xref: /linux/arch/arm64/kvm/arm.c (revision 2858ea3083f088a76b439f5b88b6d4f032dabc0c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/entry-kvm.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/vmalloc.h>
16 #include <linux/fs.h>
17 #include <linux/mman.h>
18 #include <linux/sched.h>
19 #include <linux/kvm.h>
20 #include <linux/kvm_irqfd.h>
21 #include <linux/irqbypass.h>
22 #include <linux/sched/stat.h>
23 #include <linux/psci.h>
24 #include <trace/events/kvm.h>
25 
26 #define CREATE_TRACE_POINTS
27 #include "trace_arm.h"
28 
29 #include <linux/uaccess.h>
30 #include <asm/ptrace.h>
31 #include <asm/mman.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpufeature.h>
35 #include <asm/virt.h>
36 #include <asm/kvm_arm.h>
37 #include <asm/kvm_asm.h>
38 #include <asm/kvm_emulate.h>
39 #include <asm/kvm_mmu.h>
40 #include <asm/kvm_nested.h>
41 #include <asm/kvm_pkvm.h>
42 #include <asm/kvm_ptrauth.h>
43 #include <asm/sections.h>
44 
45 #include <kvm/arm_hypercalls.h>
46 #include <kvm/arm_pmu.h>
47 #include <kvm/arm_psci.h>
48 
49 #include "sys_regs.h"
50 
51 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
52 
53 enum kvm_wfx_trap_policy {
54 	KVM_WFX_NOTRAP_SINGLE_TASK, /* Default option */
55 	KVM_WFX_NOTRAP,
56 	KVM_WFX_TRAP,
57 };
58 
59 static enum kvm_wfx_trap_policy kvm_wfi_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK;
60 static enum kvm_wfx_trap_policy kvm_wfe_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK;
61 
62 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
63 
64 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_base);
65 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
66 
67 DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
68 
69 static bool vgic_present, kvm_arm_initialised;
70 
71 static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized);
72 
73 bool is_kvm_arm_initialised(void)
74 {
75 	return kvm_arm_initialised;
76 }
77 
78 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
79 {
80 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
81 }
82 
83 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
84 			    struct kvm_enable_cap *cap)
85 {
86 	int r = -EINVAL;
87 
88 	if (cap->flags)
89 		return -EINVAL;
90 
91 	if (kvm_vm_is_protected(kvm) && !kvm_pvm_ext_allowed(cap->cap))
92 		return -EINVAL;
93 
94 	switch (cap->cap) {
95 	case KVM_CAP_ARM_NISV_TO_USER:
96 		r = 0;
97 		set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
98 			&kvm->arch.flags);
99 		break;
100 	case KVM_CAP_ARM_MTE:
101 		mutex_lock(&kvm->lock);
102 		if (system_supports_mte() && !kvm->created_vcpus) {
103 			r = 0;
104 			set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
105 		}
106 		mutex_unlock(&kvm->lock);
107 		break;
108 	case KVM_CAP_ARM_SYSTEM_SUSPEND:
109 		r = 0;
110 		set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
111 		break;
112 	case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
113 		mutex_lock(&kvm->slots_lock);
114 		/*
115 		 * To keep things simple, allow changing the chunk
116 		 * size only when no memory slots have been created.
117 		 */
118 		if (kvm_are_all_memslots_empty(kvm)) {
119 			u64 new_cap = cap->args[0];
120 
121 			if (!new_cap || kvm_is_block_size_supported(new_cap)) {
122 				r = 0;
123 				kvm->arch.mmu.split_page_chunk_size = new_cap;
124 			}
125 		}
126 		mutex_unlock(&kvm->slots_lock);
127 		break;
128 	case KVM_CAP_ARM_WRITABLE_IMP_ID_REGS:
129 		mutex_lock(&kvm->lock);
130 		if (!kvm->created_vcpus) {
131 			r = 0;
132 			set_bit(KVM_ARCH_FLAG_WRITABLE_IMP_ID_REGS, &kvm->arch.flags);
133 		}
134 		mutex_unlock(&kvm->lock);
135 		break;
136 	default:
137 		break;
138 	}
139 
140 	return r;
141 }
142 
143 static int kvm_arm_default_max_vcpus(void)
144 {
145 	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
146 }
147 
148 /**
149  * kvm_arch_init_vm - initializes a VM data structure
150  * @kvm:	pointer to the KVM struct
151  * @type:	kvm device type
152  */
153 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
154 {
155 	int ret;
156 
157 	mutex_init(&kvm->arch.config_lock);
158 
159 #ifdef CONFIG_LOCKDEP
160 	/* Clue in lockdep that the config_lock must be taken inside kvm->lock */
161 	mutex_lock(&kvm->lock);
162 	mutex_lock(&kvm->arch.config_lock);
163 	mutex_unlock(&kvm->arch.config_lock);
164 	mutex_unlock(&kvm->lock);
165 #endif
166 
167 	kvm_init_nested(kvm);
168 
169 	ret = kvm_share_hyp(kvm, kvm + 1);
170 	if (ret)
171 		return ret;
172 
173 	ret = pkvm_init_host_vm(kvm);
174 	if (ret)
175 		goto err_unshare_kvm;
176 
177 	if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) {
178 		ret = -ENOMEM;
179 		goto err_unshare_kvm;
180 	}
181 	cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
182 
183 	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type);
184 	if (ret)
185 		goto err_free_cpumask;
186 
187 	kvm_vgic_early_init(kvm);
188 
189 	kvm_timer_init_vm(kvm);
190 
191 	/* The maximum number of VCPUs is limited by the host's GIC model */
192 	kvm->max_vcpus = kvm_arm_default_max_vcpus();
193 
194 	kvm_arm_init_hypercalls(kvm);
195 
196 	bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES);
197 
198 	return 0;
199 
200 err_free_cpumask:
201 	free_cpumask_var(kvm->arch.supported_cpus);
202 err_unshare_kvm:
203 	kvm_unshare_hyp(kvm, kvm + 1);
204 	return ret;
205 }
206 
207 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
208 {
209 	return VM_FAULT_SIGBUS;
210 }
211 
212 void kvm_arch_create_vm_debugfs(struct kvm *kvm)
213 {
214 	kvm_sys_regs_create_debugfs(kvm);
215 	kvm_s2_ptdump_create_debugfs(kvm);
216 }
217 
218 static void kvm_destroy_mpidr_data(struct kvm *kvm)
219 {
220 	struct kvm_mpidr_data *data;
221 
222 	mutex_lock(&kvm->arch.config_lock);
223 
224 	data = rcu_dereference_protected(kvm->arch.mpidr_data,
225 					 lockdep_is_held(&kvm->arch.config_lock));
226 	if (data) {
227 		rcu_assign_pointer(kvm->arch.mpidr_data, NULL);
228 		synchronize_rcu();
229 		kfree(data);
230 	}
231 
232 	mutex_unlock(&kvm->arch.config_lock);
233 }
234 
235 /**
236  * kvm_arch_destroy_vm - destroy the VM data structure
237  * @kvm:	pointer to the KVM struct
238  */
239 void kvm_arch_destroy_vm(struct kvm *kvm)
240 {
241 	bitmap_free(kvm->arch.pmu_filter);
242 	free_cpumask_var(kvm->arch.supported_cpus);
243 
244 	kvm_vgic_destroy(kvm);
245 
246 	if (is_protected_kvm_enabled())
247 		pkvm_destroy_hyp_vm(kvm);
248 
249 	kvm_destroy_mpidr_data(kvm);
250 
251 	kfree(kvm->arch.sysreg_masks);
252 	kvm_destroy_vcpus(kvm);
253 
254 	kvm_unshare_hyp(kvm, kvm + 1);
255 
256 	kvm_arm_teardown_hypercalls(kvm);
257 }
258 
259 static bool kvm_has_full_ptr_auth(void)
260 {
261 	bool apa, gpa, api, gpi, apa3, gpa3;
262 	u64 isar1, isar2, val;
263 
264 	/*
265 	 * Check that:
266 	 *
267 	 * - both Address and Generic auth are implemented for a given
268          *   algorithm (Q5, IMPDEF or Q3)
269 	 * - only a single algorithm is implemented.
270 	 */
271 	if (!system_has_full_ptr_auth())
272 		return false;
273 
274 	isar1 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
275 	isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
276 
277 	apa = !!FIELD_GET(ID_AA64ISAR1_EL1_APA_MASK, isar1);
278 	val = FIELD_GET(ID_AA64ISAR1_EL1_GPA_MASK, isar1);
279 	gpa = (val == ID_AA64ISAR1_EL1_GPA_IMP);
280 
281 	api = !!FIELD_GET(ID_AA64ISAR1_EL1_API_MASK, isar1);
282 	val = FIELD_GET(ID_AA64ISAR1_EL1_GPI_MASK, isar1);
283 	gpi = (val == ID_AA64ISAR1_EL1_GPI_IMP);
284 
285 	apa3 = !!FIELD_GET(ID_AA64ISAR2_EL1_APA3_MASK, isar2);
286 	val  = FIELD_GET(ID_AA64ISAR2_EL1_GPA3_MASK, isar2);
287 	gpa3 = (val == ID_AA64ISAR2_EL1_GPA3_IMP);
288 
289 	return (apa == gpa && api == gpi && apa3 == gpa3 &&
290 		(apa + api + apa3) == 1);
291 }
292 
293 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
294 {
295 	int r;
296 
297 	if (kvm && kvm_vm_is_protected(kvm) && !kvm_pvm_ext_allowed(ext))
298 		return 0;
299 
300 	switch (ext) {
301 	case KVM_CAP_IRQCHIP:
302 		r = vgic_present;
303 		break;
304 	case KVM_CAP_IOEVENTFD:
305 	case KVM_CAP_USER_MEMORY:
306 	case KVM_CAP_SYNC_MMU:
307 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
308 	case KVM_CAP_ONE_REG:
309 	case KVM_CAP_ARM_PSCI:
310 	case KVM_CAP_ARM_PSCI_0_2:
311 	case KVM_CAP_READONLY_MEM:
312 	case KVM_CAP_MP_STATE:
313 	case KVM_CAP_IMMEDIATE_EXIT:
314 	case KVM_CAP_VCPU_EVENTS:
315 	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
316 	case KVM_CAP_ARM_NISV_TO_USER:
317 	case KVM_CAP_ARM_INJECT_EXT_DABT:
318 	case KVM_CAP_SET_GUEST_DEBUG:
319 	case KVM_CAP_VCPU_ATTRIBUTES:
320 	case KVM_CAP_PTP_KVM:
321 	case KVM_CAP_ARM_SYSTEM_SUSPEND:
322 	case KVM_CAP_IRQFD_RESAMPLE:
323 	case KVM_CAP_COUNTER_OFFSET:
324 	case KVM_CAP_ARM_WRITABLE_IMP_ID_REGS:
325 		r = 1;
326 		break;
327 	case KVM_CAP_SET_GUEST_DEBUG2:
328 		return KVM_GUESTDBG_VALID_MASK;
329 	case KVM_CAP_ARM_SET_DEVICE_ADDR:
330 		r = 1;
331 		break;
332 	case KVM_CAP_NR_VCPUS:
333 		/*
334 		 * ARM64 treats KVM_CAP_NR_CPUS differently from all other
335 		 * architectures, as it does not always bound it to
336 		 * KVM_CAP_MAX_VCPUS. It should not matter much because
337 		 * this is just an advisory value.
