xref: /linux/arch/arm64/kvm/arm.c (revision 6c363eafc4d637ac4bd83d4a7dd06dd3cfbe7c5f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/errno.h>
10 #include <linux/err.h>
11 #include <linux/kvm_host.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/vmalloc.h>
15 #include <linux/fs.h>
16 #include <linux/mman.h>
17 #include <linux/sched.h>
18 #include <linux/kvm.h>
19 #include <linux/kvm_irqfd.h>
20 #include <linux/irqbypass.h>
21 #include <linux/sched/stat.h>
22 #include <linux/psci.h>
23 #include <trace/events/kvm.h>
24 
25 #define CREATE_TRACE_POINTS
26 #include "trace_arm.h"
27 
28 #include <linux/uaccess.h>
29 #include <asm/ptrace.h>
30 #include <asm/mman.h>
31 #include <asm/tlbflush.h>
32 #include <asm/cacheflush.h>
33 #include <asm/cpufeature.h>
34 #include <asm/virt.h>
35 #include <asm/kvm_arm.h>
36 #include <asm/kvm_asm.h>
37 #include <asm/kvm_mmu.h>
38 #include <asm/kvm_emulate.h>
39 #include <asm/sections.h>
40 
41 #include <kvm/arm_hypercalls.h>
42 #include <kvm/arm_pmu.h>
43 #include <kvm/arm_psci.h>
44 
45 #ifdef REQUIRES_VIRT
46 __asm__(".arch_extension	virt");
47 #endif
48 
49 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
50 DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
51 
52 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
53 
54 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55 unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
56 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
57 
58 /* The VMID used in the VTTBR */
59 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
60 static u32 kvm_next_vmid;
61 static DEFINE_SPINLOCK(kvm_vmid_lock);
62 
63 static bool vgic_present;
64 
65 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
66 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
67 
68 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
69 {
70 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
71 }
72 
73 int kvm_arch_hardware_setup(void *opaque)
74 {
75 	return 0;
76 }
77 
78 int kvm_arch_check_processor_compat(void *opaque)
79 {
80 	return 0;
81 }
82 
83 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
84 			    struct kvm_enable_cap *cap)
85 {
86 	int r;
87 
88 	if (cap->flags)
89 		return -EINVAL;
90 
91 	switch (cap->cap) {
92 	case KVM_CAP_ARM_NISV_TO_USER:
93 		r = 0;
94 		kvm->arch.return_nisv_io_abort_to_user = true;
95 		break;
96 	default:
97 		r = -EINVAL;
98 		break;
99 	}
100 
101 	return r;
102 }
103 
104 static int kvm_arm_default_max_vcpus(void)
105 {
106 	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
107 }
108 
109 static void set_default_spectre(struct kvm *kvm)
110 {
111 	/*
112 	 * The default is to expose CSV2 == 1 if the HW isn't affected.
113 	 * Although this is a per-CPU feature, we make it global because
114 	 * asymmetric systems are just a nuisance.
115 	 *
116 	 * Userspace can override this as long as it doesn't promise
117 	 * the impossible.
118 	 */
119 	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
120 		kvm->arch.pfr0_csv2 = 1;
121 	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
122 		kvm->arch.pfr0_csv3 = 1;
123 }
124 
125 /**
126  * kvm_arch_init_vm - initializes a VM data structure
127  * @kvm:	pointer to the KVM struct
128  */
129 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
130 {
131 	int ret;
132 
133 	ret = kvm_arm_setup_stage2(kvm, type);
134 	if (ret)
135 		return ret;
136 
137 	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
138 	if (ret)
139 		return ret;
140 
141 	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
142 	if (ret)
143 		goto out_free_stage2_pgd;
144 
145 	kvm_vgic_early_init(kvm);
146 
147 	/* The maximum number of VCPUs is limited by the host's GIC model */
148 	kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
149 
150 	set_default_spectre(kvm);
151 
152 	return ret;
153 out_free_stage2_pgd:
154 	kvm_free_stage2_pgd(&kvm->arch.mmu);
155 	return ret;
156 }
157 
158 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
159 {
160 	return VM_FAULT_SIGBUS;
161 }
162 
163 
164 /**
165  * kvm_arch_destroy_vm - destroy the VM data structure
166  * @kvm:	pointer to the KVM struct
167  */
168 void kvm_arch_destroy_vm(struct kvm *kvm)
169 {
170 	int i;
171 
172 	bitmap_free(kvm->arch.pmu_filter);
173 
174 	kvm_vgic_destroy(kvm);
175 
176 	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
177 		if (kvm->vcpus[i]) {
178 			kvm_vcpu_destroy(kvm->vcpus[i]);
179 			kvm->vcpus[i] = NULL;
180 		}
181 	}
182 	atomic_set(&kvm->online_vcpus, 0);
183 }
184 
185 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
186 {
187 	int r;
188 	switch (ext) {
189 	case KVM_CAP_IRQCHIP:
190 		r = vgic_present;
191 		break;
192 	case KVM_CAP_IOEVENTFD:
193 	case KVM_CAP_DEVICE_CTRL:
194 	case KVM_CAP_USER_MEMORY:
195 	case KVM_CAP_SYNC_MMU:
196 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
197 	case KVM_CAP_ONE_REG:
198 	case KVM_CAP_ARM_PSCI:
199 	case KVM_CAP_ARM_PSCI_0_2:
200 	case KVM_CAP_READONLY_MEM:
201 	case KVM_CAP_MP_STATE:
202 	case KVM_CAP_IMMEDIATE_EXIT:
203 	case KVM_CAP_VCPU_EVENTS:
204 	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
205 	case KVM_CAP_ARM_NISV_TO_USER:
206 	case KVM_CAP_ARM_INJECT_EXT_DABT:
207 	case KVM_CAP_SET_GUEST_DEBUG:
208 	case KVM_CAP_VCPU_ATTRIBUTES:
209 		r = 1;
210 		break;
211 	case KVM_CAP_ARM_SET_DEVICE_ADDR:
212 		r = 1;
213 		break;
214 	case KVM_CAP_NR_VCPUS:
215 		r = num_online_cpus();
216 		break;
217 	case KVM_CAP_MAX_VCPUS:
218 	case KVM_CAP_MAX_VCPU_ID:
219 		if (kvm)
220 			r = kvm->arch.max_vcpus;
221 		else
222 			r = kvm_arm_default_max_vcpus();
223 		break;
224 	case KVM_CAP_MSI_DEVID:
225 		if (!kvm)
226 			r = -EINVAL;
227 		else
228 			r = kvm->arch.vgic.msis_require_devid;
229 		break;
230 	case KVM_CAP_ARM_USER_IRQ:
231 		/*
232 		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
233 		 * (bump this number if adding more devices)
234 		 */
235 		r = 1;
236 		break;
237 	case KVM_CAP_STEAL_TIME:
238 		r = kvm_arm_pvtime_supported();
239 		break;
240 	case KVM_CAP_ARM_EL1_32BIT:
241 		r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
242 		break;
243 	case KVM_CAP_GUEST_DEBUG_HW_BPS:
244 		r = get_num_brps();
245 		break;
246 	case KVM_CAP_GUEST_DEBUG_HW_WPS:
247 		r = get_num_wrps();
248 		break;
249 	case KVM_CAP_ARM_PMU_V3:
250 		r = kvm_arm_support_pmu_v3();
251 		break;
252 	case KVM_CAP_ARM_INJECT_SERROR_ESR:
253 		r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
254 		break;
255 	case KVM_CAP_ARM_VM_IPA_SIZE:
256 		r = get_kvm_ipa_limit();
257 		break;
258 	case KVM_CAP_ARM_SVE:
