function is called through the VCPU_RUN ioctl called from user space. It
955  * will execute VM code in a loop until the time slice for the process is used
956  * or some emulation is needed from user space in which case the function will
957  * return with return value 0 and with the kvm_run structure filled in with the
958  * required data for the requested emulation.
959  */
960 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
961 {
962 	struct kvm_run *run = vcpu->run;
963 	int ret;
964 
965 	if (run->exit_reason == KVM_EXIT_MMIO) {
966 		ret = kvm_handle_mmio_return(vcpu);
967 		if (ret)
968 			return ret;
969 	}
970 
971 	vcpu_load(vcpu);
972 
973 	if (run->immediate_exit) {
974 		ret = -EINTR;
975 		goto out;
976 	}
977 
978 	kvm_sigset_activate(vcpu);
979 
980 	ret = 1;
981 	run->exit_reason = KVM_EXIT_UNKNOWN;
982 	run->flags = 0;
983 	while (ret > 0) {
984 		/*
985 		 * Check conditions before entering the guest
986 		 */
987 		ret = xfer_to_guest_mode_handle_work(vcpu);
988 		if (!ret)
989 			ret = 1;
990 
991 		if (ret > 0)
992 			ret = check_vcpu_requests(vcpu);
993 
994 		/*
995 		 * Preparing the interrupts to be injected also
996 		 * involves poking the GIC, which must be done in a
997 		 * non-preemptible context.
998 		 */
999 		preempt_disable();
1000 
1001 		/*
1002 		 * The VMID allocator only tracks active VMIDs per
1003 		 * physical CPU, and therefore the VMID allocated may not be
1004 		 * preserved on VMID roll-over if the task was preempted,
1005 		 * making a thread's VMID inactive. So we need to call
1006 		 * kvm_arm_vmid_update() in non-premptible context.
1007 		 */
1008 		if (kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid) &&
1009 		    has_vhe())
1010 			__load_stage2(vcpu->arch.hw_mmu,
1011 				      vcpu->arch.hw_mmu->arch);
1012 
1013 		kvm_pmu_flush_hwstate(vcpu);
1014 
1015 		local_irq_disable();
1016 
1017 		kvm_vgic_flush_hwstate(vcpu);
1018 
1019 		kvm_pmu_update_vcpu_events(vcpu);
1020 
1021 		/*
1022 		 * Ensure we set mode to IN_GUEST_MODE after we disable
1023 		 * interrupts and before the final VCPU requests check.
1024 		 * See the comment in kvm_vcpu_exiting_guest_mode() and
1025 		 * Documentation/virt/kvm/vcpu-requests.rst
1026 		 */
1027 		smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1028 
1029 		if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
1030 			vcpu->mode = OUTSIDE_GUEST_MODE;
1031 			isb(); /* Ensure work in x_flush_hwstate is committed */
1032 			kvm_pmu_sync_hwstate(vcpu);
1033 			if (static_branch_unlikely(&userspace_irqchip_in_use))
1034 				kvm_timer_sync_user(vcpu);
1035 			kvm_vgic_sync_hwstate(vcpu);
1036 			local_irq_enable();
1037 			preempt_enable();
1038 			continue;
1039 		}
1040 
1041 		kvm_arm_setup_debug(vcpu);
1042 		kvm_arch_vcpu_ctxflush_fp(vcpu);
1043 
1044 		/**************************************************************
1045 		 * Enter the guest
1046 		 */
1047 		trace_kvm_entry(*vcpu_pc(vcpu));
1048 		guest_timing_enter_irqoff();
1049 
1050 		ret = kvm_arm_vcpu_enter_exit(vcpu);
1051 
1052 		vcpu->mode = OUTSIDE_GUEST_MODE;
1053 		vcpu->stat.exits++;
1054 		/*
1055 		 * Back from guest
1056 		 *************************************************************/
1057 
1058 		kvm_arm_clear_debug(vcpu);
1059 
1060 		/*
1061 		 * We must sync the PMU state before the vgic state so
1062 		 * that the vgic can properly sample the updated state of the
1063 		 * interrupt line.
1064 		 */
1065 		kvm_pmu_sync_hwstate(vcpu);
1066 
1067 		/*
1068 		 * Sync the vgic state before syncing the timer state because
1069 		 * the timer code needs to know if the virtual timer
1070 		 * interrupts are active.
1071 		 */
1072 		kvm_vgic_sync_hwstate(vcpu);
1073 
1074 		/*
1075 		 * Sync the timer hardware state before enabling interrupts as
1076 		 * we don't want vtimer interrupts to race with syncing the
1077 		 * timer virtual interrupt state.
1078 		 */
1079 		if (static_branch_unlikely(&userspace_irqchip_in_use))
1080 			kvm_timer_sync_user(vcpu);
1081 
1082 		kvm_arch_vcpu_ctxsync_fp(vcpu);
1083 
1084 		/*
1085 		 * We must ensure that any pending interrupts are taken before
1086 		 * we exit guest timing so that timer ticks are accounted as
1087 		 * guest time. Transiently unmask interrupts so that any
1088 		 * pending interrupts are taken.
1089 		 *
1090 		 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
1091 		 * context synchronization event) is necessary to ensure that
1092 		 * pending interrupts are taken.
1093 		 */
1094 		if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
1095 			local_irq_enable();
1096 			isb();
1097 			local_irq_disable();
1098 		}
1099 
1100 		guest_timing_exit_irqoff();
1101 
1102 		local_irq_enable();
1103 
1104 		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
1105 
1106 		/* Exit types that need handling before we can be preempted */
1107 		handle_exit_early(vcpu, ret);
1108 
1109 		preempt_enable();
1110 
1111 		/*
1112 		 * The ARMv8 architecture doesn't give the hypervisor
1113 		 * a mechanism to prevent a guest from dropping to AArch32 EL0
1114 		 * if implemented by the CPU. If we spot the guest in such
1115 		 * state and that we decided it wasn't supposed to do so (like
1116 		 * with the asymmetric AArch32 case), return to userspace with
1117 		 * a fatal error.
1118 		 */
1119 		if (vcpu_mode_is_bad_32bit(vcpu)) {
1120 			/*
1121 			 * As we have caught the guest red-handed, decide that
1122 			 * it isn't fit for purpose anymore by making the vcpu
1123 			 * invalid. The VMM can try and fix it by issuing  a
1124 			 * KVM_ARM_VCPU_INIT if it really wants to.