338 		 */
339 		r = min_t(unsigned int, num_online_cpus(),
340 			  kvm_arm_default_max_vcpus());
341 		break;
342 	case KVM_CAP_MAX_VCPUS:
343 	case KVM_CAP_MAX_VCPU_ID:
344 		if (kvm)
345 			r = kvm->max_vcpus;
346 		else
347 			r = kvm_arm_default_max_vcpus();
348 		break;
349 	case KVM_CAP_MSI_DEVID:
350 		if (!kvm)
351 			r = -EINVAL;
352 		else
353 			r = kvm->arch.vgic.msis_require_devid;
354 		break;
355 	case KVM_CAP_ARM_USER_IRQ:
356 		/*
357 		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
358 		 * (bump this number if adding more devices)
359 		 */
360 		r = 1;
361 		break;
362 	case KVM_CAP_ARM_MTE:
363 		r = system_supports_mte();
364 		break;
365 	case KVM_CAP_STEAL_TIME:
366 		r = kvm_arm_pvtime_supported();
367 		break;
368 	case KVM_CAP_ARM_EL1_32BIT:
369 		r = cpus_have_final_cap(ARM64_HAS_32BIT_EL1);
370 		break;
371 	case KVM_CAP_ARM_EL2:
372 		r = cpus_have_final_cap(ARM64_HAS_NESTED_VIRT);
373 		break;
374 	case KVM_CAP_ARM_EL2_E2H0:
375 		r = cpus_have_final_cap(ARM64_HAS_HCR_NV1);
376 		break;
377 	case KVM_CAP_GUEST_DEBUG_HW_BPS:
378 		r = get_num_brps();
379 		break;
380 	case KVM_CAP_GUEST_DEBUG_HW_WPS:
381 		r = get_num_wrps();
382 		break;
383 	case KVM_CAP_ARM_PMU_V3:
384 		r = kvm_supports_guest_pmuv3();
385 		break;
386 	case KVM_CAP_ARM_INJECT_SERROR_ESR:
387 		r = cpus_have_final_cap(ARM64_HAS_RAS_EXTN);
388 		break;
389 	case KVM_CAP_ARM_VM_IPA_SIZE:
390 		r = get_kvm_ipa_limit();
391 		break;
392 	case KVM_CAP_ARM_SVE:
393 		r = system_supports_sve();
394 		break;
395 	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
396 	case KVM_CAP_ARM_PTRAUTH_GENERIC:
397 		r = kvm_has_full_ptr_auth();
398 		break;
399 	case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
400 		if (kvm)
401 			r = kvm->arch.mmu.split_page_chunk_size;
402 		else
403 			r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
404 		break;
405 	case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES:
406 		r = kvm_supported_block_sizes();
407 		break;
408 	case KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES:
409 		r = BIT(0);
410 		break;
411 	default:
412 		r = 0;
413 	}
414 
415 	return r;
416 }
417 
418 long kvm_arch_dev_ioctl(struct file *filp,
419 			unsigned int ioctl, unsigned long arg)
420 {
421 	return -EINVAL;
422 }
423 
424 struct kvm *kvm_arch_alloc_vm(void)
425 {
426 	size_t sz = sizeof(struct kvm);
427 
428 	if (!has_vhe())
429 		return kzalloc(sz, GFP_KERNEL_ACCOUNT);
430 
431 	return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
432 }
433 
434 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
435 {
436 	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
437 		return -EBUSY;
438 
439 	if (id >= kvm->max_vcpus)
440 		return -EINVAL;
441 
442 	return 0;
443 }
444 
445 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
446 {
447 	int err;
448 
449 	spin_lock_init(&vcpu->arch.mp_state_lock);
450 
451 #ifdef CONFIG_LOCKDEP
452 	/* Inform lockdep that the config_lock is acquired after vcpu->mutex */
453 	mutex_lock(&vcpu->mutex);
454 	mutex_lock(&vcpu->kvm->arch.config_lock);
455 	mutex_unlock(&vcpu->kvm->arch.config_lock);
456 	mutex_unlock(&vcpu->mutex);
457 #endif
458 
459 	/* Force users to call KVM_ARM_VCPU_INIT */
460 	vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
461 
462 	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
463 
464 	/* Set up the timer */
465 	kvm_timer_vcpu_init(vcpu);
466 
467 	kvm_pmu_vcpu_init(vcpu);
468 
469 	kvm_arm_pvtime_vcpu_init(&vcpu->arch);
470 
471 	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
472 
473 	/*
474 	 * This vCPU may have been created after mpidr_data was initialized.
475 	 * Throw out the pre-computed mappings if that is the case which forces
476 	 * KVM to fall back to iteratively searching the vCPUs.
477 	 */
478 	kvm_destroy_mpidr_data(vcpu->kvm);
479 
480 	err = kvm_vgic_vcpu_init(vcpu);
481 	if (err)
482 		return err;
483 
484 	err = kvm_share_hyp(vcpu, vcpu + 1);
485 	if (err)
486 		kvm_vgic_vcpu_destroy(vcpu);
487 
488 	return err;
489 }
490 
491 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
492 {
493 }
494 
495 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
496 {
497 	if (!is_protected_kvm_enabled())
498 		kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
499 	else
500 		free_hyp_memcache(&vcpu->arch.pkvm_memcache);
501 	kvm_timer_vcpu_terminate(vcpu);
502 	kvm_pmu_vcpu_destroy(vcpu);
503 	kvm_vgic_vcpu_destroy(vcpu);
504 	kvm_arm_vcpu_destroy(vcpu);
505 }
506 
507 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
508 {
509 
510 }
511 
512 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
513 {
514 
515 }
516 
517 static void vcpu_set_pauth_traps(struct kvm_vcpu *vcpu)
518 {
519 	if (vcpu_has_ptrauth(vcpu) && !is_protected_kvm_enabled()) {
520 		/*
521 		 * Either we're running an L2 guest, and the API/APK bits come
522 		 * from L1's HCR_EL2, or API/APK are both set.
523 		 */
524 		if (unlikely(is_nested_ctxt(vcpu))) {
525 			u64 val;
526 
527 			val = __vcpu_sys_reg(vcpu, HCR_EL2);
528 			val &= (HCR_API | HCR_APK);
529 			vcpu->arch.hcr_el2 &= ~(HCR_API | HCR_APK);
530 			vcpu->arch.hcr_el2 |= val;
531 		} else {
532 			vcpu->arch.hcr_el2 |= (HCR_API | HCR_APK);
533 		}
534 
535 		/*
536 		 * Save the host keys if there is any chance for the guest
537 		 * to use pauth, as the entry code will reload the guest
538 		 * keys in that case.
539 		 */
540 		if (vcpu->arch.hcr_el2 & (HCR_API | HCR_APK)) {
541 			struct kvm_cpu_context *ctxt;
542 
543 			ctxt = this_cpu_ptr_hyp_sym(kvm_hyp_ctxt);
544 			ptrauth_save_keys(ctxt);
545 		}
546 	}
547 }
548 
549 static bool kvm_vcpu_should_clear_twi(struct kvm_vcpu *vcpu)
550 {
551 	if (unlikely(kvm_wfi_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK))
552 		return kvm_wfi_trap_policy == KVM_WFX_NOTRAP;
553 
554 	return single_task_running() &&
555 	       (atomic_read(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count) ||
556 		vcpu->kvm->arch.vgic.nassgireq);
557 }
558 
559 static bool kvm_vcpu_should_clear_twe(struct kvm_vcpu *vcpu)
560 {
561 	if (unlikely(kvm_wfe_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK))
562 		return kvm_wfe_trap_policy == KVM_WFX_NOTRAP;
563 
564 	return single_task_running();
565 }
566 
567 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
568 {
569 	struct kvm_s2_mmu *mmu;
570 	int *last_ran;
571 
572 	if (is_protected_kvm_enabled())
573 		goto nommu;
574 
575 	if (vcpu_has_nv(vcpu))
576 		kvm_vcpu_load_hw_mmu(vcpu);
577 
578 	mmu = vcpu->arch.hw_mmu;
579 	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
580 
581 	/*
582 	 * Ensure a VMID is allocated for the MMU before programming VTTBR_EL2,
583 	 * which happens eagerly in VHE.
584 	 *
585 	 * Also, the VMID allocator only preserves VMIDs that are active at the
586 	 * time of rollover, so KVM might need to grab a new VMID for the MMU if
587 	 * this is called from kvm_sched_in().
588 	 */
589 	kvm_arm_vmid_update(&mmu->vmid);
590 
591 	/*
592 	 * We guarantee that both TLBs and I-cache are private to each
593 	 * vcpu. If detecting that a vcpu from the same VM has
594 	 * previously run on the same physical CPU, call into the
595 	 * hypervisor code to nuke the relevant contexts.
596 	 *
597 	 * We might get preempted before the vCPU actually runs, but
598 	 * over-invalidation doesn't affect correctness.
599 	 */
600 	if (*last_ran != vcpu->vcpu_idx) {
601 		kvm_call_hyp(__kvm_flush_cpu_context, mmu);
602 		*last_ran = vcpu->vcpu_idx;
603 	}
604 
605 nommu:
606 	vcpu->cpu = cpu;
607 
608 	/*
609 	 * The timer must be loaded before the vgic to correctly set up physical
610 	 * interrupt deactivation in nested state (e.g. timer interrupt).
611 	 */
612 	kvm_timer_vcpu_load(vcpu);
613 	kvm_vgic_load(vcpu);
614 	kvm_vcpu_load_debug(vcpu);
615 	if (has_vhe())
616 		kvm_vcpu_load_vhe(vcpu);
617 	kvm_arch_vcpu_load_fp(vcpu);
618 	kvm_vcpu_pmu_restore_guest(vcpu);
619 	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
620 		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
621 
622 	if (kvm_vcpu_should_clear_twe(vcpu))
623 		vcpu->arch.hcr_el2 &= ~HCR_TWE;
624 	else
625 		vcpu->arch.hcr_el2 |= HCR_TWE;
626 
627 	if (kvm_vcpu_should_clear_twi(vcpu))
628 		vcpu->arch.hcr_el2 &= ~HCR_TWI;
629 	else
630 		vcpu->arch.hcr_el2 |= HCR_TWI;
631 
632 	vcpu_set_pauth_traps(vcpu);
633 
634 	if (is_protected_kvm_enabled()) {
635 		kvm_call_hyp_nvhe(__pkvm_vcpu_load,
636 				  vcpu->kvm->arch.pkvm.handle,
637 				  vcpu->vcpu_idx, vcpu->arch.hcr_el2);
638 		kvm_call_hyp(__vgic_v3_restore_vmcr_aprs,
639 			     &vcpu->arch.vgic_cpu.vgic_v3);
640 	}
641 
642 	if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus))
643 		vcpu_set_on_unsupported_cpu(vcpu);
644 }
645 
646 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
647 {
648 	if (is_protected_kvm_enabled()) {
649 		kvm_call_hyp(__vgic_v3_save_vmcr_aprs,
650 			     &vcpu->arch.vgic_cpu.vgic_v3);
651 		kvm_call_hyp_nvhe(__pkvm_vcpu_put);
652 	}
653 
654 	kvm_vcpu_put_debug(vcpu);
655 	kvm_arch_vcpu_put_fp(vcpu);
656 	if (has_vhe())
657 		kvm_vcpu_put_vhe(vcpu);
658 	kvm_timer_vcpu_put(vcpu);
659 	kvm_vgic_put(vcpu);
660 	kvm_vcpu_pmu_restore_host(vcpu);
661 	if (vcpu_has_nv(vcpu))
662 		kvm_vcpu_put_hw_mmu(vcpu);
663 	kvm_arm_vmid_clear_active();
664 
665 	vcpu_clear_on_unsupported_cpu(vcpu);
666 	vcpu->cpu = -1;
667 }
668 
669 static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
670 {
671 	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
672 	kvm_make_request(KVM_REQ_SLEEP, vcpu);
673 	kvm_vcpu_kick(vcpu);
674 }
675 
676 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
677 {
678 	spin_lock(&vcpu->arch.mp_state_lock);
679 	__kvm_arm_vcpu_power_off(vcpu);
680 	spin_unlock(&vcpu->arch.mp_state_lock);
681 }
682 
683 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
684 {
685 	return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED;
686 }
687 
688 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
689 {
690 	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED);
691 	kvm_make_request(KVM_REQ_SUSPEND, vcpu);
692 	kvm_vcpu_kick(vcpu);
693 }
694 
695 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
696 {
697 	return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED;
698 }
699 
700 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
701 				    struct kvm_mp_state *mp_state)
702 {
703 	*mp_state = READ_ONCE(vcpu->arch.mp_state);
704 
705 	return 0;
706 }
707 
708 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
709 				    struct kvm_mp_state *mp_state)
710 {
711 	int ret = 0;
712 
713 	spin_lock(&vcpu->arch.mp_state_lock);
714 
715 	switch (mp_state->mp_state) {
716 	case KVM_MP_STATE_RUNNABLE:
717 		WRITE_ONCE(vcpu->arch.mp_state, *mp_state);
718 		break;
719 	case KVM_MP_STATE_STOPPED:
720 		__kvm_arm_vcpu_power_off(vcpu);
721 		break;
722 	case KVM_MP_STATE_SUSPENDED:
723 		kvm_arm_vcpu_suspend(vcpu);
724 		break;
725 	default:
726 		ret = -EINVAL;
727 	}
728 
729 	spin_unlock(&vcpu->arch.mp_state_lock);
730 
731 	return ret;
732 }
733 
734 /**
735  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
736  * @v:		The VCPU pointer
737  *
738  * If the guest CPU is not waiting for interrupts or an interrupt line is
739  * asserted, the CPU is by definition runnable.
