xref: /linux/arch/arm64/kvm/arm.c (revision 119ff04864a24470b1e531bb53e5c141aa8fefb0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/entry-kvm.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/vmalloc.h>
16 #include <linux/fs.h>
17 #include <linux/mman.h>
18 #include <linux/sched.h>
19 #include <linux/kvm.h>
20 #include <linux/kvm_irqfd.h>
21 #include <linux/irqbypass.h>
22 #include <linux/sched/stat.h>
23 #include <linux/psci.h>
24 #include <trace/events/kvm.h>
25 
26 #define CREATE_TRACE_POINTS
27 #include "trace_arm.h"
28 
29 #include <linux/uaccess.h>
30 #include <asm/ptrace.h>
31 #include <asm/mman.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpufeature.h>
35 #include <asm/virt.h>
36 #include <asm/kvm_arm.h>
37 #include <asm/kvm_asm.h>
38 #include <asm/kvm_mmu.h>
39 #include <asm/kvm_nested.h>
40 #include <asm/kvm_pkvm.h>
41 #include <asm/kvm_emulate.h>
42 #include <asm/sections.h>
43 
44 #include <kvm/arm_hypercalls.h>
45 #include <kvm/arm_pmu.h>
46 #include <kvm/arm_psci.h>
47 
48 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
49 
50 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
51 
52 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
54 
55 DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
56 
57 static bool vgic_present, kvm_arm_initialised;
58 
59 static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized);
60 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
61 
62 bool is_kvm_arm_initialised(void)
63 {
64 	return kvm_arm_initialised;
65 }
66 
67 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
68 {
69 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
70 }
71 
72 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
73 			    struct kvm_enable_cap *cap)
74 {
75 	int r;
76 	u64 new_cap;
77 
78 	if (cap->flags)
79 		return -EINVAL;
80 
81 	switch (cap->cap) {
82 	case KVM_CAP_ARM_NISV_TO_USER:
83 		r = 0;
84 		set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
85 			&kvm->arch.flags);
86 		break;
87 	case KVM_CAP_ARM_MTE:
88 		mutex_lock(&kvm->lock);
89 		if (!system_supports_mte() || kvm->created_vcpus) {
90 			r = -EINVAL;
91 		} else {
92 			r = 0;
93 			set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
94 		}
95 		mutex_unlock(&kvm->lock);
96 		break;
97 	case KVM_CAP_ARM_SYSTEM_SUSPEND:
98 		r = 0;
99 		set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
100 		break;
101 	case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
102 		new_cap = cap->args[0];
103 
104 		mutex_lock(&kvm->slots_lock);
105 		/*
106 		 * To keep things simple, allow changing the chunk
107 		 * size only when no memory slots have been created.
108 		 */
109 		if (!kvm_are_all_memslots_empty(kvm)) {
110 			r = -EINVAL;
111 		} else if (new_cap && !kvm_is_block_size_supported(new_cap)) {
112 			r = -EINVAL;
113 		} else {
114 			r = 0;
115 			kvm->arch.mmu.split_page_chunk_size = new_cap;
116 		}
117 		mutex_unlock(&kvm->slots_lock);
118 		break;
119 	default:
120 		r = -EINVAL;
121 		break;
122 	}
123 
124 	return r;
125 }
126 
127 static int kvm_arm_default_max_vcpus(void)
128 {
129 	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
130 }
131 
132 /**
133  * kvm_arch_init_vm - initializes a VM data structure
134  * @kvm:	pointer to the KVM struct
135  */
136 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
137 {
138 	int ret;
139 
140 	mutex_init(&kvm->arch.config_lock);
141 
142 #ifdef CONFIG_LOCKDEP
143 	/* Clue in lockdep that the config_lock must be taken inside kvm->lock */
144 	mutex_lock(&kvm->lock);
145 	mutex_lock(&kvm->arch.config_lock);
146 	mutex_unlock(&kvm->arch.config_lock);
147 	mutex_unlock(&kvm->lock);
148 #endif
149 
150 	ret = kvm_share_hyp(kvm, kvm + 1);
151 	if (ret)
152 		return ret;
153 
154 	ret = pkvm_init_host_vm(kvm);
155 	if (ret)
156 		goto err_unshare_kvm;
157 
158 	if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) {
159 		ret = -ENOMEM;
160 		goto err_unshare_kvm;
161 	}
162 	cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
163 
164 	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type);
165 	if (ret)
166 		goto err_free_cpumask;
167 
168 	kvm_vgic_early_init(kvm);
169 
170 	kvm_timer_init_vm(kvm);
171 
172 	/* The maximum number of VCPUs is limited by the host's GIC model */
173 	kvm->max_vcpus = kvm_arm_default_max_vcpus();
174 
175 	kvm_arm_init_hypercalls(kvm);
176 
177 	bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES);
178 
179 	return 0;
180 
181 err_free_cpumask:
182 	free_cpumask_var(kvm->arch.supported_cpus);
183 err_unshare_kvm:
184 	kvm_unshare_hyp(kvm, kvm + 1);
185 	return ret;
186 }
187 
188 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
189 {
190 	return VM_FAULT_SIGBUS;
191 }
192 
193 
194 /**
195  * kvm_arch_destroy_vm - destroy the VM data structure
196  * @kvm:	pointer to the KVM struct
197  */
198 void kvm_arch_destroy_vm(struct kvm *kvm)
199 {
200 	bitmap_free(kvm->arch.pmu_filter);
201 	free_cpumask_var(kvm->arch.supported_cpus);
202 
203 	kvm_vgic_destroy(kvm);
204 
205 	if (is_protected_kvm_enabled())
206 		pkvm_destroy_hyp_vm(kvm);
207 
208 	kfree(kvm->arch.mpidr_data);
209 	kvm_destroy_vcpus(kvm);
210 
211 	kvm_unshare_hyp(kvm, kvm + 1);
212 
213 	kvm_arm_teardown_hypercalls(kvm);
214 }
215 
216 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
217 {
218 	int r;
219 	switch (ext) {
220 	case KVM_CAP_IRQCHIP:
221 		r = vgic_present;
222 		break;
223 	case KVM_CAP_IOEVENTFD:
224 	case KVM_CAP_USER_MEMORY:
225 	case KVM_CAP_SYNC_MMU:
226 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
227 	case KVM_CAP_ONE_REG:
228 	case KVM_CAP_ARM_PSCI:
229 	case KVM_CAP_ARM_PSCI_0_2:
230 	case KVM_CAP_READONLY_MEM:
231 	case KVM_CAP_MP_STATE:
232 	case KVM_CAP_IMMEDIATE_EXIT:
233 	case KVM_CAP_VCPU_EVENTS:
234 	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
235 	case KVM_CAP_ARM_NISV_TO_USER:
236 	case KVM_CAP_ARM_INJECT_EXT_DABT:
237 	case KVM_CAP_SET_GUEST_DEBUG:
238 	case KVM_CAP_VCPU_ATTRIBUTES:
239 	case KVM_CAP_PTP_KVM:
240 	case KVM_CAP_ARM_SYSTEM_SUSPEND:
241 	case KVM_CAP_IRQFD_RESAMPLE:
242 	case KVM_CAP_COUNTER_OFFSET:
243 		r = 1;
244 		break;
245 	case KVM_CAP_SET_GUEST_DEBUG2:
246 		return KVM_GUESTDBG_VALID_MASK;
247 	case KVM_CAP_ARM_SET_DEVICE_ADDR:
248 		r = 1;
249 		break;
250 	case KVM_CAP_NR_VCPUS:
251 		/*
252 		 * ARM64 treats KVM_CAP_NR_CPUS differently from all other
253 		 * architectures, as it does not always bound it to
254 		 * KVM_CAP_MAX_VCPUS. It should not matter much because
255 		 * this is just an advisory value.
