xref: /linux/arch/arm64/kernel/traps.c (revision f474808acb3c4b30552d9c59b181244e0300d218)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/traps.c
4  *
5  * Copyright (C) 1995-2009 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/bug.h>
10 #include <linux/signal.h>
11 #include <linux/personality.h>
12 #include <linux/kallsyms.h>
13 #include <linux/spinlock.h>
14 #include <linux/uaccess.h>
15 #include <linux/hardirq.h>
16 #include <linux/kdebug.h>
17 #include <linux/module.h>
18 #include <linux/kexec.h>
19 #include <linux/delay.h>
20 #include <linux/init.h>
21 #include <linux/sched/signal.h>
22 #include <linux/sched/debug.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/sizes.h>
25 #include <linux/syscalls.h>
26 #include <linux/mm_types.h>
27 #include <linux/kasan.h>
28 
29 #include <asm/atomic.h>
30 #include <asm/bug.h>
31 #include <asm/cpufeature.h>
32 #include <asm/daifflags.h>
33 #include <asm/debug-monitors.h>
34 #include <asm/esr.h>
35 #include <asm/insn.h>
36 #include <asm/traps.h>
37 #include <asm/smp.h>
38 #include <asm/stack_pointer.h>
39 #include <asm/stacktrace.h>
40 #include <asm/exception.h>
41 #include <asm/system_misc.h>
42 #include <asm/sysreg.h>
43 
44 static const char *handler[]= {
45 	"Synchronous Abort",
46 	"IRQ",
47 	"FIQ",
48 	"Error"
49 };
50 
51 int show_unhandled_signals = 0;
52 
53 static void dump_backtrace_entry(unsigned long where)
54 {
55 	printk(" %pS\n", (void *)where);
56 }
57 
58 static void dump_kernel_instr(const char *lvl, struct pt_regs *regs)
59 {
60 	unsigned long addr = instruction_pointer(regs);
61 	char str[sizeof("00000000 ") * 5 + 2 + 1], *p = str;
62 	int i;
63 
64 	if (user_mode(regs))
65 		return;
66 
67 	for (i = -4; i < 1; i++) {
68 		unsigned int val, bad;
69 
70 		bad = aarch64_insn_read(&((u32 *)addr)[i], &val);
71 
72 		if (!bad)
73 			p += sprintf(p, i == 0 ? "(%08x) " : "%08x ", val);
74 		else {
75 			p += sprintf(p, "bad PC value");
76 			break;
77 		}
78 	}
79 
80 	printk("%sCode: %s\n", lvl, str);
81 }
82 
83 void dump_backtrace(struct pt_regs *regs, struct task_struct *tsk)
84 {
85 	struct stackframe frame;
86 	int skip = 0;
87 
88 	pr_debug("%s(regs = %p tsk = %p)\n", __func__, regs, tsk);
89 
90 	if (regs) {
91 		if (user_mode(regs))
92 			return;
93 		skip = 1;
94 	}
95 
96 	if (!tsk)
97 		tsk = current;
98 
99 	if (!try_get_task_stack(tsk))
100 		return;
101 
102 	if (tsk == current) {
103 		frame.fp = (unsigned long)__builtin_frame_address(0);
104 		frame.pc = (unsigned long)dump_backtrace;
105 	} else {
106 		/*
107 		 * task blocked in __switch_to
108 		 */
109 		frame.fp = thread_saved_fp(tsk);
110 		frame.pc = thread_saved_pc(tsk);
111 	}
112 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
113 	frame.graph = 0;
114 #endif
115 
116 	printk("Call trace:\n");
117 	do {
118 		/* skip until specified stack frame */
119 		if (!skip) {
120 			dump_backtrace_entry(frame.pc);
121 		} else if (frame.fp == regs->regs[29]) {
122 			skip = 0;
123 			/*
124 			 * Mostly, this is the case where this function is
125 			 * called in panic/abort. As exception handler's
126 			 * stack frame does not contain the corresponding pc
127 			 * at which an exception has taken place, use regs->pc
128 			 * instead.
129 			 */
130 			dump_backtrace_entry(regs->pc);
131 		}
132 	} while (!unwind_frame(tsk, &frame));
133 
134 	put_task_stack(tsk);
135 }
136 
137 void show_stack(struct task_struct *tsk, unsigned long *sp)
138 {
139 	dump_backtrace(NULL, tsk);
140 	barrier();
141 }
142 
143 #ifdef CONFIG_PREEMPT
144 #define S_PREEMPT " PREEMPT"
145 #else
146 #define S_PREEMPT ""
147 #endif
148 #define S_SMP " SMP"
149 
150 static int __die(const char *str, int err, struct pt_regs *regs)
151 {
152 	static int die_counter;
153 	int ret;
154 
155 	pr_emerg("Internal error: %s: %x [#%d]" S_PREEMPT S_SMP "\n",
156 		 str, err, ++die_counter);
157 
158 	/* trap and error numbers are mostly meaningless on ARM */
159 	ret = notify_die(DIE_OOPS, str, regs, err, 0, SIGSEGV);
160 	if (ret == NOTIFY_STOP)
161 		return ret;
162 
163 	print_modules();
164 	show_regs(regs);
165 
166 	dump_kernel_instr(KERN_EMERG, regs);
167 
168 	return ret;
169 }
170 
171 static DEFINE_RAW_SPINLOCK(die_lock);
172 
173 /*
174  * This function is protected against re-entrancy.