740  */
741 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
742 {
743 	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF | HCR_VSE);
744 
745 	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
746 		&& !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
747 }
748 
749 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
750 {
751 	return vcpu_mode_priv(vcpu);
752 }
753 
754 #ifdef CONFIG_GUEST_PERF_EVENTS
755 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
756 {
757 	return *vcpu_pc(vcpu);
758 }
759 #endif
760 
761 static void kvm_init_mpidr_data(struct kvm *kvm)
762 {
763 	struct kvm_mpidr_data *data = NULL;
764 	unsigned long c, mask, nr_entries;
765 	u64 aff_set = 0, aff_clr = ~0UL;
766 	struct kvm_vcpu *vcpu;
767 
768 	mutex_lock(&kvm->arch.config_lock);
769 
770 	if (rcu_access_pointer(kvm->arch.mpidr_data) ||
771 	    atomic_read(&kvm->online_vcpus) == 1)
772 		goto out;
773 
774 	kvm_for_each_vcpu(c, vcpu, kvm) {
775 		u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
776 		aff_set |= aff;
777 		aff_clr &= aff;
778 	}
779 
780 	/*
781 	 * A significant bit can be either 0 or 1, and will only appear in
782 	 * aff_set. Use aff_clr to weed out the useless stuff.
783 	 */
784 	mask = aff_set ^ aff_clr;
785 	nr_entries = BIT_ULL(hweight_long(mask));
786 
787 	/*
788 	 * Don't let userspace fool us. If we need more than a single page
789 	 * to describe the compressed MPIDR array, just fall back to the
790 	 * iterative method. Single vcpu VMs do not need this either.
791 	 */
792 	if (struct_size(data, cmpidr_to_idx, nr_entries) <= PAGE_SIZE)
793 		data = kzalloc(struct_size(data, cmpidr_to_idx, nr_entries),
794 			       GFP_KERNEL_ACCOUNT);
795 
796 	if (!data)
797 		goto out;
798 
799 	data->mpidr_mask = mask;
800 
801 	kvm_for_each_vcpu(c, vcpu, kvm) {
802 		u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
803 		u16 index = kvm_mpidr_index(data, aff);
804 
805 		data->cmpidr_to_idx[index] = c;
806 	}
807 
808 	rcu_assign_pointer(kvm->arch.mpidr_data, data);
809 out:
810 	mutex_unlock(&kvm->arch.config_lock);
811 }
812 
813 /*
814  * Handle both the initialisation that is being done when the vcpu is
815  * run for the first time, as well as the updates that must be
816  * performed each time we get a new thread dealing with this vcpu.
817  */
818 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
819 {
820 	struct kvm *kvm = vcpu->kvm;
821 	int ret;
822 
823 	if (!kvm_vcpu_initialized(vcpu))
824 		return -ENOEXEC;
825 
826 	if (!kvm_arm_vcpu_is_finalized(vcpu))
827 		return -EPERM;
828 
829 	ret = kvm_arch_vcpu_run_map_fp(vcpu);
830 	if (ret)
831 		return ret;
832 
833 	if (likely(vcpu_has_run_once(vcpu)))
834 		return 0;
835 
836 	kvm_init_mpidr_data(kvm);
837 
838 	if (likely(irqchip_in_kernel(kvm))) {
839 		/*
840 		 * Map the VGIC hardware resources before running a vcpu the
841 		 * first time on this VM.
842 		 */
843 		ret = kvm_vgic_map_resources(kvm);
844 		if (ret)
845 			return ret;
846 	}
847 
848 	ret = kvm_finalize_sys_regs(vcpu);
849 	if (ret)
850 		return ret;
851 
852 	if (vcpu_has_nv(vcpu)) {
853 		ret = kvm_vcpu_allocate_vncr_tlb(vcpu);
854 		if (ret)
855 			return ret;
856 
857 		ret = kvm_vgic_vcpu_nv_init(vcpu);
858 		if (ret)
859 			return ret;
860 	}
861 
862 	/*
863 	 * This needs to happen after any restriction has been applied
864 	 * to the feature set.
865 	 */
866 	kvm_calculate_traps(vcpu);
867 
868 	ret = kvm_timer_enable(vcpu);
869 	if (ret)
870 		return ret;
871 
872 	if (kvm_vcpu_has_pmu(vcpu)) {
873 		ret = kvm_arm_pmu_v3_enable(vcpu);
874 		if (ret)
875 			return ret;
876 	}
877 
878 	if (is_protected_kvm_enabled()) {
879 		ret = pkvm_create_hyp_vm(kvm);
880 		if (ret)
881 			return ret;
882 
883 		ret = pkvm_create_hyp_vcpu(vcpu);
884 		if (ret)
885 			return ret;
886 	}
887 
888 	mutex_lock(&kvm->arch.config_lock);
889 	set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
890 	mutex_unlock(&kvm->arch.config_lock);
891 
892 	return ret;
893 }
894 
895 bool kvm_arch_intc_initialized(struct kvm *kvm)
896 {
897 	return vgic_initialized(kvm);
898 }
899 
900 void kvm_arm_halt_guest(struct kvm *kvm)
901 {
902 	unsigned long i;
903 	struct kvm_vcpu *vcpu;
904 
905 	kvm_for_each_vcpu(i, vcpu, kvm)
906 		vcpu->arch.pause = true;
907 	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
908 }
909 
910 void kvm_arm_resume_guest(struct kvm *kvm)
911 {
912 	unsigned long i;
913 	struct kvm_vcpu *vcpu;
914 
915 	kvm_for_each_vcpu(i, vcpu, kvm) {
916 		vcpu->arch.pause = false;
917 		__kvm_vcpu_wake_up(vcpu);
918 	}
919 }
920 
921 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
922 {
923 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
924 
925 	rcuwait_wait_event(wait,
926 			   (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
927 			   TASK_INTERRUPTIBLE);
928 
929 	if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
930 		/* Awaken to handle a signal, request we sleep again later. */
931 		kvm_make_request(KVM_REQ_SLEEP, vcpu);
932 	}
933 
934 	/*
935 	 * Make sure we will observe a potential reset request if we've
936 	 * observed a change to the power state. Pairs with the smp_wmb() in
937 	 * kvm_psci_vcpu_on().
938 	 */
939 	smp_rmb();
940 }
941 
942 /**
943  * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
944  * @vcpu:	The VCPU pointer
945  *
946  * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
947  * the vCPU is runnable.  The vCPU may or may not be scheduled out, depending
948  * on when a wake event arrives, e.g. there may already be a pending wake event.
949  */
950 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
951 {
952 	/*
953 	 * Sync back the state of the GIC CPU interface so that we have
954 	 * the latest PMR and group enables. This ensures that
955 	 * kvm_arch_vcpu_runnable has up-to-date data to decide whether
956 	 * we have pending interrupts, e.g. when determining if the
957 	 * vCPU should block.
958 	 *
959 	 * For the same reason, we want to tell GICv4 that we need
960 	 * doorbells to be signalled, should an interrupt become pending.
961 	 */
962 	preempt_disable();
963 	vcpu_set_flag(vcpu, IN_WFI);
964 	kvm_vgic_put(vcpu);
965 	preempt_enable();
966 
967 	kvm_vcpu_halt(vcpu);
968 	vcpu_clear_flag(vcpu, IN_WFIT);
969 
970 	preempt_disable();
971 	vcpu_clear_flag(vcpu, IN_WFI);
972 	kvm_vgic_load(vcpu);
973 	preempt_enable();
974 }
975 
976 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
977 {
978 	if (!kvm_arm_vcpu_suspended(vcpu))
979 		return 1;
980 
981 	kvm_vcpu_wfi(vcpu);
982 
983 	/*
984 	 * The suspend state is sticky; we do not leave it until userspace
985 	 * explicitly marks the vCPU as runnable. Request that we suspend again
986 	 * later.
987 	 */
988 	kvm_make_request(KVM_REQ_SUSPEND, vcpu);
989 
990 	/*
991 	 * Check to make sure the vCPU is actually runnable. If so, exit to
992 	 * userspace informing it of the wakeup condition.
993 	 */
994 	if (kvm_arch_vcpu_runnable(vcpu)) {
995 		memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
996 		vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
997 		vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
998 		return 0;
999 	}
1000 
1001 	/*
1002 	 * Otherwise, we were unblocked to process a different event, such as a
1003 	 * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
1004 	 * process the event.
1005 	 */
1006 	return 1;
1007 }
1008 
1009 /**
1010  * check_vcpu_requests - check and handle pending vCPU requests
1011  * @vcpu:	the VCPU pointer
1012  *
1013  * Return: 1 if we should enter the guest
1014  *	   0 if we should exit to userspace
1015  *	   < 0 if we should exit to userspace, where the return value indicates
1016  *	   an error
1017  */
1018 static int check_vcpu_requests(struct kvm_vcpu *vcpu)
1019 {
1020 	if (kvm_request_pending(vcpu)) {
1021 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu))
1022 			return -EIO;
1023 
1024 		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
1025 			kvm_vcpu_sleep(vcpu);
1026 
1027 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1028 			kvm_reset_vcpu(vcpu);
1029 
1030 		/*
1031 		 * Clear IRQ_PENDING requests that were made to guarantee
1032 		 * that a VCPU sees new virtual interrupts.
1033 		 */
1034 		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
1035 
1036 		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
1037 			kvm_update_stolen_time(vcpu);
1038 
1039 		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
1040 			/* The distributor enable bits were changed */
1041 			preempt_disable();
1042 			vgic_v4_put(vcpu);
1043 			vgic_v4_load(vcpu);
1044 			preempt_enable();
1045 		}
1046 
1047 		if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
1048 			kvm_vcpu_reload_pmu(vcpu);
1049 
1050 		if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu))
1051 			kvm_vcpu_pmu_restore_guest(vcpu);
1052 
1053 		if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
1054 			return kvm_vcpu_suspend(vcpu);
1055 
1056 		if (kvm_dirty_ring_check_request(vcpu))
1057 			return 0;
1058 
1059 		check_nested_vcpu_requests(vcpu);
1060 	}
1061 
1062 	return 1;
1063 }
1064 
1065 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
1066 {
1067 	if (likely(!vcpu_mode_is_32bit(vcpu)))
1068 		return false;
1069 
1070 	if (vcpu_has_nv(vcpu))
1071 		return true;
1072 
1073 	return !kvm_supports_32bit_el0();
1074 }
1075 
1076 /**
1077  * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
1078  * @vcpu:	The VCPU pointer
1079  * @ret:	Pointer to write optional return code
1080  *
1081  * Returns: true if the VCPU needs to return to a preemptible + interruptible
1082  *	    and skip guest entry.
1083  *
1084  * This function disambiguates between two different types of exits: exits to a
1085  * preemptible + interruptible kernel context and exits to userspace. For an
1086  * exit to userspace, this function will write the return code to ret and return
1087  * true. For an exit to preemptible + interruptible kernel context (i.e. check
1088  * for pending work and re-enter), return true without writing to ret.
1089  */
1090 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
1091 {
1092 	struct kvm_run *run = vcpu->run;
1093 
1094 	/*
1095 	 * If we're using a userspace irqchip, then check if we need
1096 	 * to tell a userspace irqchip about timer or PMU level
1097 	 * changes and if so, exit to userspace (the actual level
1098 	 * state gets updated in kvm_timer_update_run and
1099 	 * kvm_pmu_update_run below).