1125 			 */
1126 			vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
1127 			ret = ARM_EXCEPTION_IL;
1128 		}
1129 
1130 		ret = handle_exit(vcpu, ret);
1131 	}
1132 
1133 	/* Tell userspace about in-kernel device output levels */
1134 	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1135 		kvm_timer_update_run(vcpu);
1136 		kvm_pmu_update_run(vcpu);
1137 	}
1138 
1139 	kvm_sigset_deactivate(vcpu);
1140 
1141 out:
1142 	/*
1143 	 * In the unlikely event that we are returning to userspace
1144 	 * with pending exceptions or PC adjustment, commit these
1145 	 * adjustments in order to give userspace a consistent view of
1146 	 * the vcpu state. Note that this relies on __kvm_adjust_pc()
1147 	 * being preempt-safe on VHE.
1148 	 */
1149 	if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) ||
1150 		     vcpu_get_flag(vcpu, INCREMENT_PC)))
1151 		kvm_call_hyp(__kvm_adjust_pc, vcpu);
1152 
1153 	vcpu_put(vcpu);
1154 	return ret;
1155 }
1156 
1157 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
1158 {
1159 	int bit_index;
1160 	bool set;
1161 	unsigned long *hcr;
1162 
1163 	if (number == KVM_ARM_IRQ_CPU_IRQ)
1164 		bit_index = __ffs(HCR_VI);
1165 	else /* KVM_ARM_IRQ_CPU_FIQ */
1166 		bit_index = __ffs(HCR_VF);
1167 
1168 	hcr = vcpu_hcr(vcpu);
1169 	if (level)
1170 		set = test_and_set_bit(bit_index, hcr);
1171 	else
1172 		set = test_and_clear_bit(bit_index, hcr);
1173 
1174 	/*
1175 	 * If we didn't change anything, no need to wake up or kick other CPUs
1176 	 */
1177 	if (set == level)
1178 		return 0;
1179 
1180 	/*
1181 	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1182 	 * trigger a world-switch round on the running physical CPU to set the
1183 	 * virtual IRQ/FIQ fields in the HCR appropriately.
1184 	 */
1185 	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1186 	kvm_vcpu_kick(vcpu);
1187 
1188 	return 0;
1189 }
1190 
1191 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1192 			  bool line_status)
1193 {
1194 	u32 irq = irq_level->irq;
1195 	unsigned int irq_type, vcpu_id, irq_num;
1196 	struct kvm_vcpu *vcpu = NULL;
1197 	bool level = irq_level->level;
1198 
1199 	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1200 	vcpu_id = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1201 	vcpu_id += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1202 	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1203 
1204 	trace_kvm_irq_line(irq_type, vcpu_id, irq_num, irq_level->level);
1205 
1206 	switch (irq_type) {
1207 	case KVM_ARM_IRQ_TYPE_CPU:
1208 		if (irqchip_in_kernel(kvm))
1209 			return -ENXIO;
1210 
1211 		vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1212 		if (!vcpu)
1213 			return -EINVAL;
1214 
1215 		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1216 			return -EINVAL;
1217 
1218 		return vcpu_interrupt_line(vcpu, irq_num, level);
1219 	case KVM_ARM_IRQ_TYPE_PPI:
1220 		if (!irqchip_in_kernel(kvm))
1221 			return -ENXIO;
1222 
1223 		vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1224 		if (!vcpu)
1225 			return -EINVAL;
1226 
1227 		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1228 			return -EINVAL;
1229 
1230 		return kvm_vgic_inject_irq(kvm, vcpu, irq_num, level, NULL);
1231 	case KVM_ARM_IRQ_TYPE_SPI:
1232 		if (!irqchip_in_kernel(kvm))
1233 			return -ENXIO;
1234 
1235 		if (irq_num < VGIC_NR_PRIVATE_IRQS)
1236 			return -EINVAL;
1237 
1238 		return kvm_vgic_inject_irq(kvm, NULL, irq_num, level, NULL);
1239 	}
1240 
1241 	return -EINVAL;
1242 }
1243 
1244 static unsigned long system_supported_vcpu_features(void)
1245 {
1246 	unsigned long features = KVM_VCPU_VALID_FEATURES;
1247 
1248 	if (!cpus_have_final_cap(ARM64_HAS_32BIT_EL1))
1249 		clear_bit(KVM_ARM_VCPU_EL1_32BIT, &features);
1250 
1251 	if (!kvm_arm_support_pmu_v3())
1252 		clear_bit(KVM_ARM_VCPU_PMU_V3, &features);
1253 
1254 	if (!system_supports_sve())
1255 		clear_bit(KVM_ARM_VCPU_SVE, &features);
1256 
1257 	if (!system_has_full_ptr_auth()) {
1258 		clear_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features);
1259 		clear_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features);
1260 	}
1261 
1262 	if (!cpus_have_final_cap(ARM64_HAS_NESTED_VIRT))
1263 		clear_bit(KVM_ARM_VCPU_HAS_EL2, &features);
1264 
1265 	return features;
1266 }
1267 
1268 static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu,
1269 					const struct kvm_vcpu_init *init)
1270 {
1271 	unsigned long features = init->features[0];
1272 	int i;
1273 
1274 	if (features & ~KVM_VCPU_VALID_FEATURES)
1275 		return -ENOENT;
1276 
1277 	for (i = 1; i < ARRAY_SIZE(init->features); i++) {
1278 		if (init->features[i])
1279 			return -ENOENT;
1280 	}
1281 
1282 	if (features & ~system_supported_vcpu_features())
1283 		return -EINVAL;
1284 
1285 	/*
1286 	 * For now make sure that both address/generic pointer authentication
1287 	 * features are requested by the userspace together.
1288 	 */
1289 	if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features) !=
1290 	    test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features))
1291 		return -EINVAL;
1292 
1293 	/* Disallow NV+SVE for the time being */
1294 	if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features) &&
1295 	    test_bit(KVM_ARM_VCPU_SVE, &features))
1296 		return -EINVAL;
1297 
1298 	if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features))
1299 		return 0;
1300 
1301 	/* MTE is incompatible with AArch32 */
1302 	if (kvm_has_mte(vcpu->kvm))
1303 		return -EINVAL;
1304 
1305 	/* NV is incompatible with AArch32 */
1306 	if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features))
1307 		return -EINVAL;
1308 
1309 	return 0;
1310 }
1311 
1312 static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu,
1313 				  const struct kvm_vcpu_init *init)
1314 {
1315 	unsigned long features = init->features[0];
1316 
1317 	return !bitmap_equal(vcpu->kvm->arch.vcpu_features, &features,
1318 			     KVM_VCPU_MAX_FEATURES);
1319 }
1320 
1321 static int kvm_setup_vcpu(struct kvm_vcpu *vcpu)
1322 {
1323 	struct kvm *kvm = vcpu->kvm;
1324 	int ret = 0;
1325 
1326 	/*
1327 	 * When the vCPU has a PMU, but no PMU is set for the guest
1328 	 * yet, set the default one.