175  */
176 void die(const char *str, struct pt_regs *regs, int err)
177 {
178 	int ret;
179 	unsigned long flags;
180 
181 	raw_spin_lock_irqsave(&die_lock, flags);
182 
183 	oops_enter();
184 
185 	console_verbose();
186 	bust_spinlocks(1);
187 	ret = __die(str, err, regs);
188 
189 	if (regs && kexec_should_crash(current))
190 		crash_kexec(regs);
191 
192 	bust_spinlocks(0);
193 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
194 	oops_exit();
195 
196 	if (in_interrupt())
197 		panic("Fatal exception in interrupt");
198 	if (panic_on_oops)
199 		panic("Fatal exception");
200 
201 	raw_spin_unlock_irqrestore(&die_lock, flags);
202 
203 	if (ret != NOTIFY_STOP)
204 		do_exit(SIGSEGV);
205 }
206 
207 static void arm64_show_signal(int signo, const char *str)
208 {
209 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
210 				      DEFAULT_RATELIMIT_BURST);
211 	struct task_struct *tsk = current;
212 	unsigned int esr = tsk->thread.fault_code;
213 	struct pt_regs *regs = task_pt_regs(tsk);
214 
215 	/* Leave if the signal won't be shown */
216 	if (!show_unhandled_signals ||
217 	    !unhandled_signal(tsk, signo) ||
218 	    !__ratelimit(&rs))
219 		return;
220 
221 	pr_info("%s[%d]: unhandled exception: ", tsk->comm, task_pid_nr(tsk));
222 	if (esr)
223 		pr_cont("%s, ESR 0x%08x, ", esr_get_class_string(esr), esr);
224 
225 	pr_cont("%s", str);
226 	print_vma_addr(KERN_CONT " in ", regs->pc);
227 	pr_cont("\n");
228 	__show_regs(regs);
229 }
230 
231 void arm64_force_sig_fault(int signo, int code, void __user *addr,
232 			   const char *str)
233 {
234 	arm64_show_signal(signo, str);
235 	if (signo == SIGKILL)
236 		force_sig(SIGKILL);
237 	else
238 		force_sig_fault(signo, code, addr);
239 }
240 
241 void arm64_force_sig_mceerr(int code, void __user *addr, short lsb,
242 			    const char *str)
243 {
244 	arm64_show_signal(SIGBUS, str);
245 	force_sig_mceerr(code, addr, lsb);
246 }
247 
248 void arm64_force_sig_ptrace_errno_trap(int errno, void __user *addr,
249 				       const char *str)
250 {
251 	arm64_show_signal(SIGTRAP, str);
252 	force_sig_ptrace_errno_trap(errno, addr);
253 }
254 
255 void arm64_notify_die(const char *str, struct pt_regs *regs,
256 		      int signo, int sicode, void __user *addr,
257 		      int err)
258 {
259 	if (user_mode(regs)) {
260 		WARN_ON(regs != current_pt_regs());
261 		current->thread.fault_address = 0;
262 		current->thread.fault_code = err;
263 
264 		arm64_force_sig_fault(signo, sicode, addr, str);
265 	} else {
266 		die(str, regs, err);
267 	}
268 }
269 
270 void arm64_skip_faulting_instruction(struct pt_regs *regs, unsigned long size)
271 {
272 	regs->pc += size;
273 
274 	/*
275 	 * If we were single stepping, we want to get the step exception after
276 	 * we return from the trap.