1100 	 */
1101 	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1102 		if (kvm_timer_should_notify_user(vcpu) ||
1103 		    kvm_pmu_should_notify_user(vcpu)) {
1104 			*ret = -EINTR;
1105 			run->exit_reason = KVM_EXIT_INTR;
1106 			return true;
1107 		}
1108 	}
1109 
1110 	if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
1111 		run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1112 		run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
1113 		run->fail_entry.cpu = smp_processor_id();
1114 		*ret = 0;
1115 		return true;
1116 	}
1117 
1118 	return kvm_request_pending(vcpu) ||
1119 			xfer_to_guest_mode_work_pending();
1120 }
1121 
1122 /*
1123  * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
1124  * the vCPU is running.
1125  *
1126  * This must be noinstr as instrumentation may make use of RCU, and this is not
1127  * safe during the EQS.
1128  */
1129 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
1130 {
1131 	int ret;
1132 
1133 	guest_state_enter_irqoff();
1134 	ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
1135 	guest_state_exit_irqoff();
1136 
1137 	return ret;
1138 }
1139 
1140 /**
1141  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
1142  * @vcpu:	The VCPU pointer
1143  *
1144  * This function is called through the VCPU_RUN ioctl called from user space. It
1145  * will execute VM code in a loop until the time slice for the process is used
1146  * or some emulation is needed from user space in which case the function will
1147  * return with return value 0 and with the kvm_run structure filled in with the
1148  * required data for the requested emulation.
1149  */
1150 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
1151 {
1152 	struct kvm_run *run = vcpu->run;
1153 	int ret;
1154 
1155 	if (run->exit_reason == KVM_EXIT_MMIO) {
1156 		ret = kvm_handle_mmio_return(vcpu);
1157 		if (ret <= 0)
1158 			return ret;
1159 	}
1160 
1161 	vcpu_load(vcpu);
1162 
1163 	if (!vcpu->wants_to_run) {
1164 		ret = -EINTR;
1165 		goto out;
1166 	}
1167 
1168 	kvm_sigset_activate(vcpu);
1169 
1170 	ret = 1;
1171 	run->exit_reason = KVM_EXIT_UNKNOWN;
1172 	run->flags = 0;
1173 	while (ret > 0) {
1174 		/*
1175 		 * Check conditions before entering the guest
1176 		 */
1177 		ret = xfer_to_guest_mode_handle_work(vcpu);
1178 		if (!ret)
1179 			ret = 1;
1180 
1181 		if (ret > 0)
1182 			ret = check_vcpu_requests(vcpu);
1183 
1184 		/*
1185 		 * Preparing the interrupts to be injected also
1186 		 * involves poking the GIC, which must be done in a
1187 		 * non-preemptible context.
1188 		 */
1189 		preempt_disable();
1190 
1191 		kvm_nested_flush_hwstate(vcpu);
1192 
1193 		if (kvm_vcpu_has_pmu(vcpu))
1194 			kvm_pmu_flush_hwstate(vcpu);
1195 
1196 		local_irq_disable();
1197 
1198 		kvm_vgic_flush_hwstate(vcpu);
1199 
1200 		kvm_pmu_update_vcpu_events(vcpu);
1201 
1202 		/*
1203 		 * Ensure we set mode to IN_GUEST_MODE after we disable
1204 		 * interrupts and before the final VCPU requests check.
1205 		 * See the comment in kvm_vcpu_exiting_guest_mode() and
1206 		 * Documentation/virt/kvm/vcpu-requests.rst
1207 		 */
1208 		smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1209 
1210 		if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
1211 			vcpu->mode = OUTSIDE_GUEST_MODE;
1212 			isb(); /* Ensure work in x_flush_hwstate is committed */
1213 			if (kvm_vcpu_has_pmu(vcpu))
1214 				kvm_pmu_sync_hwstate(vcpu);
1215 			if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
1216 				kvm_timer_sync_user(vcpu);
1217 			kvm_vgic_sync_hwstate(vcpu);
1218 			local_irq_enable();
1219 			preempt_enable();
1220 			continue;
1221 		}
1222 
1223 		kvm_arch_vcpu_ctxflush_fp(vcpu);
1224 
1225 		/**************************************************************
1226 		 * Enter the guest
1227 		 */
1228 		trace_kvm_entry(*vcpu_pc(vcpu));
1229 		guest_timing_enter_irqoff();
1230 
1231 		ret = kvm_arm_vcpu_enter_exit(vcpu);
1232 
1233 		vcpu->mode = OUTSIDE_GUEST_MODE;
1234 		vcpu->stat.exits++;
1235 		/*
1236 		 * Back from guest
1237 		 *************************************************************/
1238 
1239 		/*
1240 		 * We must sync the PMU state before the vgic state so
1241 		 * that the vgic can properly sample the updated state of the
1242 		 * interrupt line.
1243 		 */
1244 		if (kvm_vcpu_has_pmu(vcpu))
1245 			kvm_pmu_sync_hwstate(vcpu);
1246 
1247 		/*
1248 		 * Sync the vgic state before syncing the timer state because
1249 		 * the timer code needs to know if the virtual timer
1250 		 * interrupts are active.
1251 		 */
1252 		kvm_vgic_sync_hwstate(vcpu);
1253 
1254 		/*
1255 		 * Sync the timer hardware state before enabling interrupts as
1256 		 * we don't want vtimer interrupts to race with syncing the
1257 		 * timer virtual interrupt state.
1258 		 */
1259 		if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
1260 			kvm_timer_sync_user(vcpu);
1261 
1262 		if (is_hyp_ctxt(vcpu))
1263 			kvm_timer_sync_nested(vcpu);
1264 
1265 		kvm_arch_vcpu_ctxsync_fp(vcpu);
1266 
1267 		/*
1268 		 * We must ensure that any pending interrupts are taken before
1269 		 * we exit guest timing so that timer ticks are accounted as
1270 		 * guest time. Transiently unmask interrupts so that any
1271 		 * pending interrupts are taken.
1272 		 *
1273 		 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
1274 		 * context synchronization event) is necessary to ensure that
1275 		 * pending interrupts are taken.
1276 		 */
1277 		if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
1278 			local_irq_enable();
1279 			isb();
1280 			local_irq_disable();
1281 		}
1282 
1283 		guest_timing_exit_irqoff();
1284 
1285 		local_irq_enable();
1286 
1287 		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
1288 
1289 		/* Exit types that need handling before we can be preempted */
1290 		handle_exit_early(vcpu, ret);
1291 
1292 		kvm_nested_sync_hwstate(vcpu);
1293 
1294 		preempt_enable();
1295 
1296 		/*
1297 		 * The ARMv8 architecture doesn't give the hypervisor
1298 		 * a mechanism to prevent a guest from dropping to AArch32 EL0
1299 		 * if implemented by the CPU. If we spot the guest in such
1300 		 * state and that we decided it wasn't supposed to do so (like
1301 		 * with the asymmetric AArch32 case), return to userspace with
1302 		 * a fatal error.
1303 		 */
1304 		if (vcpu_mode_is_bad_32bit(vcpu)) {
1305 			/*
1306 			 * As we have caught the guest red-handed, decide that
1307 			 * it isn't fit for purpose anymore by making the vcpu
1308 			 * invalid. The VMM can try and fix it by issuing  a
1309 			 * KVM_ARM_VCPU_INIT if it really wants to.
1310 			 */
1311 			vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
1312 			ret = ARM_EXCEPTION_IL;
1313 		}
1314 
1315 		ret = handle_exit(vcpu, ret);
1316 	}
1317 
1318 	/* Tell userspace about in-kernel device output levels */
1319 	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1320 		kvm_timer_update_run(vcpu);
1321 		kvm_pmu_update_run(vcpu);
1322 	}
1323 
1324 	kvm_sigset_deactivate(vcpu);
1325 
1326 out:
1327 	/*
1328 	 * In the unlikely event that we are returning to userspace
1329 	 * with pending exceptions or PC adjustment, commit these
1330 	 * adjustments in order to give userspace a consistent view of
1331 	 * the vcpu state. Note that this relies on __kvm_adjust_pc()
1332 	 * being preempt-safe on VHE.
1333 	 */
1334 	if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) ||
1335 		     vcpu_get_flag(vcpu, INCREMENT_PC)))
1336 		kvm_call_hyp(__kvm_adjust_pc, vcpu);
1337 
1338 	vcpu_put(vcpu);
1339 	return ret;
1340 }
1341 
1342 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
1343 {
1344 	int bit_index;
1345 	bool set;
1346 	unsigned long *hcr;
1347 
1348 	if (number == KVM_ARM_IRQ_CPU_IRQ)
1349 		bit_index = __ffs(HCR_VI);
1350 	else /* KVM_ARM_IRQ_CPU_FIQ */
1351 		bit_index = __ffs(HCR_VF);
1352 
1353 	hcr = vcpu_hcr(vcpu);
1354 	if (level)
1355 		set = test_and_set_bit(bit_index, hcr);
1356 	else
1357 		set = test_and_clear_bit(bit_index, hcr);
1358 
1359 	/*
1360 	 * If we didn't change anything, no need to wake up or kick other CPUs
1361 	 */
1362 	if (set == level)
1363 		return 0;
1364 
1365 	/*
1366 	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1367 	 * trigger a world-switch round on the running physical CPU to set the
1368 	 * virtual IRQ/FIQ fields in the HCR appropriately.
1369 	 */
1370 	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1371 	kvm_vcpu_kick(vcpu);
1372 
1373 	return 0;
1374 }
1375 
1376 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1377 			  bool line_status)
1378 {
1379 	u32 irq = irq_level->irq;
1380 	unsigned int irq_type, vcpu_id, irq_num;
1381 	struct kvm_vcpu *vcpu = NULL;
1382 	bool level = irq_level->level;
1383 
1384 	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1385 	vcpu_id = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1386 	vcpu_id += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1387 	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1388 
1389 	trace_kvm_irq_line(irq_type, vcpu_id, irq_num, irq_level->level);
1390 
1391 	switch (irq_type) {
1392 	case KVM_ARM_IRQ_TYPE_CPU:
1393 		if (irqchip_in_kernel(kvm))
1394 			return -ENXIO;
1395 
1396 		vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1397 		if (!vcpu)
1398 			return -EINVAL;
1399 
1400 		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1401 			return -EINVAL;
1402 
1403 		return vcpu_interrupt_line(vcpu, irq_num, level);
1404 	case KVM_ARM_IRQ_TYPE_PPI:
1405 		if (!irqchip_in_kernel(kvm))
1406 			return -ENXIO;
1407 
1408 		vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1409 		if (!vcpu)
1410 			return -EINVAL;
1411 
1412 		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1413 			return -EINVAL;
1414 
1415 		return kvm_vgic_inject_irq(kvm, vcpu, irq_num, level, NULL);
1416 	case KVM_ARM_IRQ_TYPE_SPI:
1417 		if (!irqchip_in_kernel(kvm))
1418 			return -ENXIO;
1419 
1420 		if (irq_num < VGIC_NR_PRIVATE_IRQS)
1421 			return -EINVAL;
1422 
1423 		return kvm_vgic_inject_irq(kvm, NULL, irq_num, level, NULL);
1424 	}
1425 
1426 	return -EINVAL;
1427 }
1428 
1429 static unsigned long system_supported_vcpu_features(void)
1430 {
1431 	unsigned long features = KVM_VCPU_VALID_FEATURES;
1432 
1433 	if (!cpus_have_final_cap(ARM64_HAS_32BIT_EL1))
1434 		clear_bit(KVM_ARM_VCPU_EL1_32BIT, &features);
1435 
1436 	if (!kvm_supports_guest_pmuv3())
1437 		clear_bit(KVM_ARM_VCPU_PMU_V3, &features);
1438 
1439 	if (!system_supports_sve())
1440 		clear_bit(KVM_ARM_VCPU_SVE, &features);
1441 
1442 	if (!kvm_has_full_ptr_auth()) {
1443 		clear_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features);
1444 		clear_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features);
1445 	}
1446 
1447 	if (!cpus_have_final_cap(ARM64_HAS_NESTED_VIRT))
1448 		clear_bit(KVM_ARM_VCPU_HAS_EL2, &features);
1449 
1450 	return features;
1451 }
1452 
1453 static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu,
1454 					const struct kvm_vcpu_init *init)
1455 {
1456 	unsigned long features = init->features[0];
1457 	int i;
1458 
1459 	if (features & ~KVM_VCPU_VALID_FEATURES)
1460 		return -ENOENT;
1461 
1462 	for (i = 1; i < ARRAY_SIZE(init->features); i++) {
1463 		if (init->features[i])
1464 			return -ENOENT;
1465 	}
1466 
1467 	if (features & ~system_supported_vcpu_features())
1468 		return -EINVAL;
1469 
1470 	/*
1471 	 * For now make sure that both address/generic pointer authentication
1472 	 * features are requested by the userspace together.