256 		 */
257 		r = min_t(unsigned int, num_online_cpus(),
258 			  kvm_arm_default_max_vcpus());
259 		break;
260 	case KVM_CAP_MAX_VCPUS:
261 	case KVM_CAP_MAX_VCPU_ID:
262 		if (kvm)
263 			r = kvm->max_vcpus;
264 		else
265 			r = kvm_arm_default_max_vcpus();
266 		break;
267 	case KVM_CAP_MSI_DEVID:
268 		if (!kvm)
269 			r = -EINVAL;
270 		else
271 			r = kvm->arch.vgic.msis_require_devid;
272 		break;
273 	case KVM_CAP_ARM_USER_IRQ:
274 		/*
275 		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
276 		 * (bump this number if adding more devices)
277 		 */
278 		r = 1;
279 		break;
280 	case KVM_CAP_ARM_MTE:
281 		r = system_supports_mte();
282 		break;
283 	case KVM_CAP_STEAL_TIME:
284 		r = kvm_arm_pvtime_supported();
285 		break;
286 	case KVM_CAP_ARM_EL1_32BIT:
287 		r = cpus_have_final_cap(ARM64_HAS_32BIT_EL1);
288 		break;
289 	case KVM_CAP_GUEST_DEBUG_HW_BPS:
290 		r = get_num_brps();
291 		break;
292 	case KVM_CAP_GUEST_DEBUG_HW_WPS:
293 		r = get_num_wrps();
294 		break;
295 	case KVM_CAP_ARM_PMU_V3:
296 		r = kvm_arm_support_pmu_v3();
297 		break;
298 	case KVM_CAP_ARM_INJECT_SERROR_ESR:
299 		r = cpus_have_final_cap(ARM64_HAS_RAS_EXTN);
300 		break;
301 	case KVM_CAP_ARM_VM_IPA_SIZE:
302 		r = get_kvm_ipa_limit();
303 		break;
304 	case KVM_CAP_ARM_SVE:
305 		r = system_supports_sve();
306 		break;
307 	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
308 	case KVM_CAP_ARM_PTRAUTH_GENERIC:
309 		r = system_has_full_ptr_auth();
310 		break;
311 	case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
312 		if (kvm)
313 			r = kvm->arch.mmu.split_page_chunk_size;
314 		else
315 			r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
316 		break;
317 	case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES:
318 		r = kvm_supported_block_sizes();
319 		break;
320 	case KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES:
321 		r = BIT(0);
322 		break;
323 	default:
324 		r = 0;
325 	}
326 
327 	return r;
328 }
329 
330 long kvm_arch_dev_ioctl(struct file *filp,
331 			unsigned int ioctl, unsigned long arg)
332 {
333 	return -EINVAL;
334 }
335 
336 struct kvm *kvm_arch_alloc_vm(void)
337 {
338 	size_t sz = sizeof(struct kvm);
339 
340 	if (!has_vhe())
341 		return kzalloc(sz, GFP_KERNEL_ACCOUNT);
342 
343 	return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
344 }
345 
346 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
347 {
348 	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
349 		return -EBUSY;
350 
351 	if (id >= kvm->max_vcpus)
352 		return -EINVAL;
353 
354 	return 0;
355 }
356 
357 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
358 {
359 	int err;
360 
361 	spin_lock_init(&vcpu->arch.mp_state_lock);
362 
363 #ifdef CONFIG_LOCKDEP
364 	/* Inform lockdep that the config_lock is acquired after vcpu->mutex */
365 	mutex_lock(&vcpu->mutex);
366 	mutex_lock(&vcpu->kvm->arch.config_lock);
367 	mutex_unlock(&vcpu->kvm->arch.config_lock);
368 	mutex_unlock(&vcpu->mutex);
369 #endif
370 
371 	/* Force users to call KVM_ARM_VCPU_INIT */
372 	vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
373 
374 	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
375 
376 	/*
377 	 * Default value for the FP state, will be overloaded at load
378 	 * time if we support FP (pretty likely)
379 	 */
380 	vcpu->arch.fp_state = FP_STATE_FREE;
381 
382 	/* Set up the timer */
383 	kvm_timer_vcpu_init(vcpu);
384 
385 	kvm_pmu_vcpu_init(vcpu);
386 
387 	kvm_arm_reset_debug_ptr(vcpu);
388 
389 	kvm_arm_pvtime_vcpu_init(&vcpu->arch);
390 
391 	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
392 
393 	err = kvm_vgic_vcpu_init(vcpu);
394 	if (err)
395 		return err;
396 
397 	return kvm_share_hyp(vcpu, vcpu + 1);
398 }
399 
400 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
401 {
402 }
403 
404 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
405 {
406 	if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm)))
407 		static_branch_dec(&userspace_irqchip_in_use);
408 
409 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
410 	kvm_timer_vcpu_terminate(vcpu);
411 	kvm_pmu_vcpu_destroy(vcpu);
412 	kvm_vgic_vcpu_destroy(vcpu);
413 	kvm_arm_vcpu_destroy(vcpu);
414 }
415 
416 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
417 {
418 
419 }
420 
421 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
422 {
423 
424 }
425 
426 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
427 {
428 	struct kvm_s2_mmu *mmu;
429 	int *last_ran;
430 
431 	mmu = vcpu->arch.hw_mmu;
432 	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
433 
434 	/*
435 	 * We guarantee that both TLBs and I-cache are private to each
436 	 * vcpu. If detecting that a vcpu from the same VM has
437 	 * previously run on the same physical CPU, call into the
438 	 * hypervisor code to nuke the relevant contexts.
439 	 *
440 	 * We might get preempted before the vCPU actually runs, but
441 	 * over-invalidation doesn't affect correctness.
442 	 */
443 	if (*last_ran != vcpu->vcpu_idx) {
444 		kvm_call_hyp(__kvm_flush_cpu_context, mmu);
445 		*last_ran = vcpu->vcpu_idx;
446 	}
447 
448 	vcpu->cpu = cpu;
449 
450 	kvm_vgic_load(vcpu);
451 	kvm_timer_vcpu_load(vcpu);
452 	if (has_vhe())
453 		kvm_vcpu_load_vhe(vcpu);
454 	kvm_arch_vcpu_load_fp(vcpu);
455 	kvm_vcpu_pmu_restore_guest(vcpu);
456 	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
457 		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
458 
459 	if (single_task_running())
460 		vcpu_clear_wfx_traps(vcpu);
461 	else
462 		vcpu_set_wfx_traps(vcpu);
463 
464 	if (vcpu_has_ptrauth(vcpu))
465 		vcpu_ptrauth_disable(vcpu);
466 	kvm_arch_vcpu_load_debug_state_flags(vcpu);
467 
468 	if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus))
469 		vcpu_set_on_unsupported_cpu(vcpu);
470 }
471 
472 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
473 {
474 	kvm_arch_vcpu_put_debug_state_flags(vcpu);
475 	kvm_arch_vcpu_put_fp(vcpu);
476 	if (has_vhe())
477 		kvm_vcpu_put_vhe(vcpu);
478 	kvm_timer_vcpu_put(vcpu);
479 	kvm_vgic_put(vcpu);
480 	kvm_vcpu_pmu_restore_host(vcpu);
481 	kvm_arm_vmid_clear_active();
482 
483 	vcpu_clear_on_unsupported_cpu(vcpu);
484 	vcpu->cpu = -1;
485 }
486 
487 static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
488 {
489 	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
490 	kvm_make_request(KVM_REQ_SLEEP, vcpu);
491 	kvm_vcpu_kick(vcpu);
492 }
493 
494 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
495 {
496 	spin_lock(&vcpu->arch.mp_state_lock);
497 	__kvm_arm_vcpu_power_off(vcpu);
498 	spin_unlock(&vcpu->arch.mp_state_lock);
499 }
500 
501 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
502 {
503 	return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED;
504 }
505 
506 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
507 {
508 	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED);
509 	kvm_make_request(KVM_REQ_SUSPEND, vcpu);
510 	kvm_vcpu_kick(vcpu);
511 }
512 
513 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
514 {
515 	return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED;
516 }
517 
518 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
519 				    struct kvm_mp_state *mp_state)
520 {
521 	*mp_state = READ_ONCE(vcpu->arch.mp_state);
522 
523 	return 0;
524 }
525 
526 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
527 				    struct kvm_mp_state *mp_state)
528 {
529 	int ret = 0;
530 
531 	spin_lock(&vcpu->arch.mp_state_lock);
532 
533 	switch (mp_state->mp_state) {
534 	case KVM_MP_STATE_RUNNABLE:
535 		WRITE_ONCE(vcpu->arch.mp_state, *mp_state);
536 		break;
537 	case KVM_MP_STATE_STOPPED:
538 		__kvm_arm_vcpu_power_off(vcpu);
539 		break;
540 	case KVM_MP_STATE_SUSPENDED:
541 		kvm_arm_vcpu_suspend(vcpu);
542 		break;
543 	default:
544 		ret = -EINVAL;
545 	}
546 
547 	spin_unlock(&vcpu->arch.mp_state_lock);
548 
549 	return ret;
550 }
551 
552 /**
553  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
554  * @v:		The VCPU pointer
555  *
556  * If the guest CPU is not waiting for interrupts or an interrupt line is
557  * asserted, the CPU is by definition runnable.
558  */
559 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
560 {
561 	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
562 	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
563 		&& !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
564 }
565 
566 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
567 {
568 	return vcpu_mode_priv(vcpu);
569 }
570 
571 #ifdef CONFIG_GUEST_PERF_EVENTS
572 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
573 {
574 	return *vcpu_pc(vcpu);
575 }
576 #endif
577 
578 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
579 {
580 	return vcpu_get_flag(vcpu, VCPU_INITIALIZED);
581 }
582 
583 static void kvm_init_mpidr_data(struct kvm *kvm)
584 {
585 	struct kvm_mpidr_data *data = NULL;
586 	unsigned long c, mask, nr_entries;
587 	u64 aff_set = 0, aff_clr = ~0UL;
588 	struct kvm_vcpu *vcpu;
589 
590 	mutex_lock(&kvm->arch.config_lock);
591 
592 	if (kvm->arch.mpidr_data || atomic_read(&kvm->online_vcpus) == 1)
593 		goto out;
594 
595 	kvm_for_each_vcpu(c, vcpu, kvm) {
596 		u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
597 		aff_set |= aff;
598 		aff_clr &= aff;
599 	}
600 
601 	/*
602 	 * A significant bit can be either 0 or 1, and will only appear in
603 	 * aff_set. Use aff_clr to weed out the useless stuff.
604 	 */
605 	mask = aff_set ^ aff_clr;
606 	nr_entries = BIT_ULL(hweight_long(mask));
607 
608 	/*
609 	 * Don't let userspace fool us. If we need more than a single page
610 	 * to describe the compressed MPIDR array, just fall back to the
611 	 * iterative method. Single vcpu VMs do not need this either.
612 	 */
613 	if (struct_size(data, cmpidr_to_idx, nr_entries) <= PAGE_SIZE)
614 		data = kzalloc(struct_size(data, cmpidr_to_idx, nr_entries),
615 			       GFP_KERNEL_ACCOUNT);
616 
617 	if (!data)
618 		goto out;
619 
620 	data->mpidr_mask = mask;
621 
622 	kvm_for_each_vcpu(c, vcpu, kvm) {
623 		u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
624 		u16 index = kvm_mpidr_index(data, aff);
625 
626 		data->cmpidr_to_idx[index] = c;
627 	}
628 
629 	kvm->arch.mpidr_data = data;
630 out:
631 	mutex_unlock(&kvm->arch.config_lock);
632 }
633 
634 /*
635  * Handle both the initialisation that is being done when the vcpu is
636  * run for the first time, as well as the updates that must be
637  * performed each time we get a new thread dealing with this vcpu.
638  */
639 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
640 {
641 	struct kvm *kvm = vcpu->kvm;
642 	int ret;
643 
644 	if (!kvm_vcpu_initialized(vcpu))
645 		return -ENOEXEC;
646 
647 	if (!kvm_arm_vcpu_is_finalized(vcpu))
648 		return -EPERM;
649 
650 	ret = kvm_arch_vcpu_run_map_fp(vcpu);
651 	if (ret)
652 		return ret;
653 
654 	if (likely(vcpu_has_run_once(vcpu)))
655 		return 0;
656 
657 	kvm_init_mpidr_data(kvm);
658 
659 	kvm_arm_vcpu_init_debug(vcpu);
660 
661 	if (likely(irqchip_in_kernel(kvm))) {
662 		/*
663 		 * Map the VGIC hardware resources before running a vcpu the
664 		 * first time on this VM.
