xref: /linux/arch/arm64/kvm/arch_timer.c (revision 06ba8020287f43fc13962b158d8dec2689448a5a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 ARM Ltd.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/cpu.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/interrupt.h>
11 #include <linux/irq.h>
12 #include <linux/irqdomain.h>
13 #include <linux/uaccess.h>
14 
15 #include <clocksource/arm_arch_timer.h>
16 #include <asm/arch_timer.h>
17 #include <asm/kvm_emulate.h>
18 #include <asm/kvm_hyp.h>
19 #include <asm/kvm_nested.h>
20 
21 #include <kvm/arm_vgic.h>
22 #include <kvm/arm_arch_timer.h>
23 
24 #include "trace.h"
25 
26 static struct timecounter *timecounter;
27 static unsigned int host_vtimer_irq;
28 static unsigned int host_ptimer_irq;
29 static u32 host_vtimer_irq_flags;
30 static u32 host_ptimer_irq_flags;
31 
32 static DEFINE_STATIC_KEY_FALSE(has_gic_active_state);
33 
34 static const u8 default_ppi[] = {
35 	[TIMER_PTIMER]  = 30,
36 	[TIMER_VTIMER]  = 27,
37 	[TIMER_HPTIMER] = 26,
38 	[TIMER_HVTIMER] = 28,
39 };
40 
41 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
42 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
43 				 struct arch_timer_context *timer_ctx);
44 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
45 static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
46 				struct arch_timer_context *timer,
47 				enum kvm_arch_timer_regs treg,
48 				u64 val);
49 static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
50 			      struct arch_timer_context *timer,
51 			      enum kvm_arch_timer_regs treg);
52 static bool kvm_arch_timer_get_input_level(int vintid);
53 
54 static struct irq_ops arch_timer_irq_ops = {
55 	.get_input_level = kvm_arch_timer_get_input_level,
56 };
57 
58 static bool has_cntpoff(void)
59 {
60 	return (has_vhe() && cpus_have_final_cap(ARM64_HAS_ECV_CNTPOFF));
61 }
62 
63 static int nr_timers(struct kvm_vcpu *vcpu)
64 {
65 	if (!vcpu_has_nv(vcpu))
66 		return NR_KVM_EL0_TIMERS;
67 
68 	return NR_KVM_TIMERS;
69 }
70 
71 u32 timer_get_ctl(struct arch_timer_context *ctxt)
72 {
73 	struct kvm_vcpu *vcpu = ctxt->vcpu;
74 
75 	switch(arch_timer_ctx_index(ctxt)) {
76 	case TIMER_VTIMER:
77 		return __vcpu_sys_reg(vcpu, CNTV_CTL_EL0);
78 	case TIMER_PTIMER:
79 		return __vcpu_sys_reg(vcpu, CNTP_CTL_EL0);
80 	case TIMER_HVTIMER:
81 		return __vcpu_sys_reg(vcpu, CNTHV_CTL_EL2);
82 	case TIMER_HPTIMER:
83 		return __vcpu_sys_reg(vcpu, CNTHP_CTL_EL2);
84 	default:
85 		WARN_ON(1);
86 		return 0;
87 	}
88 }
89 
90 u64 timer_get_cval(struct arch_timer_context *ctxt)
91 {
92 	struct kvm_vcpu *vcpu = ctxt->vcpu;
93 
94 	switch(arch_timer_ctx_index(ctxt)) {
95 	case TIMER_VTIMER:
96 		return __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0);
97 	case TIMER_PTIMER:
98 		return __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0);
99 	case TIMER_HVTIMER:
100 		return __vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2);
101 	case TIMER_HPTIMER:
102 		return __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2);
103 	default:
104 		WARN_ON(1);
105 		return 0;
106 	}
107 }
108 
109 static u64 timer_get_offset(struct arch_timer_context *ctxt)
110 {
111 	u64 offset = 0;
112 
113 	if (!ctxt)
114 		return 0;
115 
116 	if (ctxt->offset.vm_offset)
117 		offset += *ctxt->offset.vm_offset;
118 	if (ctxt->offset.vcpu_offset)
119 		offset += *ctxt->offset.vcpu_offset;
120 
121 	return offset;
122 }
123 
124 static void timer_set_ctl(struct arch_timer_context *ctxt, u32 ctl)
125 {
126 	struct kvm_vcpu *vcpu = ctxt->vcpu;
127 
128 	switch(arch_timer_ctx_index(ctxt)) {
129 	case TIMER_VTIMER:
130 		__vcpu_sys_reg(vcpu, CNTV_CTL_EL0) = ctl;
131 		break;
132 	case TIMER_PTIMER:
133 		__vcpu_sys_reg(vcpu, CNTP_CTL_EL0) = ctl;
134 		break;
135 	case TIMER_HVTIMER:
136 		__vcpu_sys_reg(vcpu, CNTHV_CTL_EL2) = ctl;
137 		break;
138 	case TIMER_HPTIMER:
139 		__vcpu_sys_reg(vcpu, CNTHP_CTL_EL2) = ctl;
140 		break;
141 	default:
142 		WARN_ON(1);
143 	}
144 }
145 
146 static void timer_set_cval(struct arch_timer_context *ctxt, u64 cval)
147 {
148 	struct kvm_vcpu *vcpu = ctxt->vcpu;
149 
150 	switch(arch_timer_ctx_index(ctxt)) {
151 	case TIMER_VTIMER:
152 		__vcpu_sys_reg(vcpu, CNTV_CVAL_EL0) = cval;
153 		break;
154 	case TIMER_PTIMER:
155 		__vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = cval;
156 		break;
157 	case TIMER_HVTIMER:
158 		__vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2) = cval;
159 		break;
160 	case TIMER_HPTIMER:
161 		__vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2) = cval;
162 		break;
163 	default:
164 		WARN_ON(1);
165 	}
166 }
167 
168 static void timer_set_offset(struct arch_timer_context *ctxt, u64 offset)
169 {
170 	if (!ctxt->offset.vm_offset) {
171 		WARN(offset, "timer %ld\n", arch_timer_ctx_index(ctxt));
172 		return;
173 	}
174 
175 	WRITE_ONCE(*ctxt->offset.vm_offset, offset);
176 }
177 
178 u64 kvm_phys_timer_read(void)
179 {
180 	return timecounter->cc->read(timecounter->cc);
181 }
182 
183 static void get_timer_map(struct kvm_vcpu *vcpu, struct timer_map *map)
184 {
185 	if (vcpu_has_nv(vcpu)) {
186 		if (is_hyp_ctxt(vcpu)) {
187 			map->direct_vtimer = vcpu_hvtimer(vcpu);
188 			map->direct_ptimer = vcpu_hptimer(vcpu);
189 			map->emul_vtimer = vcpu_vtimer(vcpu);
190 			map->emul_ptimer = vcpu_ptimer(vcpu);
191 		} else {
192 			map->direct_vtimer = vcpu_vtimer(vcpu);
193 			map->direct_ptimer = vcpu_ptimer(vcpu);
194 			map->emul_vtimer = vcpu_hvtimer(vcpu);
195 			map->emul_ptimer = vcpu_hptimer(vcpu);
196 		}
197 	} else if (has_vhe()) {
198 		map->direct_vtimer = vcpu_vtimer(vcpu);
199 		map->direct_ptimer = vcpu_ptimer(vcpu);
200 		map->emul_vtimer = NULL;
201 		map->emul_ptimer = NULL;
202 	} else {
203 		map->direct_vtimer = vcpu_vtimer(vcpu);
204 		map->direct_ptimer = NULL;
205 		map->emul_vtimer = NULL;
206 		map->emul_ptimer = vcpu_ptimer(vcpu);
207 	}
208 
209 	trace_kvm_get_timer_map(vcpu->vcpu_id, map);
210 }
211 
212 static inline bool userspace_irqchip(struct kvm *kvm)
213 {
214 	return static_branch_unlikely(&userspace_irqchip_in_use) &&
215 		unlikely(!irqchip_in_kernel(kvm));
216 }
217 
218 static void soft_timer_start(struct hrtimer *hrt, u64 ns)
219 {
220 	hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
221 		      HRTIMER_MODE_ABS_HARD);
222 }
223 
224 static void soft_timer_cancel(struct hrtimer *hrt)
225 {
226 	hrtimer_cancel(hrt);
227 }
228 
229 static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
230 {
231 	struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
232 	struct arch_timer_context *ctx;
233 	struct timer_map map;
234 
235 	/*
236 	 * We may see a timer interrupt after vcpu_put() has been called which
237 	 * sets the CPU's vcpu pointer to NULL, because even though the timer
238 	 * has been disabled in timer_save_state(), the hardware interrupt
239 	 * signal may not have been retired from the interrupt controller yet.
