1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/kernel/traps.c 4 * 5 * Copyright (C) 1995-2009 Russell King 6 * Copyright (C) 2012 ARM Ltd. 7 */ 8 9 #include <linux/bug.h> 10 #include <linux/context_tracking.h> 11 #include <linux/signal.h> 12 #include <linux/kallsyms.h> 13 #include <linux/kprobes.h> 14 #include <linux/spinlock.h> 15 #include <linux/uaccess.h> 16 #include <linux/hardirq.h> 17 #include <linux/kdebug.h> 18 #include <linux/module.h> 19 #include <linux/kexec.h> 20 #include <linux/delay.h> 21 #include <linux/efi.h> 22 #include <linux/init.h> 23 #include <linux/sched/signal.h> 24 #include <linux/sched/debug.h> 25 #include <linux/sched/task_stack.h> 26 #include <linux/sizes.h> 27 #include <linux/syscalls.h> 28 #include <linux/mm_types.h> 29 #include <linux/kasan.h> 30 #include <linux/ubsan.h> 31 #include <linux/cfi.h> 32 33 #include <asm/atomic.h> 34 #include <asm/bug.h> 35 #include <asm/cpufeature.h> 36 #include <asm/daifflags.h> 37 #include <asm/debug-monitors.h> 38 #include <asm/efi.h> 39 #include <asm/esr.h> 40 #include <asm/exception.h> 41 #include <asm/extable.h> 42 #include <asm/insn.h> 43 #include <asm/kprobes.h> 44 #include <asm/patching.h> 45 #include <asm/traps.h> 46 #include <asm/smp.h> 47 #include <asm/stack_pointer.h> 48 #include <asm/stacktrace.h> 49 #include <asm/system_misc.h> 50 #include <asm/sysreg.h> 51 52 static bool __kprobes __check_eq(unsigned long pstate) 53 { 54 return (pstate & PSR_Z_BIT) != 0; 55 } 56 57 static bool __kprobes __check_ne(unsigned long pstate) 58 { 59 return (pstate & PSR_Z_BIT) == 0; 60 } 61 62 static bool __kprobes __check_cs(unsigned long pstate) 63 { 64 return (pstate & PSR_C_BIT) != 0; 65 } 66 67 static bool __kprobes __check_cc(unsigned long pstate) 68 { 69 return (pstate & PSR_C_BIT) == 0; 70 } 71 72 static bool __kprobes __check_mi(unsigned long pstate) 73 { 74 return (pstate & PSR_N_BIT) != 0; 75 } 76 77 static bool __kprobes __check_pl(unsigned long pstate) 78 { 79 return (pstate & PSR_N_BIT) == 0; 80 } 81 82 static bool __kprobes __check_vs(unsigned long pstate) 83 { 84 return (pstate & PSR_V_BIT) != 0; 85 } 86 87 static bool __kprobes __check_vc(unsigned long pstate) 88 { 89 return (pstate & PSR_V_BIT) == 0; 90 } 91 92 static bool __kprobes __check_hi(unsigned long pstate) 93 { 94 pstate &= ~(pstate >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */ 95 return (pstate & PSR_C_BIT) != 0; 96 } 97 98 static bool __kprobes __check_ls(unsigned long pstate) 99 { 100 pstate &= ~(pstate >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */ 101 return (pstate & PSR_C_BIT) == 0; 102 } 103 104 static bool __kprobes __check_ge(unsigned long pstate) 105 { 106 pstate ^= (pstate << 3); /* PSR_N_BIT ^= PSR_V_BIT */ 107 return (pstate & PSR_N_BIT) == 0; 108 } 109 110 static bool __kprobes __check_lt(unsigned long pstate) 111 { 112 pstate ^= (pstate << 3); /* PSR_N_BIT ^= PSR_V_BIT */ 113 return (pstate & PSR_N_BIT) != 0; 114 } 115 116 static bool __kprobes __check_gt(unsigned long pstate) 117 { 118 /*PSR_N_BIT ^= PSR_V_BIT */ 119 unsigned long temp = pstate ^ (pstate << 3); 120 121 temp |= (pstate << 1); /*PSR_N_BIT |= PSR_Z_BIT */ 122 return (temp & PSR_N_BIT) == 0; 123 } 124 125 static bool __kprobes __check_le(unsigned long pstate) 126 { 127 /*PSR_N_BIT ^= PSR_V_BIT */ 128 unsigned long temp = pstate ^ (pstate << 3); 129 130 temp |= (pstate << 1); /*PSR_N_BIT |= PSR_Z_BIT */ 131 return (temp & PSR_N_BIT) != 0; 132 } 133 134 static bool __kprobes __check_al(unsigned long pstate) 135 { 136 return true; 137 } 138 139 /* 140 * Note that the ARMv8 ARM calls condition code 0b1111 "nv", but states that 141 * it behaves identically to 0b1110 ("al"). 142 */ 143 pstate_check_t * const aarch32_opcode_cond_checks[16] = { 144 __check_eq, __check_ne, __check_cs, __check_cc, 145 __check_mi, __check_pl, __check_vs, __check_vc, 146 __check_hi, __check_ls, __check_ge, __check_lt, 147 __check_gt, __check_le, __check_al, __check_al 148 }; 149 150 int show_unhandled_signals = 0; 151 152 static void dump_kernel_instr(const char *lvl, struct pt_regs *regs) 153 { 154 unsigned long addr = instruction_pointer(regs); 155 char str[sizeof("00000000 ") * 5 + 2 + 1], *p = str; 156 int i; 157 158 if (user_mode(regs)) 159 return; 160 161 for (i = -4; i < 1; i++) { 162 unsigned int val, bad; 163 164 bad = aarch64_insn_read(&((u32 *)addr)[i], &val); 165 166 if (!bad) 167 p += sprintf(p, i == 0 ? "(%08x) " : "%08x ", val); 168 else 169 p += sprintf(p, i == 0 ? "(????????) " : "???????? "); 170 } 171 172 printk("%sCode: %s\n", lvl, str); 173 } 174 175 #ifdef CONFIG_PREEMPT 176 #define S_PREEMPT " PREEMPT" 177 #elif defined(CONFIG_PREEMPT_RT) 178 #define S_PREEMPT " PREEMPT_RT" 179 #else 180 #define S_PREEMPT "" 181 #endif 182 183 #define S_SMP " SMP" 184 185 static int __die(const char *str, long err, struct pt_regs *regs) 186 { 187 static int die_counter; 188 int ret; 189 190 pr_emerg("Internal error: %s: %016lx [#%d]" S_PREEMPT S_SMP "\n", 191 str, err, ++die_counter); 192 193 /* trap and error numbers are mostly meaningless on ARM */ 194 ret = notify_die(DIE_OOPS, str, regs, err, 0, SIGSEGV); 195 if (ret == NOTIFY_STOP) 196 return ret; 197 198 print_modules(); 199 show_regs(regs); 200 201 dump_kernel_instr(KERN_EMERG, regs); 202 203 return ret; 204 } 205 206 static DEFINE_RAW_SPINLOCK(die_lock); 207 208 /* 209 * This function is protected against re-entrancy. 210 */ 211 void die(const char *str, struct pt_regs *regs, long err) 212 { 213 int ret; 214 unsigned long flags; 215 216 raw_spin_lock_irqsave(&die_lock, flags); 217 218 oops_enter(); 219 220 console_verbose(); 221 bust_spinlocks(1); 222 ret = __die(str, err, regs); 223 224 if (regs && kexec_should_crash(current)) 225 crash_kexec(regs); 226 227 bust_spinlocks(0); 228 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 229 oops_exit(); 230 231 if (in_interrupt()) 232 panic("%s: Fatal exception in interrupt", str); 233 if (panic_on_oops) 234 panic("%s: Fatal exception", str); 235 236 raw_spin_unlock_irqrestore(&die_lock, flags); 237 238 if (ret != NOTIFY_STOP) 239 make_task_dead(SIGSEGV); 240 } 241 242 static void arm64_show_signal(int signo, const char *str) 243 { 244 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 245 DEFAULT_RATELIMIT_BURST); 246 struct task_struct *tsk = current; 247 unsigned long esr = tsk->thread.fault_code; 248 struct pt_regs *regs = task_pt_regs(tsk); 249 250 /* Leave if the signal won't be shown */ 251 if (!show_unhandled_signals || 252 !unhandled_signal(tsk, signo) || 253 !