1329 	 */
1330 	if (kvm_vcpu_has_pmu(vcpu) && !kvm->arch.arm_pmu)
1331 		ret = kvm_arm_set_default_pmu(kvm);
1332 
1333 	return ret;
1334 }
1335 
1336 static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1337 				 const struct kvm_vcpu_init *init)
1338 {
1339 	unsigned long features = init->features[0];
1340 	struct kvm *kvm = vcpu->kvm;
1341 	int ret = -EINVAL;
1342 
1343 	mutex_lock(&kvm->arch.config_lock);
1344 
1345 	if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) &&
1346 	    kvm_vcpu_init_changed(vcpu, init))
1347 		goto out_unlock;
1348 
1349 	bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES);
1350 
1351 	ret = kvm_setup_vcpu(vcpu);
1352 	if (ret)
1353 		goto out_unlock;
1354 
1355 	/* Now we know what it is, we can reset it. */
1356 	kvm_reset_vcpu(vcpu);
1357 
1358 	set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags);
1359 	vcpu_set_flag(vcpu, VCPU_INITIALIZED);
1360 	ret = 0;
1361 out_unlock:
1362 	mutex_unlock(&kvm->arch.config_lock);
1363 	return ret;
1364 }
1365 
1366 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1367 			       const struct kvm_vcpu_init *init)
1368 {
1369 	int ret;
1370 
1371 	if (init->target != KVM_ARM_TARGET_GENERIC_V8 &&
1372 	    init->target != kvm_target_cpu())
1373 		return -EINVAL;
1374 
1375 	ret = kvm_vcpu_init_check_features(vcpu, init);
1376 	if (ret)
1377 		return ret;
1378 
1379 	if (!kvm_vcpu_initialized(vcpu))
1380 		return __kvm_vcpu_set_target(vcpu, init);
1381 
1382 	if (kvm_vcpu_init_changed(vcpu, init))
1383 		return -EINVAL;
1384 
1385 	kvm_reset_vcpu(vcpu);
1386 	return 0;
1387 }
1388 
1389 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1390 					 struct kvm_vcpu_init *init)
1391 {
1392 	bool power_off = false;
1393 	int ret;
1394 
1395 	/*
1396 	 * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid
1397 	 * reflecting it in the finalized feature set, thus limiting its scope
1398 	 * to a single KVM_ARM_VCPU_INIT call.
1399 	 */
1400 	if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) {
1401 		init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF);
1402 		power_off = true;
1403 	}
1404 
1405 	ret = kvm_vcpu_set_target(vcpu, init);
1406 	if (ret)
1407 		return ret;
1408 
1409 	/*
1410 	 * Ensure a rebooted VM will fault in RAM pages and detect if the
1411 	 * guest MMU is turned off and flush the caches as needed.
1412 	 *
1413 	 * S2FWB enforces all memory accesses to RAM being cacheable,
1414 	 * ensuring that the data side is always coherent. We still
1415 	 * need to invalidate the I-cache though, as FWB does *not*
1416 	 * imply CTR_EL0.DIC.
1417 	 */
1418 	if (vcpu_has_run_once(vcpu)) {
1419 		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1420 			stage2_unmap_vm(vcpu->kvm);
1421 		else
1422 			icache_inval_all_pou();
1423 	}
1424 
1425 	vcpu_reset_hcr(vcpu);
1426 	vcpu->arch.cptr_el2 = kvm_get_reset_cptr_el2(vcpu);
1427 
1428 	/*
1429 	 * Handle the "start in power-off" case.
1430 	 */
1431 	spin_lock(&vcpu->arch.mp_state_lock);
1432 
1433 	if (power_off)
1434 		__kvm_arm_vcpu_power_off(vcpu);
1435 	else
1436 		WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
1437 
1438 	spin_unlock(&vcpu->arch.mp_state_lock);
1439 
1440 	return 0;
1441 }
1442 
1443 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1444 				 struct kvm_device_attr *attr)
1445 {
1446 	int ret = -ENXIO;
1447 
1448 	switch (attr->group) {
1449 	default:
1450 		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1451 		break;
1452 	}
1453 
1454 	return ret;
1455 }
1456 
1457 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1458 				 struct kvm_device_attr *attr)
1459 {
1460 	int ret = -ENXIO;
1461 
1462 	switch (attr->group) {
1463 	default:
1464 		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1465 		break;
1466 	}
1467 
1468 	return ret;
1469 }
1470 
1471 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1472 				 struct kvm_device_attr *attr)
1473 {
1474 	int ret = -ENXIO;
1475 
1476 	switch (attr->group) {
1477 	default:
1478 		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1479 		break;
1480 	}
1481 
1482 	return ret;
1483 }
1484 
1485 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1486 				   struct kvm_vcpu_events *events)
1487 {
1488 	memset(events, 0, sizeof(*events));
1489 
1490 	return __kvm_arm_vcpu_get_events(vcpu, events);
1491 }
1492 
1493 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1494 				   struct kvm_vcpu_events *events)
1495 {
1496 	int i;
1497 
1498 	/* check whether the reserved field is zero */
1499 	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1500 		if (events->reserved[i])
1501 			return -EINVAL;
1502 
1503 	/* check whether the pad field is zero */
1504 	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1505 		if (events->exception.pad[i])
1506 			return -EINVAL;
1507 
1508 	return __kvm_arm_vcpu_set_events(vcpu, events);
1509 }
1510 
1511 long kvm_arch_vcpu_ioctl(struct file *filp,
1512 			 unsigned int ioctl, unsigned long arg)
1513 {
1514 	struct kvm_vcpu *vcpu = filp->private_data;
1515 	void __user *argp = (void __user *)arg;
1516 	struct kvm_device_attr attr;
1517 	long r;
1518 
1519 	switch (ioctl) {
1520 	case KVM_ARM_VCPU_INIT: {
1521 		struct kvm_vcpu_init init;
1522 
1523 		r = -EFAULT;
1524 		if (copy_from_user(&init, argp, sizeof(init)))
1525 			break;
1526 
1527 		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1528 		break;
1529 	}
1530 	case KVM_SET_ONE_REG:
1531 	case KVM_GET_ONE_REG: {
1532 		struct kvm_one_reg reg;
1533 
1534 		r = -ENOEXEC;
1535 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1536 			break;
1537 
1538 		r = -EFAULT;
1539 		if (copy_from_user(&reg, argp, sizeof(reg)))
1540 			break;
1541 
1542 		/*
1543 		 * We could owe a reset due to PSCI. Handle the pending reset
1544 		 * here to ensure userspace register accesses are ordered after
1545 		 * the reset.
