xref: /linux/arch/arm64/kvm/arm.c (revision 4d3d3559fc7a56226d8a83ee68d72a900afd42c4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/entry-kvm.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/vmalloc.h>
16 #include <linux/fs.h>
17 #include <linux/mman.h>
18 #include <linux/sched.h>
19 #include <linux/kvm.h>
20 #include <linux/kvm_irqfd.h>
21 #include <linux/irqbypass.h>
22 #include <linux/sched/stat.h>
23 #include <linux/psci.h>
24 #include <trace/events/kvm.h>
25 
26 #define CREATE_TRACE_POINTS
27 #include "trace_arm.h"
28 
29 #include <linux/uaccess.h>
30 #include <asm/ptrace.h>
31 #include <asm/mman.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpufeature.h>
35 #include <asm/virt.h>
36 #include <asm/kvm_arm.h>
37 #include <asm/kvm_asm.h>
38 #include <asm/kvm_emulate.h>
39 #include <asm/kvm_mmu.h>
40 #include <asm/kvm_nested.h>
41 #include <asm/kvm_pkvm.h>
42 #include <asm/kvm_ptrauth.h>
43 #include <asm/sections.h>
44 
45 #include <kvm/arm_hypercalls.h>
46 #include <kvm/arm_pmu.h>
47 #include <kvm/arm_psci.h>
48 
49 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
50 
51 enum kvm_wfx_trap_policy {
52 	KVM_WFX_NOTRAP_SINGLE_TASK, /* Default option */
53 	KVM_WFX_NOTRAP,
54 	KVM_WFX_TRAP,
55 };
56 
57 static enum kvm_wfx_trap_policy kvm_wfi_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK;
58 static enum kvm_wfx_trap_policy kvm_wfe_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK;
59 
60 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
61 
62 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
63 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
64 
65 DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
66 
67 static bool vgic_present, kvm_arm_initialised;
68 
69 static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized);
70 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
71 
72 bool is_kvm_arm_initialised(void)
73 {
74 	return kvm_arm_initialised;
75 }
76 
77 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
78 {
79 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
80 }
81 
82 /*
83  * This functions as an allow-list of protected VM capabilities.
84  * Features not explicitly allowed by this function are denied.
85  */
86 static bool pkvm_ext_allowed(struct kvm *kvm, long ext)
87 {
88 	switch (ext) {
89 	case KVM_CAP_IRQCHIP:
90 	case KVM_CAP_ARM_PSCI:
91 	case KVM_CAP_ARM_PSCI_0_2:
92 	case KVM_CAP_NR_VCPUS:
93 	case KVM_CAP_MAX_VCPUS:
94 	case KVM_CAP_MAX_VCPU_ID:
95 	case KVM_CAP_MSI_DEVID:
96 	case KVM_CAP_ARM_VM_IPA_SIZE:
97 	case KVM_CAP_ARM_PMU_V3:
98 	case KVM_CAP_ARM_SVE:
99 	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
100 	case KVM_CAP_ARM_PTRAUTH_GENERIC:
101 		return true;
102 	default:
103 		return false;
104 	}
105 }
106 
107 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
108 			    struct kvm_enable_cap *cap)
109 {
110 	int r = -EINVAL;
111 
112 	if (cap->flags)
113 		return -EINVAL;
114 
115 	if (kvm_vm_is_protected(kvm) && !pkvm_ext_allowed(kvm, cap->cap))
116 		return -EINVAL;
117 
118 	switch (cap->cap) {
119 	case KVM_CAP_ARM_NISV_TO_USER:
120 		r = 0;
121 		set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
122 			&kvm->arch.flags);
123 		break;
124 	case KVM_CAP_ARM_MTE:
125 		mutex_lock(&kvm->lock);
126 		if (system_supports_mte() && !kvm->created_vcpus) {
127 			r = 0;
128 			set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
129 		}
130 		mutex_unlock(&kvm->lock);
131 		break;
132 	case KVM_CAP_ARM_SYSTEM_SUSPEND:
133 		r = 0;
134 		set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
135 		break;
136 	case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
137 		mutex_lock(&kvm->slots_lock);
138 		/*
139 		 * To keep things simple, allow changing the chunk
140 		 * size only when no memory slots have been created.
141 		 */
142 		if (kvm_are_all_memslots_empty(kvm)) {
143 			u64 new_cap = cap->args[0];
144 
145 			if (!new_cap || kvm_is_block_size_supported(new_cap)) {
146 				r = 0;
147 				kvm->arch.mmu.split_page_chunk_size = new_cap;
148 			}
149 		}
150 		mutex_unlock(&kvm->slots_lock);
151 		break;
152 	default:
153 		break;
154 	}
155 
156 	return r;
157 }
158 
159 static int kvm_arm_default_max_vcpus(void)
160 {
161 	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
162 }
163 
164 /**
165  * kvm_arch_init_vm - initializes a VM data structure
166  * @kvm:	pointer to the KVM struct
167  * @type:	kvm device type
168  */
169 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
170 {
171 	int ret;
172 
173 	mutex_init(&kvm->arch.config_lock);
174 
175 #ifdef CONFIG_LOCKDEP
176 	/* Clue in lockdep that the config_lock must be taken inside kvm->lock */
177 	mutex_lock(&kvm->lock);
178 	mutex_lock(&kvm->arch.config_lock);
179 	mutex_unlock(&kvm->arch.config_lock);
180 	mutex_unlock(&kvm->lock);
181 #endif
182 
183 	kvm_init_nested(kvm);
184 
185 	ret = kvm_share_hyp(kvm, kvm + 1);
186 	if (ret)
187 		return ret;
188 
189 	ret = pkvm_init_host_vm(kvm);
190 	if (ret)
191 		goto err_unshare_kvm;
192 
193 	if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) {
194 		ret = -ENOMEM;
195 		goto err_unshare_kvm;
196 	}
197 	cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
198 
199 	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type);
200 	if (ret)
201 		goto err_free_cpumask;
202 
203 	kvm_vgic_early_init(kvm);
204 
205 	kvm_timer_init_vm(kvm);
206 
207 	/* The maximum number of VCPUs is limited by the host's GIC model */
208 	kvm->max_vcpus = kvm_arm_default_max_vcpus();
209 
210 	kvm_arm_init_hypercalls(kvm);
211 
212 	bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES);
213 
214 	return 0;
215 
216 err_free_cpumask:
217 	free_cpumask_var(kvm->arch.supported_cpus);
218 err_unshare_kvm:
219 	kvm_unshare_hyp(kvm, kvm + 1);
220 	return ret;
221 }
222 
223 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
224 {
225 	return VM_FAULT_SIGBUS;
226 }
227 
228 void kvm_arch_create_vm_debugfs(struct kvm *kvm)
229 {
230 	kvm_sys_regs_create_debugfs(kvm);
231 }
232 
233 static void kvm_destroy_mpidr_data(struct kvm *kvm)
234 {
235 	struct kvm_mpidr_data *data;
236 
237 	mutex_lock(&kvm->arch.config_lock);
238 
239 	data = rcu_dereference_protected(kvm->arch.mpidr_data,
240 					 lockdep_is_held(&kvm->arch.config_lock));
241 	if (data) {
242 		rcu_assign_pointer(kvm->arch.mpidr_data, NULL);
243 		synchronize_rcu();
244 		kfree(data);
245 	}
246 
247 	mutex_unlock(&kvm->arch.config_lock);
248 }
249 
250 /**
251  * kvm_arch_destroy_vm - destroy the VM data structure
252  * @kvm:	pointer to the KVM struct
253  */
254 void kvm_arch_destroy_vm(struct kvm *kvm)
255 {
256 	bitmap_free(kvm->arch.pmu_filter);
257 	free_cpumask_var(kvm->arch.supported_cpus);
258 
259 	kvm_vgic_destroy(kvm);
260 
261 	if (is_protected_kvm_enabled())
262 		pkvm_destroy_hyp_vm(kvm);
263 
264 	kvm_destroy_mpidr_data(kvm);
265 
266 	kfree(kvm->arch.sysreg_masks);
267 	kvm_destroy_vcpus(kvm);
268 
269 	kvm_unshare_hyp(kvm, kvm + 1);
270 
271 	kvm_arm_teardown_hypercalls(kvm);
272 }
273 
274 static bool kvm_has_full_ptr_auth(void)
275 {
276 	bool apa, gpa, api, gpi, apa3, gpa3;
277 	u64 isar1, isar2, val;
278 
279 	/*
280 	 * Check that:
281 	 *
282 	 * - both Address and Generic auth are implemented for a given
283          *   algorithm (Q5, IMPDEF or Q3)
284 	 * - only a single algorithm is implemented.
285 	 */
286 	if (!system_has_full_ptr_auth())
287 		return false;
288 
289 	isar1 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
290 	isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
291 
292 	apa = !!FIELD_GET(ID_AA64ISAR1_EL1_APA_MASK, isar1);
293 	val = FIELD_GET(ID_AA64ISAR1_EL1_GPA_MASK, isar1);
294 	gpa = (val == ID_AA64ISAR1_EL1_GPA_IMP);
295 
296 	api = !!FIELD_GET(ID_AA64ISAR1_EL1_API_MASK, isar1);
297 	val = FIELD_GET(ID_AA64ISAR1_EL1_GPI_MASK, isar1);
298 	gpi = (val == ID_AA64ISAR1_EL1_GPI_IMP);
299 
300 	apa3 = !!FIELD_GET(ID_AA64ISAR2_EL1_APA3_MASK, isar2);
301 	val  = FIELD_GET(ID_AA64ISAR2_EL1_GPA3_MASK, isar2);
302 	gpa3 = (val == ID_AA64ISAR2_EL1_GPA3_IMP);
303 
304 	return (apa == gpa && api == gpi && apa3 == gpa3 &&
305 		(apa + api + apa3) == 1);
306 }
307 
308 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
309 {
310 	int r;
311 
312 	if (kvm && kvm_vm_is_protected(kvm) && !pkvm_ext_allowed(kvm, ext))
313 		return 0;
314 
315 	switch (ext) {
316 	case KVM_CAP_IRQCHIP:
317 		r = vgic_present;
318 		break;
319 	case KVM_CAP_IOEVENTFD:
320 	case KVM_CAP_USER_MEMORY:
321 	case KVM_CAP_SYNC_MMU:
322 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
323 	case KVM_CAP_ONE_REG:
324 	case KVM_CAP_ARM_PSCI:
325 	case KVM_CAP_ARM_PSCI_0_2:
326 	case KVM_CAP_READONLY_MEM:
327 	case KVM_CAP_MP_STATE:
328 	case KVM_CAP_IMMEDIATE_EXIT:
329 	case KVM_CAP_VCPU_EVENTS:
330 	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
331 	case KVM_CAP_ARM_NISV_TO_USER:
332 	case KVM_CAP_ARM_INJECT_EXT_DABT:
333 	case KVM_CAP_SET_GUEST_DEBUG:
334 	case KVM_CAP_VCPU_ATTRIBUTES:
335 	case KVM_CAP_PTP_KVM:
336 	case KVM_CAP_ARM_SYSTEM_SUSPEND:
337 	case KVM_CAP_IRQFD_RESAMPLE:
338 	case KVM_CAP_COUNTER_OFFSET:
339 		r = 1;
340 		break;
341 	case KVM_CAP_SET_GUEST_DEBUG2:
342 		return KVM_GUESTDBG_VALID_MASK;
343 	case KVM_CAP_ARM_SET_DEVICE_ADDR:
344 		r = 1;
345 		break;
346 	case KVM_CAP_NR_VCPUS:
347 		/*
348 		 * ARM64 treats KVM_CAP_NR_CPUS differently from all other
349 		 * architectures, as it does not always bound it to
350 		 * KVM_CAP_MAX_VCPUS. It should not matter much because
351 		 * this is just an advisory value.