259 		r = system_supports_sve();
260 		break;
261 	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
262 	case KVM_CAP_ARM_PTRAUTH_GENERIC:
263 		r = system_has_full_ptr_auth();
264 		break;
265 	default:
266 		r = 0;
267 	}
268 
269 	return r;
270 }
271 
272 long kvm_arch_dev_ioctl(struct file *filp,
273 			unsigned int ioctl, unsigned long arg)
274 {
275 	return -EINVAL;
276 }
277 
278 struct kvm *kvm_arch_alloc_vm(void)
279 {
280 	if (!has_vhe())
281 		return kzalloc(sizeof(struct kvm), GFP_KERNEL);
282 
283 	return vzalloc(sizeof(struct kvm));
284 }
285 
286 void kvm_arch_free_vm(struct kvm *kvm)
287 {
288 	if (!has_vhe())
289 		kfree(kvm);
290 	else
291 		vfree(kvm);
292 }
293 
294 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
295 {
296 	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
297 		return -EBUSY;
298 
299 	if (id >= kvm->arch.max_vcpus)
300 		return -EINVAL;
301 
302 	return 0;
303 }
304 
305 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
306 {
307 	int err;
308 
309 	/* Force users to call KVM_ARM_VCPU_INIT */
310 	vcpu->arch.target = -1;
311 	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
312 
313 	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
314 
315 	/* Set up the timer */
316 	kvm_timer_vcpu_init(vcpu);
317 
318 	kvm_pmu_vcpu_init(vcpu);
319 
320 	kvm_arm_reset_debug_ptr(vcpu);
321 
322 	kvm_arm_pvtime_vcpu_init(&vcpu->arch);
323 
324 	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
325 
326 	err = kvm_vgic_vcpu_init(vcpu);
327 	if (err)
328 		return err;
329 
330 	return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
331 }
332 
333 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
334 {
335 }
336 
337 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
338 {
339 	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
340 		static_branch_dec(&userspace_irqchip_in_use);
341 
342 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
343 	kvm_timer_vcpu_terminate(vcpu);
344 	kvm_pmu_vcpu_destroy(vcpu);
345 
346 	kvm_arm_vcpu_destroy(vcpu);
347 }
348 
349 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
350 {
351 	return kvm_timer_is_pending(vcpu);
352 }
353 
354 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
355 {
356 	/*
357 	 * If we're about to block (most likely because we've just hit a
358 	 * WFI), we need to sync back the state of the GIC CPU interface
359 	 * so that we have the latest PMR and group enables. This ensures
360 	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
361 	 * whether we have pending interrupts.
362 	 *
363 	 * For the same reason, we want to tell GICv4 that we need
364 	 * doorbells to be signalled, should an interrupt become pending.
365 	 */
366 	preempt_disable();
367 	kvm_vgic_vmcr_sync(vcpu);
368 	vgic_v4_put(vcpu, true);
369 	preempt_enable();
370 }
371 
372 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
373 {
374 	preempt_disable();
375 	vgic_v4_load(vcpu);
376 	preempt_enable();
377 }
378 
379 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
380 {
381 	struct kvm_s2_mmu *mmu;
382 	int *last_ran;
383 
384 	mmu = vcpu->arch.hw_mmu;
385 	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
386 
387 	/*
388 	 * We might get preempted before the vCPU actually runs, but
389 	 * over-invalidation doesn't affect correctness.
390 	 */
391 	if (*last_ran != vcpu->vcpu_id) {
392 		kvm_call_hyp(__kvm_tlb_flush_local_vmid, mmu);
393 		*last_ran = vcpu->vcpu_id;
394 	}
395 
396 	vcpu->cpu = cpu;
397 
398 	kvm_vgic_load(vcpu);
399 	kvm_timer_vcpu_load(vcpu);
400 	if (has_vhe())
401 		kvm_vcpu_load_sysregs_vhe(vcpu);
402 	kvm_arch_vcpu_load_fp(vcpu);
403 	kvm_vcpu_pmu_restore_guest(vcpu);
404 	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
405 		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
406 
407 	if (single_task_running())
408 		vcpu_clear_wfx_traps(vcpu);
409 	else
410 		vcpu_set_wfx_traps(vcpu);
411 
412 	if (vcpu_has_ptrauth(vcpu))
413 		vcpu_ptrauth_disable(vcpu);
414 }
415 
416 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
417 {
418 	kvm_arch_vcpu_put_fp(vcpu);
419 	if (has_vhe())
420 		kvm_vcpu_put_sysregs_vhe(vcpu);
421 	kvm_timer_vcpu_put(vcpu);
422 	kvm_vgic_put(vcpu);
423 	kvm_vcpu_pmu_restore_host(vcpu);
424 
425 	vcpu->cpu = -1;
426 }
427 
428 static void vcpu_power_off(struct kvm_vcpu *vcpu)
429 {
430 	vcpu->arch.power_off = true;
431 	kvm_make_request(KVM_REQ_SLEEP, vcpu);
432 	kvm_vcpu_kick(vcpu);
433 }
434 
435 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
436 				    struct kvm_mp_state *mp_state)
437 {
438 	if (vcpu->arch.power_off)
439 		mp_state->mp_state = KVM_MP_STATE_STOPPED;
440 	else
441 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
442 
443 	return 0;
444 }
445 
446 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
447 				    struct kvm_mp_state *mp_state)
448 {
449 	int ret = 0;
450 
451 	switch (mp_state->mp_state) {
452 	case KVM_MP_STATE_RUNNABLE:
453 		vcpu->arch.power_off = false;
454 		break;
455 	case KVM_MP_STATE_STOPPED:
456 		vcpu_power_off(vcpu);
457 		break;
458 	default:
459 		ret = -EINVAL;
460 	}
461 
462 	return ret;
463 }
464 
465 /**
466  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
467  * @v:		The VCPU pointer
468  *
469  * If the guest CPU is not waiting for interrupts or an interrupt line is
470  * asserted, the CPU is by definition runnable.
471  */
472 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
473 {
474 	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
475 	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
476 		&& !v->arch.power_off && !v->arch.pause);
477 }
478 
479 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
480 {
481 	return vcpu_mode_priv(vcpu);
482 }
483 
484 /* Just ensure a guest exit from a particular CPU */
485 static void exit_vm_noop(void *info)
486 {
487 }
488 
489 void force_vm_exit(const cpumask_t *mask)
490 {
491 	preempt_disable();
492 	smp_call_function_many(mask, exit_vm_noop, NULL, true);
493 	preempt_enable();
494 }
495 
496 /**
497  * need_new_vmid_gen - check that the VMID is still valid
498  * @vmid: The VMID to check
499  *
500  * return true if there is a new generation of VMIDs being used
501  *
502  * The hardware supports a limited set of values with the value zero reserved
503  * for the host, so we check if an assigned value belongs to a previous
504  * generation, which requires us to assign a new value. If we're the first to
505  * use a VMID for the new generation, we must flush necessary caches and TLBs
506  * on all CPUs.