277 	 */
278 	if (user_mode(regs))
279 		user_fastforward_single_step(current);
280 }
281 
282 static LIST_HEAD(undef_hook);
283 static DEFINE_RAW_SPINLOCK(undef_lock);
284 
285 void register_undef_hook(struct undef_hook *hook)
286 {
287 	unsigned long flags;
288 
289 	raw_spin_lock_irqsave(&undef_lock, flags);
290 	list_add(&hook->node, &undef_hook);
291 	raw_spin_unlock_irqrestore(&undef_lock, flags);
292 }
293 
294 void unregister_undef_hook(struct undef_hook *hook)
295 {
296 	unsigned long flags;
297 
298 	raw_spin_lock_irqsave(&undef_lock, flags);
299 	list_del(&hook->node);
300 	raw_spin_unlock_irqrestore(&undef_lock, flags);
301 }
302 
303 static int call_undef_hook(struct pt_regs *regs)
304 {
305 	struct undef_hook *hook;
306 	unsigned long flags;
307 	u32 instr;
308 	int (*fn)(struct pt_regs *regs, u32 instr) = NULL;
309 	void __user *pc = (void __user *)instruction_pointer(regs);
310 
311 	if (!user_mode(regs)) {
312 		__le32 instr_le;
313 		if (probe_kernel_address((__force __le32 *)pc, instr_le))
314 			goto exit;
315 		instr = le32_to_cpu(instr_le);
316 	} else if (compat_thumb_mode(regs)) {
317 		/* 16-bit Thumb instruction */
318 		__le16 instr_le;
319 		if (get_user(instr_le, (__le16 __user *)pc))
320 			goto exit;
321 		instr = le16_to_cpu(instr_le);
322 		if (aarch32_insn_is_wide(instr)) {
323 			u32 instr2;
324 
325 			if (get_user(instr_le, (__le16 __user *)(pc + 2)))
326 				goto exit;
327 			instr2 = le16_to_cpu(instr_le);
328 			instr = (instr << 16) | instr2;
329 		}
330 	} else {
331 		/* 32-bit ARM instruction */
332 		__le32 instr_le;
333 		if (get_user(instr_le, (__le32 __user *)pc))
334 			goto exit;
335 		instr = le32_to_cpu(instr_le);
336 	}
337 
338 	raw_spin_lock_irqsave(&undef_lock, flags);
339 	list_for_each_entry(hook, &undef_hook, node)
340 		if ((instr & hook->instr_mask) == hook->instr_val &&
341 			(regs->pstate & hook->pstate_mask) == hook->pstate_val)
342 			fn = hook->fn;
343 
344 	raw_spin_unlock_irqrestore(&undef_lock, flags);
345 exit:
346 	return fn ? fn(regs, instr) : 1;
347 }
348 
349 void force_signal_inject(int signal, int code, unsigned long address)
350 {
351 	const char *desc;
352 	struct pt_regs *regs = current_pt_regs();
353 
354 	if (WARN_ON(!user_mode(regs)))
355 		return;
356 
357 	switch (signal) {
358 	case SIGILL:
359 		desc = "undefined instruction";
360 		break;
361 	case SIGSEGV:
362 		desc = "illegal memory access";
363 		break;
364 	default:
365 		desc = "unknown or unrecoverable error";
366 		break;
367 	}
368 
369 	/* Force signals we don't understand to SIGKILL */
370 	if (WARN_ON(signal != SIGKILL &&
371 		    siginfo_layout(signal, code) != SIL_FAULT)) {
372 		signal = SIGKILL;
373 	}
374 
375 	arm64_notify_die(desc, regs, signal, code, (void __user *)address, 0);
376 }
377 
378 /*
379  * Set up process info to signal segmentation fault - called on access error.
380  */
381 void arm64_notify_segfault(unsigned long addr)
382 {
383 	int code;
384 
385 	down_read(&current->mm->mmap_sem);
386 	if (find_vma(current->mm, addr) == NULL)
387 		code = SEGV_MAPERR;
388 	else
389 		code = SEGV_ACCERR;
390 	up_read(&current->mm->mmap_sem);
391 
392 	force_signal_inject(SIGSEGV, code, addr);
393 }
394 
395 asmlinkage void __exception do_undefinstr(struct pt_regs *regs)
396 {
397 	/* check for AArch32 breakpoint instructions */
398 	if (!aarch32_break_handler(regs))
399 		return;
400 
401 	if (call_undef_hook(regs) == 0)
402 		return;
403 
404 	BUG_ON(!user_mode(regs));
405 	force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc);
406 }
407 
408 #define __user_cache_maint(insn, address, res)			\
409 	if (address >= user_addr_max()) {			\
410 		res = -EFAULT;					\
411 	} else {						\
412 		uaccess_ttbr0_enable();				\
413 		asm volatile (					\
414 			"1:	" insn ", %1\n"			\
415 			"	mov	%w0, #0\n"		\
416 			"2:\n"					\
417 			"	.pushsection .fixup,\"ax\"\n"	\
418 			"	.align	2\n"			\
419 			"3:	mov	%w0, %w2\n"		\
420 			"	b	2b\n"			\
421 			"	.popsection\n"			\
422 			_ASM_EXTABLE(1b, 3b)			\
423 			: "=r" (res)				\
424 			: "r" (address), "i" (-EFAULT));	\
425 		uaccess_ttbr0_disable();			\