1546 		 */
1547 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1548 			kvm_reset_vcpu(vcpu);
1549 
1550 		if (ioctl == KVM_SET_ONE_REG)
1551 			r = kvm_arm_set_reg(vcpu, &reg);
1552 		else
1553 			r = kvm_arm_get_reg(vcpu, &reg);
1554 		break;
1555 	}
1556 	case KVM_GET_REG_LIST: {
1557 		struct kvm_reg_list __user *user_list = argp;
1558 		struct kvm_reg_list reg_list;
1559 		unsigned n;
1560 
1561 		r = -ENOEXEC;
1562 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1563 			break;
1564 
1565 		r = -EPERM;
1566 		if (!kvm_arm_vcpu_is_finalized(vcpu))
1567 			break;
1568 
1569 		r = -EFAULT;
1570 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1571 			break;
1572 		n = reg_list.n;
1573 		reg_list.n = kvm_arm_num_regs(vcpu);
1574 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1575 			break;
1576 		r = -E2BIG;
1577 		if (n < reg_list.n)
1578 			break;
1579 		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1580 		break;
1581 	}
1582 	case KVM_SET_DEVICE_ATTR: {
1583 		r = -EFAULT;
1584 		if (copy_from_user(&attr, argp, sizeof(attr)))
1585 			break;
1586 		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1587 		break;
1588 	}
1589 	case KVM_GET_DEVICE_ATTR: {
1590 		r = -EFAULT;
1591 		if (copy_from_user(&attr, argp, sizeof(attr)))
1592 			break;
1593 		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1594 		break;
1595 	}
1596 	case KVM_HAS_DEVICE_ATTR: {
1597 		r = -EFAULT;
1598 		if (copy_from_user(&attr, argp, sizeof(attr)))
1599 			break;
1600 		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1601 		break;
1602 	}
1603 	case KVM_GET_VCPU_EVENTS: {
1604 		struct kvm_vcpu_events events;
1605 
1606 		if (kvm_arm_vcpu_get_events(vcpu, &events))
1607 			return -EINVAL;
1608 
1609 		if (copy_to_user(argp, &events, sizeof(events)))
1610 			return -EFAULT;
1611 
1612 		return 0;
1613 	}
1614 	case KVM_SET_VCPU_EVENTS: {
1615 		struct kvm_vcpu_events events;
1616 
1617 		if (copy_from_user(&events, argp, sizeof(events)))
1618 			return -EFAULT;
1619 
1620 		return kvm_arm_vcpu_set_events(vcpu, &events);
1621 	}
1622 	case KVM_ARM_VCPU_FINALIZE: {
1623 		int what;
1624 
1625 		if (!kvm_vcpu_initialized(vcpu))
1626 			return -ENOEXEC;
1627 
1628 		if (get_user(what, (const int __user *)argp))
1629 			return -EFAULT;
1630 
1631 		return kvm_arm_vcpu_finalize(vcpu, what);
1632 	}
1633 	default:
1634 		r = -EINVAL;
1635 	}
1636 
1637 	return r;
1638 }
1639 
1640 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1641 {
1642 
1643 }
1644 
1645 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1646 					struct kvm_arm_device_addr *dev_addr)
1647 {
1648 	switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) {
1649 	case KVM_ARM_DEVICE_VGIC_V2:
1650 		if (!vgic_present)
1651 			return -ENXIO;
1652 		return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr);
1653 	default:
1654 		return -ENODEV;
1655 	}
1656 }
1657 
1658 static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1659 {
1660 	switch (attr->group) {
1661 	case KVM_ARM_VM_SMCCC_CTRL:
1662 		return kvm_vm_smccc_has_attr(kvm, attr);
1663 	default:
1664 		return -ENXIO;
1665 	}
1666 }
1667 
1668 static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1669 {
1670 	switch (attr->group) {
1671 	case KVM_ARM_VM_SMCCC_CTRL:
1672 		return kvm_vm_smccc_set_attr(kvm, attr);
1673 	default:
1674 		return -ENXIO;
1675 	}
1676 }
1677 
1678 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1679 {
1680 	struct kvm *kvm = filp->private_data;
1681 	void __user *argp = (void __user *)arg;
1682 	struct kvm_device_attr attr;
1683 
1684 	switch (ioctl) {
1685 	case KVM_CREATE_IRQCHIP: {
1686 		int ret;
1687 		if (!vgic_present)
1688 			return -ENXIO;
1689 		mutex_lock(&kvm->lock);
1690 		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1691 		mutex_unlock(&kvm->lock);
1692 		return ret;
1693 	}
1694 	case KVM_ARM_SET_DEVICE_ADDR: {
1695 		struct kvm_arm_device_addr dev_addr;
1696 
1697 		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1698 			return -EFAULT;
1699 		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1700 	}
1701 	case KVM_ARM_PREFERRED_TARGET: {
1702 		struct kvm_vcpu_init init = {
1703 			.target = KVM_ARM_TARGET_GENERIC_V8,
1704 		};
1705 
1706 		if (copy_to_user(argp, &init, sizeof(init)))
1707 			return -EFAULT;
1708 
1709 		return 0;
1710 	}
1711 	case KVM_ARM_MTE_COPY_TAGS: {
1712 		struct kvm_arm_copy_mte_tags copy_tags;
1713 
1714 		if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1715 			return -EFAULT;
1716 		return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1717 	}
1718 	case KVM_ARM_SET_COUNTER_OFFSET: {
1719 		struct kvm_arm_counter_offset offset;
1720 
1721 		if (copy_from_user(&offset, argp, sizeof(offset)))
1722 			return -EFAULT;
1723 		return kvm_vm_ioctl_set_counter_offset(kvm, &offset);
1724 	}
1725 	case KVM_HAS_DEVICE_ATTR: {
1726 		if (copy_from_user(&attr, argp, sizeof(attr)))
1727 			return -EFAULT;
1728 
1729 		return kvm_vm_has_attr(kvm, &attr);
1730 	}
1731 	case KVM_SET_DEVICE_ATTR: {
1732 		if (copy_from_user(&attr, argp, sizeof(attr)))
1733 			return -EFAULT;
1734 
1735 		return kvm_vm_set_attr(kvm, &attr);
1736 	}
1737 	case KVM_ARM_GET_REG_WRITABLE_MASKS: {
1738 		struct reg_mask_range range;
1739 
1740 		if (copy_from_user(&range, argp, sizeof(range)))
1741 			return -EFAULT;
1742 		return kvm_vm_ioctl_get_reg_writable_masks(kvm, &range);
1743 	}
1744 	default:
1745 		return -EINVAL;
1746 	}
1747 }
1748 
1749 /* unlocks vcpus from @vcpu_lock_idx and smaller */
1750 static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx)
1751 {
1752 	struct kvm_vcpu *tmp_vcpu;
1753 
1754 	for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1755 		tmp_vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1756 		mutex_unlock(&tmp_vcpu->mutex);
1757 	}
1758 }
1759 
1760 void unlock_all_vcpus(struct kvm *kvm)
1761 {
1762 	lockdep_assert_held(&kvm->lock);
1763 
1764 	unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1);
1765 }
1766 
1767 /* Returns true if all vcpus were locked, false otherwise */
1768 bool lock_all_vcpus(struct kvm *kvm)
1769 {
1770 	struct kvm_vcpu *tmp_vcpu;
1771 	unsigned long c;
1772 
1773 	lockdep_assert_held(&kvm->lock);
1774 
1775 	/*
1776 	 * Any time a vcpu is in an ioctl (including running), the
1777 	 * core KVM code tries to grab the vcpu->mutex.