352 		 */
353 		r = min_t(unsigned int, num_online_cpus(),
354 			  kvm_arm_default_max_vcpus());
355 		break;
356 	case KVM_CAP_MAX_VCPUS:
357 	case KVM_CAP_MAX_VCPU_ID:
358 		if (kvm)
359 			r = kvm->max_vcpus;
360 		else
361 			r = kvm_arm_default_max_vcpus();
362 		break;
363 	case KVM_CAP_MSI_DEVID:
364 		if (!kvm)
365 			r = -EINVAL;
366 		else
367 			r = kvm->arch.vgic.msis_require_devid;
368 		break;
369 	case KVM_CAP_ARM_USER_IRQ:
370 		/*
371 		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
372 		 * (bump this number if adding more devices)
373 		 */
374 		r = 1;
375 		break;
376 	case KVM_CAP_ARM_MTE:
377 		r = system_supports_mte();
378 		break;
379 	case KVM_CAP_STEAL_TIME:
380 		r = kvm_arm_pvtime_supported();
381 		break;
382 	case KVM_CAP_ARM_EL1_32BIT:
383 		r = cpus_have_final_cap(ARM64_HAS_32BIT_EL1);
384 		break;
385 	case KVM_CAP_GUEST_DEBUG_HW_BPS:
386 		r = get_num_brps();
387 		break;
388 	case KVM_CAP_GUEST_DEBUG_HW_WPS:
389 		r = get_num_wrps();
390 		break;
391 	case KVM_CAP_ARM_PMU_V3:
392 		r = kvm_arm_support_pmu_v3();
393 		break;
394 	case KVM_CAP_ARM_INJECT_SERROR_ESR:
395 		r = cpus_have_final_cap(ARM64_HAS_RAS_EXTN);
396 		break;
397 	case KVM_CAP_ARM_VM_IPA_SIZE:
398 		r = get_kvm_ipa_limit();
399 		break;
400 	case KVM_CAP_ARM_SVE:
401 		r = system_supports_sve();
402 		break;
403 	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
404 	case KVM_CAP_ARM_PTRAUTH_GENERIC:
405 		r = kvm_has_full_ptr_auth();
406 		break;
407 	case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
408 		if (kvm)
409 			r = kvm->arch.mmu.split_page_chunk_size;
410 		else
411 			r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
412 		break;
413 	case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES:
414 		r = kvm_supported_block_sizes();
415 		break;
416 	case KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES:
417 		r = BIT(0);
418 		break;
419 	default:
420 		r = 0;
421 	}
422 
423 	return r;
424 }
425 
426 long kvm_arch_dev_ioctl(struct file *filp,
427 			unsigned int ioctl, unsigned long arg)
428 {
429 	return -EINVAL;
430 }
431 
432 struct kvm *kvm_arch_alloc_vm(void)
433 {
434 	size_t sz = sizeof(struct kvm);
435 
436 	if (!has_vhe())
437 		return kzalloc(sz, GFP_KERNEL_ACCOUNT);
438 
439 	return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
440 }
441 
442 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
443 {
444 	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
445 		return -EBUSY;
446 
447 	if (id >= kvm->max_vcpus)
448 		return -EINVAL;
449 
450 	return 0;
451 }
452 
453 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
454 {
455 	int err;
456 
457 	spin_lock_init(&vcpu->arch.mp_state_lock);
458 
459 #ifdef CONFIG_LOCKDEP
460 	/* Inform lockdep that the config_lock is acquired after vcpu->mutex */
461 	mutex_lock(&vcpu->mutex);
462 	mutex_lock(&vcpu->kvm->arch.config_lock);
463 	mutex_unlock(&vcpu->kvm->arch.config_lock);
464 	mutex_unlock(&vcpu->mutex);
465 #endif
466 
467 	/* Force users to call KVM_ARM_VCPU_INIT */
468 	vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
469 
470 	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
471 
472 	/* Set up the timer */
473 	kvm_timer_vcpu_init(vcpu);
474 
475 	kvm_pmu_vcpu_init(vcpu);
476 
477 	kvm_arm_reset_debug_ptr(vcpu);
478 
479 	kvm_arm_pvtime_vcpu_init(&vcpu->arch);
480 
481 	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
482 
483 	/*
484 	 * This vCPU may have been created after mpidr_data was initialized.
485 	 * Throw out the pre-computed mappings if that is the case which forces
486 	 * KVM to fall back to iteratively searching the vCPUs.
487 	 */
488 	kvm_destroy_mpidr_data(vcpu->kvm);
489 
490 	err = kvm_vgic_vcpu_init(vcpu);
491 	if (err)
492 		return err;
493 
494 	return kvm_share_hyp(vcpu, vcpu + 1);
495 }
496 
497 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
498 {
499 }
500 
501 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
502 {
503 	if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm)))
504 		static_branch_dec(&userspace_irqchip_in_use);
505 
506 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
507 	kvm_timer_vcpu_terminate(vcpu);
508 	kvm_pmu_vcpu_destroy(vcpu);
509 	kvm_vgic_vcpu_destroy(vcpu);
510 	kvm_arm_vcpu_destroy(vcpu);
511 }
512 
513 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
514 {
515 
516 }
517 
518 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
519 {
520 
521 }
522 
523 static void vcpu_set_pauth_traps(struct kvm_vcpu *vcpu)
524 {
525 	if (vcpu_has_ptrauth(vcpu) && !is_protected_kvm_enabled()) {
526 		/*
527 		 * Either we're running an L2 guest, and the API/APK bits come
528 		 * from L1's HCR_EL2, or API/APK are both set.
529 		 */
530 		if (unlikely(vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu))) {
531 			u64 val;
532 
533 			val = __vcpu_sys_reg(vcpu, HCR_EL2);
534 			val &= (HCR_API | HCR_APK);
535 			vcpu->arch.hcr_el2 &= ~(HCR_API | HCR_APK);
536 			vcpu->arch.hcr_el2 |= val;
537 		} else {
538 			vcpu->arch.hcr_el2 |= (HCR_API | HCR_APK);
539 		}
540 
541 		/*
542 		 * Save the host keys if there is any chance for the guest
543 		 * to use pauth, as the entry code will reload the guest
544 		 * keys in that case.
545 		 */
546 		if (vcpu->arch.hcr_el2 & (HCR_API | HCR_APK)) {
547 			struct kvm_cpu_context *ctxt;
548 
549 			ctxt = this_cpu_ptr_hyp_sym(kvm_hyp_ctxt);
550 			ptrauth_save_keys(ctxt);
551 		}
552 	}
553 }
554 
555 static bool kvm_vcpu_should_clear_twi(struct kvm_vcpu *vcpu)
556 {
557 	if (unlikely(kvm_wfi_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK))
558 		return kvm_wfi_trap_policy == KVM_WFX_NOTRAP;
559 
560 	return single_task_running() &&
561 	       (atomic_read(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count) ||
562 		vcpu->kvm->arch.vgic.nassgireq);
563 }
564 
565 static bool kvm_vcpu_should_clear_twe(struct kvm_vcpu *vcpu)
566 {
567 	if (unlikely(kvm_wfe_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK))
568 		return kvm_wfe_trap_policy == KVM_WFX_NOTRAP;
569 
570 	return single_task_running();
571 }
572 
573 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
574 {
575 	struct kvm_s2_mmu *mmu;
576 	int *last_ran;
577 
578 	if (vcpu_has_nv(vcpu))
579 		kvm_vcpu_load_hw_mmu(vcpu);
580 
581 	mmu = vcpu->arch.hw_mmu;
582 	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
583 
584 	/*
585 	 * We guarantee that both TLBs and I-cache are private to each
586 	 * vcpu. If detecting that a vcpu from the same VM has
587 	 * previously run on the same physical CPU, call into the
588 	 * hypervisor code to nuke the relevant contexts.
589 	 *
590 	 * We might get preempted before the vCPU actually runs, but
591 	 * over-invalidation doesn't affect correctness.
592 	 */
593 	if (*last_ran != vcpu->vcpu_idx) {
594 		kvm_call_hyp(__kvm_flush_cpu_context, mmu);
595 		*last_ran = vcpu->vcpu_idx;
596 	}
597 
598 	vcpu->cpu = cpu;
599 
600 	kvm_vgic_load(vcpu);
601 	kvm_timer_vcpu_load(vcpu);
602 	if (has_vhe())
603 		kvm_vcpu_load_vhe(vcpu);
604 	kvm_arch_vcpu_load_fp(vcpu);
605 	kvm_vcpu_pmu_restore_guest(vcpu);
606 	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
607 		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
608 
609 	if (kvm_vcpu_should_clear_twe(vcpu))
610 		vcpu->arch.hcr_el2 &= ~HCR_TWE;
611 	else
612 		vcpu->arch.hcr_el2 |= HCR_TWE;
613 
614 	if (kvm_vcpu_should_clear_twi(vcpu))
615 		vcpu->arch.hcr_el2 &= ~HCR_TWI;
616 	else
617 		vcpu->arch.hcr_el2 |= HCR_TWI;
618 
619 	vcpu_set_pauth_traps(vcpu);
620 
621 	kvm_arch_vcpu_load_debug_state_flags(vcpu);
622 
623 	if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus))
624 		vcpu_set_on_unsupported_cpu(vcpu);
625 }
626 
627 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
628 {
629 	kvm_arch_vcpu_put_debug_state_flags(vcpu);
630 	kvm_arch_vcpu_put_fp(vcpu);
631 	if (has_vhe())
632 		kvm_vcpu_put_vhe(vcpu);
633 	kvm_timer_vcpu_put(vcpu);
634 	kvm_vgic_put(vcpu);
635 	kvm_vcpu_pmu_restore_host(vcpu);
636 	if (vcpu_has_nv(vcpu))
637 		kvm_vcpu_put_hw_mmu(vcpu);
638 	kvm_arm_vmid_clear_active();
639 
640 	vcpu_clear_on_unsupported_cpu(vcpu);
641 	vcpu->cpu = -1;
642 }
643 
644 static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
645 {
646 	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
647 	kvm_make_request(KVM_REQ_SLEEP, vcpu);
648 	kvm_vcpu_kick(vcpu);
649 }
650 
651 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
652 {
653 	spin_lock(&vcpu->arch.mp_state_lock);
654 	__kvm_arm_vcpu_power_off(vcpu);
655 	spin_unlock(&vcpu->arch.mp_state_lock);
656 }
657 
658 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
659 {
660 	return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED;
661 }
662 
663 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
664 {
665 	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED);
666 	kvm_make_request(KVM_REQ_SUSPEND, vcpu);
667 	kvm_vcpu_kick(vcpu);
668 }
669 
670 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
671 {
672 	return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED;
673 }
674 
675 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
676 				    struct kvm_mp_state *mp_state)
677 {
678 	*mp_state = READ_ONCE(vcpu->arch.mp_state);
679 
680 	return 0;
681 }
682 
683 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
684 				    struct kvm_mp_state *mp_state)
685 {
686 	int ret = 0;
687 
688 	spin_lock(&vcpu->arch.mp_state_lock);
689 
690 	switch (mp_state->mp_state) {
691 	case KVM_MP_STATE_RUNNABLE:
692 		WRITE_ONCE(vcpu->arch.mp_state, *mp_state);
693 		break;
694 	case KVM_MP_STATE_STOPPED:
695 		__kvm_arm_vcpu_power_off(vcpu);
696 		break;
697 	case KVM_MP_STATE_SUSPENDED:
698 		kvm_arm_vcpu_suspend(vcpu);
699 		break;
700 	default:
701 		ret = -EINVAL;
702 	}
703 
704 	spin_unlock(&vcpu->arch.mp_state_lock);
705 
706 	return ret;
707 }
708 
709 /**
710  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
711  * @v:		The VCPU pointer
712  *
713  * If the guest CPU is not waiting for interrupts or an interrupt line is
714  * asserted, the CPU is by definition runnable.