665 		 */
666 		ret = kvm_vgic_map_resources(kvm);
667 		if (ret)
668 			return ret;
669 	}
670 
671 	if (vcpu_has_nv(vcpu)) {
672 		ret = kvm_init_nv_sysregs(vcpu->kvm);
673 		if (ret)
674 			return ret;
675 	}
676 
677 	ret = kvm_timer_enable(vcpu);
678 	if (ret)
679 		return ret;
680 
681 	ret = kvm_arm_pmu_v3_enable(vcpu);
682 	if (ret)
683 		return ret;
684 
685 	if (is_protected_kvm_enabled()) {
686 		ret = pkvm_create_hyp_vm(kvm);
687 		if (ret)
688 			return ret;
689 	}
690 
691 	if (!irqchip_in_kernel(kvm)) {
692 		/*
693 		 * Tell the rest of the code that there are userspace irqchip
694 		 * VMs in the wild.
695 		 */
696 		static_branch_inc(&userspace_irqchip_in_use);
697 	}
698 
699 	/*
700 	 * Initialize traps for protected VMs.
701 	 * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
702 	 * the code is in place for first run initialization at EL2.
703 	 */
704 	if (kvm_vm_is_protected(kvm))
705 		kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);
706 
707 	mutex_lock(&kvm->arch.config_lock);
708 	set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
709 	mutex_unlock(&kvm->arch.config_lock);
710 
711 	return ret;
712 }
713 
714 bool kvm_arch_intc_initialized(struct kvm *kvm)
715 {
716 	return vgic_initialized(kvm);
717 }
718 
719 void kvm_arm_halt_guest(struct kvm *kvm)
720 {
721 	unsigned long i;
722 	struct kvm_vcpu *vcpu;
723 
724 	kvm_for_each_vcpu(i, vcpu, kvm)
725 		vcpu->arch.pause = true;
726 	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
727 }
728 
729 void kvm_arm_resume_guest(struct kvm *kvm)
730 {
731 	unsigned long i;
732 	struct kvm_vcpu *vcpu;
733 
734 	kvm_for_each_vcpu(i, vcpu, kvm) {
735 		vcpu->arch.pause = false;
736 		__kvm_vcpu_wake_up(vcpu);
737 	}
738 }
739 
740 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
741 {
742 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
743 
744 	rcuwait_wait_event(wait,
745 			   (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
746 			   TASK_INTERRUPTIBLE);
747 
748 	if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
749 		/* Awaken to handle a signal, request we sleep again later. */
750 		kvm_make_request(KVM_REQ_SLEEP, vcpu);
751 	}
752 
753 	/*
754 	 * Make sure we will observe a potential reset request if we've
755 	 * observed a change to the power state. Pairs with the smp_wmb() in
756 	 * kvm_psci_vcpu_on().
757 	 */
758 	smp_rmb();
759 }
760 
761 /**
762  * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
763  * @vcpu:	The VCPU pointer
764  *
765  * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
766  * the vCPU is runnable.  The vCPU may or may not be scheduled out, depending
767  * on when a wake event arrives, e.g. there may already be a pending wake event.
768  */
769 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
770 {
771 	/*
772 	 * Sync back the state of the GIC CPU interface so that we have
773 	 * the latest PMR and group enables. This ensures that
774 	 * kvm_arch_vcpu_runnable has up-to-date data to decide whether
775 	 * we have pending interrupts, e.g. when determining if the
776 	 * vCPU should block.
777 	 *
778 	 * For the same reason, we want to tell GICv4 that we need
779 	 * doorbells to be signalled, should an interrupt become pending.
780 	 */
781 	preempt_disable();
782 	kvm_vgic_vmcr_sync(vcpu);
783 	vcpu_set_flag(vcpu, IN_WFI);
784 	vgic_v4_put(vcpu);
785 	preempt_enable();
786 
787 	kvm_vcpu_halt(vcpu);
788 	vcpu_clear_flag(vcpu, IN_WFIT);
789 
790 	preempt_disable();
791 	vcpu_clear_flag(vcpu, IN_WFI);
792 	vgic_v4_load(vcpu);
793 	preempt_enable();
794 }
795 
796 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
797 {
798 	if (!kvm_arm_vcpu_suspended(vcpu))
799 		return 1;
800 
801 	kvm_vcpu_wfi(vcpu);
802 
803 	/*
804 	 * The suspend state is sticky; we do not leave it until userspace
805 	 * explicitly marks the vCPU as runnable. Request that we suspend again
806 	 * later.
807 	 */
808 	kvm_make_request(KVM_REQ_SUSPEND, vcpu);
809 
810 	/*
811 	 * Check to make sure the vCPU is actually runnable. If so, exit to
812 	 * userspace informing it of the wakeup condition.
813 	 */
814 	if (kvm_arch_vcpu_runnable(vcpu)) {
815 		memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
816 		vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
817 		vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
818 		return 0;
819 	}
820 
821 	/*
822 	 * Otherwise, we were unblocked to process a different event, such as a
823 	 * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
824 	 * process the event.
825 	 */
826 	return 1;
827 }
828 
829 /**
830  * check_vcpu_requests - check and handle pending vCPU requests
831  * @vcpu:	the VCPU pointer
832  *
833  * Return: 1 if we should enter the guest
834  *	   0 if we should exit to userspace
835  *	   < 0 if we should exit to userspace, where the return value indicates
836  *	   an error
837  */
838 static int check_vcpu_requests(struct kvm_vcpu *vcpu)
839 {
840 	if (kvm_request_pending(vcpu)) {
841 		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
842 			kvm_vcpu_sleep(vcpu);
843 
844 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
845 			kvm_reset_vcpu(vcpu);
846 
847 		/*
848 		 * Clear IRQ_PENDING requests that were made to guarantee
849 		 * that a VCPU sees new virtual interrupts.
850 		 */
851 		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
852 
853 		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
854 			kvm_update_stolen_time(vcpu);
855 
856 		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
857 			/* The distributor enable bits were changed */
858 			preempt_disable();
859 			vgic_v4_put(vcpu);
860 			vgic_v4_load(vcpu);
861 			preempt_enable();
862 		}
863 
864 		if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
865 			kvm_vcpu_reload_pmu(vcpu);
866 
867 		if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu))
868 			kvm_vcpu_pmu_restore_guest(vcpu);
869 
870 		if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
871 			return kvm_vcpu_suspend(vcpu);
872 
873 		if (kvm_dirty_ring_check_request(vcpu))
874 			return 0;
875 	}
876 
877 	return 1;
878 }
879 
880 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
881 {
882 	if (likely(!vcpu_mode_is_32bit(vcpu)))
883 		return false;
884 
885 	if (vcpu_has_nv(vcpu))
886 		return true;
887 
888 	return !kvm_supports_32bit_el0();
889 }
890 
891 /**
892  * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
893  * @vcpu:	The VCPU pointer
894  * @ret:	Pointer to write optional return code
895  *
896  * Returns: true if the VCPU needs to return to a preemptible + interruptible
897  *	    and skip guest entry.
898  *
899  * This function disambiguates between two different types of exits: exits to a
900  * preemptible + interruptible kernel context and exits to userspace. For an
901  * exit to userspace, this function will write the return code to ret and return
902  * true. For an exit to preemptible + interruptible kernel context (i.e. check
903  * for pending work and re-enter), return true without writing to ret.
904  */
905 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
906 {
907 	struct kvm_run *run = vcpu->run;
908 
909 	/*
910 	 * If we're using a userspace irqchip, then check if we need
911 	 * to tell a userspace irqchip about timer or PMU level
912 	 * changes and if so, exit to userspace (the actual level
913 	 * state gets updated in kvm_timer_update_run and
914 	 * kvm_pmu_update_run below).
915 	 */
916 	if (static_branch_unlikely(&userspace_irqchip_in_use)) {
917 		if (kvm_timer_should_notify_user(vcpu) ||
918 		    kvm_pmu_should_notify_user(vcpu)) {
919 			*ret = -EINTR;
920 			run->exit_reason = KVM_EXIT_INTR;
921 			return true;
922 		}
923 	}
924 
925 	if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
926 		run->exit_reason = KVM_EXIT_FAIL_ENTRY;
927 		run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
928 		run->fail_entry.cpu = smp_processor_id();
929 		*ret = 0;
930 		return true;
931 	}
932 
933 	return kvm_request_pending(vcpu) ||
934 			xfer_to_guest_mode_work_pending();
935 }
936 
937 /*
938  * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
939  * the vCPU is running.
940  *
941  * This must be noinstr as instrumentation may make use of RCU, and this is not
942  * safe during the EQS.
943  */
944 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
945 {
946 	int ret;
947 
948 	guest_state_enter_irqoff();
949 	ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
950 	guest_state_exit_irqoff();
951 
952 	return ret;
953 }
954 
955 /**
956  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
957  * @vcpu:	The VCPU pointer
958  *
959  * This function is called through the VCPU_RUN ioctl called from user space. It
960  * will execute VM code in a loop until the time slice for the process is used
961  * or some emulation is needed from user space in which case the function will
962  * return with return value 0 and with the kvm_run structure filled in with the
963  * required data for the requested emulation.
964  */
965 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
966 {
967 	struct kvm_run *run = vcpu->run;
968 	int ret;
969 
970 	if (run->exit_reason == KVM_EXIT_MMIO) {
971 		ret = kvm_handle_mmio_return(vcpu);
972 		if (ret)
973 			return ret;
974 	}
975 
976 	vcpu_load(vcpu);
977 
978 	if (run->immediate_exit) {
979 		ret = -EINTR;
980 		goto out;
981 	}
982 
983 	kvm_sigset_activate(vcpu);
984 
985 	ret = 1;
986 	run->exit_reason = KVM_EXIT_UNKNOWN;
987 	run->flags = 0;
988 	while (ret > 0) {
989 		/*
990 		 * Check conditions before entering the guest
991 		 */
992 		ret = xfer_to_guest_mode_handle_work(vcpu);
993 		if (!ret)
994 			ret = 1;
995 
996 		if (ret > 0)
997 			ret = check_vcpu_requests(vcpu);
998 
999 		/*
1000 		 * Preparing the interrupts to be injected also
1001 		 * involves poking the GIC, which must be done in a
1002 		 * non-preemptible context.
1003 		 */
1004 		preempt_disable();
1005 
1006 		/*
1007 		 * The VMID allocator only tracks active VMIDs per
1008 		 * physical CPU, and therefore the VMID allocated may not be
1009 		 * preserved on VMID roll-over if the task was preempted,
1010 		 * making a thread's VMID inactive. So we need to call
1011 		 * kvm_arm_vmid_update() in non-premptible context.