1778 	 *
1779 	 * By grabbing the vcpu->mutex of all VCPUs we ensure that no
1780 	 * other VCPUs can fiddle with the state while we access it.
1781 	 */
1782 	kvm_for_each_vcpu(c, tmp_vcpu, kvm) {
1783 		if (!mutex_trylock(&tmp_vcpu->mutex)) {
1784 			unlock_vcpus(kvm, c - 1);
1785 			return false;
1786 		}
1787 	}
1788 
1789 	return true;
1790 }
1791 
1792 static unsigned long nvhe_percpu_size(void)
1793 {
1794 	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1795 		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1796 }
1797 
1798 static unsigned long nvhe_percpu_order(void)
1799 {
1800 	unsigned long size = nvhe_percpu_size();
1801 
1802 	return size ? get_order(size) : 0;
1803 }
1804 
1805 /* A lookup table holding the hypervisor VA for each vector slot */
1806 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1807 
1808 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1809 {
1810 	hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1811 }
1812 
1813 static int kvm_init_vector_slots(void)
1814 {
1815 	int err;
1816 	void *base;
1817 
1818 	base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1819 	kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1820 
1821 	base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1822 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1823 
1824 	if (kvm_system_needs_idmapped_vectors() &&
1825 	    !is_protected_kvm_enabled()) {
1826 		err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1827 					       __BP_HARDEN_HYP_VECS_SZ, &base);
1828 		if (err)
1829 			return err;
1830 	}
1831 
1832 	kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1833 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1834 	return 0;
1835 }
1836 
1837 static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits)
1838 {
1839 	struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1840 	unsigned long tcr;
1841 
1842 	/*
1843 	 * Calculate the raw per-cpu offset without a translation from the
1844 	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
1845 	 * so that we can use adr_l to access per-cpu variables in EL2.
1846 	 * Also drop the KASAN tag which gets in the way...
1847 	 */
1848 	params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1849 			    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1850 
1851 	params->mair_el2 = read_sysreg(mair_el1);
1852 
1853 	tcr = read_sysreg(tcr_el1);
1854 	if (cpus_have_final_cap(ARM64_KVM_HVHE)) {
1855 		tcr |= TCR_EPD1_MASK;
1856 	} else {
1857 		tcr &= TCR_EL2_MASK;
1858 		tcr |= TCR_EL2_RES1;
1859 	}
1860 	tcr &= ~TCR_T0SZ_MASK;
1861 	tcr |= TCR_T0SZ(hyp_va_bits);
1862 	params->tcr_el2 = tcr;
1863 
1864 	params->pgd_pa = kvm_mmu_get_httbr();
1865 	if (is_protected_kvm_enabled())
1866 		params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1867 	else
1868 		params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1869 	if (cpus_have_final_cap(ARM64_KVM_HVHE))
1870 		params->hcr_el2 |= HCR_E2H;
1871 	params->vttbr = params->vtcr = 0;
1872 
1873 	/*
1874 	 * Flush the init params from the data cache because the struct will
1875 	 * be read while the MMU is off.
1876 	 */
1877 	kvm_flush_dcache_to_poc(params, sizeof(*params));
1878 }
1879 
1880 static void hyp_install_host_vector(void)
1881 {
1882 	struct kvm_nvhe_init_params *params;
1883 	struct arm_smccc_res res;
1884 
1885 	/* Switch from the HYP stub to our own HYP init vector */
1886 	__hyp_set_vectors(kvm_get_idmap_vector());
1887 
1888 	/*
1889 	 * Call initialization code, and switch to the full blown HYP code.
1890 	 * If the cpucaps haven't been finalized yet, something has gone very
1891 	 * wrong, and hyp will crash and burn when it uses any
1892 	 * cpus_have_*_cap() wrapper.
1893 	 */
1894 	BUG_ON(!system_capabilities_finalized());
1895 	params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1896 	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1897 	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1898 }
1899 
1900 static void cpu_init_hyp_mode(void)
1901 {
1902 	hyp_install_host_vector();
1903 
1904 	/*
1905 	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
1906 	 * at EL2.
1907 	 */
1908 	if (this_cpu_has_cap(ARM64_SSBS) &&
1909 	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1910 		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1911 	}
1912 }
1913 
1914 static void cpu_hyp_reset(void)
1915 {
1916 	if (!is_kernel_in_hyp_mode())
1917 		__hyp_reset_vectors();
1918 }
1919 
1920 /*
1921  * EL2 vectors can be mapped and rerouted in a number of ways,
1922  * depending on the kernel configuration and CPU present:
1923  *
1924  * - If the CPU is affected by Spectre-v2, the hardening sequence is
1925  *   placed in one of the vector slots, which is executed before jumping
1926  *   to the real vectors.
1927  *
1928  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1929  *   containing the hardening sequence is mapped next to the idmap page,
1930  *   and executed before jumping to the real vectors.
1931  *
1932  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1933  *   empty slot is selected, mapped next to the idmap page, and
1934  *   executed before jumping to the real vectors.
1935  *
1936  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1937  * VHE, as we don't have hypervisor-specific mappings. If the system
1938  * is VHE and yet selects this capability, it will be ignored.