240 	 */
241 	if (!vcpu)
242 		return IRQ_HANDLED;
243 
244 	get_timer_map(vcpu, &map);
245 
246 	if (irq == host_vtimer_irq)
247 		ctx = map.direct_vtimer;
248 	else
249 		ctx = map.direct_ptimer;
250 
251 	if (kvm_timer_should_fire(ctx))
252 		kvm_timer_update_irq(vcpu, true, ctx);
253 
254 	if (userspace_irqchip(vcpu->kvm) &&
255 	    !static_branch_unlikely(&has_gic_active_state))
256 		disable_percpu_irq(host_vtimer_irq);
257 
258 	return IRQ_HANDLED;
259 }
260 
261 static u64 kvm_counter_compute_delta(struct arch_timer_context *timer_ctx,
262 				     u64 val)
263 {
264 	u64 now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
265 
266 	if (now < val) {
267 		u64 ns;
268 
269 		ns = cyclecounter_cyc2ns(timecounter->cc,
270 					 val - now,
271 					 timecounter->mask,
272 					 &timer_ctx->ns_frac);
273 		return ns;
274 	}
275 
276 	return 0;
277 }
278 
279 static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
280 {
281 	return kvm_counter_compute_delta(timer_ctx, timer_get_cval(timer_ctx));
282 }
283 
284 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
285 {
286 	WARN_ON(timer_ctx && timer_ctx->loaded);
287 	return timer_ctx &&
288 		((timer_get_ctl(timer_ctx) &
289 		  (ARCH_TIMER_CTRL_IT_MASK | ARCH_TIMER_CTRL_ENABLE)) == ARCH_TIMER_CTRL_ENABLE);
290 }
291 
292 static bool vcpu_has_wfit_active(struct kvm_vcpu *vcpu)
293 {
294 	return (cpus_have_final_cap(ARM64_HAS_WFXT) &&
295 		vcpu_get_flag(vcpu, IN_WFIT));
296 }
297 
298 static u64 wfit_delay_ns(struct kvm_vcpu *vcpu)
299 {
300 	u64 val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
301 	struct arch_timer_context *ctx;
302 
303 	ctx = (vcpu_has_nv(vcpu) && is_hyp_ctxt(vcpu)) ? vcpu_hvtimer(vcpu)
304 						       : vcpu_vtimer(vcpu);
305 
306 	return kvm_counter_compute_delta(ctx, val);
307 }
308 
309 /*
310  * Returns the earliest expiration time in ns among guest timers.
311  * Note that it will return 0 if none of timers can fire.
312  */
313 static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
314 {
315 	u64 min_delta = ULLONG_MAX;
316 	int i;
317 
318 	for (i = 0; i < nr_timers(vcpu); i++) {
319 		struct arch_timer_context *ctx = &vcpu->arch.timer_cpu.timers[i];
320 
321 		WARN(ctx->loaded, "timer %d loaded\n", i);
322 		if (kvm_timer_irq_can_fire(ctx))
323 			min_delta = min(min_delta, kvm_timer_compute_delta(ctx));
324 	}
325 
326 	if (vcpu_has_wfit_active(vcpu))
327 		min_delta = min(min_delta, wfit_delay_ns(vcpu));
328 
329 	/* If none of timers can fire, then return 0 */
330 	if (min_delta == ULLONG_MAX)
331 		return 0;
332 
333 	return min_delta;
334 }
335 
336 static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
337 {
338 	struct arch_timer_cpu *timer;
339 	struct kvm_vcpu *vcpu;
340 	u64 ns;
341 
342 	timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
343 	vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
344 
345 	/*
346 	 * Check that the timer has really expired from the guest's
347 	 * PoV (NTP on the host may have forced it to expire
348 	 * early). If we should have slept longer, restart it.
349 	 */
350 	ns = kvm_timer_earliest_exp(vcpu);
351 	if (unlikely(ns)) {
352 		hrtimer_forward_now(hrt, ns_to_ktime(ns));
353 		return HRTIMER_RESTART;
354 	}
355 
356 	kvm_vcpu_wake_up(vcpu);
357 	return HRTIMER_NORESTART;
358 }
359 
360 static enum hrtimer_restart kvm_hrtimer_expire(struct hrtimer *hrt)
361 {
362 	struct arch_timer_context *ctx;
363 	struct kvm_vcpu *vcpu;
364 	u64 ns;
365 
366 	ctx = container_of(hrt, struct arch_timer_context, hrtimer);
367 	vcpu = ctx->vcpu;
368 
369 	trace_kvm_timer_hrtimer_expire(ctx);
370 
371 	/*
372 	 * Check that the timer has really expired from the guest's
373 	 * PoV (NTP on the host may have forced it to expire
374 	 * early). If not ready, schedule for a later time.