715  */
716 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
717 {
718 	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
719 	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
720 		&& !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
721 }
722 
723 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
724 {
725 	return vcpu_mode_priv(vcpu);
726 }
727 
728 #ifdef CONFIG_GUEST_PERF_EVENTS
729 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
730 {
731 	return *vcpu_pc(vcpu);
732 }
733 #endif
734 
735 static void kvm_init_mpidr_data(struct kvm *kvm)
736 {
737 	struct kvm_mpidr_data *data = NULL;
738 	unsigned long c, mask, nr_entries;
739 	u64 aff_set = 0, aff_clr = ~0UL;
740 	struct kvm_vcpu *vcpu;
741 
742 	mutex_lock(&kvm->arch.config_lock);
743 
744 	if (rcu_access_pointer(kvm->arch.mpidr_data) ||
745 	    atomic_read(&kvm->online_vcpus) == 1)
746 		goto out;
747 
748 	kvm_for_each_vcpu(c, vcpu, kvm) {
749 		u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
750 		aff_set |= aff;
751 		aff_clr &= aff;
752 	}
753 
754 	/*
755 	 * A significant bit can be either 0 or 1, and will only appear in
756 	 * aff_set. Use aff_clr to weed out the useless stuff.
757 	 */
758 	mask = aff_set ^ aff_clr;
759 	nr_entries = BIT_ULL(hweight_long(mask));
760 
761 	/*
762 	 * Don't let userspace fool us. If we need more than a single page
763 	 * to describe the compressed MPIDR array, just fall back to the
764 	 * iterative method. Single vcpu VMs do not need this either.
765 	 */
766 	if (struct_size(data, cmpidr_to_idx, nr_entries) <= PAGE_SIZE)
767 		data = kzalloc(struct_size(data, cmpidr_to_idx, nr_entries),
768 			       GFP_KERNEL_ACCOUNT);
769 
770 	if (!data)
771 		goto out;
772 
773 	data->mpidr_mask = mask;
774 
775 	kvm_for_each_vcpu(c, vcpu, kvm) {
776 		u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
777 		u16 index = kvm_mpidr_index(data, aff);
778 
779 		data->cmpidr_to_idx[index] = c;
780 	}
781 
782 	rcu_assign_pointer(kvm->arch.mpidr_data, data);
783 out:
784 	mutex_unlock(&kvm->arch.config_lock);
785 }
786 
787 /*
788  * Handle both the initialisation that is being done when the vcpu is
789  * run for the first time, as well as the updates that must be
790  * performed each time we get a new thread dealing with this vcpu.
791  */
792 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
793 {
794 	struct kvm *kvm = vcpu->kvm;
795 	int ret;
796 
797 	if (!kvm_vcpu_initialized(vcpu))
798 		return -ENOEXEC;
799 
800 	if (!kvm_arm_vcpu_is_finalized(vcpu))
801 		return -EPERM;
802 
803 	ret = kvm_arch_vcpu_run_map_fp(vcpu);
804 	if (ret)
805 		return ret;
806 
807 	if (likely(vcpu_has_run_once(vcpu)))
808 		return 0;
809 
810 	kvm_init_mpidr_data(kvm);
811 
812 	kvm_arm_vcpu_init_debug(vcpu);
813 
814 	if (likely(irqchip_in_kernel(kvm))) {
815 		/*
816 		 * Map the VGIC hardware resources before running a vcpu the
817 		 * first time on this VM.
818 		 */
819 		ret = kvm_vgic_map_resources(kvm);
820 		if (ret)
821 			return ret;
822 	}
823 
824 	if (vcpu_has_nv(vcpu)) {
825 		ret = kvm_init_nv_sysregs(vcpu->kvm);
826 		if (ret)
827 			return ret;
828 	}
829 
830 	/*
831 	 * This needs to happen after NV has imposed its own restrictions on
832 	 * the feature set
833 	 */
834 	kvm_calculate_traps(vcpu);
835 
836 	ret = kvm_timer_enable(vcpu);
837 	if (ret)
838 		return ret;
839 
840 	ret = kvm_arm_pmu_v3_enable(vcpu);
841 	if (ret)
842 		return ret;
843 
844 	if (is_protected_kvm_enabled()) {
845 		ret = pkvm_create_hyp_vm(kvm);
846 		if (ret)
847 			return ret;
848 	}
849 
850 	if (!irqchip_in_kernel(kvm)) {
851 		/*
852 		 * Tell the rest of the code that there are userspace irqchip
853 		 * VMs in the wild.
854 		 */
855 		static_branch_inc(&userspace_irqchip_in_use);
856 	}
857 
858 	/*
859 	 * Initialize traps for protected VMs.
860 	 * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
861 	 * the code is in place for first run initialization at EL2.
862 	 */
863 	if (kvm_vm_is_protected(kvm))
864 		kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);
865 
866 	mutex_lock(&kvm->arch.config_lock);
867 	set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
868 	mutex_unlock(&kvm->arch.config_lock);
869 
870 	return ret;
871 }
872 
873 bool kvm_arch_intc_initialized(struct kvm *kvm)
874 {
875 	return vgic_initialized(kvm);
876 }
877 
878 void kvm_arm_halt_guest(struct kvm *kvm)
879 {
880 	unsigned long i;
881 	struct kvm_vcpu *vcpu;
882 
883 	kvm_for_each_vcpu(i, vcpu, kvm)
884 		vcpu->arch.pause = true;
885 	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
886 }
887 
888 void kvm_arm_resume_guest(struct kvm *kvm)
889 {
890 	unsigned long i;
891 	struct kvm_vcpu *vcpu;
892 
893 	kvm_for_each_vcpu(i, vcpu, kvm) {
894 		vcpu->arch.pause = false;
895 		__kvm_vcpu_wake_up(vcpu);
896 	}
897 }
898 
899 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
900 {
901 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
902 
903 	rcuwait_wait_event(wait,
904 			   (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
905 			   TASK_INTERRUPTIBLE);
906 
907 	if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
908 		/* Awaken to handle a signal, request we sleep again later. */
909 		kvm_make_request(KVM_REQ_SLEEP, vcpu);
910 	}
911 
912 	/*
913 	 * Make sure we will observe a potential reset request if we've
914 	 * observed a change to the power state. Pairs with the smp_wmb() in
915 	 * kvm_psci_vcpu_on().
916 	 */
917 	smp_rmb();
918 }
919 
920 /**
921  * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
922  * @vcpu:	The VCPU pointer
923  *
924  * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
925  * the vCPU is runnable.  The vCPU may or may not be scheduled out, depending
926  * on when a wake event arrives, e.g. there may already be a pending wake event.
927  */
928 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
929 {
930 	/*
931 	 * Sync back the state of the GIC CPU interface so that we have
932 	 * the latest PMR and group enables. This ensures that
933 	 * kvm_arch_vcpu_runnable has up-to-date data to decide whether
934 	 * we have pending interrupts, e.g. when determining if the
935 	 * vCPU should block.
936 	 *
937 	 * For the same reason, we want to tell GICv4 that we need
938 	 * doorbells to be signalled, should an interrupt become pending.
939 	 */
940 	preempt_disable();
941 	vcpu_set_flag(vcpu, IN_WFI);
942 	kvm_vgic_put(vcpu);
943 	preempt_enable();
944 
945 	kvm_vcpu_halt(vcpu);
946 	vcpu_clear_flag(vcpu, IN_WFIT);
947 
948 	preempt_disable();
949 	vcpu_clear_flag(vcpu, IN_WFI);
950 	kvm_vgic_load(vcpu);
951 	preempt_enable();
952 }
953 
954 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
955 {
956 	if (!kvm_arm_vcpu_suspended(vcpu))
957 		return 1;
958 
959 	kvm_vcpu_wfi(vcpu);
960 
961 	/*
962 	 * The suspend state is sticky; we do not leave it until userspace
963 	 * explicitly marks the vCPU as runnable. Request that we suspend again
964 	 * later.
965 	 */
966 	kvm_make_request(KVM_REQ_SUSPEND, vcpu);
967 
968 	/*
969 	 * Check to make sure the vCPU is actually runnable. If so, exit to
970 	 * userspace informing it of the wakeup condition.
971 	 */
972 	if (kvm_arch_vcpu_runnable(vcpu)) {
973 		memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
974 		vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
975 		vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
976 		return 0;
977 	}
978 
979 	/*
980 	 * Otherwise, we were unblocked to process a different event, such as a
981 	 * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
982 	 * process the event.
983 	 */
984 	return 1;
985 }
986 
987 /**
988  * check_vcpu_requests - check and handle pending vCPU requests
989  * @vcpu:	the VCPU pointer
990  *
991  * Return: 1 if we should enter the guest
992  *	   0 if we should exit to userspace
993  *	   < 0 if we should exit to userspace, where the return value indicates
994  *	   an error
995  */
996 static int check_vcpu_requests(struct kvm_vcpu *vcpu)
997 {
998 	if (kvm_request_pending(vcpu)) {
999 		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
1000 			kvm_vcpu_sleep(vcpu);
1001 
1002 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1003 			kvm_reset_vcpu(vcpu);
1004 
1005 		/*
1006 		 * Clear IRQ_PENDING requests that were made to guarantee
1007 		 * that a VCPU sees new virtual interrupts.
1008 		 */
1009 		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
1010 
1011 		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
1012 			kvm_update_stolen_time(vcpu);
1013 
1014 		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
1015 			/* The distributor enable bits were changed */
1016 			preempt_disable();
1017 			vgic_v4_put(vcpu);
1018 			vgic_v4_load(vcpu);
1019 			preempt_enable();
1020 		}
1021 
1022 		if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
1023 			kvm_vcpu_reload_pmu(vcpu);
1024 
1025 		if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu))
1026 			kvm_vcpu_pmu_restore_guest(vcpu);
1027 
1028 		if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
1029 			return kvm_vcpu_suspend(vcpu);
1030 
1031 		if (kvm_dirty_ring_check_request(vcpu))
1032 			return 0;
1033 	}
1034 
1035 	return 1;
1036 }
1037 
1038 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
1039 {
1040 	if (likely(!vcpu_mode_is_32bit(vcpu)))
1041 		return false;
1042 
1043 	if (vcpu_has_nv(vcpu))
1044 		return true;
1045 
1046 	return !kvm_supports_32bit_el0();
1047 }
1048 
1049 /**
1050  * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
1051  * @vcpu:	The VCPU pointer
1052  * @ret:	Pointer to write optional return code
1053  *
1054  * Returns: true if the VCPU needs to return to a preemptible + interruptible
1055  *	    and skip guest entry.
1056  *
1057  * This function disambiguates between two different types of exits: exits to a
1058  * preemptible + interruptible kernel context and exits to userspace. For an
1059  * exit to userspace, this function will write the return code to ret and return
1060  * true. For an exit to preemptible + interruptible kernel context (i.e. check
1061  * for pending work and re-enter), return true without writing to ret.
1062  */
1063 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
1064 {
1065 	struct kvm_run *run = vcpu->run;
1066 
1067 	/*
1068 	 * If we're using a userspace irqchip, then check if we need
1069 	 * to tell a userspace irqchip about timer or PMU level
1070 	 * changes and if so, exit to userspace (the actual level
1071 	 * state gets updated in kvm_timer_update_run and
1072 	 * kvm_pmu_update_run below).