507  */
508 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
509 {
510 	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
511 	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
512 	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
513 }
514 
515 /**
516  * update_vmid - Update the vmid with a valid VMID for the current generation
517  * @vmid: The stage-2 VMID information struct
518  */
519 static void update_vmid(struct kvm_vmid *vmid)
520 {
521 	if (!need_new_vmid_gen(vmid))
522 		return;
523 
524 	spin_lock(&kvm_vmid_lock);
525 
526 	/*
527 	 * We need to re-check the vmid_gen here to ensure that if another vcpu
528 	 * already allocated a valid vmid for this vm, then this vcpu should
529 	 * use the same vmid.
530 	 */
531 	if (!need_new_vmid_gen(vmid)) {
532 		spin_unlock(&kvm_vmid_lock);
533 		return;
534 	}
535 
536 	/* First user of a new VMID generation? */
537 	if (unlikely(kvm_next_vmid == 0)) {
538 		atomic64_inc(&kvm_vmid_gen);
539 		kvm_next_vmid = 1;
540 
541 		/*
542 		 * On SMP we know no other CPUs can use this CPU's or each
543 		 * other's VMID after force_vm_exit returns since the
544 		 * kvm_vmid_lock blocks them from reentry to the guest.
545 		 */
546 		force_vm_exit(cpu_all_mask);
547 		/*
548 		 * Now broadcast TLB + ICACHE invalidation over the inner
549 		 * shareable domain to make sure all data structures are
550 		 * clean.
551 		 */
552 		kvm_call_hyp(__kvm_flush_vm_context);
553 	}
554 
555 	vmid->vmid = kvm_next_vmid;
556 	kvm_next_vmid++;
557 	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
558 
559 	smp_wmb();
560 	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
561 
562 	spin_unlock(&kvm_vmid_lock);
563 }
564 
565 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
566 {
567 	struct kvm *kvm = vcpu->kvm;
568 	int ret = 0;
569 
570 	if (likely(vcpu->arch.has_run_once))
571 		return 0;
572 
573 	if (!kvm_arm_vcpu_is_finalized(vcpu))
574 		return -EPERM;
575 
576 	vcpu->arch.has_run_once = true;
577 
578 	if (likely(irqchip_in_kernel(kvm))) {
579 		/*
580 		 * Map the VGIC hardware resources before running a vcpu the
581 		 * first time on this VM.
582 		 */
583 		ret = kvm_vgic_map_resources(kvm);
584 		if (ret)
585 			return ret;
586 	} else {
587 		/*
588 		 * Tell the rest of the code that there are userspace irqchip
589 		 * VMs in the wild.
590 		 */
591 		static_branch_inc(&userspace_irqchip_in_use);
592 	}
593 
594 	ret = kvm_timer_enable(vcpu);
595 	if (ret)
596 		return ret;
597 
598 	ret = kvm_arm_pmu_v3_enable(vcpu);
599 
600 	return ret;
601 }
602 
603 bool kvm_arch_intc_initialized(struct kvm *kvm)
604 {
605 	return vgic_initialized(kvm);
606 }
607 
608 void kvm_arm_halt_guest(struct kvm *kvm)
609 {
610 	int i;
611 	struct kvm_vcpu *vcpu;
612 
613 	kvm_for_each_vcpu(i, vcpu, kvm)
614 		vcpu->arch.pause = true;
615 	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
616 }
617 
618 void kvm_arm_resume_guest(struct kvm *kvm)
619 {
620 	int i;
621 	struct kvm_vcpu *vcpu;
622 
623 	kvm_for_each_vcpu(i, vcpu, kvm) {
624 		vcpu->arch.pause = false;
625 		rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
626 	}
627 }
628 
629 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
630 {
631 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
632 
633 	rcuwait_wait_event(wait,
634 			   (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
635 			   TASK_INTERRUPTIBLE);
636 
637 	if (vcpu->arch.power_off || vcpu->arch.pause) {
638 		/* Awaken to handle a signal, request we sleep again later. */
639 		kvm_make_request(KVM_REQ_SLEEP, vcpu);
640 	}
641 
642 	/*
643 	 * Make sure we will observe a potential reset request if we've
644 	 * observed a change to the power state. Pairs with the smp_wmb() in
645 	 * kvm_psci_vcpu_on().
646 	 */
647 	smp_rmb();
648 }
649 
650 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
651 {
652 	return vcpu->arch.target >= 0;
653 }
654 
655 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
656 {
657 	if (kvm_request_pending(vcpu)) {
658 		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
659 			vcpu_req_sleep(vcpu);
660 
661 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
662 			kvm_reset_vcpu(vcpu);
663 
664 		/*
665 		 * Clear IRQ_PENDING requests that were made to guarantee
666 		 * that a VCPU sees new virtual interrupts.
667 		 */
668 		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
669 
670 		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
671 			kvm_update_stolen_time(vcpu);
672 
673 		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
674 			/* The distributor enable bits were changed */
675 			preempt_disable();
676 			vgic_v4_put(vcpu, false);
677 			vgic_v4_load(vcpu);
678 			preempt_enable();
679 		}
680 	}
681 }
682 
683 /**
684  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
685  * @vcpu:	The VCPU pointer
686  *
687  * This function is called through the VCPU_RUN ioctl called from user space. It
688  * will execute VM code in a loop until the time slice for the process is used
689  * or some emulation is needed from user space in which case the function will
690  * return with return value 0 and with the kvm_run structure filled in with the
691  * required data for the requested emulation.
692  */
693 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
694 {
695 	struct kvm_run *run = vcpu->run;
696 	int ret;
697 
698 	if (unlikely(!kvm_vcpu_initialized(vcpu)))
699 		return -ENOEXEC;
700 
701 	ret = kvm_vcpu_first_run_init(vcpu);
702 	if (ret)
703 		return ret;
704 
705 	if (run->exit_reason == KVM_EXIT_MMIO) {
706 		ret = kvm_handle_mmio_return(vcpu);
707 		if (ret)
708 			return ret;
709 	}
710 
711 	if (run->immediate_exit)
712 		return -EINTR;
713 
714 	vcpu_load(vcpu);
715 
716 	kvm_sigset_activate(vcpu);
717 
718 	ret = 1;
719 	run->exit_reason = KVM_EXIT_UNKNOWN;
720 	while (ret > 0) {
721 		/*
722 		 * Check conditions before entering the guest
723 		 */
724 		cond_resched();
725 
726 		update_vmid(&vcpu->arch.hw_mmu->vmid);
727 
728 		check_vcpu_requests(vcpu);
729 
730 		/*
731 		 * Preparing the interrupts to be injected also
732 		 * involves poking the GIC, which must be done in a
733 		 * non-preemptible context.
734 		 */
735 		preempt_disable();
736 
737 		kvm_pmu_flush_hwstate(vcpu);
738 
739 		local_irq_disable();
740 
741 		kvm_vgic_flush_hwstate(vcpu);
742 
743 		/*
744 		 * Exit if we have a signal pending so that we can deliver the
745 		 * signal to user space.
746 		 */
747 		if (signal_pending(current)) {
748 			ret = -EINTR;
749 			run->exit_reason = KVM_EXIT_INTR;
750 		}
751 
752 		/*
753 		 * If we're using a userspace irqchip, then check if we need
754 		 * to tell a userspace irqchip about timer or PMU level
755 		 * changes and if so, exit to userspace (the actual level
756 		 * state gets updated in kvm_timer_update_run and
757 		 * kvm_pmu_update_run below).