1473 	 */
1474 	if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features) !=
1475 	    test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features))
1476 		return -EINVAL;
1477 
1478 	if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features))
1479 		return 0;
1480 
1481 	/* MTE is incompatible with AArch32 */
1482 	if (kvm_has_mte(vcpu->kvm))
1483 		return -EINVAL;
1484 
1485 	/* NV is incompatible with AArch32 */
1486 	if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features))
1487 		return -EINVAL;
1488 
1489 	return 0;
1490 }
1491 
1492 static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu,
1493 				  const struct kvm_vcpu_init *init)
1494 {
1495 	unsigned long features = init->features[0];
1496 
1497 	return !bitmap_equal(vcpu->kvm->arch.vcpu_features, &features,
1498 			     KVM_VCPU_MAX_FEATURES);
1499 }
1500 
1501 static int kvm_setup_vcpu(struct kvm_vcpu *vcpu)
1502 {
1503 	struct kvm *kvm = vcpu->kvm;
1504 	int ret = 0;
1505 
1506 	/*
1507 	 * When the vCPU has a PMU, but no PMU is set for the guest
1508 	 * yet, set the default one.
1509 	 */
1510 	if (kvm_vcpu_has_pmu(vcpu) && !kvm->arch.arm_pmu)
1511 		ret = kvm_arm_set_default_pmu(kvm);
1512 
1513 	/* Prepare for nested if required */
1514 	if (!ret && vcpu_has_nv(vcpu))
1515 		ret = kvm_vcpu_init_nested(vcpu);
1516 
1517 	return ret;
1518 }
1519 
1520 static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1521 				 const struct kvm_vcpu_init *init)
1522 {
1523 	unsigned long features = init->features[0];
1524 	struct kvm *kvm = vcpu->kvm;
1525 	int ret = -EINVAL;
1526 
1527 	mutex_lock(&kvm->arch.config_lock);
1528 
1529 	if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) &&
1530 	    kvm_vcpu_init_changed(vcpu, init))
1531 		goto out_unlock;
1532 
1533 	bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES);
1534 
1535 	ret = kvm_setup_vcpu(vcpu);
1536 	if (ret)
1537 		goto out_unlock;
1538 
1539 	/* Now we know what it is, we can reset it. */
1540 	kvm_reset_vcpu(vcpu);
1541 
1542 	set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags);
1543 	vcpu_set_flag(vcpu, VCPU_INITIALIZED);
1544 	ret = 0;
1545 out_unlock:
1546 	mutex_unlock(&kvm->arch.config_lock);
1547 	return ret;
1548 }
1549 
1550 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1551 			       const struct kvm_vcpu_init *init)
1552 {
1553 	int ret;
1554 
1555 	if (init->target != KVM_ARM_TARGET_GENERIC_V8 &&
1556 	    init->target != kvm_target_cpu())
1557 		return -EINVAL;
1558 
1559 	ret = kvm_vcpu_init_check_features(vcpu, init);
1560 	if (ret)
1561 		return ret;
1562 
1563 	if (!kvm_vcpu_initialized(vcpu))
1564 		return __kvm_vcpu_set_target(vcpu, init);
1565 
1566 	if (kvm_vcpu_init_changed(vcpu, init))
1567 		return -EINVAL;
1568 
1569 	kvm_reset_vcpu(vcpu);
1570 	return 0;
1571 }
1572 
1573 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1574 					 struct kvm_vcpu_init *init)
1575 {
1576 	bool power_off = false;
1577 	int ret;
1578 
1579 	/*
1580 	 * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid
1581 	 * reflecting it in the finalized feature set, thus limiting its scope
1582 	 * to a single KVM_ARM_VCPU_INIT call.
1583 	 */
1584 	if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) {
1585 		init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF);
1586 		power_off = true;
1587 	}
1588 
1589 	ret = kvm_vcpu_set_target(vcpu, init);
1590 	if (ret)
1591 		return ret;
1592 
1593 	/*
1594 	 * Ensure a rebooted VM will fault in RAM pages and detect if the
1595 	 * guest MMU is turned off and flush the caches as needed.
1596 	 *
1597 	 * S2FWB enforces all memory accesses to RAM being cacheable,
1598 	 * ensuring that the data side is always coherent. We still
1599 	 * need to invalidate the I-cache though, as FWB does *not*
1600 	 * imply CTR_EL0.DIC.
1601 	 */
1602 	if (vcpu_has_run_once(vcpu)) {
1603 		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1604 			stage2_unmap_vm(vcpu->kvm);
1605 		else
1606 			icache_inval_all_pou();
1607 	}
1608 
1609 	vcpu_reset_hcr(vcpu);
1610 
1611 	/*
1612 	 * Handle the "start in power-off" case.
1613 	 */
1614 	spin_lock(&vcpu->arch.mp_state_lock);
1615 
1616 	if (power_off)
1617 		__kvm_arm_vcpu_power_off(vcpu);
1618 	else
1619 		WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
1620 
1621 	spin_unlock(&vcpu->arch.mp_state_lock);
1622 
1623 	return 0;
1624 }
1625 
1626 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1627 				 struct kvm_device_attr *attr)
1628 {
1629 	int ret = -ENXIO;
1630 
1631 	switch (attr->group) {
1632 	default:
1633 		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1634 		break;
1635 	}
1636 
1637 	return ret;
1638 }
1639 
1640 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1641 				 struct kvm_device_attr *attr)
1642 {
1643 	int ret = -ENXIO;
1644 
1645 	switch (attr->group) {
1646 	default:
1647 		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1648 		break;
1649 	}
1650 
1651 	return ret;
1652 }
1653 
1654 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1655 				 struct kvm_device_attr *attr)
1656 {
1657 	int ret = -ENXIO;
1658 
1659 	switch (attr->group) {
1660 	default:
1661 		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1662 		break;
1663 	}
1664 
1665 	return ret;
1666 }
1667 
1668 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1669 				   struct kvm_vcpu_events *events)
1670 {
1671 	memset(events, 0, sizeof(*events));
1672 
1673 	return __kvm_arm_vcpu_get_events(vcpu, events);
1674 }
1675 
1676 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1677 				   struct kvm_vcpu_events *events)
1678 {
1679 	int i;
1680 
1681 	/* check whether the reserved field is zero */
1682 	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1683 		if (events->reserved[i])
1684 			return -EINVAL;
1685 
1686 	/* check whether the pad field is zero */
1687 	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1688 		if (events->exception.pad[i])
1689 			return -EINVAL;
1690 
1691 	return __kvm_arm_vcpu_set_events(vcpu, events);
1692 }
1693 
1694 long kvm_arch_vcpu_ioctl(struct file *filp,
1695 			 unsigned int ioctl, unsigned long arg)
1696 {
1697 	struct kvm_vcpu *vcpu = filp->private_data;
1698 	void __user *argp = (void __user *)arg;
1699 	struct kvm_device_attr attr;
1700 	long r;
1701 
1702 	switch (ioctl) {
1703 	case KVM_ARM_VCPU_INIT: {
1704 		struct kvm_vcpu_init init;
1705 
1706 		r = -EFAULT;
1707 		if (copy_from_user(&init, argp, sizeof(init)))
1708 			break;
1709 
1710 		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1711 		break;
1712 	}
1713 	case KVM_SET_ONE_REG:
1714 	case KVM_GET_ONE_REG: {
1715 		struct kvm_one_reg reg;
1716 
1717 		r = -ENOEXEC;
1718 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1719 			break;
1720 
1721 		r = -EFAULT;
1722 		if (copy_from_user(&reg, argp, sizeof(reg)))
1723 			break;
1724 
1725 		/*
1726 		 * We could owe a reset due to PSCI. Handle the pending reset
1727 		 * here to ensure userspace register accesses are ordered after
1728 		 * the reset.
1729 		 */
1730 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1731 			kvm_reset_vcpu(vcpu);
1732 
1733 		if (ioctl == KVM_SET_ONE_REG)
1734 			r = kvm_arm_set_reg(vcpu, &reg);
1735 		else
1736 			r = kvm_arm_get_reg(vcpu, &reg);
1737 		break;
1738 	}
1739 	case KVM_GET_REG_LIST: {
1740 		struct kvm_reg_list __user *user_list = argp;
1741 		struct kvm_reg_list reg_list;
1742 		unsigned n;
1743 
1744 		r = -ENOEXEC;
1745 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1746 			break;
1747 
1748 		r = -EPERM;
1749 		if (!kvm_arm_vcpu_is_finalized(vcpu))
1750 			break;
1751 
1752 		r = -EFAULT;
1753 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1754 			break;
1755 		n = reg_list.n;
1756 		reg_list.n = kvm_arm_num_regs(vcpu);
1757 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1758 			break;
1759 		r = -E2BIG;
1760 		if (n < reg_list.n)
1761 			break;
1762 		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1763 		break;
1764 	}
1765 	case KVM_SET_DEVICE_ATTR: {
1766 		r = -EFAULT;
1767 		if (copy_from_user(&attr, argp, sizeof(attr)))
1768 			break;
1769 		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1770 		break;
1771 	}
1772 	case KVM_GET_DEVICE_ATTR: {
1773 		r = -EFAULT;
1774 		if (copy_from_user(&attr, argp, sizeof(attr)))
1775 			break;
1776 		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1777 		break;
1778 	}
1779 	case KVM_HAS_DEVICE_ATTR: {
1780 		r = -EFAULT;
1781 		if (copy_from_user(&attr, argp, sizeof(attr)))
1782 			break;
1783 		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1784 		break;
1785 	}
1786 	case KVM_GET_VCPU_EVENTS: {
1787 		struct kvm_vcpu_events events;
1788 
1789 		if (kvm_arm_vcpu_get_events(vcpu, &events))
1790 			return -EINVAL;
1791 
1792 		if (copy_to_user(argp, &events, sizeof(events)))
1793 			return -EFAULT;
1794 
1795 		return 0;
1796 	}
1797 	case KVM_SET_VCPU_EVENTS: {
1798 		struct kvm_vcpu_events events;
1799 
1800 		if (copy_from_user(&events, argp, sizeof(events)))
1801 			return -EFAULT;
1802 
1803 		return kvm_arm_vcpu_set_events(vcpu, &events);
1804 	}
1805 	case KVM_ARM_VCPU_FINALIZE: {
1806 		int what;
1807 
1808 		if (!kvm_vcpu_initialized(vcpu))
1809 			return -ENOEXEC;
1810 
1811 		if (get_user(what, (const int __user *)argp))
1812 			return -EFAULT;
1813 
1814 		return kvm_arm_vcpu_finalize(vcpu, what);
1815 	}
1816 	default:
1817 		r = -EINVAL;
1818 	}
1819 
1820 	return r;
1821 }
1822 
1823 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1824 {
1825 
1826 }
1827 
1828 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1829 					struct kvm_arm_device_addr *dev_addr)
1830 {
1831 	switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) {
1832 	case KVM_ARM_DEVICE_VGIC_V2:
1833 		if (!vgic_present)
1834 			return -ENXIO;
1835 		return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr);
1836 	default:
1837 		return -ENODEV;
1838 	}
1839 }
1840 
1841 static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1842 {
1843 	switch (attr->group) {
1844 	case KVM_ARM_VM_SMCCC_CTRL:
1845 		return kvm_vm_smccc_has_attr(kvm, attr);
1846 	default:
1847 		return -ENXIO;
1848 	}
1849 }
1850 
1851 static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1852 {
1853 	switch (attr->group) {
1854 	case KVM_ARM_VM_SMCCC_CTRL:
1855 		return kvm_vm_smccc_set_attr(kvm, attr);
1856 	default:
1857 		return -ENXIO;
1858 	}
1859 }
1860 
1861 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1862 {
1863 	struct kvm *kvm = filp->private_data;
1864 	void __user *argp = (void __user *)arg;
1865 	struct kvm_device_attr attr;
1866 
1867 	switch (ioctl) {
1868 	case KVM_CREATE_IRQCHIP: {
1869 		int ret;
1870 		if (!vgic_present)
1871 			return -ENXIO;
1872 		mutex_lock(&kvm->lock);
1873 		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1874 		mutex_unlock(&kvm->lock);
1875 		return ret;
1876 	}