1012 		 */
1013 		if (kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid) &&
1014 		    has_vhe())
1015 			__load_stage2(vcpu->arch.hw_mmu,
1016 				      vcpu->arch.hw_mmu->arch);
1017 
1018 		kvm_pmu_flush_hwstate(vcpu);
1019 
1020 		local_irq_disable();
1021 
1022 		kvm_vgic_flush_hwstate(vcpu);
1023 
1024 		kvm_pmu_update_vcpu_events(vcpu);
1025 
1026 		/*
1027 		 * Ensure we set mode to IN_GUEST_MODE after we disable
1028 		 * interrupts and before the final VCPU requests check.
1029 		 * See the comment in kvm_vcpu_exiting_guest_mode() and
1030 		 * Documentation/virt/kvm/vcpu-requests.rst
1031 		 */
1032 		smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1033 
1034 		if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
1035 			vcpu->mode = OUTSIDE_GUEST_MODE;
1036 			isb(); /* Ensure work in x_flush_hwstate is committed */
1037 			kvm_pmu_sync_hwstate(vcpu);
1038 			if (static_branch_unlikely(&userspace_irqchip_in_use))
1039 				kvm_timer_sync_user(vcpu);
1040 			kvm_vgic_sync_hwstate(vcpu);
1041 			local_irq_enable();
1042 			preempt_enable();
1043 			continue;
1044 		}
1045 
1046 		kvm_arm_setup_debug(vcpu);
1047 		kvm_arch_vcpu_ctxflush_fp(vcpu);
1048 
1049 		/**************************************************************
1050 		 * Enter the guest
1051 		 */
1052 		trace_kvm_entry(*vcpu_pc(vcpu));
1053 		guest_timing_enter_irqoff();
1054 
1055 		ret = kvm_arm_vcpu_enter_exit(vcpu);
1056 
1057 		vcpu->mode = OUTSIDE_GUEST_MODE;
1058 		vcpu->stat.exits++;
1059 		/*
1060 		 * Back from guest
1061 		 *************************************************************/
1062 
1063 		kvm_arm_clear_debug(vcpu);
1064 
1065 		/*
1066 		 * We must sync the PMU state before the vgic state so
1067 		 * that the vgic can properly sample the updated state of the
1068 		 * interrupt line.
1069 		 */
1070 		kvm_pmu_sync_hwstate(vcpu);
1071 
1072 		/*
1073 		 * Sync the vgic state before syncing the timer state because
1074 		 * the timer code needs to know if the virtual timer
1075 		 * interrupts are active.
1076 		 */
1077 		kvm_vgic_sync_hwstate(vcpu);
1078 
1079 		/*
1080 		 * Sync the timer hardware state before enabling interrupts as
1081 		 * we don't want vtimer interrupts to race with syncing the
1082 		 * timer virtual interrupt state.
1083 		 */
1084 		if (static_branch_unlikely(&userspace_irqchip_in_use))
1085 			kvm_timer_sync_user(vcpu);
1086 
1087 		kvm_arch_vcpu_ctxsync_fp(vcpu);
1088 
1089 		/*
1090 		 * We must ensure that any pending interrupts are taken before
1091 		 * we exit guest timing so that timer ticks are accounted as
1092 		 * guest time. Transiently unmask interrupts so that any
1093 		 * pending interrupts are taken.
1094 		 *
1095 		 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
1096 		 * context synchronization event) is necessary to ensure that
1097 		 * pending interrupts are taken.
1098 		 */
1099 		if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
1100 			local_irq_enable();
1101 			isb();
1102 			local_irq_disable();
1103 		}
1104 
1105 		guest_timing_exit_irqoff();
1106 
1107 		local_irq_enable();
1108 
1109 		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
1110 
1111 		/* Exit types that need handling before we can be preempted */
1112 		handle_exit_early(vcpu, ret);
1113 
1114 		preempt_enable();
1115 
1116 		/*
1117 		 * The ARMv8 architecture doesn't give the hypervisor
1118 		 * a mechanism to prevent a guest from dropping to AArch32 EL0
1119 		 * if implemented by the CPU. If we spot the guest in such
1120 		 * state and that we decided it wasn't supposed to do so (like
1121 		 * with the asymmetric AArch32 case), return to userspace with
1122 		 * a fatal error.
1123 		 */
1124 		if (vcpu_mode_is_bad_32bit(vcpu)) {
1125 			/*
1126 			 * As we have caught the guest red-handed, decide that
1127 			 * it isn't fit for purpose anymore by making the vcpu
1128 			 * invalid. The VMM can try and fix it by issuing  a
1129 			 * KVM_ARM_VCPU_INIT if it really wants to.
1130 			 */
1131 			vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
1132 			ret = ARM_EXCEPTION_IL;
1133 		}
1134 
1135 		ret = handle_exit(vcpu, ret);
1136 	}
1137 
1138 	/* Tell userspace about in-kernel device output levels */
1139 	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1140 		kvm_timer_update_run(vcpu);
1141 		kvm_pmu_update_run(vcpu);
1142 	}
1143 
1144 	kvm_sigset_deactivate(vcpu);
1145 
1146 out:
1147 	/*
1148 	 * In the unlikely event that we are returning to userspace
1149 	 * with pending exceptions or PC adjustment, commit these
1150 	 * adjustments in order to give userspace a consistent view of
1151 	 * the vcpu state. Note that this relies on __kvm_adjust_pc()
1152 	 * being preempt-safe on VHE.
1153 	 */
1154 	if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) ||
1155 		     vcpu_get_flag(vcpu, INCREMENT_PC)))
1156 		kvm_call_hyp(__kvm_adjust_pc, vcpu);
1157 
1158 	vcpu_put(vcpu);
1159 	return ret;
1160 }
1161 
1162 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
1163 {
1164 	int bit_index;
1165 	bool set;
1166 	unsigned long *hcr;
1167 
1168 	if (number == KVM_ARM_IRQ_CPU_IRQ)
1169 		bit_index = __ffs(HCR_VI);
1170 	else /* KVM_ARM_IRQ_CPU_FIQ */
1171 		bit_index = __ffs(HCR_VF);
1172 
1173 	hcr = vcpu_hcr(vcpu);
1174 	if (level)
1175 		set = test_and_set_bit(bit_index, hcr);
1176 	else
1177 		set = test_and_clear_bit(bit_index, hcr);
1178 
1179 	/*
1180 	 * If we didn't change anything, no need to wake up or kick other CPUs
1181 	 */
1182 	if (set == level)
1183 		return 0;
1184 
1185 	/*
1186 	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1187 	 * trigger a world-switch round on the running physical CPU to set the
1188 	 * virtual IRQ/FIQ fields in the HCR appropriately.
1189 	 */
1190 	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1191 	kvm_vcpu_kick(vcpu);
1192 
1193 	return 0;
1194 }
1195 
1196 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1197 			  bool line_status)
1198 {
1199 	u32 irq = irq_level->irq;
1200 	unsigned int irq_type, vcpu_id, irq_num;
1201 	struct kvm_vcpu *vcpu = NULL;
1202 	bool level = irq_level->level;
1203 
1204 	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1205 	vcpu_id = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1206 	vcpu_id += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1207 	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1208 
1209 	trace_kvm_irq_line(irq_type, vcpu_id, irq_num, irq_level->level);
1210 
1211 	switch (irq_type) {
1212 	case KVM_ARM_IRQ_TYPE_CPU:
1213 		if (irqchip_in_kernel(kvm))
1214 			return -ENXIO;
1215 
1216 		vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1217 		if (!vcpu)
1218 			return -EINVAL;
1219 
1220 		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1221 			return -EINVAL;
1222 
1223 		return vcpu_interrupt_line(vcpu, irq_num, level);
1224 	case KVM_ARM_IRQ_TYPE_PPI:
1225 		if (!irqchip_in_kernel(kvm))
1226 			return -ENXIO;
1227 
1228 		vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1229 		if (!vcpu)
1230 			return -EINVAL;
1231 
1232 		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1233 			return -EINVAL;
1234 
1235 		return kvm_vgic_inject_irq(kvm, vcpu, irq_num, level, NULL);
1236 	case KVM_ARM_IRQ_TYPE_SPI:
1237 		if (!irqchip_in_kernel(kvm))
1238 			return -ENXIO;
1239 
1240 		if (irq_num < VGIC_NR_PRIVATE_IRQS)
1241 			return -EINVAL;
1242 
1243 		return kvm_vgic_inject_irq(kvm, NULL, irq_num, level, NULL);
1244 	}
1245 
1246 	return -EINVAL;
1247 }
1248 
1249 static unsigned long system_supported_vcpu_features(void)
1250 {
1251 	unsigned long features = KVM_VCPU_VALID_FEATURES;
1252 
1253 	if (!cpus_have_final_cap(ARM64_HAS_32BIT_EL1))
1254 		clear_bit(KVM_ARM_VCPU_EL1_32BIT, &features);
1255 
1256 	if (!kvm_arm_support_pmu_v3())
1257 		clear_bit(KVM_ARM_VCPU_PMU_V3, &features);
1258 
1259 	if (!system_supports_sve())
1260 		clear_bit(KVM_ARM_VCPU_SVE, &features);
1261 
1262 	if (!system_has_full_ptr_auth()) {
1263 		clear_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features);
1264 		clear_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features);
1265 	}
1266 
1267 	if (!cpus_have_final_cap(ARM64_HAS_NESTED_VIRT))
1268 		clear_bit(KVM_ARM_VCPU_HAS_EL2, &features);
1269 
1270 	return features;
1271 }
1272 
1273 static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu,
1274 					const struct kvm_vcpu_init *init)
1275 {
1276 	unsigned long features = init->features[0];
1277 	int i;
1278 
1279 	if (features & ~KVM_VCPU_VALID_FEATURES)
1280 		return -ENOENT;
1281 
1282 	for (i = 1; i < ARRAY_SIZE(init->features); i++) {
1283 		if (init->features[i])
1284 			return -ENOENT;
1285 	}
1286 
1287 	if (features & ~system_supported_vcpu_features())
1288 		return -EINVAL;
1289 
1290 	/*
1291 	 * For now make sure that both address/generic pointer authentication
1292 	 * features are requested by the userspace together.