1073 	 */
1074 	if (static_branch_unlikely(&userspace_irqchip_in_use)) {
1075 		if (kvm_timer_should_notify_user(vcpu) ||
1076 		    kvm_pmu_should_notify_user(vcpu)) {
1077 			*ret = -EINTR;
1078 			run->exit_reason = KVM_EXIT_INTR;
1079 			return true;
1080 		}
1081 	}
1082 
1083 	if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
1084 		run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1085 		run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
1086 		run->fail_entry.cpu = smp_processor_id();
1087 		*ret = 0;
1088 		return true;
1089 	}
1090 
1091 	return kvm_request_pending(vcpu) ||
1092 			xfer_to_guest_mode_work_pending();
1093 }
1094 
1095 /*
1096  * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
1097  * the vCPU is running.
1098  *
1099  * This must be noinstr as instrumentation may make use of RCU, and this is not
1100  * safe during the EQS.
1101  */
1102 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
1103 {
1104 	int ret;
1105 
1106 	guest_state_enter_irqoff();
1107 	ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
1108 	guest_state_exit_irqoff();
1109 
1110 	return ret;
1111 }
1112 
1113 /**
1114  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
1115  * @vcpu:	The VCPU pointer
1116  *
1117  * This function is called through the VCPU_RUN ioctl called from user space. It
1118  * will execute VM code in a loop until the time slice for the process is used
1119  * or some emulation is needed from user space in which case the function will
1120  * return with return value 0 and with the kvm_run structure filled in with the
1121  * required data for the requested emulation.
1122  */
1123 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
1124 {
1125 	struct kvm_run *run = vcpu->run;
1126 	int ret;
1127 
1128 	if (run->exit_reason == KVM_EXIT_MMIO) {
1129 		ret = kvm_handle_mmio_return(vcpu);
1130 		if (ret <= 0)
1131 			return ret;
1132 	}
1133 
1134 	vcpu_load(vcpu);
1135 
1136 	if (!vcpu->wants_to_run) {
1137 		ret = -EINTR;
1138 		goto out;
1139 	}
1140 
1141 	kvm_sigset_activate(vcpu);
1142 
1143 	ret = 1;
1144 	run->exit_reason = KVM_EXIT_UNKNOWN;
1145 	run->flags = 0;
1146 	while (ret > 0) {
1147 		/*
1148 		 * Check conditions before entering the guest
1149 		 */
1150 		ret = xfer_to_guest_mode_handle_work(vcpu);
1151 		if (!ret)
1152 			ret = 1;
1153 
1154 		if (ret > 0)
1155 			ret = check_vcpu_requests(vcpu);
1156 
1157 		/*
1158 		 * Preparing the interrupts to be injected also
1159 		 * involves poking the GIC, which must be done in a
1160 		 * non-preemptible context.
1161 		 */
1162 		preempt_disable();
1163 
1164 		/*
1165 		 * The VMID allocator only tracks active VMIDs per
1166 		 * physical CPU, and therefore the VMID allocated may not be
1167 		 * preserved on VMID roll-over if the task was preempted,
1168 		 * making a thread's VMID inactive. So we need to call
1169 		 * kvm_arm_vmid_update() in non-premptible context.
1170 		 */
1171 		if (kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid) &&
1172 		    has_vhe())
1173 			__load_stage2(vcpu->arch.hw_mmu,
1174 				      vcpu->arch.hw_mmu->arch);
1175 
1176 		kvm_pmu_flush_hwstate(vcpu);
1177 
1178 		local_irq_disable();
1179 
1180 		kvm_vgic_flush_hwstate(vcpu);
1181 
1182 		kvm_pmu_update_vcpu_events(vcpu);
1183 
1184 		/*
1185 		 * Ensure we set mode to IN_GUEST_MODE after we disable
1186 		 * interrupts and before the final VCPU requests check.
1187 		 * See the comment in kvm_vcpu_exiting_guest_mode() and
1188 		 * Documentation/virt/kvm/vcpu-requests.rst
1189 		 */
1190 		smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1191 
1192 		if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
1193 			vcpu->mode = OUTSIDE_GUEST_MODE;
1194 			isb(); /* Ensure work in x_flush_hwstate is committed */
1195 			kvm_pmu_sync_hwstate(vcpu);
1196 			if (static_branch_unlikely(&userspace_irqchip_in_use))
1197 				kvm_timer_sync_user(vcpu);
1198 			kvm_vgic_sync_hwstate(vcpu);
1199 			local_irq_enable();
1200 			preempt_enable();
1201 			continue;
1202 		}
1203 
1204 		kvm_arm_setup_debug(vcpu);
1205 		kvm_arch_vcpu_ctxflush_fp(vcpu);
1206 
1207 		/**************************************************************
1208 		 * Enter the guest
1209 		 */
1210 		trace_kvm_entry(*vcpu_pc(vcpu));
1211 		guest_timing_enter_irqoff();
1212 
1213 		ret = kvm_arm_vcpu_enter_exit(vcpu);
1214 
1215 		vcpu->mode = OUTSIDE_GUEST_MODE;
1216 		vcpu->stat.exits++;
1217 		/*
1218 		 * Back from guest
1219 		 *************************************************************/
1220 
1221 		kvm_arm_clear_debug(vcpu);
1222 
1223 		/*
1224 		 * We must sync the PMU state before the vgic state so
1225 		 * that the vgic can properly sample the updated state of the
1226 		 * interrupt line.
1227 		 */
1228 		kvm_pmu_sync_hwstate(vcpu);
1229 
1230 		/*
1231 		 * Sync the vgic state before syncing the timer state because
1232 		 * the timer code needs to know if the virtual timer
1233 		 * interrupts are active.
1234 		 */
1235 		kvm_vgic_sync_hwstate(vcpu);
1236 
1237 		/*
1238 		 * Sync the timer hardware state before enabling interrupts as
1239 		 * we don't want vtimer interrupts to race with syncing the
1240 		 * timer virtual interrupt state.
1241 		 */
1242 		if (static_branch_unlikely(&userspace_irqchip_in_use))
1243 			kvm_timer_sync_user(vcpu);
1244 
1245 		kvm_arch_vcpu_ctxsync_fp(vcpu);
1246 
1247 		/*
1248 		 * We must ensure that any pending interrupts are taken before
1249 		 * we exit guest timing so that timer ticks are accounted as
1250 		 * guest time. Transiently unmask interrupts so that any
1251 		 * pending interrupts are taken.
1252 		 *
1253 		 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
1254 		 * context synchronization event) is necessary to ensure that
1255 		 * pending interrupts are taken.
1256 		 */
1257 		if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
1258 			local_irq_enable();
1259 			isb();
1260 			local_irq_disable();
1261 		}
1262 
1263 		guest_timing_exit_irqoff();
1264 
1265 		local_irq_enable();
1266 
1267 		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
1268 
1269 		/* Exit types that need handling before we can be preempted */
1270 		handle_exit_early(vcpu, ret);
1271 
1272 		preempt_enable();
1273 
1274 		/*
1275 		 * The ARMv8 architecture doesn't give the hypervisor
1276 		 * a mechanism to prevent a guest from dropping to AArch32 EL0
1277 		 * if implemented by the CPU. If we spot the guest in such
1278 		 * state and that we decided it wasn't supposed to do so (like
1279 		 * with the asymmetric AArch32 case), return to userspace with
1280 		 * a fatal error.
1281 		 */
1282 		if (vcpu_mode_is_bad_32bit(vcpu)) {
1283 			/*
1284 			 * As we have caught the guest red-handed, decide that
1285 			 * it isn't fit for purpose anymore by making the vcpu
1286 			 * invalid. The VMM can try and fix it by issuing  a
1287 			 * KVM_ARM_VCPU_INIT if it really wants to.
1288 			 */
1289 			vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
1290 			ret = ARM_EXCEPTION_IL;
1291 		}
1292 
1293 		ret = handle_exit(vcpu, ret);
1294 	}
1295 
1296 	/* Tell userspace about in-kernel device output levels */
1297 	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1298 		kvm_timer_update_run(vcpu);
1299 		kvm_pmu_update_run(vcpu);
1300 	}
1301 
1302 	kvm_sigset_deactivate(vcpu);
1303 
1304 out:
1305 	/*
1306 	 * In the unlikely event that we are returning to userspace
1307 	 * with pending exceptions or PC adjustment, commit these
1308 	 * adjustments in order to give userspace a consistent view of
1309 	 * the vcpu state. Note that this relies on __kvm_adjust_pc()
1310 	 * being preempt-safe on VHE.
1311 	 */
1312 	if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) ||
1313 		     vcpu_get_flag(vcpu, INCREMENT_PC)))
1314 		kvm_call_hyp(__kvm_adjust_pc, vcpu);
1315 
1316 	vcpu_put(vcpu);
1317 	return ret;
1318 }
1319 
1320 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
1321 {
1322 	int bit_index;
1323 	bool set;
1324 	unsigned long *hcr;
1325 
1326 	if (number == KVM_ARM_IRQ_CPU_IRQ)
1327 		bit_index = __ffs(HCR_VI);
1328 	else /* KVM_ARM_IRQ_CPU_FIQ */
1329 		bit_index = __ffs(HCR_VF);
1330 
1331 	hcr = vcpu_hcr(vcpu);
1332 	if (level)
1333 		set = test_and_set_bit(bit_index, hcr);
1334 	else
1335 		set = test_and_clear_bit(bit_index, hcr);
1336 
1337 	/*
1338 	 * If we didn't change anything, no need to wake up or kick other CPUs
1339 	 */
1340 	if (set == level)
1341 		return 0;
1342 
1343 	/*
1344 	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1345 	 * trigger a world-switch round on the running physical CPU to set the
1346 	 * virtual IRQ/FIQ fields in the HCR appropriately.
1347 	 */
1348 	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1349 	kvm_vcpu_kick(vcpu);
1350 
1351 	return 0;
1352 }
1353 
1354 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1355 			  bool line_status)
1356 {
1357 	u32 irq = irq_level->irq;
1358 	unsigned int irq_type, vcpu_id, irq_num;
1359 	struct kvm_vcpu *vcpu = NULL;
1360 	bool level = irq_level->level;
1361 
1362 	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1363 	vcpu_id = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1364 	vcpu_id += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1365 	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1366 
1367 	trace_kvm_irq_line(irq_type, vcpu_id, irq_num, irq_level->level);
1368 
1369 	switch (irq_type) {
1370 	case KVM_ARM_IRQ_TYPE_CPU:
1371 		if (irqchip_in_kernel(kvm))
1372 			return -ENXIO;
1373 
1374 		vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1375 		if (!vcpu)
1376 			return -EINVAL;
1377 
1378 		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1379 			return -EINVAL;
1380 
1381 		return vcpu_interrupt_line(vcpu, irq_num, level);
1382 	case KVM_ARM_IRQ_TYPE_PPI:
1383 		if (!irqchip_in_kernel(kvm))
1384 			return -ENXIO;
1385 
1386 		vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1387 		if (!vcpu)
1388 			return -EINVAL;
1389 
1390 		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1391 			return -EINVAL;
1392 
1393 		return kvm_vgic_inject_irq(kvm, vcpu, irq_num, level, NULL);
1394 	case KVM_ARM_IRQ_TYPE_SPI:
1395 		if (!irqchip_in_kernel(kvm))
1396 			return -ENXIO;
1397 
1398 		if (irq_num < VGIC_NR_PRIVATE_IRQS)
1399 			return -EINVAL;
1400 
1401 		return kvm_vgic_inject_irq(kvm, NULL, irq_num, level, NULL);
1402 	}
1403 
1404 	return -EINVAL;
1405 }
1406 
1407 static unsigned long system_supported_vcpu_features(void)
1408 {
1409 	unsigned long features = KVM_VCPU_VALID_FEATURES;
1410 
1411 	if (!cpus_have_final_cap(ARM64_HAS_32BIT_EL1))
1412 		clear_bit(KVM_ARM_VCPU_EL1_32BIT, &features);
1413 
1414 	if (!kvm_arm_support_pmu_v3())
1415 		clear_bit(KVM_ARM_VCPU_PMU_V3, &features);
1416 
1417 	if (!system_supports_sve())
1418 		clear_bit(KVM_ARM_VCPU_SVE, &features);
1419 
1420 	if (!kvm_has_full_ptr_auth()) {
1421 		clear_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features);
1422 		clear_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features);
1423 	}
1424 
1425 	if (!cpus_have_final_cap(ARM64_HAS_NESTED_VIRT))
1426 		clear_bit(KVM_ARM_VCPU_HAS_EL2, &features);
1427 
1428 	return features;
1429 }
1430 
1431 static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu,
1432 					const struct kvm_vcpu_init *init)
1433 {
1434 	unsigned long features = init->features[0];
1435 	int i;
1436 
1437 	if (features & ~KVM_VCPU_VALID_FEATURES)
1438 		return -ENOENT;
1439 
1440 	for (i = 1; i < ARRAY_SIZE(init->features); i++) {
1441 		if (init->features[i])
1442 			return -ENOENT;
1443 	}
1444 
1445 	if (features & ~system_supported_vcpu_features())
1446 		return -EINVAL;
1447 
1448 	/*
1449 	 * For now make sure that both address/generic pointer authentication
1450 	 * features are requested by the userspace together.