__ratelimit(&rs)) 254 return; 255 256 pr_info("%s[%d]: unhandled exception: ", tsk->comm, task_pid_nr(tsk)); 257 if (esr) 258 pr_cont("%s, ESR 0x%016lx, ", esr_get_class_string(esr), esr); 259 260 pr_cont("%s", str); 261 print_vma_addr(KERN_CONT " in ", regs->pc); 262 pr_cont("\n"); 263 __show_regs(regs); 264 } 265 266 void arm64_force_sig_fault(int signo, int code, unsigned long far, 267 const char *str) 268 { 269 arm64_show_signal(signo, str); 270 if (signo == SIGKILL) 271 force_sig(SIGKILL); 272 else 273 force_sig_fault(signo, code, (void __user *)far); 274 } 275 276 void arm64_force_sig_mceerr(int code, unsigned long far, short lsb, 277 const char *str) 278 { 279 arm64_show_signal(SIGBUS, str); 280 force_sig_mceerr(code, (void __user *)far, lsb); 281 } 282 283 void arm64_force_sig_ptrace_errno_trap(int errno, unsigned long far, 284 const char *str) 285 { 286 arm64_show_signal(SIGTRAP, str); 287 force_sig_ptrace_errno_trap(errno, (void __user *)far); 288 } 289 290 void arm64_notify_die(const char *str, struct pt_regs *regs, 291 int signo, int sicode, unsigned long far, 292 unsigned long err) 293 { 294 if (user_mode(regs)) { 295 WARN_ON(regs != current_pt_regs()); 296 current->thread.fault_address = 0; 297 current->thread.fault_code = err; 298 299 arm64_force_sig_fault(signo, sicode, far, str); 300 } else { 301 die(str, regs, err); 302 } 303 } 304 305 #ifdef CONFIG_COMPAT 306 #define PSTATE_IT_1_0_SHIFT 25 307 #define PSTATE_IT_1_0_MASK (0x3 << PSTATE_IT_1_0_SHIFT) 308 #define PSTATE_IT_7_2_SHIFT 10 309 #define PSTATE_IT_7_2_MASK (0x3f << PSTATE_IT_7_2_SHIFT) 310 311 static u32 compat_get_it_state(struct pt_regs *regs) 312 { 313 u32 it, pstate = regs->pstate; 314 315 it = (pstate & PSTATE_IT_1_0_MASK) >> PSTATE_IT_1_0_SHIFT; 316 it |= ((pstate & PSTATE_IT_7_2_MASK) >> PSTATE_IT_7_2_SHIFT) << 2; 317 318 return it; 319 } 320 321 static void compat_set_it_state(struct pt_regs *regs, u32 it) 322 { 323 u32 pstate_it; 324 325 pstate_it = (it << PSTATE_IT_1_0_SHIFT) & PSTATE_IT_1_0_MASK; 326 pstate_it |= ((it >> 2) << PSTATE_IT_7_2_SHIFT) & PSTATE_IT_7_2_MASK; 327 328 regs->pstate &= ~PSR_AA32_IT_MASK; 329 regs->pstate |= pstate_it; 330 } 331 332 static void advance_itstate(struct pt_regs *regs) 333 { 334 u32 it; 335 336 /* ARM mode */ 337 if (!(regs->pstate & PSR_AA32_T_BIT) || 338 !(regs->pstate & PSR_AA32_IT_MASK)) 339 return; 340 341 it = compat_get_it_state(regs); 342 343 /* 344 * If this is the last instruction of the block, wipe the IT 345 * state. Otherwise advance it. 346 */ 347 if (!