758 		 */
759 		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
760 			if (kvm_timer_should_notify_user(vcpu) ||
761 			    kvm_pmu_should_notify_user(vcpu)) {
762 				ret = -EINTR;
763 				run->exit_reason = KVM_EXIT_INTR;
764 			}
765 		}
766 
767 		/*
768 		 * Ensure we set mode to IN_GUEST_MODE after we disable
769 		 * interrupts and before the final VCPU requests check.
770 		 * See the comment in kvm_vcpu_exiting_guest_mode() and
771 		 * Documentation/virt/kvm/vcpu-requests.rst
772 		 */
773 		smp_store_mb(vcpu->mode, IN_GUEST_MODE);
774 
775 		if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
776 		    kvm_request_pending(vcpu)) {
777 			vcpu->mode = OUTSIDE_GUEST_MODE;
778 			isb(); /* Ensure work in x_flush_hwstate is committed */
779 			kvm_pmu_sync_hwstate(vcpu);
780 			if (static_branch_unlikely(&userspace_irqchip_in_use))
781 				kvm_timer_sync_user(vcpu);
782 			kvm_vgic_sync_hwstate(vcpu);
783 			local_irq_enable();
784 			preempt_enable();
785 			continue;
786 		}
787 
788 		kvm_arm_setup_debug(vcpu);
789 
790 		/**************************************************************
791 		 * Enter the guest
792 		 */
793 		trace_kvm_entry(*vcpu_pc(vcpu));
794 		guest_enter_irqoff();
795 
796 		ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
797 
798 		vcpu->mode = OUTSIDE_GUEST_MODE;
799 		vcpu->stat.exits++;
800 		/*
801 		 * Back from guest
802 		 *************************************************************/
803 
804 		kvm_arm_clear_debug(vcpu);
805 
806 		/*
807 		 * We must sync the PMU state before the vgic state so
808 		 * that the vgic can properly sample the updated state of the
809 		 * interrupt line.
810 		 */
811 		kvm_pmu_sync_hwstate(vcpu);
812 
813 		/*
814 		 * Sync the vgic state before syncing the timer state because
815 		 * the timer code needs to know if the virtual timer
816 		 * interrupts are active.
817 		 */
818 		kvm_vgic_sync_hwstate(vcpu);
819 
820 		/*
821 		 * Sync the timer hardware state before enabling interrupts as
822 		 * we don't want vtimer interrupts to race with syncing the
823 		 * timer virtual interrupt state.
824 		 */
825 		if (static_branch_unlikely(&userspace_irqchip_in_use))
826 			kvm_timer_sync_user(vcpu);
827 
828 		kvm_arch_vcpu_ctxsync_fp(vcpu);
829 
830 		/*
831 		 * We may have taken a host interrupt in HYP mode (ie
832 		 * while executing the guest). This interrupt is still
833 		 * pending, as we haven't serviced it yet!
834 		 *
835 		 * We're now back in SVC mode, with interrupts
836 		 * disabled.  Enabling the interrupts now will have
837 		 * the effect of taking the interrupt again, in SVC
838 		 * mode this time.
839 		 */
840 		local_irq_enable();
841 
842 		/*
843 		 * We do local_irq_enable() before calling guest_exit() so
844 		 * that if a timer interrupt hits while running the guest we
845 		 * account that tick as being spent in the guest.  We enable
846 		 * preemption after calling guest_exit() so that if we get
847 		 * preempted we make sure ticks after that is not counted as
848 		 * guest time.
849 		 */
850 		guest_exit();
851 		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
852 
853 		/* Exit types that need handling before we can be preempted */
854 		handle_exit_early(vcpu, ret);
855 
856 		preempt_enable();
857 
858 		/*
859 		 * The ARMv8 architecture doesn't give the hypervisor
860 		 * a mechanism to prevent a guest from dropping to AArch32 EL0
861 		 * if implemented by the CPU. If we spot the guest in such
862 		 * state and that we decided it wasn't supposed to do so (like
863 		 * with the asymmetric AArch32 case), return to userspace with
864 		 * a fatal error.
865 		 */
866 		if (!system_supports_32bit_el0() && vcpu_mode_is_32bit(vcpu)) {
867 			/*
868 			 * As we have caught the guest red-handed, decide that
869 			 * it isn't fit for purpose anymore by making the vcpu
870 			 * invalid. The VMM can try and fix it by issuing  a
871 			 * KVM_ARM_VCPU_INIT if it really wants to.
872 			 */
873 			vcpu->arch.target = -1;
874 			ret = ARM_EXCEPTION_IL;
875 		}
876 
877 		ret = handle_exit(vcpu, ret);
878 	}
879 
880 	/* Tell userspace about in-kernel device output levels */
881 	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
882 		kvm_timer_update_run(vcpu);
883 		kvm_pmu_update_run(vcpu);
884 	}
885 
886 	kvm_sigset_deactivate(vcpu);
887 
888 	vcpu_put(vcpu);
889 	return ret;
890 }
891 
892 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
893 {
894 	int bit_index;
895 	bool set;
896 	unsigned long *hcr;
897 
898 	if (number == KVM_ARM_IRQ_CPU_IRQ)
899 		bit_index = __ffs(HCR_VI);
900 	else /* KVM_ARM_IRQ_CPU_FIQ */
901 		bit_index = __ffs(HCR_VF);
902 
903 	hcr = vcpu_hcr(vcpu);
904 	if (level)
905 		set = test_and_set_bit(bit_index, hcr);
906 	else
907 		set = test_and_clear_bit(bit_index, hcr);
908 
909 	/*
910 	 * If we didn't change anything, no need to wake up or kick other CPUs
911 	 */
912 	if (set == level)
913 		return 0;
914 
915 	/*
916 	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
917 	 * trigger a world-switch round on the running physical CPU to set the
918 	 * virtual IRQ/FIQ fields in the HCR appropriately.
919 	 */
920 	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
921 	kvm_vcpu_kick(vcpu);
922 
923 	return 0;
924 }
925 
926 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
927 			  bool line_status)
928 {
929 	u32 irq = irq_level->irq;
930 	unsigned int irq_type, vcpu_idx, irq_num;
931 	int nrcpus = atomic_read(&kvm->online_vcpus);
932 	struct kvm_vcpu *vcpu = NULL;
933 	bool level = irq_level->level;
934 
935 	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
936 	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
937 	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
938 	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
939 
940 	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
941 
942 	switch (irq_type) {
943 	case KVM_ARM_IRQ_TYPE_CPU:
944 		if (irqchip_in_kernel(kvm))
945 			return -ENXIO;
946 
947 		if (vcpu_idx >= nrcpus)
948 			return -EINVAL;
949 
950 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
951 		if (!vcpu)
952 			return -EINVAL;
953 
954 		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
955 			return -EINVAL;
956 
957 		return vcpu_interrupt_line(vcpu, irq_num, level);
958 	case KVM_ARM_IRQ_TYPE_PPI:
959 		if (!irqchip_in_kernel(kvm))
960 			return -ENXIO;
961 
962 		if (vcpu_idx >= nrcpus)
963 			return -EINVAL;
964 
965 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
966 		if (!vcpu)
967 			return -EINVAL;
968 
969 		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
970 			return -EINVAL;
971 
972 		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
973 	case KVM_ARM_IRQ_TYPE_SPI:
974 		if (!irqchip_in_kernel(kvm))
975 			return -ENXIO;
976 
977 		if (irq_num < VGIC_NR_PRIVATE_IRQS)
978 			return -EINVAL;
979 
980 		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
981 	}
982 
983 	return -EINVAL;
984 }
985 
986 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
987 			       const struct kvm_vcpu_init *init)
988 {
989 	unsigned int i, ret;
990 	int phys_target = kvm_target_cpu();
991 
992 	if (init->target != phys_target)
993 		return -EINVAL;
994 
995 	/*
996 	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
997 	 * use the same target.