1451 	 */
1452 	if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features) !=
1453 	    test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features))
1454 		return -EINVAL;
1455 
1456 	if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features))
1457 		return 0;
1458 
1459 	/* MTE is incompatible with AArch32 */
1460 	if (kvm_has_mte(vcpu->kvm))
1461 		return -EINVAL;
1462 
1463 	/* NV is incompatible with AArch32 */
1464 	if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features))
1465 		return -EINVAL;
1466 
1467 	return 0;
1468 }
1469 
1470 static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu,
1471 				  const struct kvm_vcpu_init *init)
1472 {
1473 	unsigned long features = init->features[0];
1474 
1475 	return !bitmap_equal(vcpu->kvm->arch.vcpu_features, &features,
1476 			     KVM_VCPU_MAX_FEATURES);
1477 }
1478 
1479 static int kvm_setup_vcpu(struct kvm_vcpu *vcpu)
1480 {
1481 	struct kvm *kvm = vcpu->kvm;
1482 	int ret = 0;
1483 
1484 	/*
1485 	 * When the vCPU has a PMU, but no PMU is set for the guest
1486 	 * yet, set the default one.
1487 	 */
1488 	if (kvm_vcpu_has_pmu(vcpu) && !kvm->arch.arm_pmu)
1489 		ret = kvm_arm_set_default_pmu(kvm);
1490 
1491 	/* Prepare for nested if required */
1492 	if (!ret && vcpu_has_nv(vcpu))
1493 		ret = kvm_vcpu_init_nested(vcpu);
1494 
1495 	return ret;
1496 }
1497 
1498 static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1499 				 const struct kvm_vcpu_init *init)
1500 {
1501 	unsigned long features = init->features[0];
1502 	struct kvm *kvm = vcpu->kvm;
1503 	int ret = -EINVAL;
1504 
1505 	mutex_lock(&kvm->arch.config_lock);
1506 
1507 	if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) &&
1508 	    kvm_vcpu_init_changed(vcpu, init))
1509 		goto out_unlock;
1510 
1511 	bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES);
1512 
1513 	ret = kvm_setup_vcpu(vcpu);
1514 	if (ret)
1515 		goto out_unlock;
1516 
1517 	/* Now we know what it is, we can reset it. */
1518 	kvm_reset_vcpu(vcpu);
1519 
1520 	set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags);
1521 	vcpu_set_flag(vcpu, VCPU_INITIALIZED);
1522 	ret = 0;
1523 out_unlock:
1524 	mutex_unlock(&kvm->arch.config_lock);
1525 	return ret;
1526 }
1527 
1528 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1529 			       const struct kvm_vcpu_init *init)
1530 {
1531 	int ret;
1532 
1533 	if (init->target != KVM_ARM_TARGET_GENERIC_V8 &&
1534 	    init->target != kvm_target_cpu())
1535 		return -EINVAL;
1536 
1537 	ret = kvm_vcpu_init_check_features(vcpu, init);
1538 	if (ret)
1539 		return ret;
1540 
1541 	if (!kvm_vcpu_initialized(vcpu))
1542 		return __kvm_vcpu_set_target(vcpu, init);
1543 
1544 	if (kvm_vcpu_init_changed(vcpu, init))
1545 		return -EINVAL;
1546 
1547 	kvm_reset_vcpu(vcpu);
1548 	return 0;
1549 }
1550 
1551 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1552 					 struct kvm_vcpu_init *init)
1553 {
1554 	bool power_off = false;
1555 	int ret;
1556 
1557 	/*
1558 	 * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid
1559 	 * reflecting it in the finalized feature set, thus limiting its scope
1560 	 * to a single KVM_ARM_VCPU_INIT call.
1561 	 */
1562 	if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) {
1563 		init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF);
1564 		power_off = true;
1565 	}
1566 
1567 	ret = kvm_vcpu_set_target(vcpu, init);
1568 	if (ret)
1569 		return ret;
1570 
1571 	/*
1572 	 * Ensure a rebooted VM will fault in RAM pages and detect if the
1573 	 * guest MMU is turned off and flush the caches as needed.
1574 	 *
1575 	 * S2FWB enforces all memory accesses to RAM being cacheable,
1576 	 * ensuring that the data side is always coherent. We still
1577 	 * need to invalidate the I-cache though, as FWB does *not*
1578 	 * imply CTR_EL0.DIC.
1579 	 */
1580 	if (vcpu_has_run_once(vcpu)) {
1581 		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1582 			stage2_unmap_vm(vcpu->kvm);
1583 		else
1584 			icache_inval_all_pou();
1585 	}
1586 
1587 	vcpu_reset_hcr(vcpu);
1588 	vcpu->arch.cptr_el2 = kvm_get_reset_cptr_el2(vcpu);
1589 
1590 	/*
1591 	 * Handle the "start in power-off" case.
1592 	 */
1593 	spin_lock(&vcpu->arch.mp_state_lock);
1594 
1595 	if (power_off)
1596 		__kvm_arm_vcpu_power_off(vcpu);
1597 	else
1598 		WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
1599 
1600 	spin_unlock(&vcpu->arch.mp_state_lock);
1601 
1602 	return 0;
1603 }
1604 
1605 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1606 				 struct kvm_device_attr *attr)
1607 {
1608 	int ret = -ENXIO;
1609 
1610 	switch (attr->group) {
1611 	default:
1612 		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1613 		break;
1614 	}
1615 
1616 	return ret;
1617 }
1618 
1619 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1620 				 struct kvm_device_attr *attr)
1621 {
1622 	int ret = -ENXIO;
1623 
1624 	switch (attr->group) {
1625 	default:
1626 		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1627 		break;
1628 	}
1629 
1630 	return ret;
1631 }
1632 
1633 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1634 				 struct kvm_device_attr *attr)
1635 {
1636 	int ret = -ENXIO;
1637 
1638 	switch (attr->group) {
1639 	default:
1640 		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1641 		break;
1642 	}
1643 
1644 	return ret;
1645 }
1646 
1647 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1648 				   struct kvm_vcpu_events *events)
1649 {
1650 	memset(events, 0, sizeof(*events));
1651 
1652 	return __kvm_arm_vcpu_get_events(vcpu, events);
1653 }
1654 
1655 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1656 				   struct kvm_vcpu_events *events)
1657 {
1658 	int i;
1659 
1660 	/* check whether the reserved field is zero */
1661 	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1662 		if (events->reserved[i])
1663 			return -EINVAL;
1664 
1665 	/* check whether the pad field is zero */
1666 	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1667 		if (events->exception.pad[i])
1668 			return -EINVAL;
1669 
1670 	return __kvm_arm_vcpu_set_events(vcpu, events);
1671 }
1672 
1673 long kvm_arch_vcpu_ioctl(struct file *filp,
1674 			 unsigned int ioctl, unsigned long arg)
1675 {
1676 	struct kvm_vcpu *vcpu = filp->private_data;
1677 	void __user *argp = (void __user *)arg;
1678 	struct kvm_device_attr attr;
1679 	long r;
1680 
1681 	switch (ioctl) {
1682 	case KVM_ARM_VCPU_INIT: {
1683 		struct kvm_vcpu_init init;
1684 
1685 		r = -EFAULT;
1686 		if (copy_from_user(&init, argp, sizeof(init)))
1687 			break;
1688 
1689 		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1690 		break;
1691 	}
1692 	case KVM_SET_ONE_REG:
1693 	case KVM_GET_ONE_REG: {
1694 		struct kvm_one_reg reg;
1695 
1696 		r = -ENOEXEC;
1697 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1698 			break;
1699 
1700 		r = -EFAULT;
1701 		if (copy_from_user(&reg, argp, sizeof(reg)))
1702 			break;
1703 
1704 		/*
1705 		 * We could owe a reset due to PSCI. Handle the pending reset
1706 		 * here to ensure userspace register accesses are ordered after
1707 		 * the reset.