426 	}
427 
428 static void user_cache_maint_handler(unsigned int esr, struct pt_regs *regs)
429 {
430 	unsigned long address;
431 	int rt = ESR_ELx_SYS64_ISS_RT(esr);
432 	int crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT;
433 	int ret = 0;
434 
435 	address = untagged_addr(pt_regs_read_reg(regs, rt));
436 
437 	switch (crm) {
438 	case ESR_ELx_SYS64_ISS_CRM_DC_CVAU:	/* DC CVAU, gets promoted */
439 		__user_cache_maint("dc civac", address, ret);
440 		break;
441 	case ESR_ELx_SYS64_ISS_CRM_DC_CVAC:	/* DC CVAC, gets promoted */
442 		__user_cache_maint("dc civac", address, ret);
443 		break;
444 	case ESR_ELx_SYS64_ISS_CRM_DC_CVADP:	/* DC CVADP */
445 		__user_cache_maint("sys 3, c7, c13, 1", address, ret);
446 		break;
447 	case ESR_ELx_SYS64_ISS_CRM_DC_CVAP:	/* DC CVAP */
448 		__user_cache_maint("sys 3, c7, c12, 1", address, ret);
449 		break;
450 	case ESR_ELx_SYS64_ISS_CRM_DC_CIVAC:	/* DC CIVAC */
451 		__user_cache_maint("dc civac", address, ret);
452 		break;
453 	case ESR_ELx_SYS64_ISS_CRM_IC_IVAU:	/* IC IVAU */
454 		__user_cache_maint("ic ivau", address, ret);
455 		break;
456 	default:
457 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc);
458 		return;
459 	}
460 
461 	if (ret)
462 		arm64_notify_segfault(address);
463 	else
464 		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
465 }
466 
467 static void ctr_read_handler(unsigned int esr, struct pt_regs *regs)
468 {
469 	int rt = ESR_ELx_SYS64_ISS_RT(esr);
470 	unsigned long val = arm64_ftr_reg_user_value(&arm64_ftr_reg_ctrel0);
471 
472 	pt_regs_write_reg(regs, rt, val);
473 
474 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
475 }
476 
477 static void cntvct_read_handler(unsigned int esr, struct pt_regs *regs)
478 {
479 	int rt = ESR_ELx_SYS64_ISS_RT(esr);
480 
481 	pt_regs_write_reg(regs, rt, arch_timer_read_counter());
482 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
483 }
484 
485 static void cntfrq_read_handler(unsigned int esr, struct pt_regs *regs)
486 {
487 	int rt = ESR_ELx_SYS64_ISS_RT(esr);
488 
489 	pt_regs_write_reg(regs, rt, arch_timer_get_rate());
490 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
491 }
492 
493 static void mrs_handler(unsigned int esr, struct pt_regs *regs)
494 {
495 	u32 sysreg, rt;
496 
497 	rt = ESR_ELx_SYS64_ISS_RT(esr);
498 	sysreg = esr_sys64_to_sysreg(esr);
499 
500 	if (do_emulate_mrs(regs, sysreg, rt) != 0)
501 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc);
502 }
503 
504 static void wfi_handler(unsigned int esr, struct pt_regs *regs)
505 {
506 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
507 }
508 
509 struct sys64_hook {
510 	unsigned int esr_mask;
511 	unsigned int esr_val;
512 	void (*handler)(unsigned int esr, struct pt_regs *regs);
513 };
514 
515 static struct sys64_hook sys64_hooks[] = {
516 	{
517 		.esr_mask = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_MASK,
518 		.esr_val = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_VAL,
519 		.handler = user_cache_maint_handler,
520 	},
521 	{
522 		/* Trap read access to CTR_EL0 */
523 		.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
524 		.esr_val = ESR_ELx_SYS64_ISS_SYS_CTR_READ,
525 		.handler = ctr_read_handler,
526 	},
527 	{
528 		/* Trap read access to CNTVCT_EL0 */
529 		.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
530 		.esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCT,
531 		.handler = cntvct_read_handler,
532 	},
533 	{
534 		/* Trap read access to CNTFRQ_EL0 */
535 		.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
536 		.esr_val = ESR_ELx_SYS64_ISS_SYS_CNTFRQ,
537 		.handler = cntfrq_read_handler,
538 	},
539 	{
540 		/* Trap read access to CPUID registers */
541 		.esr_mask = ESR_ELx_SYS64_ISS_SYS_MRS_OP_MASK,
542 		.esr_val = ESR_ELx_SYS64_ISS_SYS_MRS_OP_VAL,
543 		.handler = mrs_handler,
544 	},
545 	{
546 		/* Trap WFI instructions executed in userspace */
547 		.esr_mask = ESR_ELx_WFx_MASK,
548 		.esr_val = ESR_ELx_WFx_WFI_VAL,
549 		.handler = wfi_handler,
550 	},
551 	{},
552 };
553 
554 
555 #ifdef CONFIG_COMPAT
556 #define PSTATE_IT_1_0_SHIFT	25