375 	 */
376 	ns = kvm_timer_compute_delta(ctx);
377 	if (unlikely(ns)) {
378 		hrtimer_forward_now(hrt, ns_to_ktime(ns));
379 		return HRTIMER_RESTART;
380 	}
381 
382 	kvm_timer_update_irq(vcpu, true, ctx);
383 	return HRTIMER_NORESTART;
384 }
385 
386 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
387 {
388 	enum kvm_arch_timers index;
389 	u64 cval, now;
390 
391 	if (!timer_ctx)
392 		return false;
393 
394 	index = arch_timer_ctx_index(timer_ctx);
395 
396 	if (timer_ctx->loaded) {
397 		u32 cnt_ctl = 0;
398 
399 		switch (index) {
400 		case TIMER_VTIMER:
401 		case TIMER_HVTIMER:
402 			cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL);
403 			break;
404 		case TIMER_PTIMER:
405 		case TIMER_HPTIMER:
406 			cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL);
407 			break;
408 		case NR_KVM_TIMERS:
409 			/* GCC is braindead */
410 			cnt_ctl = 0;
411 			break;
412 		}
413 
414 		return  (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) &&
415 		        (cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) &&
416 		       !(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK);
417 	}
418 
419 	if (!kvm_timer_irq_can_fire(timer_ctx))
420 		return false;
421 
422 	cval = timer_get_cval(timer_ctx);
423 	now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
424 
425 	return cval <= now;
426 }
427 
428 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
429 {
430 	return vcpu_has_wfit_active(vcpu) && wfit_delay_ns(vcpu) == 0;
431 }
432 
433 /*
434  * Reflect the timer output level into the kvm_run structure
435  */
436 void kvm_timer_update_run(struct kvm_vcpu *vcpu)
437 {
438 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
439 	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
440 	struct kvm_sync_regs *regs = &vcpu->run->s.regs;
441 
442 	/* Populate the device bitmap with the timer states */
443 	regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
444 				    KVM_ARM_DEV_EL1_PTIMER);
445 	if (kvm_timer_should_fire(vtimer))
446 		regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
447 	if (kvm_timer_should_fire(ptimer))
448 		regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
449 }
450 
451 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
452 				 struct arch_timer_context *timer_ctx)
453 {
454 	int ret;
455 
456 	timer_ctx->irq.level = new_level;
457 	trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_irq(timer_ctx),
458 				   timer_ctx->irq.level);
459 
460 	if (!userspace_irqchip(vcpu->kvm)) {
461 		ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
462 					  timer_irq(timer_ctx),
463 					  timer_ctx->irq.level,
464 					  timer_ctx);
465 		WARN_ON(ret);
466 	}
467 }
468 
469 /* Only called for a fully emulated timer */
470 static void timer_emulate(struct arch_timer_context *ctx)
471 {
472 	bool should_fire = kvm_timer_should_fire(ctx);
473 
474 	trace_kvm_timer_emulate(ctx, should_fire);
475 
476 	if (should_fire != ctx->irq.level) {
477 		kvm_timer_update_irq(ctx->vcpu, should_fire, ctx);
478 		return;
479 	}
480 
481 	/*
482 	 * If the timer can fire now, we don't need to have a soft timer
483 	 * scheduled for the future.  If the timer cannot fire at all,
484 	 * then we also don't need a soft timer.
485 	 */
486 	if (should_fire || !kvm_timer_irq_can_fire(ctx))
487 		return;
488 
489 	soft_timer_start(&ctx->hrtimer, kvm_timer_compute_delta(ctx));
490 }
491 
492 static void set_cntvoff(u64 cntvoff)
493 {
494 	kvm_call_hyp(__kvm_timer_set_cntvoff, cntvoff);
495 }
496 
497 static void set_cntpoff(u64 cntpoff)
498 {
499 	if (has_cntpoff())
500 		write_sysreg_s(cntpoff, SYS_CNTPOFF_EL2);
501 }
502 
503 static void timer_save_state(struct arch_timer_context *ctx)
504 {
505 	struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
506 	enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
507 	unsigned long flags;
508 
509 	if (!timer->enabled)
510 		return;
511 
512 	local_irq_save(flags);
513 
514 	if (!ctx->loaded)
515 		goto out;
516 
517 	switch (index) {
518 		u64 cval;
519 
520 	case TIMER_VTIMER:
521 	case TIMER_HVTIMER:
522 		timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTV_CTL));
523 		timer_set_cval(ctx, read_sysreg_el0(SYS_CNTV_CVAL));
524 
525 		/* Disable the timer */
526 		write_sysreg_el0(0, SYS_CNTV_CTL);
527 		isb();
528 
529 		/*
530 		 * The kernel may decide to run userspace after
531 		 * calling vcpu_put, so we reset cntvoff to 0 to
532 		 * ensure a consistent read between user accesses to
533 		 * the virtual counter and kernel access to the
534 		 * physical counter of non-VHE case.
535 		 *
536 		 * For VHE, the virtual counter uses a fixed virtual
537 		 * offset of zero, so no need to zero CNTVOFF_EL2
538 		 * register, but this is actually useful when switching
539 		 * between EL1/vEL2 with NV.
540 		 *
541 		 * Do it unconditionally, as this is either unavoidable
542 		 * or dirt cheap.
543 		 */
544 		set_cntvoff(0);
545 		break;
546 	case TIMER_PTIMER:
547 	case TIMER_HPTIMER:
548 		timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTP_CTL));
549 		cval = read_sysreg_el0(SYS_CNTP_CVAL);
550 
551 		if (!has_cntpoff())
552 			cval -= timer_get_offset(ctx);
553 
554 		timer_set_cval(ctx, cval);
555 
556 		/* Disable the timer */
557 		write_sysreg_el0(0, SYS_CNTP_CTL);
558 		isb();
559 
560 		set_cntpoff(0);
561 		break;
562 	case NR_KVM_TIMERS:
563 		BUG();
564 	}
565 
566 	trace_kvm_timer_save_state(ctx);
567 
568 	ctx->loaded = false;
569 out:
570 	local_irq_restore(flags);
571 }
572 
573 /*
574  * Schedule the background timer before calling kvm_vcpu_halt, so that this
575  * thread is removed from its waitqueue and made runnable when there's a timer
576  * interrupt to handle.
577  */
578 static void kvm_timer_blocking(struct kvm_vcpu *vcpu)
579 {
580 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
581 	struct timer_map map;
582 
583 	get_timer_map(vcpu, &map);
584 
585 	/*
586 	 * If no timers are capable of raising interrupts (disabled or
587 	 * masked), then there's no more work for us to do.
588 	 */
589 	if (!kvm_timer_irq_can_fire(map.direct_vtimer) &&
590 	    !kvm_timer_irq_can_fire(map.direct_ptimer) &&
591 	    !kvm_timer_irq_can_fire(map.emul_vtimer) &&
592 	    !kvm_timer_irq_can_fire(map.emul_ptimer) &&
593 	    !vcpu_has_wfit_active(vcpu))
594 		return;
595 
596 	/*
597 	 * At least one guest time will expire. Schedule a background timer.
598 	 * Set the earliest expiration time among the guest timers.
599 	 */
600 	soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
601 }
602 
603 static void kvm_timer_unblocking(struct kvm_vcpu *vcpu)
604 {
605 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
606 
607 	soft_timer_cancel(&timer->bg_timer);
608 }
609 
610 static void timer_restore_state(struct arch_timer_context *ctx)
611 {
612 	struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
613 	enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
614 	unsigned long flags;
615 
616 	if (!timer->enabled)
617 		return;
618 
619 	local_irq_save(flags);
620 
621 	if (ctx->loaded)
622 		goto out;
623 
624 	switch (index) {
625 		u64 cval, offset;
626 
627 	case TIMER_VTIMER:
628 	case TIMER_HVTIMER:
629 		set_cntvoff(timer_get_offset(ctx));
630 		write_sysreg_el0(timer_get_cval(ctx), SYS_CNTV_CVAL);
631 		isb();
632 		write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTV_CTL);
633 		break;
634 	case TIMER_PTIMER:
635 	case TIMER_HPTIMER:
636 		cval = timer_get_cval(ctx);
637 		offset = timer_get_offset(ctx);
638 		set_cntpoff(offset);
639 		if (!has_cntpoff())
640 			cval += offset;
641 		write_sysreg_el0(cval, SYS_CNTP_CVAL);
642 		isb();
643 		write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTP_CTL);
644 		break;
645 	case NR_KVM_TIMERS:
646 		BUG();
647 	}
648 
649 	trace_kvm_timer_restore_state(ctx);
650 
651 	ctx->loaded = true;
652 out:
653 	local_irq_restore(flags);
654 }
655 
656 static inline void set_timer_irq_phys_active(struct arch_timer_context *ctx, bool active)
657 {
658 	int r;
659 	r = irq_set_irqchip_state(ctx->host_timer_irq, IRQCHIP_STATE_ACTIVE, active);
660 	WARN_ON(r);
661 }
662 
663 static void kvm_timer_vcpu_load_gic(struct arch_timer_context *ctx)
664 {
665 	struct kvm_vcpu *vcpu = ctx->vcpu;
666 	bool phys_active = false;
667 
668 	/*
669 	 * Update the timer output so that it is likely to match the
670 	 * state we're about to restore. If the timer expires between
671 	 * this point and the register restoration, we'll take the
672 	 * interrupt anyway.