1877 	case KVM_ARM_SET_DEVICE_ADDR: {
1878 		struct kvm_arm_device_addr dev_addr;
1879 
1880 		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1881 			return -EFAULT;
1882 		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1883 	}
1884 	case KVM_ARM_PREFERRED_TARGET: {
1885 		struct kvm_vcpu_init init = {
1886 			.target = KVM_ARM_TARGET_GENERIC_V8,
1887 		};
1888 
1889 		if (copy_to_user(argp, &init, sizeof(init)))
1890 			return -EFAULT;
1891 
1892 		return 0;
1893 	}
1894 	case KVM_ARM_MTE_COPY_TAGS: {
1895 		struct kvm_arm_copy_mte_tags copy_tags;
1896 
1897 		if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1898 			return -EFAULT;
1899 		return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1900 	}
1901 	case KVM_ARM_SET_COUNTER_OFFSET: {
1902 		struct kvm_arm_counter_offset offset;
1903 
1904 		if (copy_from_user(&offset, argp, sizeof(offset)))
1905 			return -EFAULT;
1906 		return kvm_vm_ioctl_set_counter_offset(kvm, &offset);
1907 	}
1908 	case KVM_HAS_DEVICE_ATTR: {
1909 		if (copy_from_user(&attr, argp, sizeof(attr)))
1910 			return -EFAULT;
1911 
1912 		return kvm_vm_has_attr(kvm, &attr);
1913 	}
1914 	case KVM_SET_DEVICE_ATTR: {
1915 		if (copy_from_user(&attr, argp, sizeof(attr)))
1916 			return -EFAULT;
1917 
1918 		return kvm_vm_set_attr(kvm, &attr);
1919 	}
1920 	case KVM_ARM_GET_REG_WRITABLE_MASKS: {
1921 		struct reg_mask_range range;
1922 
1923 		if (copy_from_user(&range, argp, sizeof(range)))
1924 			return -EFAULT;
1925 		return kvm_vm_ioctl_get_reg_writable_masks(kvm, &range);
1926 	}
1927 	default:
1928 		return -EINVAL;
1929 	}
1930 }
1931 
1932 static unsigned long nvhe_percpu_size(void)
1933 {
1934 	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1935 		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1936 }
1937 
1938 static unsigned long nvhe_percpu_order(void)
1939 {
1940 	unsigned long size = nvhe_percpu_size();
1941 
1942 	return size ? get_order(size) : 0;
1943 }
1944 
1945 static size_t pkvm_host_sve_state_order(void)
1946 {
1947 	return get_order(pkvm_host_sve_state_size());
1948 }
1949 
1950 /* A lookup table holding the hypervisor VA for each vector slot */
1951 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1952 
1953 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1954 {
1955 	hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1956 }
1957 
1958 static int kvm_init_vector_slots(void)
1959 {
1960 	int err;
1961 	void *base;
1962 
1963 	base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1964 	kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1965 
1966 	base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1967 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1968 
1969 	if (kvm_system_needs_idmapped_vectors() &&
1970 	    !is_protected_kvm_enabled()) {
1971 		err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1972 					       __BP_HARDEN_HYP_VECS_SZ, &base);
1973 		if (err)
1974 			return err;
1975 	}
1976 
1977 	kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1978 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1979 	return 0;
1980 }
1981 
1982 static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits)
1983 {
1984 	struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1985 	unsigned long tcr;
1986 
1987 	/*
1988 	 * Calculate the raw per-cpu offset without a translation from the
1989 	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
1990 	 * so that we can use adr_l to access per-cpu variables in EL2.
1991 	 * Also drop the KASAN tag which gets in the way...
1992 	 */
1993 	params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1994 			    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1995 
1996 	params->mair_el2 = read_sysreg(mair_el1);
1997 
1998 	tcr = read_sysreg(tcr_el1);
1999 	if (cpus_have_final_cap(ARM64_KVM_HVHE)) {
2000 		tcr &= ~(TCR_HD | TCR_HA | TCR_A1 | TCR_T0SZ_MASK);
2001 		tcr |= TCR_EPD1_MASK;
2002 	} else {
2003 		unsigned long ips = FIELD_GET(TCR_IPS_MASK, tcr);
2004 
2005 		tcr &= TCR_EL2_MASK;
2006 		tcr |= TCR_EL2_RES1 | FIELD_PREP(TCR_EL2_PS_MASK, ips);
2007 		if (lpa2_is_enabled())
2008 			tcr |= TCR_EL2_DS;
2009 	}
2010 	tcr |= TCR_T0SZ(hyp_va_bits);
2011 	params->tcr_el2 = tcr;
2012 
2013 	params->pgd_pa = kvm_mmu_get_httbr();
2014 	if (is_protected_kvm_enabled())
2015 		params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
2016 	else
2017 		params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
2018 	if (cpus_have_final_cap(ARM64_KVM_HVHE))
2019 		params->hcr_el2 |= HCR_E2H;
2020 	params->vttbr = params->vtcr = 0;
2021 
2022 	/*
2023 	 * Flush the init params from the data cache because the struct will
2024 	 * be read while the MMU is off.
2025 	 */
2026 	kvm_flush_dcache_to_poc(params, sizeof(*params));
2027 }
2028 
2029 static void hyp_install_host_vector(void)
2030 {
2031 	struct kvm_nvhe_init_params *params;
2032 	struct arm_smccc_res res;
2033 
2034 	/* Switch from the HYP stub to our own HYP init vector */
2035 	__hyp_set_vectors(kvm_get_idmap_vector());
2036 
2037 	/*
2038 	 * Call initialization code, and switch to the full blown HYP code.
2039 	 * If the cpucaps haven't been finalized yet, something has gone very
2040 	 * wrong, and hyp will crash and burn when it uses any
2041 	 * cpus_have_*_cap() wrapper.
2042 	 */
2043 	BUG_ON(!system_capabilities_finalized());
2044 	params = this_cpu_ptr_nvhe_sym(kvm_init_params);
2045 	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
2046 	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
2047 }
2048 
2049 static void cpu_init_hyp_mode(void)
2050 {
2051 	hyp_install_host_vector();
2052 
2053 	/*
2054 	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
2055 	 * at EL2.
2056 	 */
2057 	if (this_cpu_has_cap(ARM64_SSBS) &&
2058 	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
2059 		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
2060 	}
2061 }
2062 
2063 static void cpu_hyp_reset(void)
2064 {
2065 	if (!is_kernel_in_hyp_mode())
2066 		__hyp_reset_vectors();
2067 }
2068 
2069 /*
2070  * EL2 vectors can be mapped and rerouted in a number of ways,
2071  * depending on the kernel configuration and CPU present:
2072  *
2073  * - If the CPU is affected by Spectre-v2, the hardening sequence is
2074  *   placed in one of the vector slots, which is executed before jumping
2075  *   to the real vectors.
2076  *
2077  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
2078  *   containing the hardening sequence is mapped next to the idmap page,
2079  *   and executed before jumping to the real vectors.
2080  *
2081  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
2082  *   empty slot is selected, mapped next to the idmap page, and
2083  *   executed before jumping to the real vectors.
2084  *
2085  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
2086  * VHE, as we don't have hypervisor-specific mappings. If the system
2087  * is VHE and yet selects this capability, it will be ignored.
2088  */
2089 static void cpu_set_hyp_vector(void)
2090 {
2091 	struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
2092 	void *vector = hyp_spectre_vector_selector[data->slot];
2093 
2094 	if (!is_protected_kvm_enabled())
2095 		*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
2096 	else
2097 		kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
2098 }
2099 
2100 static void cpu_hyp_init_context(void)
2101 {
2102 	kvm_init_host_cpu_context(host_data_ptr(host_ctxt));
2103 	kvm_init_host_debug_data();
2104 
2105 	if (!is_kernel_in_hyp_mode())
2106 		cpu_init_hyp_mode();
2107 }
2108 
2109 static void cpu_hyp_init_features(void)
2110 {
2111 	cpu_set_hyp_vector();
2112 
2113 	if (is_kernel_in_hyp_mode())
2114 		kvm_timer_init_vhe();
2115 
2116 	if (vgic_present)
2117 		kvm_vgic_init_cpu_hardware();
2118 }
2119 
2120 static void cpu_hyp_reinit(void)
2121 {
2122 	cpu_hyp_reset();
2123 	cpu_hyp_init_context();
2124 	cpu_hyp_init_features();
2125 }
2126 
2127 static void cpu_hyp_init(void *discard)
2128 {
2129 	if (!__this_cpu_read(kvm_hyp_initialized)) {
2130 		cpu_hyp_reinit();
2131 		__this_cpu_write(kvm_hyp_initialized, 1);
2132 	}
2133 }
2134 
2135 static void cpu_hyp_uninit(void *discard)
2136 {
2137 	if (__this_cpu_read(kvm_hyp_initialized)) {
2138 		cpu_hyp_reset();
2139 		__this_cpu_write(kvm_hyp_initialized, 0);
2140 	}
2141 }
2142 
2143 int kvm_arch_enable_virtualization_cpu(void)
2144 {
2145 	/*
2146 	 * Most calls to this function are made with migration
2147 	 * disabled, but not with preemption disabled. The former is
2148 	 * enough to ensure correctness, but most of the helpers
2149 	 * expect the later and will throw a tantrum otherwise.
2150 	 */
2151 	preempt_disable();
2152 
2153 	cpu_hyp_init(NULL);
2154 
2155 	kvm_vgic_cpu_up();
2156 	kvm_timer_cpu_up();
2157 
2158 	preempt_enable();
2159 
2160 	return 0;
2161 }
2162 
2163 void kvm_arch_disable_virtualization_cpu(void)
2164 {
2165 	kvm_timer_cpu_down();
2166 	kvm_vgic_cpu_down();
2167 
2168 	if (!is_protected_kvm_enabled())
2169 		cpu_hyp_uninit(NULL);
2170 }
2171 
2172 #ifdef CONFIG_CPU_PM
2173 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
2174 				    unsigned long cmd,
2175 				    void *v)
2176 {
2177 	/*
2178 	 * kvm_hyp_initialized is left with its old value over
2179 	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
2180 	 * re-enable hyp.
2181 	 */
2182 	switch (cmd) {
2183 	case CPU_PM_ENTER:
2184 		if (__this_cpu_read(kvm_hyp_initialized))
2185 			/*
2186 			 * don't update kvm_hyp_initialized here
2187 			 * so that the hyp will be re-enabled
2188 			 * when we resume. See below.
2189 			 */
2190 			cpu_hyp_reset();
2191 
2192 		return NOTIFY_OK;
2193 	case CPU_PM_ENTER_FAILED:
2194 	case CPU_PM_EXIT:
2195 		if (__this_cpu_read(kvm_hyp_initialized))
2196 			/* The hyp was enabled before suspend. */
2197 			cpu_hyp_reinit();
2198 
2199 		return NOTIFY_OK;
2200 
2201 	default:
2202 		return NOTIFY_DONE;
2203 	}
2204 }
2205 
2206 static struct notifier_block hyp_init_cpu_pm_nb = {
2207 	.notifier_call = hyp_init_cpu_pm_notifier,
2208 };
2209 
2210 static void __init hyp_cpu_pm_init(void)
2211 {
2212 	if (!is_protected_kvm_enabled())
2213 		cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
2214 }
2215 static void __init hyp_cpu_pm_exit(void)
2216 {
2217 	if (!is_protected_kvm_enabled())
2218 		cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
2219 }
2220 #else
2221 static inline void __init hyp_cpu_pm_init(void)
2222 {
2223 }
2224 static inline void __init hyp_cpu_pm_exit(void)
2225 {
2226 }
2227 #endif
2228 
2229 static void __init init_cpu_logical_map(void)
2230 {
2231 	unsigned int cpu;
2232 
2233 	/*
2234 	 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
2235 	 * Only copy the set of online CPUs whose features have been checked
2236 	 * against the finalized system capabilities. The hypervisor will not
2237 	 * allow any other CPUs from the `possible` set to boot.