557 #define PSTATE_IT_1_0_MASK	(0x3 << PSTATE_IT_1_0_SHIFT)
558 #define PSTATE_IT_7_2_SHIFT	10
559 #define PSTATE_IT_7_2_MASK	(0x3f << PSTATE_IT_7_2_SHIFT)
560 
561 static u32 compat_get_it_state(struct pt_regs *regs)
562 {
563 	u32 it, pstate = regs->pstate;
564 
565 	it  = (pstate & PSTATE_IT_1_0_MASK) >> PSTATE_IT_1_0_SHIFT;
566 	it |= ((pstate & PSTATE_IT_7_2_MASK) >> PSTATE_IT_7_2_SHIFT) << 2;
567 
568 	return it;
569 }
570 
571 static void compat_set_it_state(struct pt_regs *regs, u32 it)
572 {
573 	u32 pstate_it;
574 
575 	pstate_it  = (it << PSTATE_IT_1_0_SHIFT) & PSTATE_IT_1_0_MASK;
576 	pstate_it |= ((it >> 2) << PSTATE_IT_7_2_SHIFT) & PSTATE_IT_7_2_MASK;
577 
578 	regs->pstate &= ~PSR_AA32_IT_MASK;
579 	regs->pstate |= pstate_it;
580 }
581 
582 static bool cp15_cond_valid(unsigned int esr, struct pt_regs *regs)
583 {
584 	int cond;
585 
586 	/* Only a T32 instruction can trap without CV being set */
587 	if (!(esr & ESR_ELx_CV)) {
588 		u32 it;
589 
590 		it = compat_get_it_state(regs);
591 		if (!it)
592 			return true;
593 
594 		cond = it >> 4;
595 	} else {
596 		cond = (esr & ESR_ELx_COND_MASK) >> ESR_ELx_COND_SHIFT;
597 	}
598 
599 	return aarch32_opcode_cond_checks[cond](regs->pstate);
600 }
601 
602 static void advance_itstate(struct pt_regs *regs)
603 {
604 	u32 it;
605 
606 	/* ARM mode */
607 	if (!(regs->pstate & PSR_AA32_T_BIT) ||
608 	    !(regs->pstate & PSR_AA32_IT_MASK))
609 		return;
610 
611 	it  = compat_get_it_state(regs);
612 
613 	/*
614 	 * If this is the last instruction of the block, wipe the IT
615 	 * state. Otherwise advance it.
616 	 */
617 	if (!(it & 7))
618 		it = 0;
619 	else
620 		it = (it & 0xe0) | ((it << 1) & 0x1f);
621 
622 	compat_set_it_state(regs, it);
623 }
624 
625 static void arm64_compat_skip_faulting_instruction(struct pt_regs *regs,
626 						   unsigned int sz)
627 {
628 	advance_itstate(regs);
629 	arm64_skip_faulting_instruction(regs, sz);
630 }
631 
632 static void compat_cntfrq_read_handler(unsigned int esr, struct pt_regs *regs)
633 {
634 	int reg = (esr & ESR_ELx_CP15_32_ISS_RT_MASK) >> ESR_ELx_CP15_32_ISS_RT_SHIFT;
635 
636 	pt_regs_write_reg(regs, reg, arch_timer_get_rate());
637 	arm64_compat_skip_faulting_instruction(regs, 4);
638 }
639 
640 static struct sys64_hook cp15_32_hooks[] = {
641 	{
642 		.esr_mask = ESR_ELx_CP15_32_ISS_SYS_MASK,
643 		.esr_val = ESR_ELx_CP15_32_ISS_SYS_CNTFRQ,
644 		.handler = compat_cntfrq_read_handler,
645 	},
646 	{},
647 };
648 
649 static void compat_cntvct_read_handler(unsigned int esr, struct pt_regs *regs)
650 {
651 	int rt = (esr & ESR_ELx_CP15_64_ISS_RT_MASK) >> ESR_ELx_CP15_64_ISS_RT_SHIFT;
652 	int rt2 = (esr & ESR_ELx_CP15_64_ISS_RT2_MASK) >> ESR_ELx_CP15_64_ISS_RT2_SHIFT;
653 	u64 val = arch_timer_read_counter();
654 
655 	pt_regs_write_reg(regs, rt, lower_32_bits(val));
656 	pt_regs_write_reg(regs, rt2, upper_32_bits(val));
657 	arm64_compat_skip_faulting_instruction(regs, 4);
658 }
659 
660 static struct sys64_hook cp15_64_hooks[] = {
661 	{
662 		.esr_mask = ESR_ELx_CP15_64_ISS_SYS_MASK,
663 		.esr_val = ESR_ELx_CP15_64_ISS_SYS_CNTVCT,
664 		.handler = compat_cntvct_read_handler,
665 	},
666 	{},
667 };
668 
669 asmlinkage void __exception do_cp15instr(unsigned int esr, struct pt_regs *regs)
670 {
671 	struct sys64_hook *hook, *hook_base;
672 
673 	if (!cp15_cond_valid(esr, regs)) {
674 		/*
675 		 * There is no T16 variant of a CP access, so we
676 		 * always advance PC by 4 bytes.
677 		 */
678 		arm64_compat_skip_faulting_instruction(regs, 4);
679 		return;
680 	}
681 
682 	switch (ESR_ELx_EC(esr)) {
683 	case ESR_ELx_EC_CP15_32:
684 		hook_base = cp15_32_hooks;
685 		break;
686 	case ESR_ELx_EC_CP15_64:
687 		hook_base = cp15_64_hooks;
688 		break;
689 	default:
690 		do_undefinstr(regs);
691 		return;
692 	}
693 
694 	for (hook = hook_base; hook->handler; hook++)
695 		if ((hook->esr_mask & esr) == hook->esr_val) {
696 			hook->handler(esr, regs);
697 			return;
698 		}
699 
700 	/*
701 	 * New cp15 instructions may previously have been undefined at
702 	 * EL0. Fall back to our usual undefined instruction handler
703 	 * so that we handle these consistently.