1708 		 */
1709 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1710 			kvm_reset_vcpu(vcpu);
1711 
1712 		if (ioctl == KVM_SET_ONE_REG)
1713 			r = kvm_arm_set_reg(vcpu, &reg);
1714 		else
1715 			r = kvm_arm_get_reg(vcpu, &reg);
1716 		break;
1717 	}
1718 	case KVM_GET_REG_LIST: {
1719 		struct kvm_reg_list __user *user_list = argp;
1720 		struct kvm_reg_list reg_list;
1721 		unsigned n;
1722 
1723 		r = -ENOEXEC;
1724 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1725 			break;
1726 
1727 		r = -EPERM;
1728 		if (!kvm_arm_vcpu_is_finalized(vcpu))
1729 			break;
1730 
1731 		r = -EFAULT;
1732 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1733 			break;
1734 		n = reg_list.n;
1735 		reg_list.n = kvm_arm_num_regs(vcpu);
1736 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1737 			break;
1738 		r = -E2BIG;
1739 		if (n < reg_list.n)
1740 			break;
1741 		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1742 		break;
1743 	}
1744 	case KVM_SET_DEVICE_ATTR: {
1745 		r = -EFAULT;
1746 		if (copy_from_user(&attr, argp, sizeof(attr)))
1747 			break;
1748 		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1749 		break;
1750 	}
1751 	case KVM_GET_DEVICE_ATTR: {
1752 		r = -EFAULT;
1753 		if (copy_from_user(&attr, argp, sizeof(attr)))
1754 			break;
1755 		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1756 		break;
1757 	}
1758 	case KVM_HAS_DEVICE_ATTR: {
1759 		r = -EFAULT;
1760 		if (copy_from_user(&attr, argp, sizeof(attr)))
1761 			break;
1762 		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1763 		break;
1764 	}
1765 	case KVM_GET_VCPU_EVENTS: {
1766 		struct kvm_vcpu_events events;
1767 
1768 		if (kvm_arm_vcpu_get_events(vcpu, &events))
1769 			return -EINVAL;
1770 
1771 		if (copy_to_user(argp, &events, sizeof(events)))
1772 			return -EFAULT;
1773 
1774 		return 0;
1775 	}
1776 	case KVM_SET_VCPU_EVENTS: {
1777 		struct kvm_vcpu_events events;
1778 
1779 		if (copy_from_user(&events, argp, sizeof(events)))
1780 			return -EFAULT;
1781 
1782 		return kvm_arm_vcpu_set_events(vcpu, &events);
1783 	}
1784 	case KVM_ARM_VCPU_FINALIZE: {
1785 		int what;
1786 
1787 		if (!kvm_vcpu_initialized(vcpu))
1788 			return -ENOEXEC;
1789 
1790 		if (get_user(what, (const int __user *)argp))
1791 			return -EFAULT;
1792 
1793 		return kvm_arm_vcpu_finalize(vcpu, what);
1794 	}
1795 	default:
1796 		r = -EINVAL;
1797 	}
1798 
1799 	return r;
1800 }
1801 
1802 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1803 {
1804 
1805 }
1806 
1807 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1808 					struct kvm_arm_device_addr *dev_addr)
1809 {
1810 	switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) {
1811 	case KVM_ARM_DEVICE_VGIC_V2:
1812 		if (!vgic_present)
1813 			return -ENXIO;
1814 		return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr);
1815 	default:
1816 		return -ENODEV;
1817 	}
1818 }
1819 
1820 static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1821 {
1822 	switch (attr->group) {
1823 	case KVM_ARM_VM_SMCCC_CTRL:
1824 		return kvm_vm_smccc_has_attr(kvm, attr);
1825 	default:
1826 		return -ENXIO;
1827 	}
1828 }
1829 
1830 static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1831 {
1832 	switch (attr->group) {
1833 	case KVM_ARM_VM_SMCCC_CTRL:
1834 		return kvm_vm_smccc_set_attr(kvm, attr);
1835 	default:
1836 		return -ENXIO;
1837 	}
1838 }
1839 
1840 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1841 {
1842 	struct kvm *kvm = filp->private_data;
1843 	void __user *argp = (void __user *)arg;
1844 	struct kvm_device_attr attr;
1845 
1846 	switch (ioctl) {
1847 	case KVM_CREATE_IRQCHIP: {
1848 		int ret;
1849 		if (!vgic_present)
1850 			return -ENXIO;
1851 		mutex_lock(&kvm->lock);
1852 		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1853 		mutex_unlock(&kvm->lock);
1854 		return ret;
1855 	}
1856 	case KVM_ARM_SET_DEVICE_ADDR: {
1857 		struct kvm_arm_device_addr dev_addr;
1858 
1859 		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1860 			return -EFAULT;
1861 		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1862 	}
1863 	case KVM_ARM_PREFERRED_TARGET: {
1864 		struct kvm_vcpu_init init = {
1865 			.target = KVM_ARM_TARGET_GENERIC_V8,
1866 		};
1867 
1868 		if (copy_to_user(argp, &init, sizeof(init)))
1869 			return -EFAULT;
1870 
1871 		return 0;
1872 	}
1873 	case KVM_ARM_MTE_COPY_TAGS: {
1874 		struct kvm_arm_copy_mte_tags copy_tags;
1875 
1876 		if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1877 			return -EFAULT;
1878 		return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1879 	}
1880 	case KVM_ARM_SET_COUNTER_OFFSET: {
1881 		struct kvm_arm_counter_offset offset;
1882 
1883 		if (copy_from_user(&offset, argp, sizeof(offset)))
1884 			return -EFAULT;
1885 		return kvm_vm_ioctl_set_counter_offset(kvm, &offset);
1886 	}
1887 	case KVM_HAS_DEVICE_ATTR: {
1888 		if (copy_from_user(&attr, argp, sizeof(attr)))
1889 			return -EFAULT;
1890 
1891 		return kvm_vm_has_attr(kvm, &attr);
1892 	}
1893 	case KVM_SET_DEVICE_ATTR: {
1894 		if (copy_from_user(&attr, argp, sizeof(attr)))
1895 			return -EFAULT;
1896 
1897 		return kvm_vm_set_attr(kvm, &attr);
1898 	}
1899 	case KVM_ARM_GET_REG_WRITABLE_MASKS: {
1900 		struct reg_mask_range range;
1901 
1902 		if (copy_from_user(&range, argp, sizeof(range)))
1903 			return -EFAULT;
1904 		return kvm_vm_ioctl_get_reg_writable_masks(kvm, &range);
1905 	}
1906 	default:
1907 		return -EINVAL;
1908 	}
1909 }
1910 
1911 /* unlocks vcpus from @vcpu_lock_idx and smaller */
1912 static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx)
1913 {
1914 	struct kvm_vcpu *tmp_vcpu;
1915 
1916 	for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1917 		tmp_vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1918 		mutex_unlock(&tmp_vcpu->mutex);
1919 	}
1920 }
1921 
1922 void unlock_all_vcpus(struct kvm *kvm)
1923 {
1924 	lockdep_assert_held(&kvm->lock);
1925 
1926 	unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1);
1927 }
1928 
1929 /* Returns true if all vcpus were locked, false otherwise */
1930 bool lock_all_vcpus(struct kvm *kvm)
1931 {
1932 	struct kvm_vcpu *tmp_vcpu;
1933 	unsigned long c;
1934 
1935 	lockdep_assert_held(&kvm->lock);
1936 
1937 	/*
1938 	 * Any time a vcpu is in an ioctl (including running), the
1939 	 * core KVM code tries to grab the vcpu->mutex.
1940 	 *
1941 	 * By grabbing the vcpu->mutex of all VCPUs we ensure that no
1942 	 * other VCPUs can fiddle with the state while we access it.
1943 	 */
1944 	kvm_for_each_vcpu(c, tmp_vcpu, kvm) {
1945 		if (!mutex_trylock(&tmp_vcpu->mutex)) {
1946 			unlock_vcpus(kvm, c - 1);
1947 			return false;
1948 		}
1949 	}
1950 
1951 	return true;
1952 }
1953 
1954 static unsigned long nvhe_percpu_size(void)
1955 {
1956 	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1957 		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1958 }
1959 
1960 static unsigned long nvhe_percpu_order(void)
1961 {
1962 	unsigned long size = nvhe_percpu_size();
1963 
1964 	return size ? get_order(size) : 0;
1965 }
1966 
1967 static size_t pkvm_host_sve_state_order(void)
1968 {
1969 	return get_order(pkvm_host_sve_state_size());
1970 }
1971 
1972 /* A lookup table holding the hypervisor VA for each vector slot */
1973 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1974 
1975 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1976 {
1977 	hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1978 }
1979 
1980 static int kvm_init_vector_slots(void)
1981 {
1982 	int err;
1983 	void *base;
1984 
1985 	base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1986 	kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1987 
1988 	base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1989 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1990 
1991 	if (kvm_system_needs_idmapped_vectors() &&
1992 	    !is_protected_kvm_enabled()) {
1993 		err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1994 					       __BP_HARDEN_HYP_VECS_SZ, &base);
1995 		if (err)
1996 			return err;
1997 	}
1998 
1999 	kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
2000 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
2001 	return 0;
2002 }
2003 
2004 static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits)
2005 {
2006 	struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2007 	u64 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
2008 	unsigned long tcr;
2009 
2010 	/*
2011 	 * Calculate the raw per-cpu offset without a translation from the
2012 	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
2013 	 * so that we can use adr_l to access per-cpu variables in EL2.
2014 	 * Also drop the KASAN tag which gets in the way...
2015 	 */
2016 	params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
2017 			    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
2018 
2019 	params->mair_el2 = read_sysreg(mair_el1);
2020 
2021 	tcr = read_sysreg(tcr_el1);
2022 	if (cpus_have_final_cap(ARM64_KVM_HVHE)) {
2023 		tcr |= TCR_EPD1_MASK;
2024 	} else {
2025 		tcr &= TCR_EL2_MASK;
2026 		tcr |= TCR_EL2_RES1;
2027 	}
2028 	tcr &= ~TCR_T0SZ_MASK;
2029 	tcr |= TCR_T0SZ(hyp_va_bits);
2030 	tcr &= ~TCR_EL2_PS_MASK;
2031 	tcr |= FIELD_PREP(TCR_EL2_PS_MASK, kvm_get_parange(mmfr0));
2032 	if (kvm_lpa2_is_enabled())
2033 		tcr |= TCR_EL2_DS;
2034 	params->tcr_el2 = tcr;
2035 
2036 	params->pgd_pa = kvm_mmu_get_httbr();
2037 	if (is_protected_kvm_enabled())
2038 		params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
2039 	else
2040 		params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
2041 	if (cpus_have_final_cap(ARM64_KVM_HVHE))
2042 		params->hcr_el2 |= HCR_E2H;
2043 	params->vttbr = params->vtcr = 0;
2044 
2045 	/*
2046 	 * Flush the init params from the data cache because the struct will
2047 	 * be read while the MMU is off.
2048 	 */
2049 	kvm_flush_dcache_to_poc(params, sizeof(*params));
2050 }
2051 
2052 static void hyp_install_host_vector(void)
2053 {
2054 	struct kvm_nvhe_init_params *params;
2055 	struct arm_smccc_res res;
2056 
2057 	/* Switch from the HYP stub to our own HYP init vector */
2058 	__hyp_set_vectors(kvm_get_idmap_vector());
2059 
2060 	/*
2061 	 * Call initialization code, and switch to the full blown HYP code.
2062 	 * If the cpucaps haven't been finalized yet, something has gone very
2063 	 * wrong, and hyp will crash and burn when it uses any
2064 	 * cpus_have_*_cap() wrapper.
2065 	 */
2066 	BUG_ON(!system_capabilities_finalized());
2067 	params = this_cpu_ptr_nvhe_sym(kvm_init_params);
2068 	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
2069 	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
2070 }
2071 
2072 static void cpu_init_hyp_mode(void)
2073 {
2074 	hyp_install_host_vector();
2075 
2076 	/*
2077 	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
2078 	 * at EL2.
2079 	 */
2080 	if (this_cpu_has_cap(ARM64_SSBS) &&
2081 	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
2082 		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
2083 	}
2084 }
2085 
2086 static void cpu_hyp_reset(void)
2087 {
2088 	if (!is_kernel_in_hyp_mode())
2089 		__hyp_reset_vectors();
2090 }
2091 
2092 /*
2093  * EL2 vectors can be mapped and rerouted in a number of ways,
2094  * depending on the kernel configuration and CPU present:
2095  *
2096  * - If the CPU is affected by Spectre-v2, the hardening sequence is
2097  *   placed in one of the vector slots, which is executed before jumping
2098  *   to the real vectors.
2099  *
2100  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
2101  *   containing the hardening sequence is mapped next to the idmap page,
2102  *   and executed before jumping to the real vectors.
2103  *
2104  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
2105  *   empty slot is selected, mapped next to the idmap page, and
2106  *   executed before jumping to the real vectors.
2107  *
2108  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
2109  * VHE, as we don't have hypervisor-specific mappings. If the system
2110  * is VHE and yet selects this capability, it will be ignored.
2111  */
2112 static void cpu_set_hyp_vector(void)
2113 {
2114 	struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
2115 	void *vector = hyp_spectre_vector_selector[data->slot];
2116 
2117 	if (!is_protected_kvm_enabled())
2118 		*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
2119 	else
2120 		kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
2121 }
2122 
2123 static void cpu_hyp_init_context(void)
2124 {
2125 	kvm_init_host_cpu_context(host_data_ptr(host_ctxt));
2126 
2127 	if (!is_kernel_in_hyp_mode())
2128 		cpu_init_hyp_mode();
2129 }
2130 
2131 static void cpu_hyp_init_features(void)
2132 {
2133 	cpu_set_hyp_vector();
2134 	kvm_arm_init_debug();
2135 
2136 	if (is_kernel_in_hyp_mode())
2137 		kvm_timer_init_vhe();
2138 
2139 	if (vgic_present)
2140 		kvm_vgic_init_cpu_hardware();
2141 }
2142 
2143 static void cpu_hyp_reinit(void)
2144 {
2145 	cpu_hyp_reset();
2146 	cpu_hyp_init_context();
2147 	cpu_hyp_init_features();
2148 }
2149 
2150 static void cpu_hyp_init(void *discard)
2151 {
2152 	if (!__this_cpu_read(kvm_hyp_initialized)) {
2153 		cpu_hyp_reinit();
2154 		__this_cpu_write(kvm_hyp_initialized, 1);
2155 	}
2156 }
2157 
2158 static void cpu_hyp_uninit(void *discard)
2159 {
2160 	if (__this_cpu_read(kvm_hyp_initialized)) {
2161 		cpu_hyp_reset();
2162 		__this_cpu_write(kvm_hyp_initialized, 0);
2163 	}
2164 }
2165 
2166 int kvm_arch_hardware_enable(void)
2167 {
2168 	/*
2169 	 * Most calls to this function are made with migration
2170 	 * disabled, but not with preemption disabled. The former is
2171 	 * enough to ensure correctness, but most of the helpers
2172 	 * expect the later and will throw a tantrum otherwise.