1939  */
1940 static void cpu_set_hyp_vector(void)
1941 {
1942 	struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1943 	void *vector = hyp_spectre_vector_selector[data->slot];
1944 
1945 	if (!is_protected_kvm_enabled())
1946 		*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1947 	else
1948 		kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1949 }
1950 
1951 static void cpu_hyp_init_context(void)
1952 {
1953 	kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1954 
1955 	if (!is_kernel_in_hyp_mode())
1956 		cpu_init_hyp_mode();
1957 }
1958 
1959 static void cpu_hyp_init_features(void)
1960 {
1961 	cpu_set_hyp_vector();
1962 	kvm_arm_init_debug();
1963 
1964 	if (is_kernel_in_hyp_mode())
1965 		kvm_timer_init_vhe();
1966 
1967 	if (vgic_present)
1968 		kvm_vgic_init_cpu_hardware();
1969 }
1970 
1971 static void cpu_hyp_reinit(void)
1972 {
1973 	cpu_hyp_reset();
1974 	cpu_hyp_init_context();
1975 	cpu_hyp_init_features();
1976 }
1977 
1978 static void cpu_hyp_init(void *discard)
1979 {
1980 	if (!__this_cpu_read(kvm_hyp_initialized)) {
1981 		cpu_hyp_reinit();
1982 		__this_cpu_write(kvm_hyp_initialized, 1);
1983 	}
1984 }
1985 
1986 static void cpu_hyp_uninit(void *discard)
1987 {
1988 	if (__this_cpu_read(kvm_hyp_initialized)) {
1989 		cpu_hyp_reset();
1990 		__this_cpu_write(kvm_hyp_initialized, 0);
1991 	}
1992 }
1993 
1994 int kvm_arch_hardware_enable(void)
1995 {
1996 	/*
1997 	 * Most calls to this function are made with migration
1998 	 * disabled, but not with preemption disabled. The former is
1999 	 * enough to ensure correctness, but most of the helpers
2000 	 * expect the later and will throw a tantrum otherwise.
2001 	 */
2002 	preempt_disable();
2003 
2004 	cpu_hyp_init(NULL);
2005 
2006 	kvm_vgic_cpu_up();
2007 	kvm_timer_cpu_up();
2008 
2009 	preempt_enable();
2010 
2011 	return 0;
2012 }
2013 
2014 void kvm_arch_hardware_disable(void)
2015 {
2016 	kvm_timer_cpu_down();
2017 	kvm_vgic_cpu_down();
2018 
2019 	if (!is_protected_kvm_enabled())
2020 		cpu_hyp_uninit(NULL);
2021 }
2022 
2023 #ifdef CONFIG_CPU_PM
2024 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
2025 				    unsigned long cmd,
2026 				    void *v)
2027 {
2028 	/*
2029 	 * kvm_hyp_initialized is left with its old value over
2030 	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
2031 	 * re-enable hyp.
2032 	 */
2033 	switch (cmd) {
2034 	case CPU_PM_ENTER:
2035 		if (__this_cpu_read(kvm_hyp_initialized))
2036 			/*
2037 			 * don't update kvm_hyp_initialized here
2038 			 * so that the hyp will be re-enabled
2039 			 * when we resume. See below.
2040 			 */
2041 			cpu_hyp_reset();
2042 
2043 		return NOTIFY_OK;
2044 	case CPU_PM_ENTER_FAILED:
2045 	case CPU_PM_EXIT:
2046 		if (__this_cpu_read(kvm_hyp_initialized))
2047 			/* The hyp was enabled before suspend. */
2048 			cpu_hyp_reinit();
2049 
2050 		return NOTIFY_OK;
2051 
2052 	default:
2053 		return NOTIFY_DONE;
2054 	}
2055 }
2056 
2057 static struct notifier_block hyp_init_cpu_pm_nb = {
2058 	.notifier_call = hyp_init_cpu_pm_notifier,
2059 };
2060 
2061 static void __init hyp_cpu_pm_init(void)
2062 {
2063 	if (!is_protected_kvm_enabled())
2064 		cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
2065 }
2066 static void __init hyp_cpu_pm_exit(void)
2067 {
2068 	if (!is_protected_kvm_enabled())
2069 		cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
2070 }
2071 #else
2072 static inline void __init hyp_cpu_pm_init(void)
2073 {
2074 }
2075 static inline void __init hyp_cpu_pm_exit(void)
2076 {
2077 }
2078 #endif
2079 
2080 static void __init init_cpu_logical_map(void)
2081 {
2082 	unsigned int cpu;
2083 
2084 	/*
2085 	 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
2086 	 * Only copy the set of online CPUs whose features have been checked
2087 	 * against the finalized system capabilities. The hypervisor will not
2088 	 * allow any other CPUs from the `possible` set to boot.
2089 	 */
2090 	for_each_online_cpu(cpu)
2091 		hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
2092 }
2093 
2094 #define init_psci_0_1_impl_state(config, what)	\
2095 	config.psci_0_1_ ## what ## _implemented = psci_ops.what
2096 
2097 static bool __init init_psci_relay(void)
2098 {
2099 	/*
2100 	 * If PSCI has not been initialized, protected KVM cannot install
2101 	 * itself on newly booted CPUs.
2102 	 */
2103 	if (!psci_ops.get_version) {
2104 		kvm_err("Cannot initialize protected mode without PSCI\n");
2105 		return false;
2106 	}
2107 
2108 	kvm_host_psci_config.version = psci_ops.get_version();
2109 	kvm_host_psci_config.smccc_version = arm_smccc_get_version();
2110 
2111 	if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
2112 		kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
2113 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
2114 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
2115 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
2116 		init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
2117 	}
2118 	return true;
2119 }
2120 
2121 static int __init init_subsystems(void)
2122 {
2123 	int err = 0;
2124 
2125 	/*
2126 	 * Enable hardware so that subsystem initialisation can access EL2.
2127 	 */
2128 	on_each_cpu(cpu_hyp_init, NULL, 1);
2129 
2130 	/*
2131 	 * Register CPU lower-power notifier
2132 	 */
2133 	hyp_cpu_pm_init();
2134 
2135 	/*
2136 	 * Init HYP view of VGIC
2137 	 */
2138 	err = kvm_vgic_hyp_init();
2139 	switch (err) {
2140 	case 0:
2141 		vgic_present = true;
2142 		break;
2143 	case -ENODEV:
2144 	case -ENXIO:
2145 		vgic_present = false;
2146 		err = 0;
2147 		break;
2148 	default:
2149 		goto out;
2150 	}
2151 
2152 	/*
2153 	 * Init HYP architected timer support
2154 	 */
2155 	err = kvm_timer_hyp_init(vgic_present);
2156 	if (err)
2157 		goto out;
2158 
2159 	kvm_register_perf_callbacks(NULL);
2160 
2161 out:
2162 	if (err)
2163 		hyp_cpu_pm_exit();
2164 
2165 	if (err || !is_protected_kvm_enabled())
2166 		on_each_cpu(cpu_hyp_uninit, NULL, 1);
2167 
2168 	return err;
2169 }
2170 
2171 static void __init teardown_subsystems(void)
2172 {
2173 	kvm_unregister_perf_callbacks();
2174 	hyp_cpu_pm_exit();
2175 }
2176 
2177 static void __init teardown_hyp_mode(void)
2178 {
2179 	int cpu;
2180 
2181 	free_hyp_pgds();
2182 	for_each_possible_cpu(cpu) {
2183 		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
2184 		free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order());
2185 	}
2186 }
2187 
2188 static int __init do_pkvm_init(u32 hyp_va_bits)
2189 {
2190 	void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base));
2191 	int ret;
2192 
2193 	preempt_disable();
2194 	cpu_hyp_init_context();
2195 	ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
2196 				num_possible_cpus(), kern_hyp_va(per_cpu_base),
2197 				hyp_va_bits);
2198 	cpu_hyp_init_features();
2199 
2200 	/*
2201 	 * The stub hypercalls are now disabled, so set our local flag to
2202 	 * prevent a later re-init attempt in kvm_arch_hardware_enable().