704 	 */
705 	do_undefinstr(regs);
706 }
707 #endif
708 
709 asmlinkage void __exception do_sysinstr(unsigned int esr, struct pt_regs *regs)
710 {
711 	struct sys64_hook *hook;
712 
713 	for (hook = sys64_hooks; hook->handler; hook++)
714 		if ((hook->esr_mask & esr) == hook->esr_val) {
715 			hook->handler(esr, regs);
716 			return;
717 		}
718 
719 	/*
720 	 * New SYS instructions may previously have been undefined at EL0. Fall
721 	 * back to our usual undefined instruction handler so that we handle
722 	 * these consistently.
723 	 */
724 	do_undefinstr(regs);
725 }
726 
727 static const char *esr_class_str[] = {
728 	[0 ... ESR_ELx_EC_MAX]		= "UNRECOGNIZED EC",
729 	[ESR_ELx_EC_UNKNOWN]		= "Unknown/Uncategorized",
730 	[ESR_ELx_EC_WFx]		= "WFI/WFE",
731 	[ESR_ELx_EC_CP15_32]		= "CP15 MCR/MRC",
732 	[ESR_ELx_EC_CP15_64]		= "CP15 MCRR/MRRC",
733 	[ESR_ELx_EC_CP14_MR]		= "CP14 MCR/MRC",
734 	[ESR_ELx_EC_CP14_LS]		= "CP14 LDC/STC",
735 	[ESR_ELx_EC_FP_ASIMD]		= "ASIMD",
736 	[ESR_ELx_EC_CP10_ID]		= "CP10 MRC/VMRS",
737 	[ESR_ELx_EC_CP14_64]		= "CP14 MCRR/MRRC",
738 	[ESR_ELx_EC_ILL]		= "PSTATE.IL",
739 	[ESR_ELx_EC_SVC32]		= "SVC (AArch32)",
740 	[ESR_ELx_EC_HVC32]		= "HVC (AArch32)",
741 	[ESR_ELx_EC_SMC32]		= "SMC (AArch32)",
742 	[ESR_ELx_EC_SVC64]		= "SVC (AArch64)",
743 	[ESR_ELx_EC_HVC64]		= "HVC (AArch64)",
744 	[ESR_ELx_EC_SMC64]		= "SMC (AArch64)",
745 	[ESR_ELx_EC_SYS64]		= "MSR/MRS (AArch64)",
746 	[ESR_ELx_EC_SVE]		= "SVE",
747 	[ESR_ELx_EC_IMP_DEF]		= "EL3 IMP DEF",
748 	[ESR_ELx_EC_IABT_LOW]		= "IABT (lower EL)",
749 	[ESR_ELx_EC_IABT_CUR]		= "IABT (current EL)",
750 	[ESR_ELx_EC_PC_ALIGN]		= "PC Alignment",
751 	[ESR_ELx_EC_DABT_LOW]		= "DABT (lower EL)",
752 	[ESR_ELx_EC_DABT_CUR]		= "DABT (current EL)",
753 	[ESR_ELx_EC_SP_ALIGN]		= "SP Alignment",
754 	[ESR_ELx_EC_FP_EXC32]		= "FP (AArch32)",
755 	[ESR_ELx_EC_FP_EXC64]		= "FP (AArch64)",
756 	[ESR_ELx_EC_SERROR]		= "SError",
757 	[ESR_ELx_EC_BREAKPT_LOW]	= "Breakpoint (lower EL)",
758 	[ESR_ELx_EC_BREAKPT_CUR]	= "Breakpoint (current EL)",
759 	[ESR_ELx_EC_SOFTSTP_LOW]	= "Software Step (lower EL)",
760 	[ESR_ELx_EC_SOFTSTP_CUR]	= "Software Step (current EL)",
761 	[ESR_ELx_EC_WATCHPT_LOW]	= "Watchpoint (lower EL)",
762 	[ESR_ELx_EC_WATCHPT_CUR]	= "Watchpoint (current EL)",
763 	[ESR_ELx_EC_BKPT32]		= "BKPT (AArch32)",
764 	[ESR_ELx_EC_VECTOR32]		= "Vector catch (AArch32)",
765 	[ESR_ELx_EC_BRK64]		= "BRK (AArch64)",
766 };
767 
768 const char *esr_get_class_string(u32 esr)
769 {
770 	return esr_class_str[ESR_ELx_EC(esr)];
771 }
772 
773 /*
774  * bad_mode handles the impossible case in the exception vector. This is always
775  * fatal.