673 	 */
674 	kvm_timer_update_irq(ctx->vcpu, kvm_timer_should_fire(ctx), ctx);
675 
676 	if (irqchip_in_kernel(vcpu->kvm))
677 		phys_active = kvm_vgic_map_is_active(vcpu, timer_irq(ctx));
678 
679 	phys_active |= ctx->irq.level;
680 
681 	set_timer_irq_phys_active(ctx, phys_active);
682 }
683 
684 static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu)
685 {
686 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
687 
688 	/*
689 	 * Update the timer output so that it is likely to match the
690 	 * state we're about to restore. If the timer expires between
691 	 * this point and the register restoration, we'll take the
692 	 * interrupt anyway.
693 	 */
694 	kvm_timer_update_irq(vcpu, kvm_timer_should_fire(vtimer), vtimer);
695 
696 	/*
697 	 * When using a userspace irqchip with the architected timers and a
698 	 * host interrupt controller that doesn't support an active state, we
699 	 * must still prevent continuously exiting from the guest, and
700 	 * therefore mask the physical interrupt by disabling it on the host
701 	 * interrupt controller when the virtual level is high, such that the
702 	 * guest can make forward progress.  Once we detect the output level
703 	 * being de-asserted, we unmask the interrupt again so that we exit
704 	 * from the guest when the timer fires.
705 	 */
706 	if (vtimer->irq.level)
707 		disable_percpu_irq(host_vtimer_irq);
708 	else
709 		enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
710 }
711 
712 /* If _pred is true, set bit in _set, otherwise set it in _clr */
713 #define assign_clear_set_bit(_pred, _bit, _clr, _set)			\
714 	do {								\
715 		if (_pred)						\
716 			(_set) |= (_bit);				\
717 		else							\
718 			(_clr) |= (_bit);				\
719 	} while (0)
720 
721 static void kvm_timer_vcpu_load_nested_switch(struct kvm_vcpu *vcpu,
722 					      struct timer_map *map)
723 {
724 	int hw, ret;
725 
726 	if (!irqchip_in_kernel(vcpu->kvm))
727 		return;
728 
729 	/*
730 	 * We only ever unmap the vtimer irq on a VHE system that runs nested
731 	 * virtualization, in which case we have both a valid emul_vtimer,
732 	 * emul_ptimer, direct_vtimer, and direct_ptimer.
733 	 *
734 	 * Since this is called from kvm_timer_vcpu_load(), a change between
735 	 * vEL2 and vEL1/0 will have just happened, and the timer_map will
736 	 * represent this, and therefore we switch the emul/direct mappings
737 	 * below.
738 	 */
739 	hw = kvm_vgic_get_map(vcpu, timer_irq(map->direct_vtimer));
740 	if (hw < 0) {
741 		kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_vtimer));
742 		kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_ptimer));
743 
744 		ret = kvm_vgic_map_phys_irq(vcpu,
745 					    map->direct_vtimer->host_timer_irq,
746 					    timer_irq(map->direct_vtimer),
747 					    &arch_timer_irq_ops);
748 		WARN_ON_ONCE(ret);
749 		ret = kvm_vgic_map_phys_irq(vcpu,
750 					    map->direct_ptimer->host_timer_irq,
751 					    timer_irq(map->direct_ptimer),
752 					    &arch_timer_irq_ops);
753 		WARN_ON_ONCE(ret);
754 
755 		/*
756 		 * The virtual offset behaviour is "interresting", as it
757 		 * always applies when HCR_EL2.E2H==0, but only when
758 		 * accessed from EL1 when HCR_EL2.E2H==1. So make sure we
759 		 * track E2H when putting the HV timer in "direct" mode.
760 		 */
761 		if (map->direct_vtimer == vcpu_hvtimer(vcpu)) {
762 			struct arch_timer_offset *offs = &map->direct_vtimer->offset;
763 
764 			if (vcpu_el2_e2h_is_set(vcpu))
765 				offs->vcpu_offset = NULL;
766 			else
767 				offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2);
768 		}
769 	}
770 }
771 
772 static void timer_set_traps(struct kvm_vcpu *vcpu, struct timer_map *map)
773 {
774 	bool tpt, tpc;
775 	u64 clr, set;
776 
777 	/*
778 	 * No trapping gets configured here with nVHE. See
779 	 * __timer_enable_traps(), which is where the stuff happens.
780 	 */
781 	if (!has_vhe())
782 		return;
783 
784 	/*
785 	 * Our default policy is not to trap anything. As we progress
786 	 * within this function, reality kicks in and we start adding
787 	 * traps based on emulation requirements.
788 	 */
789 	tpt = tpc = false;
790 
791 	/*
792 	 * We have two possibility to deal with a physical offset:
793 	 *
794 	 * - Either we have CNTPOFF (yay!) or the offset is 0:
795 	 *   we let the guest freely access the HW
796 	 *
797 	 * - or neither of these condition apply:
798 	 *   we trap accesses to the HW, but still use it
799 	 *   after correcting the physical offset
800 	 */
801 	if (!has_cntpoff() && timer_get_offset(map->direct_ptimer))
802 		tpt = tpc = true;
803 
804 	/*
805 	 * Apply the enable bits that the guest hypervisor has requested for
806 	 * its own guest. We can only add traps that wouldn't have been set
807 	 * above.
808 	 */
809 	if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) {
810 		u64 val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2);
811 
812 		/* Use the VHE format for mental sanity */
813 		if (!vcpu_el2_e2h_is_set(vcpu))
814 			val = (val & (CNTHCTL_EL1PCEN | CNTHCTL_EL1PCTEN)) << 10;
815 
816 		tpt |= !(val & (CNTHCTL_EL1PCEN << 10));
817 		tpc |= !(val & (CNTHCTL_EL1PCTEN << 10));
818 	}
819 
820 	/*
821 	 * Now that we have collected our requirements, compute the
822 	 * trap and enable bits.