1293 	 */
1294 	if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features) !=
1295 	    test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features))
1296 		return -EINVAL;
1297 
1298 	/* Disallow NV+SVE for the time being */
1299 	if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features) &&
1300 	    test_bit(KVM_ARM_VCPU_SVE, &features))
1301 		return -EINVAL;
1302 
1303 	if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features))
1304 		return 0;
1305 
1306 	/* MTE is incompatible with AArch32 */
1307 	if (kvm_has_mte(vcpu->kvm))
1308 		return -EINVAL;
1309 
1310 	/* NV is incompatible with AArch32 */
1311 	if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features))
1312 		return -EINVAL;
1313 
1314 	return 0;
1315 }
1316 
1317 static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu,
1318 				  const struct kvm_vcpu_init *init)
1319 {
1320 	unsigned long features = init->features[0];
1321 
1322 	return !bitmap_equal(vcpu->kvm->arch.vcpu_features, &features,
1323 			     KVM_VCPU_MAX_FEATURES);
1324 }
1325 
1326 static int kvm_setup_vcpu(struct kvm_vcpu *vcpu)
1327 {
1328 	struct kvm *kvm = vcpu->kvm;
1329 	int ret = 0;
1330 
1331 	/*
1332 	 * When the vCPU has a PMU, but no PMU is set for the guest
1333 	 * yet, set the default one.
1334 	 */
1335 	if (kvm_vcpu_has_pmu(vcpu) && !kvm->arch.arm_pmu)
1336 		ret = kvm_arm_set_default_pmu(kvm);
1337 
1338 	return ret;
1339 }
1340 
1341 static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1342 				 const struct kvm_vcpu_init *init)
1343 {
1344 	unsigned long features = init->features[0];
1345 	struct kvm *kvm = vcpu->kvm;
1346 	int ret = -EINVAL;
1347 
1348 	mutex_lock(&kvm->arch.config_lock);
1349 
1350 	if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) &&
1351 	    kvm_vcpu_init_changed(vcpu, init))
1352 		goto out_unlock;
1353 
1354 	bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES);
1355 
1356 	ret = kvm_setup_vcpu(vcpu);
1357 	if (ret)
1358 		goto out_unlock;
1359 
1360 	/* Now we know what it is, we can reset it. */
1361 	kvm_reset_vcpu(vcpu);
1362 
1363 	set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags);
1364 	vcpu_set_flag(vcpu, VCPU_INITIALIZED);
1365 	ret = 0;
1366 out_unlock:
1367 	mutex_unlock(&kvm->arch.config_lock);
1368 	return ret;
1369 }
1370 
1371 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1372 			       const struct kvm_vcpu_init *init)
1373 {
1374 	int ret;
1375 
1376 	if (init->target != KVM_ARM_TARGET_GENERIC_V8 &&
1377 	    init->target != kvm_target_cpu())
1378 		return -EINVAL;
1379 
1380 	ret = kvm_vcpu_init_check_features(vcpu, init);
1381 	if (ret)
1382 		return ret;
1383 
1384 	if (!kvm_vcpu_initialized(vcpu))
1385 		return __kvm_vcpu_set_target(vcpu, init);
1386 
1387 	if (kvm_vcpu_init_changed(vcpu, init))
1388 		return -EINVAL;
1389 
1390 	kvm_reset_vcpu(vcpu);
1391 	return 0;
1392 }
1393 
1394 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1395 					 struct kvm_vcpu_init *init)
1396 {
1397 	bool power_off = false;
1398 	int ret;
1399 
1400 	/*
1401 	 * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid
1402 	 * reflecting it in the finalized feature set, thus limiting its scope
1403 	 * to a single KVM_ARM_VCPU_INIT call.
1404 	 */
1405 	if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) {
1406 		init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF);
1407 		power_off = true;
1408 	}
1409 
1410 	ret = kvm_vcpu_set_target(vcpu, init);
1411 	if (ret)
1412 		return ret;
1413 
1414 	/*
1415 	 * Ensure a rebooted VM will fault in RAM pages and detect if the
1416 	 * guest MMU is turned off and flush the caches as needed.
1417 	 *
1418 	 * S2FWB enforces all memory accesses to RAM being cacheable,
1419 	 * ensuring that the data side is always coherent. We still
1420 	 * need to invalidate the I-cache though, as FWB does *not*
1421 	 * imply CTR_EL0.DIC.
1422 	 */
1423 	if (vcpu_has_run_once(vcpu)) {
1424 		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1425 			stage2_unmap_vm(vcpu->kvm);
1426 		else
1427 			icache_inval_all_pou();
1428 	}
1429 
1430 	vcpu_reset_hcr(vcpu);
1431 	vcpu->arch.cptr_el2 = kvm_get_reset_cptr_el2(vcpu);
1432 
1433 	/*
1434 	 * Handle the "start in power-off" case.
1435 	 */
1436 	spin_lock(&vcpu->arch.mp_state_lock);
1437 
1438 	if (power_off)
1439 		__kvm_arm_vcpu_power_off(vcpu);
1440 	else
1441 		WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
1442 
1443 	spin_unlock(&vcpu->arch.mp_state_lock);
1444 
1445 	return 0;
1446 }
1447 
1448 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1449 				 struct kvm_device_attr *attr)
1450 {
1451 	int ret = -ENXIO;
1452 
1453 	switch (attr->group) {
1454 	default:
1455 		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1456 		break;
1457 	}
1458 
1459 	return ret;
1460 }
1461 
1462 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1463 				 struct kvm_device_attr *attr)
1464 {
1465 	int ret = -ENXIO;
1466 
1467 	switch (attr->group) {
1468 	default:
1469 		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1470 		break;
1471 	}
1472 
1473 	return ret;
1474 }
1475 
1476 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1477 				 struct kvm_device_attr *attr)
1478 {
1479 	int ret = -ENXIO;
1480 
1481 	switch (attr->group) {
1482 	default:
1483 		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1484 		break;
1485 	}
1486 
1487 	return ret;
1488 }
1489 
1490 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1491 				   struct kvm_vcpu_events *events)
1492 {
1493 	memset(events, 0, sizeof(*events));
1494 
1495 	return __kvm_arm_vcpu_get_events(vcpu, events);
1496 }
1497 
1498 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1499 				   struct kvm_vcpu_events *events)
1500 {
1501 	int i;
1502 
1503 	/* check whether the reserved field is zero */
1504 	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1505 		if (events->reserved[i])
1506 			return -EINVAL;
1507 
1508 	/* check whether the pad field is zero */
1509 	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1510 		if (events->exception.pad[i])
1511 			return -EINVAL;
1512 
1513 	return __kvm_arm_vcpu_set_events(vcpu, events);
1514 }
1515 
1516 long kvm_arch_vcpu_ioctl(struct file *filp,
1517 			 unsigned int ioctl, unsigned long arg)
1518 {
1519 	struct kvm_vcpu *vcpu = filp->private_data;
1520 	void __user *argp = (void __user *)arg;
1521 	struct kvm_device_attr attr;
1522 	long r;
1523 
1524 	switch (ioctl) {
1525 	case KVM_ARM_VCPU_INIT: {
1526 		struct kvm_vcpu_init init;
1527 
1528 		r = -EFAULT;
1529 		if (copy_from_user(&init, argp, sizeof(init)))
1530 			break;
1531 
1532 		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1533 		break;
1534 	}
1535 	case KVM_SET_ONE_REG:
1536 	case KVM_GET_ONE_REG: {
1537 		struct kvm_one_reg reg;
1538 
1539 		r = -ENOEXEC;
1540 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1541 			break;
1542 
1543 		r = -EFAULT;
1544 		if (copy_from_user(&reg, argp, sizeof(reg)))
1545 			break;
1546 
1547 		/*
1548 		 * We could owe a reset due to PSCI. Handle the pending reset
1549 		 * here to ensure userspace register accesses are ordered after
1550 		 * the reset.