2203 	 */
2204 	__this_cpu_write(kvm_hyp_initialized, 1);
2205 	preempt_enable();
2206 
2207 	return ret;
2208 }
2209 
2210 static u64 get_hyp_id_aa64pfr0_el1(void)
2211 {
2212 	/*
2213 	 * Track whether the system isn't affected by spectre/meltdown in the
2214 	 * hypervisor's view of id_aa64pfr0_el1, used for protected VMs.
2215 	 * Although this is per-CPU, we make it global for simplicity, e.g., not
2216 	 * to have to worry about vcpu migration.
2217 	 *
2218 	 * Unlike for non-protected VMs, userspace cannot override this for
2219 	 * protected VMs.
2220 	 */
2221 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2222 
2223 	val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) |
2224 		 ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3));
2225 
2226 	val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2),
2227 			  arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED);
2228 	val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3),
2229 			  arm64_get_meltdown_state() == SPECTRE_UNAFFECTED);
2230 
2231 	return val;
2232 }
2233 
2234 static void kvm_hyp_init_symbols(void)
2235 {
2236 	kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1();
2237 	kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
2238 	kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
2239 	kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2240 	kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
2241 	kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
2242 	kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2243 	kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
2244 	kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1);
2245 	kvm_nvhe_sym(__icache_flags) = __icache_flags;
2246 	kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits;
2247 }
2248 
2249 static int __init kvm_hyp_init_protection(u32 hyp_va_bits)
2250 {
2251 	void *addr = phys_to_virt(hyp_mem_base);
2252 	int ret;
2253 
2254 	ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
2255 	if (ret)
2256 		return ret;
2257 
2258 	ret = do_pkvm_init(hyp_va_bits);
2259 	if (ret)
2260 		return ret;
2261 
2262 	free_hyp_pgds();
2263 
2264 	return 0;
2265 }
2266 
2267 static void pkvm_hyp_init_ptrauth(void)
2268 {
2269 	struct kvm_cpu_context *hyp_ctxt;
2270 	int cpu;
2271 
2272 	for_each_possible_cpu(cpu) {
2273 		hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu);
2274 		hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long();
2275 		hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long();
2276 		hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long();
2277 		hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long();
2278 		hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long();
2279 		hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long();
2280 		hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long();
2281 		hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long();
2282 		hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long();
2283 		hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long();
2284 	}
2285 }
2286 
2287 /* Inits Hyp-mode on all online CPUs */
2288 static int __init init_hyp_mode(void)
2289 {
2290 	u32 hyp_va_bits;
2291 	int cpu;
2292 	int err = -ENOMEM;
2293 
2294 	/*
2295 	 * The protected Hyp-mode cannot be initialized if the memory pool
2296 	 * allocation has failed.
2297 	 */
2298 	if (is_protected_kvm_enabled() && !hyp_mem_base)
2299 		goto out_err;
2300 
2301 	/*
2302 	 * Allocate Hyp PGD and setup Hyp identity mapping
2303 	 */
2304 	err = kvm_mmu_init(&hyp_va_bits);
2305 	if (err)
2306 		goto out_err;
2307 
2308 	/*
2309 	 * Allocate stack pages for Hypervisor-mode
2310 	 */
2311 	for_each_possible_cpu(cpu) {
2312 		unsigned long stack_page;
2313 
2314 		stack_page = __get_free_page(GFP_KERNEL);
2315 		if (!stack_page) {
2316 			err = -ENOMEM;
2317 			goto out_err;
2318 		}
2319 
2320 		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
2321 	}
2322 
2323 	/*
2324 	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
2325 	 */
2326 	for_each_possible_cpu(cpu) {
2327 		struct page *page;
2328 		void *page_addr;
2329 
2330 		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
2331 		if (!page) {
2332 			err = -ENOMEM;
2333 			goto out_err;
2334 		}
2335 
2336 		page_addr = page_address(page);
2337 		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
2338 		kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr;
2339 	}
2340 
2341 	/*
2342 	 * Map the Hyp-code called directly from the host
2343 	 */
2344 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
2345 				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
2346 	if (err) {
2347 		kvm_err("Cannot map world-switch code\n");
2348 		goto out_err;
2349 	}
2350 
2351 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
2352 				  kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
2353 	if (err) {
2354 		kvm_err("Cannot map .hyp.rodata section\n");
2355 		goto out_err;
2356 	}
2357 
2358 	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
2359 				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
2360 	if (err) {
2361 		kvm_err("Cannot map rodata section\n");
2362 		goto out_err;
2363 	}
2364 
2365 	/*
2366 	 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
2367 	 * section thanks to an assertion in the linker script. Map it RW and
2368 	 * the rest of .bss RO.
2369 	 */
2370 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
2371 				  kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
2372 	if (err) {
2373 		kvm_err("Cannot map hyp bss section: %d\n", err);
2374 		goto out_err;
2375 	}
2376 
2377 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
2378 				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
2379 	if (err) {
2380 		kvm_err("Cannot map bss section\n");
2381 		goto out_err;
2382 	}
2383 
2384 	/*
2385 	 * Map the Hyp stack pages
2386 	 */
2387 	for_each_possible_cpu(cpu) {
2388 		struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2389 		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
2390 
2391 		err = create_hyp_stack(__pa(stack_page), &params->stack_hyp_va);
2392 		if (err) {
2393 			kvm_err("Cannot map hyp stack\n");
2394 			goto out_err;
2395 		}
2396 
2397 		/*
2398 		 * Save the stack PA in nvhe_init_params. This will be needed
2399 		 * to recreate the stack mapping in protected nVHE mode.
2400 		 * __hyp_pa() won't do the right thing there, since the stack
2401 		 * has been mapped in the flexible private VA space.