2173 	 */
2174 	preempt_disable();
2175 
2176 	cpu_hyp_init(NULL);
2177 
2178 	kvm_vgic_cpu_up();
2179 	kvm_timer_cpu_up();
2180 
2181 	preempt_enable();
2182 
2183 	return 0;
2184 }
2185 
2186 void kvm_arch_hardware_disable(void)
2187 {
2188 	kvm_timer_cpu_down();
2189 	kvm_vgic_cpu_down();
2190 
2191 	if (!is_protected_kvm_enabled())
2192 		cpu_hyp_uninit(NULL);
2193 }
2194 
2195 #ifdef CONFIG_CPU_PM
2196 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
2197 				    unsigned long cmd,
2198 				    void *v)
2199 {
2200 	/*
2201 	 * kvm_hyp_initialized is left with its old value over
2202 	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
2203 	 * re-enable hyp.
2204 	 */
2205 	switch (cmd) {
2206 	case CPU_PM_ENTER:
2207 		if (__this_cpu_read(kvm_hyp_initialized))
2208 			/*
2209 			 * don't update kvm_hyp_initialized here
2210 			 * so that the hyp will be re-enabled
2211 			 * when we resume. See below.
2212 			 */
2213 			cpu_hyp_reset();
2214 
2215 		return NOTIFY_OK;
2216 	case CPU_PM_ENTER_FAILED:
2217 	case CPU_PM_EXIT:
2218 		if (__this_cpu_read(kvm_hyp_initialized))
2219 			/* The hyp was enabled before suspend. */
2220 			cpu_hyp_reinit();
2221 
2222 		return NOTIFY_OK;
2223 
2224 	default:
2225 		return NOTIFY_DONE;
2226 	}
2227 }
2228 
2229 static struct notifier_block hyp_init_cpu_pm_nb = {
2230 	.notifier_call = hyp_init_cpu_pm_notifier,
2231 };
2232 
2233 static void __init hyp_cpu_pm_init(void)
2234 {
2235 	if (!is_protected_kvm_enabled())
2236 		cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
2237 }
2238 static void __init hyp_cpu_pm_exit(void)
2239 {
2240 	if (!is_protected_kvm_enabled())
2241 		cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
2242 }
2243 #else
2244 static inline void __init hyp_cpu_pm_init(void)
2245 {
2246 }
2247 static inline void __init hyp_cpu_pm_exit(void)
2248 {
2249 }
2250 #endif
2251 
2252 static void __init init_cpu_logical_map(void)
2253 {
2254 	unsigned int cpu;
2255 
2256 	/*
2257 	 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
2258 	 * Only copy the set of online CPUs whose features have been checked
2259 	 * against the finalized system capabilities. The hypervisor will not
2260 	 * allow any other CPUs from the `possible` set to boot.
2261 	 */
2262 	for_each_online_cpu(cpu)
2263 		hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
2264 }
2265 
2266 #define init_psci_0_1_impl_state(config, what)	\
2267 	config.psci_0_1_ ## what ## _implemented = psci_ops.what
2268 
2269 static bool __init init_psci_relay(void)
2270 {
2271 	/*
2272 	 * If PSCI has not been initialized, protected KVM cannot install
2273 	 * itself on newly booted CPUs.
2274 	 */
2275 	if (!psci_ops.get_version) {
2276 		kvm_err("Cannot initialize protected mode without PSCI\n");
2277 		return false;
2278 	}
2279 
2280 	kvm_host_psci_config.version = psci_ops.get_version();
2281 	kvm_host_psci_config.smccc_version = arm_smccc_get_version();
2282 
2283 	if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
2284 		kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
2285 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
2286 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
2287 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
2288 		init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
2289 	}
2290 	return true;
2291 }
2292 
2293 static int __init init_subsystems(void)
2294 {
2295 	int err = 0;
2296 
2297 	/*
2298 	 * Enable hardware so that subsystem initialisation can access EL2.
2299 	 */
2300 	on_each_cpu(cpu_hyp_init, NULL, 1);
2301 
2302 	/*
2303 	 * Register CPU lower-power notifier
2304 	 */
2305 	hyp_cpu_pm_init();
2306 
2307 	/*
2308 	 * Init HYP view of VGIC
2309 	 */
2310 	err = kvm_vgic_hyp_init();
2311 	switch (err) {
2312 	case 0:
2313 		vgic_present = true;
2314 		break;
2315 	case -ENODEV:
2316 	case -ENXIO:
2317 		vgic_present = false;
2318 		err = 0;
2319 		break;
2320 	default:
2321 		goto out;
2322 	}
2323 
2324 	/*
2325 	 * Init HYP architected timer support
2326 	 */
2327 	err = kvm_timer_hyp_init(vgic_present);
2328 	if (err)
2329 		goto out;
2330 
2331 	kvm_register_perf_callbacks(NULL);
2332 
2333 out:
2334 	if (err)
2335 		hyp_cpu_pm_exit();
2336 
2337 	if (err || !is_protected_kvm_enabled())
2338 		on_each_cpu(cpu_hyp_uninit, NULL, 1);
2339 
2340 	return err;
2341 }
2342 
2343 static void __init teardown_subsystems(void)
2344 {
2345 	kvm_unregister_perf_callbacks();
2346 	hyp_cpu_pm_exit();
2347 }
2348 
2349 static void __init teardown_hyp_mode(void)
2350 {
2351 	bool free_sve = system_supports_sve() && is_protected_kvm_enabled();
2352 	int cpu;
2353 
2354 	free_hyp_pgds();
2355 	for_each_possible_cpu(cpu) {
2356 		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
2357 		free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order());
2358 
2359 		if (free_sve) {
2360 			struct cpu_sve_state *sve_state;
2361 
2362 			sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state;
2363 			free_pages((unsigned long) sve_state, pkvm_host_sve_state_order());
2364 		}
2365 	}
2366 }
2367 
2368 static int __init do_pkvm_init(u32 hyp_va_bits)
2369 {
2370 	void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base));
2371 	int ret;
2372 
2373 	preempt_disable();
2374 	cpu_hyp_init_context();
2375 	ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
2376 				num_possible_cpus(), kern_hyp_va(per_cpu_base),
2377 				hyp_va_bits);
2378 	cpu_hyp_init_features();
2379 
2380 	/*
2381 	 * The stub hypercalls are now disabled, so set our local flag to
2382 	 * prevent a later re-init attempt in kvm_arch_hardware_enable().
2383 	 */
2384 	__this_cpu_write(kvm_hyp_initialized, 1);
2385 	preempt_enable();
2386 
2387 	return ret;
2388 }
2389 
2390 static u64 get_hyp_id_aa64pfr0_el1(void)
2391 {
2392 	/*
2393 	 * Track whether the system isn't affected by spectre/meltdown in the
2394 	 * hypervisor's view of id_aa64pfr0_el1, used for protected VMs.
2395 	 * Although this is per-CPU, we make it global for simplicity, e.g., not
2396 	 * to have to worry about vcpu migration.
2397 	 *
2398 	 * Unlike for non-protected VMs, userspace cannot override this for
2399 	 * protected VMs.
2400 	 */
2401 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2402 
2403 	val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) |
2404 		 ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3));
2405 
2406 	val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2),
2407 			  arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED);
2408 	val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3),
2409 			  arm64_get_meltdown_state() == SPECTRE_UNAFFECTED);
2410 
2411 	return val;
2412 }
2413 
2414 static void kvm_hyp_init_symbols(void)
2415 {
2416 	kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1();
2417 	kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
2418 	kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
2419 	kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2420 	kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
2421 	kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
2422 	kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2423 	kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
2424 	kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1);
2425 	kvm_nvhe_sym(__icache_flags) = __icache_flags;
2426 	kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits;
2427 }
2428 
2429 static int __init kvm_hyp_init_protection(u32 hyp_va_bits)
2430 {
2431 	void *addr = phys_to_virt(hyp_mem_base);
2432 	int ret;
2433 
2434 	ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
2435 	if (ret)
2436 		return ret;
2437 
2438 	ret = do_pkvm_init(hyp_va_bits);
2439 	if (ret)
2440 		return ret;
2441 
2442 	free_hyp_pgds();
2443 
2444 	return 0;
2445 }
2446 
2447 static int init_pkvm_host_sve_state(void)
2448 {
2449 	int cpu;
2450 
2451 	if (!system_supports_sve())
2452 		return 0;
2453 
2454 	/* Allocate pages for host sve state in protected mode. */
2455 	for_each_possible_cpu(cpu) {
2456 		struct page *page = alloc_pages(GFP_KERNEL, pkvm_host_sve_state_order());
2457 
2458 		if (!page)
2459 			return -ENOMEM;
2460 
2461 		per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state = page_address(page);
2462 	}
2463 
2464 	/*
2465 	 * Don't map the pages in hyp since these are only used in protected
2466 	 * mode, which will (re)create its own mapping when initialized.
2467 	 */
2468 
2469 	return 0;
2470 }
2471 
2472 /*
2473  * Finalizes the initialization of hyp mode, once everything else is initialized
2474  * and the initialziation process cannot fail.
2475  */
2476 static void finalize_init_hyp_mode(void)
2477 {
2478 	int cpu;
2479 
2480 	if (system_supports_sve() && is_protected_kvm_enabled()) {
2481 		for_each_possible_cpu(cpu) {
2482 			struct cpu_sve_state *sve_state;
2483 
2484 			sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state;
2485 			per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state =
2486 				kern_hyp_va(sve_state);
2487 		}
2488 	} else {
2489 		for_each_possible_cpu(cpu) {
2490 			struct user_fpsimd_state *fpsimd_state;
2491 
2492 			fpsimd_state = &per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->host_ctxt.fp_regs;
2493 			per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->fpsimd_state =
2494 				kern_hyp_va(fpsimd_state);
2495 		}
2496 	}
2497 }
2498 
2499 static void pkvm_hyp_init_ptrauth(void)
2500 {
2501 	struct kvm_cpu_context *hyp_ctxt;
2502 	int cpu;
2503 
2504 	for_each_possible_cpu(cpu) {
2505 		hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu);
2506 		hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long();
2507 		hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long();
2508 		hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long();
2509 		hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long();
2510 		hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long();
2511 		hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long();
2512 		hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long();
2513 		hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long();
2514 		hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long();
2515 		hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long();
2516 	}
2517 }
2518 
2519 /* Inits Hyp-mode on all online CPUs */
2520 static int __init init_hyp_mode(void)
2521 {
2522 	u32 hyp_va_bits;
2523 	int cpu;
2524 	int err = -ENOMEM;
2525 
2526 	/*
2527 	 * The protected Hyp-mode cannot be initialized if the memory pool
2528 	 * allocation has failed.