(it & 7)) 348 it = 0; 349 else 350 it = (it & 0xe0) | ((it << 1) & 0x1f); 351 352 compat_set_it_state(regs, it); 353 } 354 #else 355 static void advance_itstate(struct pt_regs *regs) 356 { 357 } 358 #endif 359 360 void arm64_skip_faulting_instruction(struct pt_regs *regs, unsigned long size) 361 { 362 regs->pc += size; 363 364 /* 365 * If we were single stepping, we want to get the step exception after 366 * we return from the trap. 367 */ 368 if (user_mode(regs)) 369 user_fastforward_single_step(current); 370 371 if (compat_user_mode(regs)) 372 advance_itstate(regs); 373 else 374 regs->pstate &= ~PSR_BTYPE_MASK; 375 } 376 377 static int user_insn_read(struct pt_regs *regs, u32 *insnp) 378 { 379 u32 instr; 380 unsigned long pc = instruction_pointer(regs); 381 382 if (compat_thumb_mode(regs)) { 383 /* 16-bit Thumb instruction */ 384 __le16 instr_le; 385 if (get_user(instr_le, (__le16 __user *)pc)) 386 return -EFAULT; 387 instr = le16_to_cpu(instr_le); 388 if (aarch32_insn_is_wide(instr)) { 389 u32 instr2; 390 391 if (get_user(instr_le, (__le16 __user *)(pc + 2))) 392 return -EFAULT; 393 instr2 = le16_to_cpu(instr_le); 394 instr = (instr << 16) | instr2; 395 } 396 } else { 397 /* 32-bit ARM instruction */ 398 __le32 instr_le; 399 if (get_user(instr_le, (__le32 __user *)pc)) 400 return -EFAULT; 401 instr = le32_to_cpu(instr_le); 402 } 403 404 *insnp = instr; 405 return 0; 406 } 407 408 void force_signal_inject(int signal, int code, unsigned long address, unsigned long err) 409 { 410 const char *desc; 411 struct pt_regs *regs = current_pt_regs(); 412 413 if (WARN_ON(!user_mode(regs))) 414 return; 415 416 switch (signal) { 417 case SIGILL: 418 desc = "undefined instruction"; 419 break; 420 case SIGSEGV: 421 desc = "illegal memory access"; 422 break; 423 default: 424 desc = "unknown or unrecoverable error"; 425 break; 426 } 427 428 /* Force signals we don't understand to SIGKILL */ 429 if (WARN_ON(signal != SIGKILL && 430 siginfo_layout(signal, code) != SIL_FAULT)) { 431 signal = SIGKILL; 432 } 433 434 arm64_notify_die(desc, regs, signal, code, address, err); 435 } 436 437 /* 438 * Set up process info to signal segmentation fault - called on access error. 439 */ 440 void arm64_notify_segfault(unsigned long addr) 441 { 442 int code; 443 444 mmap_read_lock(current->mm); 445 if (find_vma(current->mm, untagged_addr(addr)) == NULL) 446 code = SEGV_MAPERR; 447 else 448 code = SEGV_ACCERR; 449 mmap_read_unlock(current->mm); 450 451 force_signal_inject(SIGSEGV, code, addr, 0); 452 } 453 454 void do_el0_undef(struct pt_regs *regs, unsigned long esr) 455 { 456 u32 insn; 457 458 /* check for AArch32 breakpoint instructions */ 459 if (!aarch32_break_handler(regs)) 460 return; 461 462 if (user_insn_read(regs, &insn)) 463 goto out_err; 464 465 if (try_emulate_mrs(regs, insn)) 466 return; 467 468 if (try_emulate_armv8_deprecated(regs, insn)) 469 return; 470 471 out_err: 472 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0); 473 } 474 475 void do_el1_undef(struct pt_regs *regs, unsigned long esr) 476 { 477 u32 insn; 478 479 if (aarch64_insn_read((void *)regs->pc, &insn)) 480 goto out_err; 481 482 if (try_emulate_el1_ssbs(regs, insn)) 483 return; 484 485 out_err: 486 die("Oops - Undefined