2402 		 */
2403 		params->stack_pa = __pa(stack_page);
2404 	}
2405 
2406 	for_each_possible_cpu(cpu) {
2407 		char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu];
2408 		char *percpu_end = percpu_begin + nvhe_percpu_size();
2409 
2410 		/* Map Hyp percpu pages */
2411 		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
2412 		if (err) {
2413 			kvm_err("Cannot map hyp percpu region\n");
2414 			goto out_err;
2415 		}
2416 
2417 		/* Prepare the CPU initialization parameters */
2418 		cpu_prepare_hyp_mode(cpu, hyp_va_bits);
2419 	}
2420 
2421 	kvm_hyp_init_symbols();
2422 
2423 	if (is_protected_kvm_enabled()) {
2424 		if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) &&
2425 		    cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH))
2426 			pkvm_hyp_init_ptrauth();
2427 
2428 		init_cpu_logical_map();
2429 
2430 		if (!init_psci_relay()) {
2431 			err = -ENODEV;
2432 			goto out_err;
2433 		}
2434 
2435 		err = kvm_hyp_init_protection(hyp_va_bits);
2436 		if (err) {
2437 			kvm_err("Failed to init hyp memory protection\n");
2438 			goto out_err;
2439 		}
2440 	}
2441 
2442 	return 0;
2443 
2444 out_err:
2445 	teardown_hyp_mode();
2446 	kvm_err("error initializing Hyp mode: %d\n", err);
2447 	return err;
2448 }
2449 
2450 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2451 {
2452 	struct kvm_vcpu *vcpu;
2453 	unsigned long i;
2454 
2455 	mpidr &= MPIDR_HWID_BITMASK;
2456 
2457 	if (kvm->arch.mpidr_data) {
2458 		u16 idx = kvm_mpidr_index(kvm->arch.mpidr_data, mpidr);
2459 
2460 		vcpu = kvm_get_vcpu(kvm,
2461 				    kvm->arch.mpidr_data->cmpidr_to_idx[idx]);
2462 		if (mpidr != kvm_vcpu_get_mpidr_aff(vcpu))
2463 			vcpu = NULL;
2464 
2465 		return vcpu;
2466 	}
2467 
2468 	kvm_for_each_vcpu(i, vcpu, kvm) {
2469 		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2470 			return vcpu;
2471 	}
2472 	return NULL;
2473 }
2474 
2475 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2476 {
2477 	return irqchip_in_kernel(kvm);
2478 }
2479 
2480 bool kvm_arch_has_irq_bypass(void)
2481 {
2482 	return true;
2483 }
2484 
2485 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2486 				      struct irq_bypass_producer *prod)
2487 {
2488 	struct kvm_kernel_irqfd *irqfd =
2489 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2490 
2491 	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2492 					  &irqfd->irq_entry);
2493 }
2494 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2495 				      struct irq_bypass_producer *prod)
2496 {
2497 	struct kvm_kernel_irqfd *irqfd =
2498 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2499 
2500 	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2501 				     &irqfd->irq_entry);
2502 }
2503 
2504 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2505 {
2506 	struct kvm_kernel_irqfd *irqfd =
2507 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2508 
2509 	kvm_arm_halt_guest(irqfd->kvm);
2510 }
2511 
2512 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2513 {
2514 	struct kvm_kernel_irqfd *irqfd =
2515 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2516 
2517 	kvm_arm_resume_guest(irqfd->kvm);
2518 }
2519 
2520 /* Initialize Hyp-mode and memory mappings on all CPUs */
2521 static __init int kvm_arm_init(void)
2522 {
2523 	int err;
2524 	bool in_hyp_mode;
2525 
2526 	if (!is_hyp_mode_available()) {
2527 		kvm_info("HYP mode not available\n");
2528 		return -ENODEV;
2529 	}
2530 
2531 	if (kvm_get_mode() == KVM_MODE_NONE) {
2532 		kvm_info("KVM disabled from command line\n");
2533 		return -ENODEV;
2534 	}
2535 
2536 	err = kvm_sys_reg_table_init();
2537 	if (err) {
2538 		kvm_info("Error initializing system register tables");
2539 		return err;
2540 	}
2541 
2542 	in_hyp_mode = is_kernel_in_hyp_mode();
2543 
2544 	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2545 	    cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2546 		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2547 			 "Only trusted guests should be used on this system.\n");
2548 
2549 	err = kvm_set_ipa_limit();
2550 	if (err)
2551 		return err;
2552 
2553 	err = kvm_arm_init_sve();
2554 	if (err)
2555 		return err;
2556 
2557 	err = kvm_arm_vmid_alloc_init();
2558 	if (err) {
2559 		kvm_err("Failed to initialize VMID allocator.\n");
2560 		return err;
2561 	}
2562 
2563 	if (!in_hyp_mode) {
2564 		err = init_hyp_mode();
2565 		if (err)
2566 			goto out_err;
2567 	}
2568 
2569 	err = kvm_init_vector_slots();
2570 	if (err) {
2571 		kvm_err("Cannot initialise vector slots\n");
2572 		goto out_hyp;
2573 	}
2574 
2575 	err = init_subsystems();
2576 	if (err)
2577 		goto out_hyp;
2578 
2579 	if (is_protected_kvm_enabled()) {
2580 		kvm_info("Protected nVHE mode initialized successfully\n");
2581 	} else if (in_hyp_mode) {
2582 		kvm_info("VHE mode initialized successfully\n");
2583 	} else {
2584 		kvm_info("Hyp mode initialized successfully\n");
2585 	}
2586 
2587 	/*
2588 	 * FIXME: Do something reasonable if kvm_init() fails after pKVM
2589 	 * hypervisor protection is finalized.
2590 	 */
2591 	err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2592 	if (err)
2593 		goto out_subs;
2594 
2595 	kvm_arm_initialised = true;
2596 
2597 	return 0;
2598 
2599 out_subs:
2600 	teardown_subsystems();
2601 out_hyp:
2602 	if (!in_hyp_mode)
2603 		teardown_hyp_mode();
2604 out_err:
2605 	kvm_arm_vmid_alloc_free();
2606 	return err;
2607 }
2608 
2609 static int __init early_kvm_mode_cfg(char *arg)
2610 {
2611 	if (!arg)
2612 		return -EINVAL;
2613 
2614 	if (strcmp(arg, "none") == 0) {
2615 		kvm_mode = KVM_MODE_NONE;
2616 		return 0;
2617 	}
2618 
2619 	if (!is_hyp_mode_available()) {
2620 		pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n");
2621 		return 0;
2622 	}
2623 
2624 	if (strcmp(arg, "protected") == 0) {
2625 		if (!is_kernel_in_hyp_mode())
2626 			kvm_mode = KVM_MODE_PROTECTED;
2627 		else
2628 			pr_warn_once("Protected KVM not available with VHE\n");
2629 
2630 		return 0;
2631 	}
2632 
2633 	if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2634 		kvm_mode = KVM_MODE_DEFAULT;
2635 		return 0;
2636 	}
2637 
2638 	if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) {
2639 		kvm_mode = KVM_MODE_NV;
2640 		return 0;
2641 	}
2642 
2643 	return -EINVAL;
2644 }
2645 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2646 
2647 enum kvm_mode kvm_get_mode(void)
2648 {
2649 	return kvm_mode;
2650 }
2651 
2652 module_init(kvm_arm_init);
2653