2238 	 */
2239 	for_each_online_cpu(cpu)
2240 		hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
2241 }
2242 
2243 #define init_psci_0_1_impl_state(config, what)	\
2244 	config.psci_0_1_ ## what ## _implemented = psci_ops.what
2245 
2246 static bool __init init_psci_relay(void)
2247 {
2248 	/*
2249 	 * If PSCI has not been initialized, protected KVM cannot install
2250 	 * itself on newly booted CPUs.
2251 	 */
2252 	if (!psci_ops.get_version) {
2253 		kvm_err("Cannot initialize protected mode without PSCI\n");
2254 		return false;
2255 	}
2256 
2257 	kvm_host_psci_config.version = psci_ops.get_version();
2258 	kvm_host_psci_config.smccc_version = arm_smccc_get_version();
2259 
2260 	if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
2261 		kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
2262 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
2263 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
2264 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
2265 		init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
2266 	}
2267 	return true;
2268 }
2269 
2270 static int __init init_subsystems(void)
2271 {
2272 	int err = 0;
2273 
2274 	/*
2275 	 * Enable hardware so that subsystem initialisation can access EL2.
2276 	 */
2277 	on_each_cpu(cpu_hyp_init, NULL, 1);
2278 
2279 	/*
2280 	 * Register CPU lower-power notifier
2281 	 */
2282 	hyp_cpu_pm_init();
2283 
2284 	/*
2285 	 * Init HYP view of VGIC
2286 	 */
2287 	err = kvm_vgic_hyp_init();
2288 	switch (err) {
2289 	case 0:
2290 		vgic_present = true;
2291 		break;
2292 	case -ENODEV:
2293 	case -ENXIO:
2294 		/*
2295 		 * No VGIC? No pKVM for you.
2296 		 *
2297 		 * Protected mode assumes that VGICv3 is present, so no point
2298 		 * in trying to hobble along if vgic initialization fails.
2299 		 */
2300 		if (is_protected_kvm_enabled())
2301 			goto out;
2302 
2303 		/*
2304 		 * Otherwise, userspace could choose to implement a GIC for its
2305 		 * guest on non-cooperative hardware.
2306 		 */
2307 		vgic_present = false;
2308 		err = 0;
2309 		break;
2310 	default:
2311 		goto out;
2312 	}
2313 
2314 	if (kvm_mode == KVM_MODE_NV &&
2315 	   !(vgic_present && kvm_vgic_global_state.type == VGIC_V3)) {
2316 		kvm_err("NV support requires GICv3, giving up\n");
2317 		err = -EINVAL;
2318 		goto out;
2319 	}
2320 
2321 	/*
2322 	 * Init HYP architected timer support
2323 	 */
2324 	err = kvm_timer_hyp_init(vgic_present);
2325 	if (err)
2326 		goto out;
2327 
2328 	kvm_register_perf_callbacks(NULL);
2329 
2330 out:
2331 	if (err)
2332 		hyp_cpu_pm_exit();
2333 
2334 	if (err || !is_protected_kvm_enabled())
2335 		on_each_cpu(cpu_hyp_uninit, NULL, 1);
2336 
2337 	return err;
2338 }
2339 
2340 static void __init teardown_subsystems(void)
2341 {
2342 	kvm_unregister_perf_callbacks();
2343 	hyp_cpu_pm_exit();
2344 }
2345 
2346 static void __init teardown_hyp_mode(void)
2347 {
2348 	bool free_sve = system_supports_sve() && is_protected_kvm_enabled();
2349 	int cpu;
2350 
2351 	free_hyp_pgds();
2352 	for_each_possible_cpu(cpu) {
2353 		free_pages(per_cpu(kvm_arm_hyp_stack_base, cpu), NVHE_STACK_SHIFT - PAGE_SHIFT);
2354 		free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order());
2355 
2356 		if (free_sve) {
2357 			struct cpu_sve_state *sve_state;
2358 
2359 			sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state;
2360 			free_pages((unsigned long) sve_state, pkvm_host_sve_state_order());
2361 		}
2362 	}
2363 }
2364 
2365 static int __init do_pkvm_init(u32 hyp_va_bits)
2366 {
2367 	void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base));
2368 	int ret;
2369 
2370 	preempt_disable();
2371 	cpu_hyp_init_context();
2372 	ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
2373 				num_possible_cpus(), kern_hyp_va(per_cpu_base),
2374 				hyp_va_bits);
2375 	cpu_hyp_init_features();
2376 
2377 	/*
2378 	 * The stub hypercalls are now disabled, so set our local flag to
2379 	 * prevent a later re-init attempt in kvm_arch_enable_virtualization_cpu().
2380 	 */
2381 	__this_cpu_write(kvm_hyp_initialized, 1);
2382 	preempt_enable();
2383 
2384 	return ret;
2385 }
2386 
2387 static u64 get_hyp_id_aa64pfr0_el1(void)
2388 {
2389 	/*
2390 	 * Track whether the system isn't affected by spectre/meltdown in the
2391 	 * hypervisor's view of id_aa64pfr0_el1, used for protected VMs.
2392 	 * Although this is per-CPU, we make it global for simplicity, e.g., not
2393 	 * to have to worry about vcpu migration.
2394 	 *
2395 	 * Unlike for non-protected VMs, userspace cannot override this for
2396 	 * protected VMs.
2397 	 */
2398 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2399 
2400 	val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) |
2401 		 ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3));
2402 
2403 	val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2),
2404 			  arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED);
2405 	val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3),
2406 			  arm64_get_meltdown_state() == SPECTRE_UNAFFECTED);
2407 
2408 	return val;
2409 }
2410 
2411 static void kvm_hyp_init_symbols(void)
2412 {
2413 	kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1();
2414 	kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
2415 	kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
2416 	kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2417 	kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
2418 	kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
2419 	kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2420 	kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
2421 	kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1);
2422 	kvm_nvhe_sym(__icache_flags) = __icache_flags;
2423 	kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits;
2424 
2425 	/* Propagate the FGT state to the the nVHE side */
2426 	kvm_nvhe_sym(hfgrtr_masks)  = hfgrtr_masks;
2427 	kvm_nvhe_sym(hfgwtr_masks)  = hfgwtr_masks;
2428 	kvm_nvhe_sym(hfgitr_masks)  = hfgitr_masks;
2429 	kvm_nvhe_sym(hdfgrtr_masks) = hdfgrtr_masks;
2430 	kvm_nvhe_sym(hdfgwtr_masks) = hdfgwtr_masks;
2431 	kvm_nvhe_sym(hafgrtr_masks) = hafgrtr_masks;
2432 	kvm_nvhe_sym(hfgrtr2_masks) = hfgrtr2_masks;
2433 	kvm_nvhe_sym(hfgwtr2_masks) = hfgwtr2_masks;
2434 	kvm_nvhe_sym(hfgitr2_masks) = hfgitr2_masks;
2435 	kvm_nvhe_sym(hdfgrtr2_masks)= hdfgrtr2_masks;
2436 	kvm_nvhe_sym(hdfgwtr2_masks)= hdfgwtr2_masks;
2437 
2438 	/*
2439 	 * Flush entire BSS since part of its data containing init symbols is read
2440 	 * while the MMU is off.
2441 	 */
2442 	kvm_flush_dcache_to_poc(kvm_ksym_ref(__hyp_bss_start),
2443 				kvm_ksym_ref(__hyp_bss_end) - kvm_ksym_ref(__hyp_bss_start));
2444 }
2445 
2446 static int __init kvm_hyp_init_protection(u32 hyp_va_bits)
2447 {
2448 	void *addr = phys_to_virt(hyp_mem_base);
2449 	int ret;
2450 
2451 	ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
2452 	if (ret)
2453 		return ret;
2454 
2455 	ret = do_pkvm_init(hyp_va_bits);
2456 	if (ret)
2457 		return ret;
2458 
2459 	free_hyp_pgds();
2460 
2461 	return 0;
2462 }
2463 
2464 static int init_pkvm_host_sve_state(void)
2465 {
2466 	int cpu;
2467 
2468 	if (!system_supports_sve())
2469 		return 0;
2470 
2471 	/* Allocate pages for host sve state in protected mode. */
2472 	for_each_possible_cpu(cpu) {
2473 		struct page *page = alloc_pages(GFP_KERNEL, pkvm_host_sve_state_order());
2474 
2475 		if (!page)
2476 			return -ENOMEM;
2477 
2478 		per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state = page_address(page);
2479 	}
2480 
2481 	/*
2482 	 * Don't map the pages in hyp since these are only used in protected
2483 	 * mode, which will (re)create its own mapping when initialized.
2484 	 */
2485 
2486 	return 0;
2487 }
2488 
2489 /*
2490  * Finalizes the initialization of hyp mode, once everything else is initialized
2491  * and the initialziation process cannot fail.
2492  */
2493 static void finalize_init_hyp_mode(void)
2494 {
2495 	int cpu;
2496 
2497 	if (system_supports_sve() && is_protected_kvm_enabled()) {
2498 		for_each_possible_cpu(cpu) {
2499 			struct cpu_sve_state *sve_state;
2500 
2501 			sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state;
2502 			per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state =
2503 				kern_hyp_va(sve_state);
2504 		}
2505 	}
2506 }
2507 
2508 static void pkvm_hyp_init_ptrauth(void)
2509 {
2510 	struct kvm_cpu_context *hyp_ctxt;
2511 	int cpu;
2512 
2513 	for_each_possible_cpu(cpu) {
2514 		hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu);
2515 		hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long();
2516 		hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long();
2517 		hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long();
2518 		hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long();
2519 		hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long();
2520 		hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long();
2521 		hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long();
2522 		hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long();
2523 		hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long();
2524 		hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long();
2525 	}
2526 }
2527 
2528 /* Inits Hyp-mode on all online CPUs */
2529 static int __init init_hyp_mode(void)
2530 {
2531 	u32 hyp_va_bits;
2532 	int cpu;
2533 	int err = -ENOMEM;
2534 
2535 	/*
2536 	 * The protected Hyp-mode cannot be initialized if the memory pool
2537 	 * allocation has failed.
2538 	 */
2539 	if (is_protected_kvm_enabled() && !hyp_mem_base)
2540 		goto out_err;
2541 
2542 	/*
2543 	 * Allocate Hyp PGD and setup Hyp identity mapping
2544 	 */
2545 	err = kvm_mmu_init(&hyp_va_bits);
2546 	if (err)
2547 		goto out_err;
2548 
2549 	/*
2550 	 * Allocate stack pages for Hypervisor-mode
2551 	 */
2552 	for_each_possible_cpu(cpu) {
2553 		unsigned long stack_base;
2554 
2555 		stack_base = __get_free_pages(GFP_KERNEL, NVHE_STACK_SHIFT - PAGE_SHIFT);
2556 		if (!stack_base) {
2557 			err = -ENOMEM;
2558 			goto out_err;
2559 		}
2560 
2561 		per_cpu(kvm_arm_hyp_stack_base, cpu) = stack_base;
2562 	}
2563 
2564 	/*
2565 	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
2566 	 */
2567 	for_each_possible_cpu(cpu) {
2568 		struct page *page;
2569 		void *page_addr;
2570 
2571 		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
2572 		if (!page) {
2573 			err = -ENOMEM;
2574 			goto out_err;
2575 		}
2576 
2577 		page_addr = page_address(page);
2578 		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
2579 		kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr;
2580 	}
2581 
2582 	/*
2583 	 * Map the Hyp-code called directly from the host
2584 	 */
2585 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
2586 				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
2587 	if (err) {
2588 		kvm_err("Cannot map world-switch code\n");
2589 		goto out_err;
2590 	}
2591 
2592 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_data_start),
2593 				  kvm_ksym_ref(__hyp_data_end), PAGE_HYP);
2594 	if (err) {
2595 		kvm_err("Cannot map .hyp.data section\n");
2596 		goto out_err;
2597 	}
2598 
2599 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
2600 				  kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
2601 	if (err) {
2602 		kvm_err("Cannot map .hyp.rodata section\n");
2603 		goto out_err;
2604 	}
2605 
2606 	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
2607 				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
2608 	if (err) {
2609 		kvm_err("Cannot map rodata section\n");
2610 		goto out_err;
2611 	}
2612 
2613 	/*
2614 	 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
2615 	 * section thanks to an assertion in the linker script. Map it RW and
2616 	 * the rest of .bss RO.