998 	 */
999 	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
1000 		return -EINVAL;
1001 
1002 	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
1003 	for (i = 0; i < sizeof(init->features) * 8; i++) {
1004 		bool set = (init->features[i / 32] & (1 << (i % 32)));
1005 
1006 		if (set && i >= KVM_VCPU_MAX_FEATURES)
1007 			return -ENOENT;
1008 
1009 		/*
1010 		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1011 		 * use the same feature set.
1012 		 */
1013 		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
1014 		    test_bit(i, vcpu->arch.features) != set)
1015 			return -EINVAL;
1016 
1017 		if (set)
1018 			set_bit(i, vcpu->arch.features);
1019 	}
1020 
1021 	vcpu->arch.target = phys_target;
1022 
1023 	/* Now we know what it is, we can reset it. */
1024 	ret = kvm_reset_vcpu(vcpu);
1025 	if (ret) {
1026 		vcpu->arch.target = -1;
1027 		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1028 	}
1029 
1030 	return ret;
1031 }
1032 
1033 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1034 					 struct kvm_vcpu_init *init)
1035 {
1036 	int ret;
1037 
1038 	ret = kvm_vcpu_set_target(vcpu, init);
1039 	if (ret)
1040 		return ret;
1041 
1042 	/*
1043 	 * Ensure a rebooted VM will fault in RAM pages and detect if the
1044 	 * guest MMU is turned off and flush the caches as needed.
1045 	 *
1046 	 * S2FWB enforces all memory accesses to RAM being cacheable,
1047 	 * ensuring that the data side is always coherent. We still
1048 	 * need to invalidate the I-cache though, as FWB does *not*
1049 	 * imply CTR_EL0.DIC.
1050 	 */
1051 	if (vcpu->arch.has_run_once) {
1052 		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1053 			stage2_unmap_vm(vcpu->kvm);
1054 		else
1055 			__flush_icache_all();
1056 	}
1057 
1058 	vcpu_reset_hcr(vcpu);
1059 
1060 	/*
1061 	 * Handle the "start in power-off" case.
1062 	 */
1063 	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1064 		vcpu_power_off(vcpu);
1065 	else
1066 		vcpu->arch.power_off = false;
1067 
1068 	return 0;
1069 }
1070 
1071 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1072 				 struct kvm_device_attr *attr)
1073 {
1074 	int ret = -ENXIO;
1075 
1076 	switch (attr->group) {
1077 	default:
1078 		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1079 		break;
1080 	}
1081 
1082 	return ret;
1083 }
1084 
1085 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1086 				 struct kvm_device_attr *attr)
1087 {
1088 	int ret = -ENXIO;
1089 
1090 	switch (attr->group) {
1091 	default:
1092 		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1093 		break;
1094 	}
1095 
1096 	return ret;
1097 }
1098 
1099 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1100 				 struct kvm_device_attr *attr)
1101 {
1102 	int ret = -ENXIO;
1103 
1104 	switch (attr->group) {
1105 	default:
1106 		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1107 		break;
1108 	}
1109 
1110 	return ret;
1111 }
1112 
1113 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1114 				   struct kvm_vcpu_events *events)
1115 {
1116 	memset(events, 0, sizeof(*events));
1117 
1118 	return __kvm_arm_vcpu_get_events(vcpu, events);
1119 }
1120 
1121 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1122 				   struct kvm_vcpu_events *events)
1123 {
1124 	int i;
1125 
1126 	/* check whether the reserved field is zero */
1127 	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1128 		if (events->reserved[i])
1129 			return -EINVAL;
1130 
1131 	/* check whether the pad field is zero */
1132 	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1133 		if (events->exception.pad[i])
1134 			return -EINVAL;
1135 
1136 	return __kvm_arm_vcpu_set_events(vcpu, events);
1137 }
1138 
1139 long kvm_arch_vcpu_ioctl(struct file *filp,
1140 			 unsigned int ioctl, unsigned long arg)
1141 {
1142 	struct kvm_vcpu *vcpu = filp->private_data;
1143 	void __user *argp = (void __user *)arg;
1144 	struct kvm_device_attr attr;
1145 	long r;
1146 
1147 	switch (ioctl) {
1148 	case KVM_ARM_VCPU_INIT: {
1149 		struct kvm_vcpu_init init;
1150 
1151 		r = -EFAULT;
1152 		if (copy_from_user(&init, argp, sizeof(init)))
1153 			break;
1154 
1155 		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1156 		break;
1157 	}
1158 	case KVM_SET_ONE_REG:
1159 	case KVM_GET_ONE_REG: {
1160 		struct kvm_one_reg reg;
1161 
1162 		r = -ENOEXEC;
1163 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1164 			break;
1165 
1166 		r = -EFAULT;
1167 		if (copy_from_user(&reg, argp, sizeof(reg)))
1168 			break;
1169 
1170 		if (ioctl == KVM_SET_ONE_REG)
1171 			r = kvm_arm_set_reg(vcpu, &reg);
1172 		else
1173 			r = kvm_arm_get_reg(vcpu, &reg);
1174 		break;
1175 	}
1176 	case KVM_GET_REG_LIST: {
1177 		struct kvm_reg_list __user *user_list = argp;
1178 		struct kvm_reg_list reg_list;
1179 		unsigned n;
1180 
1181 		r = -ENOEXEC;
1182 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1183 			break;
1184 
1185 		r = -EPERM;
1186 		if (!kvm_arm_vcpu_is_finalized(vcpu))
1187 			break;
1188 
1189 		r = -EFAULT;
1190 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1191 			break;
1192 		n = reg_list.n;
1193 		reg_list.n = kvm_arm_num_regs(vcpu);
1194 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1195 			break;
1196 		r = -E2BIG;
1197 		if (n < reg_list.n)
1198 			break;
1199 		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1200 		break;
1201 	}
1202 	case KVM_SET_DEVICE_ATTR: {
1203 		r = -EFAULT;
1204 		if (copy_from_user(&attr, argp, sizeof(attr)))
1205 			break;
1206 		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1207 		break;
1208 	}
1209 	case KVM_GET_DEVICE_ATTR: {
1210 		r = -EFAULT;
1211 		if (copy_from_user(&attr, argp, sizeof(attr)))
1212 			break;
1213 		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1214 		break;
1215 	}
1216 	case KVM_HAS_DEVICE_ATTR: {
1217 		r = -EFAULT;
1218 		if (copy_from_user(&attr, argp, sizeof(attr)))
1219 			break;
1220 		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1221 		break;
1222 	}
1223 	case KVM_GET_VCPU_EVENTS: {
1224 		struct kvm_vcpu_events events;
1225 
1226 		if (kvm_arm_vcpu_get_events(vcpu, &events))
1227 			return -EINVAL;
1228 
1229 		if (copy_to_user(argp, &events, sizeof(events)))
1230 			return -EFAULT;
1231 
1232 		return 0;
1233 	}
1234 	case KVM_SET_VCPU_EVENTS: {
1235 		struct kvm_vcpu_events events;
1236 
1237 		if (copy_from_user(&events, argp, sizeof(events)))
1238 			return -EFAULT;
1239 
1240 		return kvm_arm_vcpu_set_events(vcpu, &events);
1241 	}
1242 	case KVM_ARM_VCPU_FINALIZE: {
1243 		int what;
1244 
1245 		if (!kvm_vcpu_initialized(vcpu))
1246 			return -ENOEXEC;
1247 
1248 		if (get_user(what, (const int __user *)argp))
1249 			return -EFAULT;
1250 
1251 		return kvm_arm_vcpu_finalize(vcpu, what);
1252 	}