776  */
777 asmlinkage void bad_mode(struct pt_regs *regs, int reason, unsigned int esr)
778 {
779 	console_verbose();
780 
781 	pr_crit("Bad mode in %s handler detected on CPU%d, code 0x%08x -- %s\n",
782 		handler[reason], smp_processor_id(), esr,
783 		esr_get_class_string(esr));
784 
785 	local_daif_mask();
786 	panic("bad mode");
787 }
788 
789 /*
790  * bad_el0_sync handles unexpected, but potentially recoverable synchronous
791  * exceptions taken from EL0. Unlike bad_mode, this returns.
792  */
793 asmlinkage void bad_el0_sync(struct pt_regs *regs, int reason, unsigned int esr)
794 {
795 	void __user *pc = (void __user *)instruction_pointer(regs);
796 
797 	current->thread.fault_address = 0;
798 	current->thread.fault_code = esr;
799 
800 	arm64_force_sig_fault(SIGILL, ILL_ILLOPC, pc,
801 			      "Bad EL0 synchronous exception");
802 }
803 
804 #ifdef CONFIG_VMAP_STACK
805 
806 DEFINE_PER_CPU(unsigned long [OVERFLOW_STACK_SIZE/sizeof(long)], overflow_stack)
807 	__aligned(16);
808 
809 asmlinkage void handle_bad_stack(struct pt_regs *regs)
810 {
811 	unsigned long tsk_stk = (unsigned long)current->stack;
812 	unsigned long irq_stk = (unsigned long)this_cpu_read(irq_stack_ptr);
813 	unsigned long ovf_stk = (unsigned long)this_cpu_ptr(overflow_stack);
814 	unsigned int esr = read_sysreg(esr_el1);
815 	unsigned long far = read_sysreg(far_el1);
816 
817 	console_verbose();
818 	pr_emerg("Insufficient stack space to handle exception!");
819 
820 	pr_emerg("ESR: 0x%08x -- %s\n", esr, esr_get_class_string(esr));
821 	pr_emerg("FAR: 0x%016lx\n", far);
822 
823 	pr_emerg("Task stack:     [0x%016lx..0x%016lx]\n",
824 		 tsk_stk, tsk_stk + THREAD_SIZE);
825 	pr_emerg("IRQ stack:      [0x%016lx..0x%016lx]\n",
826 		 irq_stk, irq_stk + THREAD_SIZE);
827 	pr_emerg("Overflow stack: [0x%016lx..0x%016lx]\n",
828 		 ovf_stk, ovf_stk + OVERFLOW_STACK_SIZE);
829 
830 	__show_regs(regs);
831 
832 	/*
833 	 * We use nmi_panic to limit the potential for recusive overflows, and
834 	 * to get a better stack trace.
835 	 */
836 	nmi_panic(NULL, "kernel stack overflow");
837 	cpu_park_loop();
838 }
839 #endif
840 
841 void __noreturn arm64_serror_panic(struct pt_regs *regs, u32 esr)
842 {
843 	console_verbose();
844 
845 	pr_crit("SError Interrupt on CPU%d, code 0x%08x -- %s\n",
846 		smp_processor_id(), esr, esr_get_class_string(esr));
847 	if (regs)
848 		__show_regs(regs);
849 
850 	nmi_panic(regs, "Asynchronous SError Interrupt");
851 
852 	cpu_park_loop();
853 	unreachable();
854 }
855 
856 bool arm64_is_fatal_ras_serror(struct pt_regs *regs, unsigned int esr)
857 {
858 	u32 aet = arm64_ras_serror_get_severity(esr);
859 
860 	switch (aet) {
861 	case ESR_ELx_AET_CE:	/* corrected error */
862 	case ESR_ELx_AET_UEO:	/* restartable, not yet consumed */
863 		/*
864 		 * The CPU can make progress. We may take UEO again as
865 		 * a more severe error.
866 		 */
867 		return false;
868 
869 	case ESR_ELx_AET_UEU:	/* Uncorrected Unrecoverable */
870 	case ESR_ELx_AET_UER:	/* Uncorrected Recoverable */
871 		/*
872 		 * The CPU can't make progress. The exception may have
873 		 * been imprecise.
874 		 *
875 		 * Neoverse-N1 #1349291 means a non-KVM SError reported as
876 		 * Unrecoverable should be treated as Uncontainable. We
877 		 * call arm64_serror_panic() in both cases.