2617 	 */
2618 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
2619 				  kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
2620 	if (err) {
2621 		kvm_err("Cannot map hyp bss section: %d\n", err);
2622 		goto out_err;
2623 	}
2624 
2625 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
2626 				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
2627 	if (err) {
2628 		kvm_err("Cannot map bss section\n");
2629 		goto out_err;
2630 	}
2631 
2632 	/*
2633 	 * Map the Hyp stack pages
2634 	 */
2635 	for_each_possible_cpu(cpu) {
2636 		struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2637 		char *stack_base = (char *)per_cpu(kvm_arm_hyp_stack_base, cpu);
2638 
2639 		err = create_hyp_stack(__pa(stack_base), &params->stack_hyp_va);
2640 		if (err) {
2641 			kvm_err("Cannot map hyp stack\n");
2642 			goto out_err;
2643 		}
2644 
2645 		/*
2646 		 * Save the stack PA in nvhe_init_params. This will be needed
2647 		 * to recreate the stack mapping in protected nVHE mode.
2648 		 * __hyp_pa() won't do the right thing there, since the stack
2649 		 * has been mapped in the flexible private VA space.
2650 		 */
2651 		params->stack_pa = __pa(stack_base);
2652 	}
2653 
2654 	for_each_possible_cpu(cpu) {
2655 		char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu];
2656 		char *percpu_end = percpu_begin + nvhe_percpu_size();
2657 
2658 		/* Map Hyp percpu pages */
2659 		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
2660 		if (err) {
2661 			kvm_err("Cannot map hyp percpu region\n");
2662 			goto out_err;
2663 		}
2664 
2665 		/* Prepare the CPU initialization parameters */
2666 		cpu_prepare_hyp_mode(cpu, hyp_va_bits);
2667 	}
2668 
2669 	kvm_hyp_init_symbols();
2670 
2671 	if (is_protected_kvm_enabled()) {
2672 		if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) &&
2673 		    cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH))
2674 			pkvm_hyp_init_ptrauth();
2675 
2676 		init_cpu_logical_map();
2677 
2678 		if (!init_psci_relay()) {
2679 			err = -ENODEV;
2680 			goto out_err;
2681 		}
2682 
2683 		err = init_pkvm_host_sve_state();
2684 		if (err)
2685 			goto out_err;
2686 
2687 		err = kvm_hyp_init_protection(hyp_va_bits);
2688 		if (err) {
2689 			kvm_err("Failed to init hyp memory protection\n");
2690 			goto out_err;
2691 		}
2692 	}
2693 
2694 	return 0;
2695 
2696 out_err:
2697 	teardown_hyp_mode();
2698 	kvm_err("error initializing Hyp mode: %d\n", err);
2699 	return err;
2700 }
2701 
2702 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2703 {
2704 	struct kvm_vcpu *vcpu = NULL;
2705 	struct kvm_mpidr_data *data;
2706 	unsigned long i;
2707 
2708 	mpidr &= MPIDR_HWID_BITMASK;
2709 
2710 	rcu_read_lock();
2711 	data = rcu_dereference(kvm->arch.mpidr_data);
2712 
2713 	if (data) {
2714 		u16 idx = kvm_mpidr_index(data, mpidr);
2715 
2716 		vcpu = kvm_get_vcpu(kvm, data->cmpidr_to_idx[idx]);
2717 		if (mpidr != kvm_vcpu_get_mpidr_aff(vcpu))
2718 			vcpu = NULL;
2719 	}
2720 
2721 	rcu_read_unlock();
2722 
2723 	if (vcpu)
2724 		return vcpu;
2725 
2726 	kvm_for_each_vcpu(i, vcpu, kvm) {
2727 		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2728 			return vcpu;
2729 	}
2730 	return NULL;
2731 }
2732 
2733 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2734 {
2735 	return irqchip_in_kernel(kvm);
2736 }
2737 
2738 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2739 				      struct irq_bypass_producer *prod)
2740 {
2741 	struct kvm_kernel_irqfd *irqfd =
2742 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2743 	struct kvm_kernel_irq_routing_entry *irq_entry = &irqfd->irq_entry;
2744 
2745 	/*
2746 	 * The only thing we have a chance of directly-injecting is LPIs. Maybe
2747 	 * one day...
2748 	 */
2749 	if (irq_entry->type != KVM_IRQ_ROUTING_MSI)
2750 		return 0;
2751 
2752 	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2753 					  &irqfd->irq_entry);
2754 }
2755 
2756 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2757 				      struct irq_bypass_producer *prod)
2758 {
2759 	struct kvm_kernel_irqfd *irqfd =
2760 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2761 	struct kvm_kernel_irq_routing_entry *irq_entry = &irqfd->irq_entry;
2762 
2763 	if (irq_entry->type != KVM_IRQ_ROUTING_MSI)
2764 		return;
2765 
2766 	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq);
2767 }
2768 
2769 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
2770 				  struct kvm_kernel_irq_routing_entry *new)
2771 {
2772 	if (old->type != KVM_IRQ_ROUTING_MSI ||
2773 	    new->type != KVM_IRQ_ROUTING_MSI)
2774 		return true;
2775 
2776 	return memcmp(&old->msi, &new->msi, sizeof(new->msi));
2777 }
2778 
2779 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2780 				  uint32_t guest_irq, bool set)
2781 {
2782 	/*
2783 	 * Remapping the vLPI requires taking the its_lock mutex to resolve
2784 	 * the new translation. We're in spinlock land at this point, so no
2785 	 * chance of resolving the translation.
2786 	 *
2787 	 * Unmap the vLPI and fall back to software LPI injection.
2788 	 */
2789 	return kvm_vgic_v4_unset_forwarding(kvm, host_irq);
2790 }
2791 
2792 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2793 {
2794 	struct kvm_kernel_irqfd *irqfd =
2795 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2796 
2797 	kvm_arm_halt_guest(irqfd->kvm);
2798 }
2799 
2800 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2801 {
2802 	struct kvm_kernel_irqfd *irqfd =
2803 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2804 
2805 	kvm_arm_resume_guest(irqfd->kvm);
2806 }
2807 
2808 /* Initialize Hyp-mode and memory mappings on all CPUs */
2809 static __init int kvm_arm_init(void)
2810 {
2811 	int err;
2812 	bool in_hyp_mode;
2813 
2814 	if (!is_hyp_mode_available()) {
2815 		kvm_info("HYP mode not available\n");
2816 		return -ENODEV;
2817 	}
2818 
2819 	if (kvm_get_mode() == KVM_MODE_NONE) {
2820 		kvm_info("KVM disabled from command line\n");
2821 		return -ENODEV;
2822 	}
2823 
2824 	err = kvm_sys_reg_table_init();
2825 	if (err) {
2826 		kvm_info("Error initializing system register tables");
2827 		return err;
2828 	}
2829 
2830 	in_hyp_mode = is_kernel_in_hyp_mode();
2831 
2832 	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2833 	    cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2834 		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2835 			 "Only trusted guests should be used on this system.\n");
2836 
2837 	err = kvm_set_ipa_limit();
2838 	if (err)
2839 		return err;
2840 
2841 	err = kvm_arm_init_sve();
2842 	if (err)
2843 		return err;
2844 
2845 	err = kvm_arm_vmid_alloc_init();
2846 	if (err) {
2847 		kvm_err("Failed to initialize VMID allocator.\n");
2848 		return err;
2849 	}
2850 
2851 	if (!in_hyp_mode) {
2852 		err = init_hyp_mode();
2853 		if (err)
2854 			goto out_err;
2855 	}
2856 
2857 	err = kvm_init_vector_slots();
2858 	if (err) {
2859 		kvm_err("Cannot initialise vector slots\n");
2860 		goto out_hyp;
2861 	}
2862 
2863 	err = init_subsystems();
2864 	if (err)
2865 		goto out_hyp;
2866 
2867 	kvm_info("%s%sVHE%s mode initialized successfully\n",
2868 		 in_hyp_mode ? "" : (is_protected_kvm_enabled() ?
2869 				     "Protected " : "Hyp "),
2870 		 in_hyp_mode ? "" : (cpus_have_final_cap(ARM64_KVM_HVHE) ?
2871 				     "h" : "n"),
2872 		 cpus_have_final_cap(ARM64_HAS_NESTED_VIRT) ? "+NV2": "");
2873 
2874 	/*
2875 	 * FIXME: Do something reasonable if kvm_init() fails after pKVM
2876 	 * hypervisor protection is finalized.
2877 	 */
2878 	err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2879 	if (err)
2880 		goto out_subs;
2881 
2882 	/*
2883 	 * This should be called after initialization is done and failure isn't
2884 	 * possible anymore.
2885 	 */
2886 	if (!in_hyp_mode)
2887 		finalize_init_hyp_mode();
2888 
2889 	kvm_arm_initialised = true;
2890 
2891 	return 0;
2892 
2893 out_subs:
2894 	teardown_subsystems();
2895 out_hyp:
2896 	if (!in_hyp_mode)
2897 		teardown_hyp_mode();
2898 out_err:
2899 	kvm_arm_vmid_alloc_free();
2900 	return err;
2901 }
2902 
2903 static int __init early_kvm_mode_cfg(char *arg)
2904 {
2905 	if (!arg)
2906 		return -EINVAL;
2907 
2908 	if (strcmp(arg, "none") == 0) {
2909 		kvm_mode = KVM_MODE_NONE;
2910 		return 0;
2911 	}
2912 
2913 	if (!is_hyp_mode_available()) {
2914 		pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n");
2915 		return 0;
2916 	}
2917 
2918 	if (strcmp(arg, "protected") == 0) {
2919 		if (!is_kernel_in_hyp_mode())
2920 			kvm_mode = KVM_MODE_PROTECTED;
2921 		else
2922 			pr_warn_once("Protected KVM not available with VHE\n");
2923 
2924 		return 0;
2925 	}
2926 
2927 	if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2928 		kvm_mode = KVM_MODE_DEFAULT;
2929 		return 0;
2930 	}
2931 
2932 	if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) {
2933 		kvm_mode = KVM_MODE_NV;
2934 		return 0;
2935 	}
2936 
2937 	return -EINVAL;
2938 }
2939 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2940 
2941 static int __init early_kvm_wfx_trap_policy_cfg(char *arg, enum kvm_wfx_trap_policy *p)
2942 {
2943 	if (!arg)
2944 		return -EINVAL;
2945 
2946 	if (strcmp(arg, "trap") == 0) {
2947 		*p = KVM_WFX_TRAP;
2948 		return 0;
2949 	}
2950 
2951 	if (strcmp(arg, "notrap") == 0) {
2952 		*p = KVM_WFX_NOTRAP;
2953 		return 0;
2954 	}
2955 
2956 	return -EINVAL;
2957 }
2958 
2959 static int __init early_kvm_wfi_trap_policy_cfg(char *arg)
2960 {
2961 	return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfi_trap_policy);
2962 }
2963 early_param("kvm-arm.wfi_trap_policy", early_kvm_wfi_trap_policy_cfg);
2964 
2965 static int __init early_kvm_wfe_trap_policy_cfg(char *arg)
2966 {
2967 	return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfe_trap_policy);
2968 }
2969 early_param("kvm-arm.wfe_trap_policy", early_kvm_wfe_trap_policy_cfg);
2970 
2971 enum kvm_mode kvm_get_mode(void)
2972 {
2973 	return kvm_mode;
2974 }
2975 
2976 module_init(kvm_arm_init);
2977