1253 	default:
1254 		r = -EINVAL;
1255 	}
1256 
1257 	return r;
1258 }
1259 
1260 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1261 {
1262 
1263 }
1264 
1265 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1266 					struct kvm_memory_slot *memslot)
1267 {
1268 	kvm_flush_remote_tlbs(kvm);
1269 }
1270 
1271 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1272 					struct kvm_arm_device_addr *dev_addr)
1273 {
1274 	unsigned long dev_id, type;
1275 
1276 	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1277 		KVM_ARM_DEVICE_ID_SHIFT;
1278 	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1279 		KVM_ARM_DEVICE_TYPE_SHIFT;
1280 
1281 	switch (dev_id) {
1282 	case KVM_ARM_DEVICE_VGIC_V2:
1283 		if (!vgic_present)
1284 			return -ENXIO;
1285 		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1286 	default:
1287 		return -ENODEV;
1288 	}
1289 }
1290 
1291 long kvm_arch_vm_ioctl(struct file *filp,
1292 		       unsigned int ioctl, unsigned long arg)
1293 {
1294 	struct kvm *kvm = filp->private_data;
1295 	void __user *argp = (void __user *)arg;
1296 
1297 	switch (ioctl) {
1298 	case KVM_CREATE_IRQCHIP: {
1299 		int ret;
1300 		if (!vgic_present)
1301 			return -ENXIO;
1302 		mutex_lock(&kvm->lock);
1303 		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1304 		mutex_unlock(&kvm->lock);
1305 		return ret;
1306 	}
1307 	case KVM_ARM_SET_DEVICE_ADDR: {
1308 		struct kvm_arm_device_addr dev_addr;
1309 
1310 		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1311 			return -EFAULT;
1312 		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1313 	}
1314 	case KVM_ARM_PREFERRED_TARGET: {
1315 		int err;
1316 		struct kvm_vcpu_init init;
1317 
1318 		err = kvm_vcpu_preferred_target(&init);
1319 		if (err)
1320 			return err;
1321 
1322 		if (copy_to_user(argp, &init, sizeof(init)))
1323 			return -EFAULT;
1324 
1325 		return 0;
1326 	}
1327 	default:
1328 		return -EINVAL;
1329 	}
1330 }
1331 
1332 static unsigned long nvhe_percpu_size(void)
1333 {
1334 	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1335 		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1336 }
1337 
1338 static unsigned long nvhe_percpu_order(void)
1339 {
1340 	unsigned long size = nvhe_percpu_size();
1341 
1342 	return size ? get_order(size) : 0;
1343 }
1344 
1345 /* A lookup table holding the hypervisor VA for each vector slot */
1346 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1347 
1348 static int __kvm_vector_slot2idx(enum arm64_hyp_spectre_vector slot)
1349 {
1350 	return slot - (slot != HYP_VECTOR_DIRECT);
1351 }
1352 
1353 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1354 {
1355 	int idx = __kvm_vector_slot2idx(slot);
1356 
1357 	hyp_spectre_vector_selector[slot] = base + (idx * SZ_2K);
1358 }
1359 
1360 static int kvm_init_vector_slots(void)
1361 {
1362 	int err;
1363 	void *base;
1364 
1365 	base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1366 	kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1367 
1368 	base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1369 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1370 
1371 	if (!cpus_have_const_cap(ARM64_SPECTRE_V3A))
1372 		return 0;
1373 
1374 	if (!has_vhe()) {
1375 		err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1376 					       __BP_HARDEN_HYP_VECS_SZ, &base);
1377 		if (err)
1378 			return err;
1379 	}
1380 
1381 	kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1382 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1383 	return 0;
1384 }
1385 
1386 static void cpu_init_hyp_mode(void)
1387 {
1388 	struct kvm_nvhe_init_params *params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1389 	struct arm_smccc_res res;
1390 	unsigned long tcr;
1391 
1392 	/* Switch from the HYP stub to our own HYP init vector */
1393 	__hyp_set_vectors(kvm_get_idmap_vector());
1394 
1395 	/*
1396 	 * Calculate the raw per-cpu offset without a translation from the
1397 	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
1398 	 * so that we can use adr_l to access per-cpu variables in EL2.
1399 	 * Also drop the KASAN tag which gets in the way...
1400 	 */
1401 	params->tpidr_el2 = (unsigned long)kasan_reset_tag(this_cpu_ptr_nvhe_sym(__per_cpu_start)) -
1402 			    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1403 
1404 	params->mair_el2 = read_sysreg(mair_el1);
1405 
1406 	/*
1407 	 * The ID map may be configured to use an extended virtual address
1408 	 * range. This is only the case if system RAM is out of range for the
1409 	 * currently configured page size and VA_BITS, in which case we will
1410 	 * also need the extended virtual range for the HYP ID map, or we won't
1411 	 * be able to enable the EL2 MMU.
1412 	 *
1413 	 * However, at EL2, there is only one TTBR register, and we can't switch
1414 	 * between translation tables *and* update TCR_EL2.T0SZ at the same
1415 	 * time. Bottom line: we need to use the extended range with *both* our
1416 	 * translation tables.
1417 	 *
1418 	 * So use the same T0SZ value we use for the ID map.
1419 	 */
1420 	tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
1421 	tcr &= ~TCR_T0SZ_MASK;
1422 	tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
1423 	params->tcr_el2 = tcr;
1424 
1425 	params->stack_hyp_va = kern_hyp_va(__this_cpu_read(kvm_arm_hyp_stack_page) + PAGE_SIZE);
1426 	params->pgd_pa = kvm_mmu_get_httbr();
1427 
1428 	/*
1429 	 * Flush the init params from the data cache because the struct will
1430 	 * be read while the MMU is off.
1431 	 */
1432 	kvm_flush_dcache_to_poc(params, sizeof(*params));
1433 
1434 	/*
1435 	 * Call initialization code, and switch to the full blown HYP code.
1436 	 * If the cpucaps haven't been finalized yet, something has gone very
1437 	 * wrong, and hyp will crash and burn when it uses any
1438 	 * cpus_have_const_cap() wrapper.
1439 	 */
1440 	BUG_ON(!system_capabilities_finalized());
1441 	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1442 	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1443 
1444 	/*
1445 	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
1446 	 * at EL2.
1447 	 */
1448 	if (this_cpu_has_cap(ARM64_SSBS) &&
1449 	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1450 		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1451 	}
1452 }
1453 
1454 static void cpu_hyp_reset(void)
1455 {
1456 	if (!is_kernel_in_hyp_mode())
1457 		__hyp_reset_vectors();
1458 }
1459 
1460 /*
1461  * EL2 vectors can be mapped and rerouted in a number of ways,
1462  * depending on the kernel configuration and CPU present:
1463  *
1464  * - If the CPU is affected by Spectre-v2, the hardening sequence is
1465  *   placed in one of the vector slots, which is executed before jumping
1466  *   to the real vectors.