1551 		 */
1552 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1553 			kvm_reset_vcpu(vcpu);
1554 
1555 		if (ioctl == KVM_SET_ONE_REG)
1556 			r = kvm_arm_set_reg(vcpu, &reg);
1557 		else
1558 			r = kvm_arm_get_reg(vcpu, &reg);
1559 		break;
1560 	}
1561 	case KVM_GET_REG_LIST: {
1562 		struct kvm_reg_list __user *user_list = argp;
1563 		struct kvm_reg_list reg_list;
1564 		unsigned n;
1565 
1566 		r = -ENOEXEC;
1567 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1568 			break;
1569 
1570 		r = -EPERM;
1571 		if (!kvm_arm_vcpu_is_finalized(vcpu))
1572 			break;
1573 
1574 		r = -EFAULT;
1575 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1576 			break;
1577 		n = reg_list.n;
1578 		reg_list.n = kvm_arm_num_regs(vcpu);
1579 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1580 			break;
1581 		r = -E2BIG;
1582 		if (n < reg_list.n)
1583 			break;
1584 		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1585 		break;
1586 	}
1587 	case KVM_SET_DEVICE_ATTR: {
1588 		r = -EFAULT;
1589 		if (copy_from_user(&attr, argp, sizeof(attr)))
1590 			break;
1591 		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1592 		break;
1593 	}
1594 	case KVM_GET_DEVICE_ATTR: {
1595 		r = -EFAULT;
1596 		if (copy_from_user(&attr, argp, sizeof(attr)))
1597 			break;
1598 		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1599 		break;
1600 	}
1601 	case KVM_HAS_DEVICE_ATTR: {
1602 		r = -EFAULT;
1603 		if (copy_from_user(&attr, argp, sizeof(attr)))
1604 			break;
1605 		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1606 		break;
1607 	}
1608 	case KVM_GET_VCPU_EVENTS: {
1609 		struct kvm_vcpu_events events;
1610 
1611 		if (kvm_arm_vcpu_get_events(vcpu, &events))
1612 			return -EINVAL;
1613 
1614 		if (copy_to_user(argp, &events, sizeof(events)))
1615 			return -EFAULT;
1616 
1617 		return 0;
1618 	}
1619 	case KVM_SET_VCPU_EVENTS: {
1620 		struct kvm_vcpu_events events;
1621 
1622 		if (copy_from_user(&events, argp, sizeof(events)))
1623 			return -EFAULT;
1624 
1625 		return kvm_arm_vcpu_set_events(vcpu, &events);
1626 	}
1627 	case KVM_ARM_VCPU_FINALIZE: {
1628 		int what;
1629 
1630 		if (!kvm_vcpu_initialized(vcpu))
1631 			return -ENOEXEC;
1632 
1633 		if (get_user(what, (const int __user *)argp))
1634 			return -EFAULT;
1635 
1636 		return kvm_arm_vcpu_finalize(vcpu, what);
1637 	}
1638 	default:
1639 		r = -EINVAL;
1640 	}
1641 
1642 	return r;
1643 }
1644 
1645 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1646 {
1647 
1648 }
1649 
1650 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1651 					struct kvm_arm_device_addr *dev_addr)
1652 {
1653 	switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) {
1654 	case KVM_ARM_DEVICE_VGIC_V2:
1655 		if (!vgic_present)
1656 			return -ENXIO;
1657 		return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr);
1658 	default:
1659 		return -ENODEV;
1660 	}
1661 }
1662 
1663 static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1664 {
1665 	switch (attr->group) {
1666 	case KVM_ARM_VM_SMCCC_CTRL:
1667 		return kvm_vm_smccc_has_attr(kvm, attr);
1668 	default:
1669 		return -ENXIO;
1670 	}
1671 }
1672 
1673 static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1674 {
1675 	switch (attr->group) {
1676 	case KVM_ARM_VM_SMCCC_CTRL:
1677 		return kvm_vm_smccc_set_attr(kvm, attr);
1678 	default:
1679 		return -ENXIO;
1680 	}
1681 }
1682 
1683 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1684 {
1685 	struct kvm *kvm = filp->private_data;
1686 	void __user *argp = (void __user *)arg;
1687 	struct kvm_device_attr attr;
1688 
1689 	switch (ioctl) {
1690 	case KVM_CREATE_IRQCHIP: {
1691 		int ret;
1692 		if (!vgic_present)
1693 			return -ENXIO;
1694 		mutex_lock(&kvm->lock);
1695 		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1696 		mutex_unlock(&kvm->lock);
1697 		return ret;
1698 	}
1699 	case KVM_ARM_SET_DEVICE_ADDR: {
1700 		struct kvm_arm_device_addr dev_addr;
1701 
1702 		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1703 			return -EFAULT;
1704 		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1705 	}
1706 	case KVM_ARM_PREFERRED_TARGET: {
1707 		struct kvm_vcpu_init init = {
1708 			.target = KVM_ARM_TARGET_GENERIC_V8,
1709 		};
1710 
1711 		if (copy_to_user(argp, &init, sizeof(init)))
1712 			return -EFAULT;
1713 
1714 		return 0;
1715 	}
1716 	case KVM_ARM_MTE_COPY_TAGS: {
1717 		struct kvm_arm_copy_mte_tags copy_tags;
1718 
1719 		if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1720 			return -EFAULT;
1721 		return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1722 	}
1723 	case KVM_ARM_SET_COUNTER_OFFSET: {
1724 		struct kvm_arm_counter_offset offset;
1725 
1726 		if (copy_from_user(&offset, argp, sizeof(offset)))
1727 			return -EFAULT;
1728 		return kvm_vm_ioctl_set_counter_offset(kvm, &offset);
1729 	}
1730 	case KVM_HAS_DEVICE_ATTR: {
1731 		if (copy_from_user(&attr, argp, sizeof(attr)))
1732 			return -EFAULT;
1733 
1734 		return kvm_vm_has_attr(kvm, &attr);
1735 	}
1736 	case KVM_SET_DEVICE_ATTR: {
1737 		if (copy_from_user(&attr, argp, sizeof(attr)))
1738 			return -EFAULT;
1739 
1740 		return kvm_vm_set_attr(kvm, &attr);
1741 	}
1742 	case KVM_ARM_GET_REG_WRITABLE_MASKS: {
1743 		struct reg_mask_range range;
1744 
1745 		if (copy_from_user(&range, argp, sizeof(range)))
1746 			return -EFAULT;
1747 		return kvm_vm_ioctl_get_reg_writable_masks(kvm, &range);
1748 	}
1749 	default:
1750 		return -EINVAL;
1751 	}
1752 }
1753 
1754 /* unlocks vcpus from @vcpu_lock_idx and smaller */
1755 static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx)
1756 {
1757 	struct kvm_vcpu *tmp_vcpu;
1758 
1759 	for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1760 		tmp_vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1761 		mutex_unlock(&tmp_vcpu->mutex);
1762 	}
1763 }
1764 
1765 void unlock_all_vcpus(struct kvm *kvm)
1766 {
1767 	lockdep_assert_held(&kvm->lock);
1768 
1769 	unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1);
1770 }
1771 
1772 /* Returns true if all vcpus were locked, false otherwise */
1773 bool lock_all_vcpus(struct kvm *kvm)
1774 {
1775 	struct kvm_vcpu *tmp_vcpu;
1776 	unsigned long c;
1777 
1778 	lockdep_assert_held(&kvm->lock);
1779 
1780 	/*
1781 	 * Any time a vcpu is in an ioctl (including running), the
1782 	 * core KVM code tries to grab the vcpu->mutex.
1783 	 *
1784 	 * By grabbing the vcpu->mutex of all VCPUs we ensure that no
1785 	 * other VCPUs can fiddle with the state while we access it.
1786 	 */
1787 	kvm_for_each_vcpu(c, tmp_vcpu, kvm) {
1788 		if (!mutex_trylock(&tmp_vcpu->mutex)) {
1789 			unlock_vcpus(kvm, c - 1);
1790 			return false;
1791 		}
1792 	}
1793 
1794 	return true;
1795 }
1796 
1797 static unsigned long nvhe_percpu_size(void)
1798 {
1799 	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1800 		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1801 }
1802 
1803 static unsigned long nvhe_percpu_order(void)
1804 {
1805 	unsigned long size = nvhe_percpu_size();
1806 
1807 	return size ? get_order(size) : 0;
1808 }
1809 
1810 /* A lookup table holding the hypervisor VA for each vector slot */
1811 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1812 
1813 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1814 {
1815 	hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1816 }
1817 
1818 static int kvm_init_vector_slots(void)
1819 {
1820 	int err;
1821 	void *base;
1822 
1823 	base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1824 	kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1825 
1826 	base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1827 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1828 
1829 	if (kvm_system_needs_idmapped_vectors() &&
1830 	    !is_protected_kvm_enabled()) {
1831 		err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1832 					       __BP_HARDEN_HYP_VECS_SZ, &base);
1833 		if (err)
1834 			return err;
1835 	}
1836 
1837 	kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1838 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1839 	return 0;
1840 }
1841 
1842 static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits)
1843 {
1844 	struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1845 	u64 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1846 	unsigned long tcr;
1847 
1848 	/*
1849 	 * Calculate the raw per-cpu offset without a translation from the
1850 	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
1851 	 * so that we can use adr_l to access per-cpu variables in EL2.
1852 	 * Also drop the KASAN tag which gets in the way...
1853 	 */
1854 	params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1855 			    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1856 
1857 	params->mair_el2 = read_sysreg(mair_el1);
1858 
1859 	tcr = read_sysreg(tcr_el1);
1860 	if (cpus_have_final_cap(ARM64_KVM_HVHE)) {
1861 		tcr |= TCR_EPD1_MASK;
1862 	} else {
1863 		tcr &= TCR_EL2_MASK;
1864 		tcr |= TCR_EL2_RES1;
1865 	}
1866 	tcr &= ~TCR_T0SZ_MASK;
1867 	tcr |= TCR_T0SZ(hyp_va_bits);
1868 	tcr &= ~TCR_EL2_PS_MASK;
1869 	tcr |= FIELD_PREP(TCR_EL2_PS_MASK, kvm_get_parange(mmfr0));
1870 	if (kvm_lpa2_is_enabled())
1871 		tcr |= TCR_EL2_DS;
1872 	params->tcr_el2 = tcr;
1873 
1874 	params->pgd_pa = kvm_mmu_get_httbr();
1875 	if (is_protected_kvm_enabled())
1876 		params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1877 	else
1878 		params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1879 	if (cpus_have_final_cap(ARM64_KVM_HVHE))
1880 		params->hcr_el2 |= HCR_E2H;
1881 	params->vttbr = params->vtcr = 0;
1882 
1883 	/*
1884 	 * Flush the init params from the data cache because the struct will
1885 	 * be read while the MMU is off.
1886 	 */
1887 	kvm_flush_dcache_to_poc(params, sizeof(*params));
1888 }
1889 
1890 static void hyp_install_host_vector(void)
1891 {
1892 	struct kvm_nvhe_init_params *params;
1893 	struct arm_smccc_res res;
1894 
1895 	/* Switch from the HYP stub to our own HYP init vector */
1896 	__hyp_set_vectors(kvm_get_idmap_vector());
1897 
1898 	/*
1899 	 * Call initialization code, and switch to the full blown HYP code.
1900 	 * If the cpucaps haven't been finalized yet, something has gone very
1901 	 * wrong, and hyp will crash and burn when it uses any
1902 	 * cpus_have_*_cap() wrapper.
1903 	 */
1904 	BUG_ON(!system_capabilities_finalized());
1905 	params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1906 	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1907 	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1908 }
1909 
1910 static void cpu_init_hyp_mode(void)
1911 {
1912 	hyp_install_host_vector();
1913 
1914 	/*
1915 	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
1916 	 * at EL2.
1917 	 */
1918 	if (this_cpu_has_cap(ARM64_SSBS) &&
1919 	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1920 		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1921 	}
1922 }
1923 
1924 static void cpu_hyp_reset(void)
1925 {
1926 	if (!is_kernel_in_hyp_mode())
1927 		__hyp_reset_vectors();
1928 }
1929 
1930 /*
1931  * EL2 vectors can be mapped and rerouted in a number of ways,
1932  * depending on the kernel configuration and CPU present:
1933  *
1934  * - If the CPU is affected by Spectre-v2, the hardening sequence is
1935  *   placed in one of the vector slots, which is executed before jumping
1936  *   to the real vectors.
1937  *
1938  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1939  *   containing the hardening sequence is mapped next to the idmap page,
1940  *   and executed before jumping to the real vectors.
1941  *
1942  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1943  *   empty slot is selected, mapped next to the idmap page, and
1944  *   executed before jumping to the real vectors.
1945  *
1946  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1947  * VHE, as we don't have hypervisor-specific mappings. If the system
1948  * is VHE and yet selects this capability, it will be ignored.