2529 	 */
2530 	if (is_protected_kvm_enabled() && !hyp_mem_base)
2531 		goto out_err;
2532 
2533 	/*
2534 	 * Allocate Hyp PGD and setup Hyp identity mapping
2535 	 */
2536 	err = kvm_mmu_init(&hyp_va_bits);
2537 	if (err)
2538 		goto out_err;
2539 
2540 	/*
2541 	 * Allocate stack pages for Hypervisor-mode
2542 	 */
2543 	for_each_possible_cpu(cpu) {
2544 		unsigned long stack_page;
2545 
2546 		stack_page = __get_free_page(GFP_KERNEL);
2547 		if (!stack_page) {
2548 			err = -ENOMEM;
2549 			goto out_err;
2550 		}
2551 
2552 		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
2553 	}
2554 
2555 	/*
2556 	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
2557 	 */
2558 	for_each_possible_cpu(cpu) {
2559 		struct page *page;
2560 		void *page_addr;
2561 
2562 		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
2563 		if (!page) {
2564 			err = -ENOMEM;
2565 			goto out_err;
2566 		}
2567 
2568 		page_addr = page_address(page);
2569 		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
2570 		kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr;
2571 	}
2572 
2573 	/*
2574 	 * Map the Hyp-code called directly from the host
2575 	 */
2576 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
2577 				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
2578 	if (err) {
2579 		kvm_err("Cannot map world-switch code\n");
2580 		goto out_err;
2581 	}
2582 
2583 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
2584 				  kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
2585 	if (err) {
2586 		kvm_err("Cannot map .hyp.rodata section\n");
2587 		goto out_err;
2588 	}
2589 
2590 	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
2591 				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
2592 	if (err) {
2593 		kvm_err("Cannot map rodata section\n");
2594 		goto out_err;
2595 	}
2596 
2597 	/*
2598 	 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
2599 	 * section thanks to an assertion in the linker script. Map it RW and
2600 	 * the rest of .bss RO.
2601 	 */
2602 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
2603 				  kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
2604 	if (err) {
2605 		kvm_err("Cannot map hyp bss section: %d\n", err);
2606 		goto out_err;
2607 	}
2608 
2609 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
2610 				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
2611 	if (err) {
2612 		kvm_err("Cannot map bss section\n");
2613 		goto out_err;
2614 	}
2615 
2616 	/*
2617 	 * Map the Hyp stack pages
2618 	 */
2619 	for_each_possible_cpu(cpu) {
2620 		struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2621 		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
2622 
2623 		err = create_hyp_stack(__pa(stack_page), &params->stack_hyp_va);
2624 		if (err) {
2625 			kvm_err("Cannot map hyp stack\n");
2626 			goto out_err;
2627 		}
2628 
2629 		/*
2630 		 * Save the stack PA in nvhe_init_params. This will be needed
2631 		 * to recreate the stack mapping in protected nVHE mode.
2632 		 * __hyp_pa() won't do the right thing there, since the stack
2633 		 * has been mapped in the flexible private VA space.
2634 		 */
2635 		params->stack_pa = __pa(stack_page);
2636 	}
2637 
2638 	for_each_possible_cpu(cpu) {
2639 		char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu];
2640 		char *percpu_end = percpu_begin + nvhe_percpu_size();
2641 
2642 		/* Map Hyp percpu pages */
2643 		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
2644 		if (err) {
2645 			kvm_err("Cannot map hyp percpu region\n");
2646 			goto out_err;
2647 		}
2648 
2649 		/* Prepare the CPU initialization parameters */
2650 		cpu_prepare_hyp_mode(cpu, hyp_va_bits);
2651 	}
2652 
2653 	kvm_hyp_init_symbols();
2654 
2655 	if (is_protected_kvm_enabled()) {
2656 		if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) &&
2657 		    cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH))
2658 			pkvm_hyp_init_ptrauth();
2659 
2660 		init_cpu_logical_map();
2661 
2662 		if (!init_psci_relay()) {
2663 			err = -ENODEV;
2664 			goto out_err;
2665 		}
2666 
2667 		err = init_pkvm_host_sve_state();
2668 		if (err)
2669 			goto out_err;
2670 
2671 		err = kvm_hyp_init_protection(hyp_va_bits);
2672 		if (err) {
2673 			kvm_err("Failed to init hyp memory protection\n");
2674 			goto out_err;
2675 		}
2676 	}
2677 
2678 	return 0;
2679 
2680 out_err:
2681 	teardown_hyp_mode();
2682 	kvm_err("error initializing Hyp mode: %d\n", err);
2683 	return err;
2684 }
2685 
2686 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2687 {
2688 	struct kvm_vcpu *vcpu = NULL;
2689 	struct kvm_mpidr_data *data;
2690 	unsigned long i;
2691 
2692 	mpidr &= MPIDR_HWID_BITMASK;
2693 
2694 	rcu_read_lock();
2695 	data = rcu_dereference(kvm->arch.mpidr_data);
2696 
2697 	if (data) {
2698 		u16 idx = kvm_mpidr_index(data, mpidr);
2699 
2700 		vcpu = kvm_get_vcpu(kvm, data->cmpidr_to_idx[idx]);
2701 		if (mpidr != kvm_vcpu_get_mpidr_aff(vcpu))
2702 			vcpu = NULL;
2703 	}
2704 
2705 	rcu_read_unlock();
2706 
2707 	if (vcpu)
2708 		return vcpu;
2709 
2710 	kvm_for_each_vcpu(i, vcpu, kvm) {
2711 		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2712 			return vcpu;
2713 	}
2714 	return NULL;
2715 }
2716 
2717 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2718 {
2719 	return irqchip_in_kernel(kvm);
2720 }
2721 
2722 bool kvm_arch_has_irq_bypass(void)
2723 {
2724 	return true;
2725 }
2726 
2727 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2728 				      struct irq_bypass_producer *prod)
2729 {
2730 	struct kvm_kernel_irqfd *irqfd =
2731 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2732 
2733 	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2734 					  &irqfd->irq_entry);
2735 }
2736 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2737 				      struct irq_bypass_producer *prod)
2738 {
2739 	struct kvm_kernel_irqfd *irqfd =
2740 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2741 
2742 	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2743 				     &irqfd->irq_entry);
2744 }
2745 
2746 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2747 {
2748 	struct kvm_kernel_irqfd *irqfd =
2749 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2750 
2751 	kvm_arm_halt_guest(irqfd->kvm);
2752 }
2753 
2754 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2755 {
2756 	struct kvm_kernel_irqfd *irqfd =
2757 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2758 
2759 	kvm_arm_resume_guest(irqfd->kvm);
2760 }
2761 
2762 /* Initialize Hyp-mode and memory mappings on all CPUs */
2763 static __init int kvm_arm_init(void)
2764 {
2765 	int err;
2766 	bool in_hyp_mode;
2767 
2768 	if (!is_hyp_mode_available()) {
2769 		kvm_info("HYP mode not available\n");
2770 		return -ENODEV;
2771 	}
2772 
2773 	if (kvm_get_mode() == KVM_MODE_NONE) {
2774 		kvm_info("KVM disabled from command line\n");
2775 		return -ENODEV;
2776 	}
2777 
2778 	err = kvm_sys_reg_table_init();
2779 	if (err) {
2780 		kvm_info("Error initializing system register tables");
2781 		return err;
2782 	}
2783 
2784 	in_hyp_mode = is_kernel_in_hyp_mode();
2785 
2786 	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2787 	    cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2788 		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2789 			 "Only trusted guests should be used on this system.\n");
2790 
2791 	err = kvm_set_ipa_limit();
2792 	if (err)
2793 		return err;
2794 
2795 	err = kvm_arm_init_sve();
2796 	if (err)
2797 		return err;
2798 
2799 	err = kvm_arm_vmid_alloc_init();
2800 	if (err) {
2801 		kvm_err("Failed to initialize VMID allocator.\n");
2802 		return err;
2803 	}
2804 
2805 	if (!in_hyp_mode) {
2806 		err = init_hyp_mode();
2807 		if (err)
2808 			goto out_err;
2809 	}
2810 
2811 	err = kvm_init_vector_slots();
2812 	if (err) {
2813 		kvm_err("Cannot initialise vector slots\n");
2814 		goto out_hyp;
2815 	}
2816 
2817 	err = init_subsystems();
2818 	if (err)
2819 		goto out_hyp;
2820 
2821 	kvm_info("%s%sVHE mode initialized successfully\n",
2822 		 in_hyp_mode ? "" : (is_protected_kvm_enabled() ?
2823 				     "Protected " : "Hyp "),
2824 		 in_hyp_mode ? "" : (cpus_have_final_cap(ARM64_KVM_HVHE) ?
2825 				     "h" : "n"));
2826 
2827 	/*
2828 	 * FIXME: Do something reasonable if kvm_init() fails after pKVM
2829 	 * hypervisor protection is finalized.
2830 	 */
2831 	err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2832 	if (err)
2833 		goto out_subs;
2834 
2835 	/*
2836 	 * This should be called after initialization is done and failure isn't
2837 	 * possible anymore.
2838 	 */
2839 	if (!in_hyp_mode)
2840 		finalize_init_hyp_mode();
2841 
2842 	kvm_arm_initialised = true;
2843 
2844 	return 0;
2845 
2846 out_subs:
2847 	teardown_subsystems();
2848 out_hyp:
2849 	if (!in_hyp_mode)
2850 		teardown_hyp_mode();
2851 out_err:
2852 	kvm_arm_vmid_alloc_free();
2853 	return err;
2854 }
2855 
2856 static int __init early_kvm_mode_cfg(char *arg)
2857 {
2858 	if (!arg)
2859 		return -EINVAL;
2860 
2861 	if (strcmp(arg, "none") == 0) {
2862 		kvm_mode = KVM_MODE_NONE;
2863 		return 0;
2864 	}
2865 
2866 	if (!is_hyp_mode_available()) {
2867 		pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n");
2868 		return 0;
2869 	}
2870 
2871 	if (strcmp(arg, "protected") == 0) {
2872 		if (!is_kernel_in_hyp_mode())
2873 			kvm_mode = KVM_MODE_PROTECTED;
2874 		else
2875 			pr_warn_once("Protected KVM not available with VHE\n");
2876 
2877 		return 0;
2878 	}
2879 
2880 	if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2881 		kvm_mode = KVM_MODE_DEFAULT;
2882 		return 0;
2883 	}
2884 
2885 	if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) {
2886 		kvm_mode = KVM_MODE_NV;
2887 		return 0;
2888 	}
2889 
2890 	return -EINVAL;
2891 }
2892 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2893 
2894 static int __init early_kvm_wfx_trap_policy_cfg(char *arg, enum kvm_wfx_trap_policy *p)
2895 {
2896 	if (!arg)
2897 		return -EINVAL;
2898 
2899 	if (strcmp(arg, "trap") == 0) {
2900 		*p = KVM_WFX_TRAP;
2901 		return 0;
2902 	}
2903 
2904 	if (strcmp(arg, "notrap") == 0) {
2905 		*p = KVM_WFX_NOTRAP;
2906 		return 0;
2907 	}
2908 
2909 	return -EINVAL;
2910 }
2911 
2912 static int __init early_kvm_wfi_trap_policy_cfg(char *arg)
2913 {
2914 	return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfi_trap_policy);
2915 }
2916 early_param("kvm-arm.wfi_trap_policy", early_kvm_wfi_trap_policy_cfg);
2917 
2918 static int __init early_kvm_wfe_trap_policy_cfg(char *arg)
2919 {
2920 	return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfe_trap_policy);
2921 }
2922 early_param("kvm-arm.wfe_trap_policy", early_kvm_wfe_trap_policy_cfg);
2923 
2924 enum kvm_mode kvm_get_mode(void)
2925 {
2926 	return kvm_mode;
2927 }
2928 
2929 module_init(kvm_arm_init);
2930