1467  *
1468  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1469  *   containing the hardening sequence is mapped next to the idmap page,
1470  *   and executed before jumping to the real vectors.
1471  *
1472  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1473  *   empty slot is selected, mapped next to the idmap page, and
1474  *   executed before jumping to the real vectors.
1475  *
1476  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1477  * VHE, as we don't have hypervisor-specific mappings. If the system
1478  * is VHE and yet selects this capability, it will be ignored.
1479  */
1480 static void cpu_set_hyp_vector(void)
1481 {
1482 	struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1483 	void *vector = hyp_spectre_vector_selector[data->slot];
1484 
1485 	*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1486 }
1487 
1488 static void cpu_hyp_reinit(void)
1489 {
1490 	kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1491 
1492 	cpu_hyp_reset();
1493 	cpu_set_hyp_vector();
1494 
1495 	if (is_kernel_in_hyp_mode())
1496 		kvm_timer_init_vhe();
1497 	else
1498 		cpu_init_hyp_mode();
1499 
1500 	kvm_arm_init_debug();
1501 
1502 	if (vgic_present)
1503 		kvm_vgic_init_cpu_hardware();
1504 }
1505 
1506 static void _kvm_arch_hardware_enable(void *discard)
1507 {
1508 	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1509 		cpu_hyp_reinit();
1510 		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1511 	}
1512 }
1513 
1514 int kvm_arch_hardware_enable(void)
1515 {
1516 	_kvm_arch_hardware_enable(NULL);
1517 	return 0;
1518 }
1519 
1520 static void _kvm_arch_hardware_disable(void *discard)
1521 {
1522 	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1523 		cpu_hyp_reset();
1524 		__this_cpu_write(kvm_arm_hardware_enabled, 0);
1525 	}
1526 }
1527 
1528 void kvm_arch_hardware_disable(void)
1529 {
1530 	if (!is_protected_kvm_enabled())
1531 		_kvm_arch_hardware_disable(NULL);
1532 }
1533 
1534 #ifdef CONFIG_CPU_PM
1535 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1536 				    unsigned long cmd,
1537 				    void *v)
1538 {
1539 	/*
1540 	 * kvm_arm_hardware_enabled is left with its old value over
1541 	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1542 	 * re-enable hyp.
1543 	 */
1544 	switch (cmd) {
1545 	case CPU_PM_ENTER:
1546 		if (__this_cpu_read(kvm_arm_hardware_enabled))
1547 			/*
1548 			 * don't update kvm_arm_hardware_enabled here
1549 			 * so that the hardware will be re-enabled
1550 			 * when we resume. See below.
1551 			 */
1552 			cpu_hyp_reset();
1553 
1554 		return NOTIFY_OK;
1555 	case CPU_PM_ENTER_FAILED:
1556 	case CPU_PM_EXIT:
1557 		if (__this_cpu_read(kvm_arm_hardware_enabled))
1558 			/* The hardware was enabled before suspend. */
1559 			cpu_hyp_reinit();
1560 
1561 		return NOTIFY_OK;
1562 
1563 	default:
1564 		return NOTIFY_DONE;
1565 	}
1566 }
1567 
1568 static struct notifier_block hyp_init_cpu_pm_nb = {
1569 	.notifier_call = hyp_init_cpu_pm_notifier,
1570 };
1571 
1572 static void hyp_cpu_pm_init(void)
1573 {
1574 	if (!is_protected_kvm_enabled())
1575 		cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1576 }
1577 static void hyp_cpu_pm_exit(void)
1578 {
1579 	if (!is_protected_kvm_enabled())
1580 		cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1581 }
1582 #else
1583 static inline void hyp_cpu_pm_init(void)
1584 {
1585 }
1586 static inline void hyp_cpu_pm_exit(void)
1587 {
1588 }
1589 #endif
1590 
1591 static void init_cpu_logical_map(void)
1592 {
1593 	unsigned int cpu;
1594 
1595 	/*
1596 	 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1597 	 * Only copy the set of online CPUs whose features have been chacked
1598 	 * against the finalized system capabilities. The hypervisor will not
1599 	 * allow any other CPUs from the `possible` set to boot.
1600 	 */
1601 	for_each_online_cpu(cpu)
1602 		hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1603 }
1604 
1605 #define init_psci_0_1_impl_state(config, what)	\
1606 	config.psci_0_1_ ## what ## _implemented = psci_ops.what
1607 
1608 static bool init_psci_relay(void)
1609 {
1610 	/*
1611 	 * If PSCI has not been initialized, protected KVM cannot install
1612 	 * itself on newly booted CPUs.
1613 	 */
1614 	if (!psci_ops.get_version) {
1615 		kvm_err("Cannot initialize protected mode without PSCI\n");
1616 		return false;
1617 	}
1618 
1619 	kvm_host_psci_config.version = psci_ops.get_version();
1620 
1621 	if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
1622 		kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1623 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
1624 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
1625 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
1626 		init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1627 	}
1628 	return true;
1629 }
1630 
1631 static int init_common_resources(void)
1632 {
1633 	return kvm_set_ipa_limit();
1634 }
1635 
1636 static int init_subsystems(void)
1637 {
1638 	int err = 0;
1639 
1640 	/*
1641 	 * Enable hardware so that subsystem initialisation can access EL2.