1949  */
1950 static void cpu_set_hyp_vector(void)
1951 {
1952 	struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1953 	void *vector = hyp_spectre_vector_selector[data->slot];
1954 
1955 	if (!is_protected_kvm_enabled())
1956 		*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1957 	else
1958 		kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1959 }
1960 
1961 static void cpu_hyp_init_context(void)
1962 {
1963 	kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1964 
1965 	if (!is_kernel_in_hyp_mode())
1966 		cpu_init_hyp_mode();
1967 }
1968 
1969 static void cpu_hyp_init_features(void)
1970 {
1971 	cpu_set_hyp_vector();
1972 	kvm_arm_init_debug();
1973 
1974 	if (is_kernel_in_hyp_mode())
1975 		kvm_timer_init_vhe();
1976 
1977 	if (vgic_present)
1978 		kvm_vgic_init_cpu_hardware();
1979 }
1980 
1981 static void cpu_hyp_reinit(void)
1982 {
1983 	cpu_hyp_reset();
1984 	cpu_hyp_init_context();
1985 	cpu_hyp_init_features();
1986 }
1987 
1988 static void cpu_hyp_init(void *discard)
1989 {
1990 	if (!__this_cpu_read(kvm_hyp_initialized)) {
1991 		cpu_hyp_reinit();
1992 		__this_cpu_write(kvm_hyp_initialized, 1);
1993 	}
1994 }
1995 
1996 static void cpu_hyp_uninit(void *discard)
1997 {
1998 	if (__this_cpu_read(kvm_hyp_initialized)) {
1999 		cpu_hyp_reset();
2000 		__this_cpu_write(kvm_hyp_initialized, 0);
2001 	}
2002 }
2003 
2004 int kvm_arch_hardware_enable(void)
2005 {
2006 	/*
2007 	 * Most calls to this function are made with migration
2008 	 * disabled, but not with preemption disabled. The former is
2009 	 * enough to ensure correctness, but most of the helpers
2010 	 * expect the later and will throw a tantrum otherwise.
2011 	 */
2012 	preempt_disable();
2013 
2014 	cpu_hyp_init(NULL);
2015 
2016 	kvm_vgic_cpu_up();
2017 	kvm_timer_cpu_up();
2018 
2019 	preempt_enable();
2020 
2021 	return 0;
2022 }
2023 
2024 void kvm_arch_hardware_disable(void)
2025 {
2026 	kvm_timer_cpu_down();
2027 	kvm_vgic_cpu_down();
2028 
2029 	if (!is_protected_kvm_enabled())
2030 		cpu_hyp_uninit(NULL);
2031 }
2032 
2033 #ifdef CONFIG_CPU_PM
2034 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
2035 				    unsigned long cmd,
2036 				    void *v)
2037 {
2038 	/*
2039 	 * kvm_hyp_initialized is left with its old value over
2040 	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
2041 	 * re-enable hyp.
2042 	 */
2043 	switch (cmd) {
2044 	case CPU_PM_ENTER:
2045 		if (__this_cpu_read(kvm_hyp_initialized))
2046 			/*
2047 			 * don't update kvm_hyp_initialized here
2048 			 * so that the hyp will be re-enabled
2049 			 * when we resume. See below.
2050 			 */
2051 			cpu_hyp_reset();
2052 
2053 		return NOTIFY_OK;
2054 	case CPU_PM_ENTER_FAILED:
2055 	case CPU_PM_EXIT:
2056 		if (__this_cpu_read(kvm_hyp_initialized))
2057 			/* The hyp was enabled before suspend. */
2058 			cpu_hyp_reinit();
2059 
2060 		return NOTIFY_OK;
2061 
2062 	default:
2063 		return NOTIFY_DONE;
2064 	}
2065 }
2066 
2067 static struct notifier_block hyp_init_cpu_pm_nb = {
2068 	.notifier_call = hyp_init_cpu_pm_notifier,
2069 };
2070 
2071 static void __init hyp_cpu_pm_init(void)
2072 {
2073 	if (!is_protected_kvm_enabled())
2074 		cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
2075 }
2076 static void __init hyp_cpu_pm_exit(void)
2077 {
2078 	if (!is_protected_kvm_enabled())
2079 		cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
2080 }
2081 #else
2082 static inline void __init hyp_cpu_pm_init(void)
2083 {
2084 }
2085 static inline void __init hyp_cpu_pm_exit(void)
2086 {
2087 }
2088 #endif
2089 
2090 static void __init init_cpu_logical_map(void)
2091 {
2092 	unsigned int cpu;
2093 
2094 	/*
2095 	 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
2096 	 * Only copy the set of online CPUs whose features have been checked
2097 	 * against the finalized system capabilities. The hypervisor will not
2098 	 * allow any other CPUs from the `possible` set to boot.
2099 	 */
2100 	for_each_online_cpu(cpu)
2101 		hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
2102 }
2103 
2104 #define init_psci_0_1_impl_state(config, what)	\
2105 	config.psci_0_1_ ## what ## _implemented = psci_ops.what
2106 
2107 static bool __init init_psci_relay(void)
2108 {
2109 	/*
2110 	 * If PSCI has not been initialized, protected KVM cannot install
2111 	 * itself on newly booted CPUs.
2112 	 */
2113 	if (!psci_ops.get_version) {
2114 		kvm_err("Cannot initialize protected mode without PSCI\n");
2115 		return false;
2116 	}
2117 
2118 	kvm_host_psci_config.version = psci_ops.get_version();
2119 	kvm_host_psci_config.smccc_version = arm_smccc_get_version();
2120 
2121 	if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
2122 		kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
2123 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
2124 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
2125 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
2126 		init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
2127 	}
2128 	return true;
2129 }
2130 
2131 static int __init init_subsystems(void)
2132 {
2133 	int err = 0;
2134 
2135 	/*
2136 	 * Enable hardware so that subsystem initialisation can access EL2.
2137 	 */
2138 	on_each_cpu(cpu_hyp_init, NULL, 1);
2139 
2140 	/*
2141 	 * Register CPU lower-power notifier
2142 	 */
2143 	hyp_cpu_pm_init();
2144 
2145 	/*
2146 	 * Init HYP view of VGIC
2147 	 */
2148 	err = kvm_vgic_hyp_init();
2149 	switch (err) {
2150 	case 0:
2151 		vgic_present = true;
2152 		break;
2153 	case -ENODEV:
2154 	case -ENXIO:
2155 		vgic_present = false;
2156 		err = 0;
2157 		break;
2158 	default:
2159 		goto out;
2160 	}
2161 
2162 	/*
2163 	 * Init HYP architected timer support
2164 	 */
2165 	err = kvm_timer_hyp_init(vgic_present);
2166 	if (err)
2167 		goto out;
2168 
2169 	kvm_register_perf_callbacks(NULL);
2170 
2171 out:
2172 	if (err)
2173 		hyp_cpu_pm_exit();
2174 
2175 	if (err || !is_protected_kvm_enabled())
2176 		on_each_cpu(cpu_hyp_uninit, NULL, 1);
2177 
2178 	return err;
2179 }
2180 
2181 static void __init teardown_subsystems(void)
2182 {
2183 	kvm_unregister_perf_callbacks();
2184 	hyp_cpu_pm_exit();
2185 }
2186 
2187 static void __init teardown_hyp_mode(void)
2188 {
2189 	int cpu;
2190 
2191 	free_hyp_pgds();
2192 	for_each_possible_cpu(cpu) {
2193 		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
2194 		free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order());
2195 	}
2196 }
2197 
2198 static int __init do_pkvm_init(u32 hyp_va_bits)
2199 {
2200 	void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base));
2201 	int ret;
2202 
2203 	preempt_disable();
2204 	cpu_hyp_init_context();
2205 	ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
2206 				num_possible_cpus(), kern_hyp_va(per_cpu_base),
2207 				hyp_va_bits);
2208 	cpu_hyp_init_features();
2209 
2210 	/*
2211 	 * The stub hypercalls are now disabled, so set our local flag to
2212 	 * prevent a later re-init attempt in kvm_arch_hardware_enable().
2213 	 */
2214 	__this_cpu_write(kvm_hyp_initialized, 1);
2215 	preempt_enable();
2216 
2217 	return ret;
2218 }
2219 
2220 static u64 get_hyp_id_aa64pfr0_el1(void)
2221 {
2222 	/*
2223 	 * Track whether the system isn't affected by spectre/meltdown in the
2224 	 * hypervisor's view of id_aa64pfr0_el1, used for protected VMs.
2225 	 * Although this is per-CPU, we make it global for simplicity, e.g., not
2226 	 * to have to worry about vcpu migration.
2227 	 *
2228 	 * Unlike for non-protected VMs, userspace cannot override this for
2229 	 * protected VMs.
2230 	 */
2231 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2232 
2233 	val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) |
2234 		 ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3));
2235 
2236 	val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2),
2237 			  arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED);
2238 	val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3),
2239 			  arm64_get_meltdown_state() == SPECTRE_UNAFFECTED);
2240 
2241 	return val;
2242 }
2243 
2244 static void kvm_hyp_init_symbols(void)
2245 {
2246 	kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1();
2247 	kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
2248 	kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
2249 	kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2250 	kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
2251 	kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
2252 	kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2253 	kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
2254 	kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1);
2255 	kvm_nvhe_sym(__icache_flags) = __icache_flags;
2256 	kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits;
2257 }
2258 
2259 static int __init kvm_hyp_init_protection(u32 hyp_va_bits)
2260 {
2261 	void *addr = phys_to_virt(hyp_mem_base);
2262 	int ret;
2263 
2264 	ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
2265 	if (ret)
2266 		return ret;
2267 
2268 	ret = do_pkvm_init(hyp_va_bits);
2269 	if (ret)
2270 		return ret;
2271 
2272 	free_hyp_pgds();
2273 
2274 	return 0;
2275 }
2276 
2277 static void pkvm_hyp_init_ptrauth(void)
2278 {
2279 	struct kvm_cpu_context *hyp_ctxt;
2280 	int cpu;
2281 
2282 	for_each_possible_cpu(cpu) {
2283 		hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu);
2284 		hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long();
2285 		hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long();
2286 		hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long();
2287 		hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long();
2288 		hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long();
2289 		hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long();
2290 		hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long();
2291 		hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long();
2292 		hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long();
2293 		hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long();
2294 	}
2295 }
2296 
2297 /* Inits Hyp-mode on all online CPUs */
2298 static int __init init_hyp_mode(void)
2299 {
2300 	u32 hyp_va_bits;
2301 	int cpu;
2302 	int err = -ENOMEM;
2303 
2304 	/*
2305 	 * The protected Hyp-mode cannot be initialized if the memory pool
2306 	 * allocation has failed.