823 	 */
824 	set = 0;
825 	clr = 0;
826 
827 	assign_clear_set_bit(tpt, CNTHCTL_EL1PCEN << 10, set, clr);
828 	assign_clear_set_bit(tpc, CNTHCTL_EL1PCTEN << 10, set, clr);
829 
830 	/* This only happens on VHE, so use the CNTKCTL_EL1 accessor */
831 	sysreg_clear_set(cntkctl_el1, clr, set);
832 }
833 
834 void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
835 {
836 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
837 	struct timer_map map;
838 
839 	if (unlikely(!timer->enabled))
840 		return;
841 
842 	get_timer_map(vcpu, &map);
843 
844 	if (static_branch_likely(&has_gic_active_state)) {
845 		if (vcpu_has_nv(vcpu))
846 			kvm_timer_vcpu_load_nested_switch(vcpu, &map);
847 
848 		kvm_timer_vcpu_load_gic(map.direct_vtimer);
849 		if (map.direct_ptimer)
850 			kvm_timer_vcpu_load_gic(map.direct_ptimer);
851 	} else {
852 		kvm_timer_vcpu_load_nogic(vcpu);
853 	}
854 
855 	kvm_timer_unblocking(vcpu);
856 
857 	timer_restore_state(map.direct_vtimer);
858 	if (map.direct_ptimer)
859 		timer_restore_state(map.direct_ptimer);
860 	if (map.emul_vtimer)
861 		timer_emulate(map.emul_vtimer);
862 	if (map.emul_ptimer)
863 		timer_emulate(map.emul_ptimer);
864 
865 	timer_set_traps(vcpu, &map);
866 }
867 
868 bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
869 {
870 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
871 	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
872 	struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
873 	bool vlevel, plevel;
874 
875 	if (likely(irqchip_in_kernel(vcpu->kvm)))
876 		return false;
877 
878 	vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
879 	plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;
880 
881 	return kvm_timer_should_fire(vtimer) != vlevel ||
882 	       kvm_timer_should_fire(ptimer) != plevel;
883 }
884 
885 void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
886 {
887 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
888 	struct timer_map map;
889 
890 	if (unlikely(!timer->enabled))
891 		return;
892 
893 	get_timer_map(vcpu, &map);
894 
895 	timer_save_state(map.direct_vtimer);
896 	if (map.direct_ptimer)
897 		timer_save_state(map.direct_ptimer);
898 
899 	/*
900 	 * Cancel soft timer emulation, because the only case where we
901 	 * need it after a vcpu_put is in the context of a sleeping VCPU, and
902 	 * in that case we already factor in the deadline for the physical
903 	 * timer when scheduling the bg_timer.
904 	 *
905 	 * In any case, we re-schedule the hrtimer for the physical timer when
906 	 * coming back to the VCPU thread in kvm_timer_vcpu_load().
907 	 */
908 	if (map.emul_vtimer)
909 		soft_timer_cancel(&map.emul_vtimer->hrtimer);
910 	if (map.emul_ptimer)
911 		soft_timer_cancel(&map.emul_ptimer->hrtimer);
912 
913 	if (kvm_vcpu_is_blocking(vcpu))
914 		kvm_timer_blocking(vcpu);
915 }
916 
917 /*
918  * With a userspace irqchip we have to check if the guest de-asserted the
919  * timer and if so, unmask the timer irq signal on the host interrupt
920  * controller to ensure that we see future timer signals.
921  */
922 static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu)
923 {
924 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
925 
926 	if (!kvm_timer_should_fire(vtimer)) {
927 		kvm_timer_update_irq(vcpu, false, vtimer);
928 		if (static_branch_likely(&has_gic_active_state))
929 			set_timer_irq_phys_active(vtimer, false);
930 		else
931 			enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
932 	}
933 }
934 
935 void kvm_timer_sync_user(struct kvm_vcpu *vcpu)
936 {
937 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
938 
939 	if (unlikely(!timer->enabled))
940 		return;
941 
942 	if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
943 		unmask_vtimer_irq_user(vcpu);
944 }
945 
946 int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
947 {
948 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
949 	struct timer_map map;
950 
951 	get_timer_map(vcpu, &map);
952 
953 	/*
954 	 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
955 	 * and to 0 for ARMv7.  We provide an implementation that always
956 	 * resets the timer to be disabled and unmasked and is compliant with
957 	 * the ARMv7 architecture.
958 	 */
959 	for (int i = 0; i < nr_timers(vcpu); i++)
960 		timer_set_ctl(vcpu_get_timer(vcpu, i), 0);
961 
962 	/*
963 	 * A vcpu running at EL2 is in charge of the offset applied to
964 	 * the virtual timer, so use the physical VM offset, and point
965 	 * the vcpu offset to CNTVOFF_EL2.
966 	 */
967 	if (vcpu_has_nv(vcpu)) {
968 		struct arch_timer_offset *offs = &vcpu_vtimer(vcpu)->offset;
969 
970 		offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2);
971 		offs->vm_offset = &vcpu->kvm->arch.timer_data.poffset;
972 	}
973 
974 	if (timer->enabled) {
975 		for (int i = 0; i < nr_timers(vcpu); i++)
976 			kvm_timer_update_irq(vcpu, false,
977 					     vcpu_get_timer(vcpu, i));
978 
979 		if (irqchip_in_kernel(vcpu->kvm)) {
980 			kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_vtimer));
981 			if (map.direct_ptimer)
982 				kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_ptimer));
983 		}
984 	}
985 
986 	if (map.emul_vtimer)
987 		soft_timer_cancel(&map.emul_vtimer->hrtimer);
988 	if (map.emul_ptimer)
989 		soft_timer_cancel(&map.emul_ptimer->hrtimer);
990 
991 	return 0;
992 }
993 
994 static void timer_context_init(struct kvm_vcpu *vcpu, int timerid)
995 {
996 	struct arch_timer_context *ctxt = vcpu_get_timer(vcpu, timerid);
997 	struct kvm *kvm = vcpu->kvm;
998 
999 	ctxt->vcpu = vcpu;
1000 
1001 	if (timerid == TIMER_VTIMER)
1002 		ctxt->offset.vm_offset = &kvm->arch.timer_data.voffset;
1003 	else
1004 		ctxt->offset.vm_offset = &kvm->arch.timer_data.poffset;
1005 
1006 	hrtimer_init(&ctxt->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1007 	ctxt->hrtimer.function = kvm_hrtimer_expire;
1008 
1009 	switch (timerid) {
1010 	case TIMER_PTIMER:
1011 	case TIMER_HPTIMER:
1012 		ctxt->host_timer_irq = host_ptimer_irq;
1013 		break;
1014 	case TIMER_VTIMER:
1015 	case TIMER_HVTIMER:
1016 		ctxt->host_timer_irq = host_vtimer_irq;
1017 		break;
1018 	}
1019 }
1020 
1021 void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
1022 {
1023 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1024 
1025 	for (int i = 0; i < NR_KVM_TIMERS; i++)
1026 		timer_context_init(vcpu, i);
1027 
1028 	/* Synchronize offsets across timers of a VM if not already provided */
1029 	if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &vcpu->kvm->arch.flags)) {
1030 		timer_set_offset(vcpu_vtimer(vcpu), kvm_phys_timer_read());
1031 		timer_set_offset(vcpu_ptimer(vcpu), 0);
1032 	}
1033 
1034 	hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1035 	timer->bg_timer.function = kvm_bg_timer_expire;
1036 }
1037 
1038 void kvm_timer_init_vm(struct kvm *kvm)
1039 {
1040 	for (int i = 0; i < NR_KVM_TIMERS; i++)
1041 		kvm->arch.timer_data.ppi[i] = default_ppi[i];
1042 }
1043 
1044 void kvm_timer_cpu_up(void)
1045 {
1046 	enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
1047 	if (host_ptimer_irq)
1048 		enable_percpu_irq(host_ptimer_irq, host_ptimer_irq_flags);
1049 }
1050 
1051 void kvm_timer_cpu_down(void)
1052 {
1053 	disable_percpu_irq(host_vtimer_irq);
1054 	if (host_ptimer_irq)
1055 		disable_percpu_irq(host_ptimer_irq);
1056 }
1057 
1058 int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
1059 {
1060 	struct arch_timer_context *timer;
1061 
1062 	switch (regid) {
1063 	case KVM_REG_ARM_TIMER_CTL:
1064 		timer = vcpu_vtimer(vcpu);
1065 		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
1066 		break;
1067 	case KVM_REG_ARM_TIMER_CNT:
1068 		if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET,
1069 			      &vcpu->kvm->arch.flags)) {
1070 			timer = vcpu_vtimer(vcpu);
1071 			timer_set_offset(timer, kvm_phys_timer_read() - value);
1072 		}
1073 		break;
1074 	case KVM_REG_ARM_TIMER_CVAL:
1075 		timer = vcpu_vtimer(vcpu);
1076 		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
1077 		break;
1078 	case KVM_REG_ARM_PTIMER_CTL:
1079 		timer = vcpu_ptimer(vcpu);
1080 		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
1081 		break;
1082 	case KVM_REG_ARM_PTIMER_CNT:
1083 		if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET,
1084 			      &vcpu->kvm->arch.flags)) {
1085 			timer = vcpu_ptimer(vcpu);
1086 			timer_set_offset(timer, kvm_phys_timer_read() - value);
1087 		}
1088 		break;
1089 	case KVM_REG_ARM_PTIMER_CVAL:
1090 		timer = vcpu_ptimer(vcpu);
1091 		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
1092 		break;
1093 
1094 	default:
1095 		return -1;
1096 	}
1097 
1098 	return 0;
1099 }
1100 
1101 static u64 read_timer_ctl(struct arch_timer_context *timer)
1102 {
1103 	/*
1104 	 * Set ISTATUS bit if it's expired.