878 		 */
879 		return true;
880 
881 	case ESR_ELx_AET_UC:	/* Uncontainable or Uncategorized error */
882 	default:
883 		/* Error has been silently propagated */
884 		arm64_serror_panic(regs, esr);
885 	}
886 }
887 
888 asmlinkage void do_serror(struct pt_regs *regs, unsigned int esr)
889 {
890 	const bool was_in_nmi = in_nmi();
891 
892 	if (!was_in_nmi)
893 		nmi_enter();
894 
895 	/* non-RAS errors are not containable */
896 	if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(regs, esr))
897 		arm64_serror_panic(regs, esr);
898 
899 	if (!was_in_nmi)
900 		nmi_exit();
901 }
902 
903 void __pte_error(const char *file, int line, unsigned long val)
904 {
905 	pr_err("%s:%d: bad pte %016lx.\n", file, line, val);
906 }
907 
908 void __pmd_error(const char *file, int line, unsigned long val)
909 {
910 	pr_err("%s:%d: bad pmd %016lx.\n", file, line, val);
911 }
912 
913 void __pud_error(const char *file, int line, unsigned long val)
914 {
915 	pr_err("%s:%d: bad pud %016lx.\n", file, line, val);
916 }
917 
918 void __pgd_error(const char *file, int line, unsigned long val)
919 {
920 	pr_err("%s:%d: bad pgd %016lx.\n", file, line, val);
921 }
922 
923 /* GENERIC_BUG traps */
924 
925 int is_valid_bugaddr(unsigned long addr)
926 {
927 	/*
928 	 * bug_handler() only called for BRK #BUG_BRK_IMM.
929 	 * So the answer is trivial -- any spurious instances with no
930 	 * bug table entry will be rejected by report_bug() and passed
931 	 * back to the debug-monitors code and handled as a fatal
932 	 * unexpected debug exception.
933 	 */
934 	return 1;
935 }
936 
937 static int bug_handler(struct pt_regs *regs, unsigned int esr)
938 {
939 	switch (report_bug(regs->pc, regs)) {
940 	case BUG_TRAP_TYPE_BUG:
941 		die("Oops - BUG", regs, 0);
942 		break;
943 
944 	case BUG_TRAP_TYPE_WARN:
945 		break;
946 
947 	default:
948 		/* unknown/unrecognised bug trap type */
949 		return DBG_HOOK_ERROR;
950 	}
951 
952 	/* If thread survives, skip over the BUG instruction and continue: */
953 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
954 	return DBG_HOOK_HANDLED;
955 }
956 
957 static struct break_hook bug_break_hook = {
958 	.fn = bug_handler,
959 	.imm = BUG_BRK_IMM,
960 };
961 
962 #ifdef CONFIG_KASAN_SW_TAGS
963 
964 #define KASAN_ESR_RECOVER	0x20
965 #define KASAN_ESR_WRITE	0x10
966 #define KASAN_ESR_SIZE_MASK	0x0f
967 #define KASAN_ESR_SIZE(esr)	(1 << ((esr) & KASAN_ESR_SIZE_MASK))
968 
969 static int kasan_handler(struct pt_regs *regs, unsigned int esr)
970 {
971 	bool recover = esr & KASAN_ESR_RECOVER;
972 	bool write = esr & KASAN_ESR_WRITE;
973 	size_t size = KASAN_ESR_SIZE(esr);
974 	u64 addr = regs->regs[0];
975 	u64 pc = regs->pc;
976 
977 	kasan_report(addr, size, write, pc);
978 
979 	/*
980 	 * The instrumentation allows to control whether we can proceed after
981 	 * a crash was detected. This is done by passing the -recover flag to
982 	 * the compiler. Disabling recovery allows to generate more compact
983 	 * code.
984 	 *
985 	 * Unfortunately disabling recovery doesn't work for the kernel right
986 	 * now. KASAN reporting is disabled in some contexts (for example when
987 	 * the allocator accesses slab object metadata; this is controlled by
988 	 * current->kasan_depth). All these accesses are detected by the tool,
989 	 * even though the reports for them are not printed.
990 	 *
991 	 * This is something that might be fixed at some point in the future.
992 	 */
993 	if (!recover)
994 		die("Oops - KASAN", regs, 0);
995 
996 	/* If thread survives, skip over the brk instruction and continue: */
997 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
998 	return DBG_HOOK_HANDLED;
999 }
1000 
1001 static struct break_hook kasan_break_hook = {
1002 	.fn	= kasan_handler,
1003 	.imm	= KASAN_BRK_IMM,
1004 	.mask	= KASAN_BRK_MASK,
1005 };
1006 #endif
1007 
1008 /*
1009  * Initial handler for AArch64 BRK exceptions
1010  * This handler only used until debug_traps_init().
1011  */
1012 int __init early_brk64(unsigned long addr, unsigned int esr,
1013 		struct pt_regs *regs)
1014 {
1015 #ifdef CONFIG_KASAN_SW_TAGS
1016 	unsigned int comment = esr & ESR_ELx_BRK64_ISS_COMMENT_MASK;
1017 
1018 	if ((comment & ~KASAN_BRK_MASK) == KASAN_BRK_IMM)
1019 		return kasan_handler(regs, esr) != DBG_HOOK_HANDLED;
1020 #endif
1021 	return bug_handler(regs, esr) != DBG_HOOK_HANDLED;
1022 }
1023 
1024 /* This registration must happen early, before debug_traps_init(). */
1025 void __init trap_init(void)
1026 {
1027 	register_kernel_break_hook(&bug_break_hook);
1028 #ifdef CONFIG_KASAN_SW_TAGS
1029 	register_kernel_break_hook(&kasan_break_hook);
1030 #endif
1031 }
1032