1642 	 */
1643 	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1644 
1645 	/*
1646 	 * Register CPU lower-power notifier
1647 	 */
1648 	hyp_cpu_pm_init();
1649 
1650 	/*
1651 	 * Init HYP view of VGIC
1652 	 */
1653 	err = kvm_vgic_hyp_init();
1654 	switch (err) {
1655 	case 0:
1656 		vgic_present = true;
1657 		break;
1658 	case -ENODEV:
1659 	case -ENXIO:
1660 		vgic_present = false;
1661 		err = 0;
1662 		break;
1663 	default:
1664 		goto out;
1665 	}
1666 
1667 	/*
1668 	 * Init HYP architected timer support
1669 	 */
1670 	err = kvm_timer_hyp_init(vgic_present);
1671 	if (err)
1672 		goto out;
1673 
1674 	kvm_perf_init();
1675 	kvm_sys_reg_table_init();
1676 
1677 out:
1678 	if (err || !is_protected_kvm_enabled())
1679 		on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1680 
1681 	return err;
1682 }
1683 
1684 static void teardown_hyp_mode(void)
1685 {
1686 	int cpu;
1687 
1688 	free_hyp_pgds();
1689 	for_each_possible_cpu(cpu) {
1690 		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1691 		free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
1692 	}
1693 }
1694 
1695 /**
1696  * Inits Hyp-mode on all online CPUs
1697  */
1698 static int init_hyp_mode(void)
1699 {
1700 	int cpu;
1701 	int err = 0;
1702 
1703 	/*
1704 	 * Allocate Hyp PGD and setup Hyp identity mapping
1705 	 */
1706 	err = kvm_mmu_init();
1707 	if (err)
1708 		goto out_err;
1709 
1710 	/*
1711 	 * Allocate stack pages for Hypervisor-mode
1712 	 */
1713 	for_each_possible_cpu(cpu) {
1714 		unsigned long stack_page;
1715 
1716 		stack_page = __get_free_page(GFP_KERNEL);
1717 		if (!stack_page) {
1718 			err = -ENOMEM;
1719 			goto out_err;
1720 		}
1721 
1722 		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1723 	}
1724 
1725 	/*
1726 	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
1727 	 */
1728 	for_each_possible_cpu(cpu) {
1729 		struct page *page;
1730 		void *page_addr;
1731 
1732 		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
1733 		if (!page) {
1734 			err = -ENOMEM;
1735 			goto out_err;
1736 		}
1737 
1738 		page_addr = page_address(page);
1739 		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
1740 		kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
1741 	}
1742 
1743 	/*
1744 	 * Map the Hyp-code called directly from the host
1745 	 */
1746 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1747 				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1748 	if (err) {
1749 		kvm_err("Cannot map world-switch code\n");
1750 		goto out_err;
1751 	}
1752 
1753 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
1754 				  kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1755 	if (err) {
1756 		kvm_err("Cannot map .hyp.rodata section\n");
1757 		goto out_err;
1758 	}
1759 
1760 	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1761 				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1762 	if (err) {
1763 		kvm_err("Cannot map rodata section\n");
1764 		goto out_err;
1765 	}
1766 
1767 	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1768 				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1769 	if (err) {
1770 		kvm_err("Cannot map bss section\n");
1771 		goto out_err;
1772 	}
1773 
1774 	/*
1775 	 * Map the Hyp stack pages
1776 	 */
1777 	for_each_possible_cpu(cpu) {
1778 		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1779 		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1780 					  PAGE_HYP);
1781 
1782 		if (err) {
1783 			kvm_err("Cannot map hyp stack\n");
1784 			goto out_err;
1785 		}
1786 	}
1787 
1788 	/*
1789 	 * Map Hyp percpu pages
1790 	 */
1791 	for_each_possible_cpu(cpu) {
1792 		char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
1793 		char *percpu_end = percpu_begin + nvhe_percpu_size();
1794 
1795 		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1796 
1797 		if (err) {
1798 			kvm_err("Cannot map hyp percpu region\n");
1799 			goto out_err;
1800 		}
1801 	}
1802 
1803 	if (is_protected_kvm_enabled()) {
1804 		init_cpu_logical_map();
1805 
1806 		if (!init_psci_relay())
1807 			goto out_err;
1808 	}
1809 
1810 	return 0;
1811 
1812 out_err:
1813 	teardown_hyp_mode();
1814 	kvm_err("error initializing Hyp mode: %d\n", err);
1815 	return err;
1816 }
1817 
1818 static void check_kvm_target_cpu(void *ret)
1819 {
1820 	*(int *)ret = kvm_target_cpu();
1821 }
1822 
1823 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1824 {
1825 	struct kvm_vcpu *vcpu;
1826 	int i;
1827 
1828 	mpidr &= MPIDR_HWID_BITMASK;
1829 	kvm_for_each_vcpu(i, vcpu, kvm) {
1830 		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1831 			return vcpu;
1832 	}
1833 	return NULL;
1834 }
1835 
1836 bool kvm_arch_has_irq_bypass(void)
1837 {
1838 	return true;
1839 }
1840 
1841 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1842 				      struct irq_bypass_producer *prod)
1843 {
1844 	struct kvm_kernel_irqfd *irqfd =
1845 		container_of(cons, struct kvm_kernel_irqfd, consumer);
1846 
1847 	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1848 					  &irqfd->irq_entry);
1849 }
1850 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1851 				      struct irq_bypass_producer *prod)
1852 {
1853 	struct kvm_kernel_irqfd *irqfd =
1854 		container_of(cons, struct kvm_kernel_irqfd, consumer);
1855 
1856 	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1857 				     &irqfd->irq_entry);
1858 }
1859 
1860 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1861 {
1862 	struct kvm_kernel_irqfd *irqfd =
1863 		container_of(cons, struct kvm_kernel_irqfd, consumer);
1864 
1865 	kvm_arm_halt_guest(irqfd->kvm);
1866 }
1867 
1868 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1869 {
1870 	struct kvm_kernel_irqfd *irqfd =
1871 		container_of(cons, struct kvm_kernel_irqfd, consumer);
1872 
1873 	kvm_arm_resume_guest(irqfd->kvm);
1874 }
1875 
1876 /**
1877  * Initialize Hyp-mode and memory mappings on all CPUs.
1878  */
1879 int kvm_arch_init(void *opaque)
1880 {
1881 	int err;
1882 	int ret, cpu;
1883 	bool in_hyp_mode;
1884 
1885 	if (!is_hyp_mode_available()) {
1886 		kvm_info("HYP mode not available\n");
1887 		return -ENODEV;
1888 	}
1889 
1890 	in_hyp_mode = is_kernel_in_hyp_mode();
1891 
1892 	if (!in_hyp_mode && kvm_arch_requires_vhe()) {
1893 		kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1894 		return -ENODEV;
1895 	}
1896 
1897 	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
1898 	    cpus_have_final_cap(ARM64_WORKAROUND_1508412))
1899 		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
1900 			 "Only trusted guests should be used on this system.\n");
1901 
1902 	for_each_online_cpu(cpu) {
1903 		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1904 		if (ret < 0) {
1905 			kvm_err("Error, CPU %d not supported!\n", cpu);
1906 			return -ENODEV;
1907 		}
1908 	}
1909 
1910 	err = init_common_resources();
1911 	if (err)
1912 		return err;
1913 
1914 	err = kvm_arm_init_sve();
1915 	if (err)
1916 		return err;
1917 
1918 	if (!in_hyp_mode) {
1919 		err = init_hyp_mode();
1920 		if (err)
1921 			goto out_err;
1922 	}
1923 
1924 	err = kvm_init_vector_slots();
1925 	if (err) {
1926 		kvm_err("Cannot initialise vector slots\n");
1927 		goto out_err;
1928 	}
1929 
1930 	err = init_subsystems();
1931 	if (err)
1932 		goto out_hyp;
1933 
1934 	if (is_protected_kvm_enabled()) {
1935 		static_branch_enable(&kvm_protected_mode_initialized);
1936 		kvm_info("Protected nVHE mode initialized successfully\n");
1937 	} else if (in_hyp_mode) {
1938 		kvm_info("VHE mode initialized successfully\n");
1939 	} else {
1940 		kvm_info("Hyp mode initialized successfully\n");
1941 	}
1942 
1943 	return 0;
1944 
1945 out_hyp:
1946 	hyp_cpu_pm_exit();
1947 	if (!in_hyp_mode)
1948 		teardown_hyp_mode();
1949 out_err:
1950 	return err;
1951 }
1952 
1953 /* NOP: Compiling as a module not supported */
1954 void kvm_arch_exit(void)
1955 {
1956 	kvm_perf_teardown();
1957 }
1958 
1959 static int __init early_kvm_mode_cfg(char *arg)
1960 {
1961 	if (!arg)
1962 		return -EINVAL;
1963 
1964 	if (strcmp(arg, "protected") == 0) {
1965 		kvm_mode = KVM_MODE_PROTECTED;
1966 		return 0;
1967 	}
1968 
1969 	if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode()))
1970 		return 0;
1971 
1972 	return -EINVAL;
1973 }
1974 early_param("kvm-arm.mode", early_kvm_mode_cfg);
1975 
1976 enum kvm_mode kvm_get_mode(void)
1977 {
1978 	return kvm_mode;
1979 }
1980 
1981 static int arm_init(void)
1982 {
1983 	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1984 	return rc;
1985 }
1986 
1987 module_init(arm_init);
1988