1105 	 * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
1106 	 * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
1107 	 * regardless of ENABLE bit for our implementation convenience.
1108 	 */
1109 	u32 ctl = timer_get_ctl(timer);
1110 
1111 	if (!kvm_timer_compute_delta(timer))
1112 		ctl |= ARCH_TIMER_CTRL_IT_STAT;
1113 
1114 	return ctl;
1115 }
1116 
1117 u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
1118 {
1119 	switch (regid) {
1120 	case KVM_REG_ARM_TIMER_CTL:
1121 		return kvm_arm_timer_read(vcpu,
1122 					  vcpu_vtimer(vcpu), TIMER_REG_CTL);
1123 	case KVM_REG_ARM_TIMER_CNT:
1124 		return kvm_arm_timer_read(vcpu,
1125 					  vcpu_vtimer(vcpu), TIMER_REG_CNT);
1126 	case KVM_REG_ARM_TIMER_CVAL:
1127 		return kvm_arm_timer_read(vcpu,
1128 					  vcpu_vtimer(vcpu), TIMER_REG_CVAL);
1129 	case KVM_REG_ARM_PTIMER_CTL:
1130 		return kvm_arm_timer_read(vcpu,
1131 					  vcpu_ptimer(vcpu), TIMER_REG_CTL);
1132 	case KVM_REG_ARM_PTIMER_CNT:
1133 		return kvm_arm_timer_read(vcpu,
1134 					  vcpu_ptimer(vcpu), TIMER_REG_CNT);
1135 	case KVM_REG_ARM_PTIMER_CVAL:
1136 		return kvm_arm_timer_read(vcpu,
1137 					  vcpu_ptimer(vcpu), TIMER_REG_CVAL);
1138 	}
1139 	return (u64)-1;
1140 }
1141 
1142 static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
1143 			      struct arch_timer_context *timer,
1144 			      enum kvm_arch_timer_regs treg)
1145 {
1146 	u64 val;
1147 
1148 	switch (treg) {
1149 	case TIMER_REG_TVAL:
1150 		val = timer_get_cval(timer) - kvm_phys_timer_read() + timer_get_offset(timer);
1151 		val = lower_32_bits(val);
1152 		break;
1153 
1154 	case TIMER_REG_CTL:
1155 		val = read_timer_ctl(timer);
1156 		break;
1157 
1158 	case TIMER_REG_CVAL:
1159 		val = timer_get_cval(timer);
1160 		break;
1161 
1162 	case TIMER_REG_CNT:
1163 		val = kvm_phys_timer_read() - timer_get_offset(timer);
1164 		break;
1165 
1166 	case TIMER_REG_VOFF:
1167 		val = *timer->offset.vcpu_offset;
1168 		break;
1169 
1170 	default:
1171 		BUG();
1172 	}
1173 
1174 	return val;
1175 }
1176 
1177 u64 kvm_arm_timer_read_sysreg(struct kvm_vcpu *vcpu,
1178 			      enum kvm_arch_timers tmr,
1179 			      enum kvm_arch_timer_regs treg)
1180 {
1181 	struct arch_timer_context *timer;
1182 	struct timer_map map;
1183 	u64 val;
1184 
1185 	get_timer_map(vcpu, &map);
1186 	timer = vcpu_get_timer(vcpu, tmr);
1187 
1188 	if (timer == map.emul_vtimer || timer == map.emul_ptimer)
1189 		return kvm_arm_timer_read(vcpu, timer, treg);
1190 
1191 	preempt_disable();
1192 	timer_save_state(timer);
1193 
1194 	val = kvm_arm_timer_read(vcpu, timer, treg);
1195 
1196 	timer_restore_state(timer);
1197 	preempt_enable();
1198 
1199 	return val;
1200 }
1201 
1202 static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
1203 				struct arch_timer_context *timer,
1204 				enum kvm_arch_timer_regs treg,
1205 				u64 val)
1206 {
1207 	switch (treg) {
1208 	case TIMER_REG_TVAL:
1209 		timer_set_cval(timer, kvm_phys_timer_read() - timer_get_offset(timer) + (s32)val);
1210 		break;
1211 
1212 	case TIMER_REG_CTL:
1213 		timer_set_ctl(timer, val & ~ARCH_TIMER_CTRL_IT_STAT);
1214 		break;
1215 
1216 	case TIMER_REG_CVAL:
1217 		timer_set_cval(timer, val);
1218 		break;
1219 
1220 	case TIMER_REG_VOFF:
1221 		*timer->offset.vcpu_offset = val;
1222 		break;
1223 
1224 	default:
1225 		BUG();
1226 	}
1227 }
1228 
1229 void kvm_arm_timer_write_sysreg(struct kvm_vcpu *vcpu,
1230 				enum kvm_arch_timers tmr,
1231 				enum kvm_arch_timer_regs treg,
1232 				u64 val)
1233 {
1234 	struct arch_timer_context *timer;
1235 	struct timer_map map;
1236 
1237 	get_timer_map(vcpu, &map);
1238 	timer = vcpu_get_timer(vcpu, tmr);
1239 	if (timer == map.emul_vtimer || timer == map.emul_ptimer) {
1240 		soft_timer_cancel(&timer->hrtimer);
1241 		kvm_arm_timer_write(vcpu, timer, treg, val);
1242 		timer_emulate(timer);
1243 	} else {
1244 		preempt_disable();
1245 		timer_save_state(timer);
1246 		kvm_arm_timer_write(vcpu, timer, treg, val);
1247 		timer_restore_state(timer);
1248 		preempt_enable();
1249 	}
1250 }
1251 
1252 static int timer_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
1253 {
1254 	if (vcpu)
1255 		irqd_set_forwarded_to_vcpu(d);
1256 	else
1257 		irqd_clr_forwarded_to_vcpu(d);
1258 
1259 	return 0;
1260 }
1261 
1262 static int timer_irq_set_irqchip_state(struct irq_data *d,
1263 				       enum irqchip_irq_state which, bool val)
1264 {
1265 	if (which != IRQCHIP_STATE_ACTIVE || !irqd_is_forwarded_to_vcpu(d))
1266 		return irq_chip_set_parent_state(d, which, val);
1267 
1268 	if (val)
1269 		irq_chip_mask_parent(d);
1270 	else
1271 		irq_chip_unmask_parent(d);
1272 
1273 	return 0;
1274 }
1275 
1276 static void timer_irq_eoi(struct irq_data *d)
1277 {
1278 	if (!irqd_is_forwarded_to_vcpu(d))
1279 		irq_chip_eoi_parent(d);
1280 }
1281 
1282 static void timer_irq_ack(struct irq_data *d)
1283 {
1284 	d = d->parent_data;
1285 	if (d->chip->irq_ack)
1286 		d->chip->irq_ack(d);
1287 }
1288 
1289 static struct irq_chip timer_chip = {
1290 	.name			= "KVM",
1291 	.irq_ack		= timer_irq_ack,
1292 	.irq_mask		= irq_chip_mask_parent,
1293 	.irq_unmask		= irq_chip_unmask_parent,
1294 	.irq_eoi		= timer_irq_eoi,
1295 	.irq_set_type		= irq_chip_set_type_parent,
1296 	.irq_set_vcpu_affinity	= timer_irq_set_vcpu_affinity,