2307 	 */
2308 	if (is_protected_kvm_enabled() && !hyp_mem_base)
2309 		goto out_err;
2310 
2311 	/*
2312 	 * Allocate Hyp PGD and setup Hyp identity mapping
2313 	 */
2314 	err = kvm_mmu_init(&hyp_va_bits);
2315 	if (err)
2316 		goto out_err;
2317 
2318 	/*
2319 	 * Allocate stack pages for Hypervisor-mode
2320 	 */
2321 	for_each_possible_cpu(cpu) {
2322 		unsigned long stack_page;
2323 
2324 		stack_page = __get_free_page(GFP_KERNEL);
2325 		if (!stack_page) {
2326 			err = -ENOMEM;
2327 			goto out_err;
2328 		}
2329 
2330 		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
2331 	}
2332 
2333 	/*
2334 	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
2335 	 */
2336 	for_each_possible_cpu(cpu) {
2337 		struct page *page;
2338 		void *page_addr;
2339 
2340 		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
2341 		if (!page) {
2342 			err = -ENOMEM;
2343 			goto out_err;
2344 		}
2345 
2346 		page_addr = page_address(page);
2347 		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
2348 		kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr;
2349 	}
2350 
2351 	/*
2352 	 * Map the Hyp-code called directly from the host
2353 	 */
2354 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
2355 				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
2356 	if (err) {
2357 		kvm_err("Cannot map world-switch code\n");
2358 		goto out_err;
2359 	}
2360 
2361 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
2362 				  kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
2363 	if (err) {
2364 		kvm_err("Cannot map .hyp.rodata section\n");
2365 		goto out_err;
2366 	}
2367 
2368 	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
2369 				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
2370 	if (err) {
2371 		kvm_err("Cannot map rodata section\n");
2372 		goto out_err;
2373 	}
2374 
2375 	/*
2376 	 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
2377 	 * section thanks to an assertion in the linker script. Map it RW and
2378 	 * the rest of .bss RO.
2379 	 */
2380 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
2381 				  kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
2382 	if (err) {
2383 		kvm_err("Cannot map hyp bss section: %d\n", err);
2384 		goto out_err;
2385 	}
2386 
2387 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
2388 				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
2389 	if (err) {
2390 		kvm_err("Cannot map bss section\n");
2391 		goto out_err;
2392 	}
2393 
2394 	/*
2395 	 * Map the Hyp stack pages
2396 	 */
2397 	for_each_possible_cpu(cpu) {
2398 		struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2399 		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
2400 
2401 		err = create_hyp_stack(__pa(stack_page), &params->stack_hyp_va);
2402 		if (err) {
2403 			kvm_err("Cannot map hyp stack\n");
2404 			goto out_err;
2405 		}
2406 
2407 		/*
2408 		 * Save the stack PA in nvhe_init_params. This will be needed
2409 		 * to recreate the stack mapping in protected nVHE mode.
2410 		 * __hyp_pa() won't do the right thing there, since the stack
2411 		 * has been mapped in the flexible private VA space.
2412 		 */
2413 		params->stack_pa = __pa(stack_page);
2414 	}
2415 
2416 	for_each_possible_cpu(cpu) {
2417 		char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu];
2418 		char *percpu_end = percpu_begin + nvhe_percpu_size();
2419 
2420 		/* Map Hyp percpu pages */
2421 		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
2422 		if (err) {
2423 			kvm_err("Cannot map hyp percpu region\n");
2424 			goto out_err;
2425 		}
2426 
2427 		/* Prepare the CPU initialization parameters */
2428 		cpu_prepare_hyp_mode(cpu, hyp_va_bits);
2429 	}
2430 
2431 	kvm_hyp_init_symbols();
2432 
2433 	if (is_protected_kvm_enabled()) {
2434 		if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) &&
2435 		    cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH))
2436 			pkvm_hyp_init_ptrauth();
2437 
2438 		init_cpu_logical_map();
2439 
2440 		if (!init_psci_relay()) {
2441 			err = -ENODEV;
2442 			goto out_err;
2443 		}
2444 
2445 		err = kvm_hyp_init_protection(hyp_va_bits);
2446 		if (err) {
2447 			kvm_err("Failed to init hyp memory protection\n");
2448 			goto out_err;
2449 		}
2450 	}
2451 
2452 	return 0;
2453 
2454 out_err:
2455 	teardown_hyp_mode();
2456 	kvm_err("error initializing Hyp mode: %d\n", err);
2457 	return err;
2458 }
2459 
2460 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2461 {
2462 	struct kvm_vcpu *vcpu;
2463 	unsigned long i;
2464 
2465 	mpidr &= MPIDR_HWID_BITMASK;
2466 
2467 	if (kvm->arch.mpidr_data) {
2468 		u16 idx = kvm_mpidr_index(kvm->arch.mpidr_data, mpidr);
2469 
2470 		vcpu = kvm_get_vcpu(kvm,
2471 				    kvm->arch.mpidr_data->cmpidr_to_idx[idx]);
2472 		if (mpidr != kvm_vcpu_get_mpidr_aff(vcpu))
2473 			vcpu = NULL;
2474 
2475 		return vcpu;
2476 	}
2477 
2478 	kvm_for_each_vcpu(i, vcpu, kvm) {
2479 		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2480 			return vcpu;
2481 	}
2482 	return NULL;
2483 }
2484 
2485 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2486 {
2487 	return irqchip_in_kernel(kvm);
2488 }
2489 
2490 bool kvm_arch_has_irq_bypass(void)
2491 {
2492 	return true;
2493 }
2494 
2495 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2496 				      struct irq_bypass_producer *prod)
2497 {
2498 	struct kvm_kernel_irqfd *irqfd =
2499 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2500 
2501 	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2502 					  &irqfd->irq_entry);
2503 }
2504 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2505 				      struct irq_bypass_producer *prod)
2506 {
2507 	struct kvm_kernel_irqfd *irqfd =
2508 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2509 
2510 	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2511 				     &irqfd->irq_entry);
2512 }
2513 
2514 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2515 {
2516 	struct kvm_kernel_irqfd *irqfd =
2517 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2518 
2519 	kvm_arm_halt_guest(irqfd->kvm);
2520 }
2521 
2522 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2523 {
2524 	struct kvm_kernel_irqfd *irqfd =
2525 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2526 
2527 	kvm_arm_resume_guest(irqfd->kvm);
2528 }
2529 
2530 /* Initialize Hyp-mode and memory mappings on all CPUs */
2531 static __init int kvm_arm_init(void)
2532 {
2533 	int err;
2534 	bool in_hyp_mode;
2535 
2536 	if (!is_hyp_mode_available()) {
2537 		kvm_info("HYP mode not available\n");
2538 		return -ENODEV;
2539 	}
2540 
2541 	if (kvm_get_mode() == KVM_MODE_NONE) {
2542 		kvm_info("KVM disabled from command line\n");
2543 		return -ENODEV;
2544 	}
2545 
2546 	err = kvm_sys_reg_table_init();
2547 	if (err) {
2548 		kvm_info("Error initializing system register tables");
2549 		return err;
2550 	}
2551 
2552 	in_hyp_mode = is_kernel_in_hyp_mode();
2553 
2554 	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2555 	    cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2556 		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2557 			 "Only trusted guests should be used on this system.\n");
2558 
2559 	err = kvm_set_ipa_limit();
2560 	if (err)
2561 		return err;
2562 
2563 	err = kvm_arm_init_sve();
2564 	if (err)
2565 		return err;
2566 
2567 	err = kvm_arm_vmid_alloc_init();
2568 	if (err) {
2569 		kvm_err("Failed to initialize VMID allocator.\n");
2570 		return err;
2571 	}
2572 
2573 	if (!in_hyp_mode) {
2574 		err = init_hyp_mode();
2575 		if (err)
2576 			goto out_err;
2577 	}
2578 
2579 	err = kvm_init_vector_slots();
2580 	if (err) {
2581 		kvm_err("Cannot initialise vector slots\n");
2582 		goto out_hyp;
2583 	}
2584 
2585 	err = init_subsystems();
2586 	if (err)
2587 		goto out_hyp;
2588 
2589 	if (is_protected_kvm_enabled()) {
2590 		kvm_info("Protected nVHE mode initialized successfully\n");
2591 	} else if (in_hyp_mode) {
2592 		kvm_info("VHE mode initialized successfully\n");
2593 	} else {
2594 		kvm_info("Hyp mode initialized successfully\n");
2595 	}
2596 
2597 	/*
2598 	 * FIXME: Do something reasonable if kvm_init() fails after pKVM
2599 	 * hypervisor protection is finalized.
2600 	 */
2601 	err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2602 	if (err)
2603 		goto out_subs;
2604 
2605 	kvm_arm_initialised = true;
2606 
2607 	return 0;
2608 
2609 out_subs:
2610 	teardown_subsystems();
2611 out_hyp:
2612 	if (!in_hyp_mode)
2613 		teardown_hyp_mode();
2614 out_err:
2615 	kvm_arm_vmid_alloc_free();
2616 	return err;
2617 }
2618 
2619 static int __init early_kvm_mode_cfg(char *arg)
2620 {
2621 	if (!arg)
2622 		return -EINVAL;
2623 
2624 	if (strcmp(arg, "none") == 0) {
2625 		kvm_mode = KVM_MODE_NONE;
2626 		return 0;
2627 	}
2628 
2629 	if (!is_hyp_mode_available()) {
2630 		pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n");
2631 		return 0;
2632 	}
2633 
2634 	if (strcmp(arg, "protected") == 0) {
2635 		if (!is_kernel_in_hyp_mode())
2636 			kvm_mode = KVM_MODE_PROTECTED;
2637 		else
2638 			pr_warn_once("Protected KVM not available with VHE\n");
2639 
2640 		return 0;
2641 	}
2642 
2643 	if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2644 		kvm_mode = KVM_MODE_DEFAULT;
2645 		return 0;
2646 	}
2647 
2648 	if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) {
2649 		kvm_mode = KVM_MODE_NV;
2650 		return 0;
2651 	}
2652 
2653 	return -EINVAL;
2654 }
2655 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2656 
2657 enum kvm_mode kvm_get_mode(void)
2658 {
2659 	return kvm_mode;
2660 }
2661 
2662 module_init(kvm_arm_init);
2663