1297 	.irq_set_irqchip_state	= timer_irq_set_irqchip_state,
1298 };
1299 
1300 static int timer_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1301 				  unsigned int nr_irqs, void *arg)
1302 {
1303 	irq_hw_number_t hwirq = (uintptr_t)arg;
1304 
1305 	return irq_domain_set_hwirq_and_chip(domain, virq, hwirq,
1306 					     &timer_chip, NULL);
1307 }
1308 
1309 static void timer_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1310 				  unsigned int nr_irqs)
1311 {
1312 }
1313 
1314 static const struct irq_domain_ops timer_domain_ops = {
1315 	.alloc	= timer_irq_domain_alloc,
1316 	.free	= timer_irq_domain_free,
1317 };
1318 
1319 static void kvm_irq_fixup_flags(unsigned int virq, u32 *flags)
1320 {
1321 	*flags = irq_get_trigger_type(virq);
1322 	if (*flags != IRQF_TRIGGER_HIGH && *flags != IRQF_TRIGGER_LOW) {
1323 		kvm_err("Invalid trigger for timer IRQ%d, assuming level low\n",
1324 			virq);
1325 		*flags = IRQF_TRIGGER_LOW;
1326 	}
1327 }
1328 
1329 static int kvm_irq_init(struct arch_timer_kvm_info *info)
1330 {
1331 	struct irq_domain *domain = NULL;
1332 
1333 	if (info->virtual_irq <= 0) {
1334 		kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
1335 			info->virtual_irq);
1336 		return -ENODEV;
1337 	}
1338 
1339 	host_vtimer_irq = info->virtual_irq;
1340 	kvm_irq_fixup_flags(host_vtimer_irq, &host_vtimer_irq_flags);
1341 
1342 	if (kvm_vgic_global_state.no_hw_deactivation) {
1343 		struct fwnode_handle *fwnode;
1344 		struct irq_data *data;
1345 
1346 		fwnode = irq_domain_alloc_named_fwnode("kvm-timer");
1347 		if (!fwnode)
1348 			return -ENOMEM;
1349 
1350 		/* Assume both vtimer and ptimer in the same parent */
1351 		data = irq_get_irq_data(host_vtimer_irq);
1352 		domain = irq_domain_create_hierarchy(data->domain, 0,
1353 						     NR_KVM_TIMERS, fwnode,
1354 						     &timer_domain_ops, NULL);
1355 		if (!domain) {
1356 			irq_domain_free_fwnode(fwnode);
1357 			return -ENOMEM;
1358 		}
1359 
1360 		arch_timer_irq_ops.flags |= VGIC_IRQ_SW_RESAMPLE;
1361 		WARN_ON(irq_domain_push_irq(domain, host_vtimer_irq,
1362 					    (void *)TIMER_VTIMER));
1363 	}
1364 
1365 	if (info->physical_irq > 0) {
1366 		host_ptimer_irq = info->physical_irq;
1367 		kvm_irq_fixup_flags(host_ptimer_irq, &host_ptimer_irq_flags);
1368 
1369 		if (domain)
1370 			WARN_ON(irq_domain_push_irq(domain, host_ptimer_irq,
1371 						    (void *)TIMER_PTIMER));
1372 	}
1373 
1374 	return 0;
1375 }
1376 
1377 int __init kvm_timer_hyp_init(bool has_gic)
1378 {
1379 	struct arch_timer_kvm_info *info;
1380 	int err;
1381 
1382 	info = arch_timer_get_kvm_info();
1383 	timecounter = &info->timecounter;
1384 
1385 	if (!timecounter->cc) {
1386 		kvm_err("kvm_arch_timer: uninitialized timecounter\n");
1387 		return -ENODEV;
1388 	}
1389 
1390 	err = kvm_irq_init(info);
1391 	if (err)
1392 		return err;
1393 
1394 	/* First, do the virtual EL1 timer irq */
1395 
1396 	err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
1397 				 "kvm guest vtimer", kvm_get_running_vcpus());
1398 	if (err) {
1399 		kvm_err("kvm_arch_timer: can't request vtimer interrupt %d (%d)\n",
1400 			host_vtimer_irq, err);
1401 		return err;
1402 	}
1403 
1404 	if (has_gic) {
1405 		err = irq_set_vcpu_affinity(host_vtimer_irq,
1406 					    kvm_get_running_vcpus());
1407 		if (err) {
1408 			kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1409 			goto out_free_irq;
1410 		}
1411 
1412 		static_branch_enable(&has_gic_active_state);
1413 	}
1414 
1415 	kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq);
1416 
1417 	/* Now let's do the physical EL1 timer irq */
1418 
1419 	if (info->physical_irq > 0) {
1420 		err = request_percpu_irq(host_ptimer_irq, kvm_arch_timer_handler,
1421 					 "kvm guest ptimer", kvm_get_running_vcpus());
1422 		if (err) {
1423 			kvm_err("kvm_arch_timer: can't request ptimer interrupt %d (%d)\n",
1424 				host_ptimer_irq, err);
1425 			return err;
1426 		}
1427 
1428 		if (has_gic) {
1429 			err = irq_set_vcpu_affinity(host_ptimer_irq,
1430 						    kvm_get_running_vcpus());
1431 			if (err) {
1432 				kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1433 				goto out_free_irq;
1434 			}
1435 		}
1436 
1437 		kvm_debug("physical timer IRQ%d\n", host_ptimer_irq);
1438 	} else if (has_vhe()) {
1439 		kvm_err("kvm_arch_timer: invalid physical timer IRQ: %d\n",
1440 			info->physical_irq);
1441 		err = -ENODEV;
1442 		goto out_free_irq;
1443 	}
1444 
1445 	return 0;
1446 out_free_irq:
1447 	free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
1448 	return err;
1449 }
1450 
1451 void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
1452 {
1453 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1454 
1455 	soft_timer_cancel(&timer->bg_timer);
1456 }
1457 
1458 static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
1459 {
1460 	u32 ppis = 0;
1461 	bool valid;
1462 
1463 	mutex_lock(&vcpu->kvm->arch.config_lock);
1464 
1465 	for (int i = 0; i < nr_timers(vcpu); i++) {
1466 		struct arch_timer_context *ctx;
1467 		int irq;
1468 
1469 		ctx = vcpu_get_timer(vcpu, i);
1470 		irq = timer_irq(ctx);
1471 		if (kvm_vgic_set_owner(vcpu, irq, ctx))
1472 			break;
1473 
1474 		/*
1475 		 * We know by construction that we only have PPIs, so
1476 		 * all values are less than 32.
1477 		 */
1478 		ppis |= BIT(irq);
1479 	}
1480 
1481 	valid = hweight32(ppis) == nr_timers(vcpu);
1482 
1483 	if (valid)
1484 		set_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE, &vcpu->kvm->arch.flags);
1485 
1486 	mutex_unlock(&vcpu->kvm->arch.config_lock);
1487 
1488 	return valid;
1489 }
1490 
1491 static bool kvm_arch_timer_get_input_level(int vintid)
1492 {
1493 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
1494 
1495 	if (WARN(!vcpu, "No vcpu context!\n"))
1496 		return false;
1497 
1498 	for (int i = 0; i < nr_timers(vcpu); i++) {
1499 		struct arch_timer_context *ctx;
1500 
1501 		ctx = vcpu_get_timer(vcpu, i);
1502 		if (timer_irq(ctx) == vintid)
1503 			return kvm_timer_should_fire(ctx);
1504 	}
1505 
1506 	/* A timer IRQ has fired, but no matching timer was found? */
1507 	WARN_RATELIMIT(1, "timer INTID%d unknown\n", vintid);
1508 
1509 	return false;
1510 }
1511 
1512 int kvm_timer_enable(struct kvm_vcpu *vcpu)
1513 {
1514 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1515 	struct timer_map map;
1516 	int ret;
1517 
1518 	if (timer->enabled)
1519 		return 0;
1520 
1521 	/* Without a VGIC we do not map virtual IRQs to physical IRQs */
1522 	if (!irqchip_in_kernel(vcpu->kvm))
1523 		goto no_vgic;
1524 
1525 	/*
1526 	 * At this stage, we have the guarantee that the vgic is both
1527 	 * available and initialized.
1528 	 */
1529 	if (!timer_irqs_are_valid(vcpu)) {
1530 		kvm_debug("incorrectly configured timer irqs\n");
1531 		return -EINVAL;
1532 	}
1533 
1534 	get_timer_map(vcpu, &map);
1535 
1536 	ret = kvm_vgic_map_phys_irq(vcpu,
1537 				    map.direct_vtimer->host_timer_irq,
1538 				    timer_irq(map.direct_vtimer),
1539 				    &arch_timer_irq_ops);
1540 	if (ret)
1541 		return ret;
1542 
1543 	if (map.direct_ptimer) {
1544 		ret = kvm_vgic_map_phys_irq(vcpu,
1545 					    map.direct_ptimer->host_timer_irq,
1546 					    timer_irq(map.direct_ptimer),
1547 					    &arch_timer_irq_ops);
1548 	}
1549 
1550 	if (ret)
1551 		return ret;
1552 
1553 no_vgic:
1554 	timer->enabled = 1;
1555 	return 0;
1556 }
1557 
1558 /* If we have CNTPOFF, permanently set ECV to enable it */
1559 void kvm_timer_init_vhe(void)
1560 {
1561 	if (cpus_have_final_cap(ARM64_HAS_ECV_CNTPOFF))
1562 		sysreg_clear_set(cntkctl_el1, 0, CNTHCTL_ECV);
1563 }
1564 
1565 int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1566 {
1567 	int __user *uaddr = (int __user *)(long)attr->addr;
1568 	int irq, idx, ret = 0;
1569 
1570 	if (!irqchip_in_kernel(vcpu->kvm))
1571 		return -EINVAL;
1572 
1573 	if (get_user(irq, uaddr))
1574 		return -EFAULT;
1575 
1576 	if (!(irq_is_ppi(irq)))
1577 		return -EINVAL;
1578 
1579 	mutex_lock(&vcpu->kvm->arch.config_lock);
1580 
1581 	if (test_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE,
1582 		     &vcpu->kvm->arch.flags)) {
1583 		ret = -EBUSY;
1584 		goto out;
1585 	}
1586 
1587 	switch (attr->attr) {
1588 	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1589 		idx = TIMER_VTIMER;
1590 		break;
1591 	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1592 		idx = TIMER_PTIMER;
1593 		break;
1594 	case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1595 		idx = TIMER_HVTIMER;
1596 		break;
1597 	case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1598 		idx = TIMER_HPTIMER;
1599 		break;
1600 	default:
1601 		ret = -ENXIO;
1602 		goto out;
1603 	}
1604 
1605 	/*
1606 	 * We cannot validate the IRQ unicity before we run, so take it at
1607 	 * face value. The verdict will be given on first vcpu run, for each
1608 	 * vcpu. Yes this is late. Blame it on the stupid API.
1609 	 */
1610 	vcpu->kvm->arch.timer_data.ppi[idx] = irq;
1611 
1612 out:
1613 	mutex_unlock(&vcpu->kvm->arch.config_lock);
1614 	return ret;
1615 }
1616 
1617 int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1618 {
1619 	int __user *uaddr = (int __user *)(long)attr->addr;
1620 	struct arch_timer_context *timer;
1621 	int irq;
1622 
1623 	switch (attr->attr) {
1624 	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1625 		timer = vcpu_vtimer(vcpu);
1626 		break;
1627 	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1628 		timer = vcpu_ptimer(vcpu);
1629 		break;
1630 	case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1631 		timer = vcpu_hvtimer(vcpu);
1632 		break;
1633 	case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1634 		timer = vcpu_hptimer(vcpu);
1635 		break;
1636 	default:
1637 		return -ENXIO;
1638 	}
1639 
1640 	irq = timer_irq(timer);
1641 	return put_user(irq, uaddr);
1642 }
1643 
1644 int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1645 {
1646 	switch (attr->attr) {
1647 	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1648 	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1649 	case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1650 	case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1651 		return 0;
1652 	}
1653 
1654 	return -ENXIO;
1655 }
1656 
1657 int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
1658 				    struct kvm_arm_counter_offset *offset)
1659 {
1660 	int ret = 0;
1661 
1662 	if (offset->reserved)
1663 		return -EINVAL;
1664 
1665 	mutex_lock(&kvm->lock);
1666 
1667 	if (lock_all_vcpus(kvm)) {
1668 		set_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &kvm->arch.flags);
1669 
1670 		/*
1671 		 * If userspace decides to set the offset using this
1672 		 * API rather than merely restoring the counter
1673 		 * values, the offset applies to both the virtual and
1674 		 * physical views.
1675 		 */
1676 		kvm->arch.timer_data.voffset = offset->counter_offset;
1677 		kvm->arch.timer_data.poffset = offset->counter_offset;
1678 
1679 		unlock_all_vcpus(kvm);
1680 	} else {
1681 		ret = -EBUSY;
1682 	}
1683 
1684 	mutex_unlock(&kvm->lock);
1685 
1686 	return ret;
1687 }
1688