instruction", regs, esr); 487 } 488 489 void do_el0_bti(struct pt_regs *regs) 490 { 491 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0); 492 } 493 494 void do_el1_bti(struct pt_regs *regs, unsigned long esr) 495 { 496 if (efi_runtime_fixup_exception(regs, "BTI violation")) { 497 regs->pstate &= ~PSR_BTYPE_MASK; 498 return; 499 } 500 die("Oops - BTI", regs, esr); 501 } 502 503 void do_el0_fpac(struct pt_regs *regs, unsigned long esr) 504 { 505 force_signal_inject(SIGILL, ILL_ILLOPN, regs->pc, esr); 506 } 507 508 void do_el1_fpac(struct pt_regs *regs, unsigned long esr) 509 { 510 /* 511 * Unexpected FPAC exception in the kernel: kill the task before it 512 * does any more harm. 513 */ 514 die("Oops - FPAC", regs, esr); 515 } 516 517 void do_el0_mops(struct pt_regs *regs, unsigned long esr) 518 { 519 arm64_mops_reset_regs(®s->user_regs, esr); 520 521 /* 522 * If single stepping then finish the step before executing the 523 * prologue instruction. 524 */ 525 user_fastforward_single_step(current); 526 } 527 528 #define __user_cache_maint(insn, address, res) \ 529 if (address >= TASK_SIZE_MAX) { \ 530 res = -EFAULT; \ 531 } else { \ 532 uaccess_ttbr0_enable(); \ 533 asm volatile ( \ 534 "1: " insn ", %1\n" \ 535 " mov %w0, #0\n" \ 536 "2:\n" \ 537 _ASM_EXTABLE_UACCESS_ERR(1b, 2b, %w0) \ 538 : "=r" (res) \ 539 : "r" (address)); \ 540 uaccess_ttbr0_disable(); \ 541 } 542 543 static void user_cache_maint_handler(unsigned long esr, struct pt_regs *regs) 544 { 545 unsigned long tagged_address, address; 546 int rt = ESR_ELx_SYS64_ISS_RT(esr); 547 int crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT; 548 int ret = 0; 549 550 tagged_address = pt_regs_read_reg(regs, rt); 551 address = untagged_addr(tagged_address); 552 553 switch (crm) { 554 case ESR_ELx_SYS64_ISS_CRM_DC_CVAU: /* DC CVAU, gets promoted */ 555 __user_cache_maint("dc civac", address, ret); 556 break; 557 case ESR_ELx_SYS64_ISS_CRM_DC_CVAC: /* DC CVAC, gets promoted */ 558 __user_cache_maint("dc civac", address, ret); 559 break; 560 case ESR_ELx_SYS64_ISS_CRM_DC_CVADP: /* DC CVADP */ 561 __user_cache_maint("sys 3, c7, c13, 1", address, ret); 562 break; 563 case ESR_ELx_SYS64_ISS_CRM_DC_CVAP: /* DC CVAP */ 564 __user_cache_maint("sys 3, c7, c12, 1", address, ret); 565 break; 566 case ESR_ELx_SYS64_ISS_CRM_DC_CIVAC: /* DC CIVAC */ 567 __user_cache_maint("dc civac", address, ret); 568 break; 569 case ESR_ELx_SYS64_ISS_CRM_IC_IVAU: /* IC IVAU */ 570 __user_cache_maint("ic ivau", address, ret); 571 break; 572 default: 573 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0); 574 return; 575 } 576 577 if (ret) 578 arm64_notify_segfault(tagged_address); 579 else 580 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); 581 } 582 583 static void ctr_read_handler(unsigned long esr, struct pt_regs *regs) 584 { 585 int rt = ESR_ELx_SYS64_ISS_RT(esr); 586 unsigned long val = arm64_ftr_reg_user_value(&arm64_ftr_reg_ctrel0); 587 588 if (cpus_have_final_cap(ARM64_WORKAROUND_1542419)) { 589 /* Hide DIC so that we can trap the unnecessary maintenance...*/ 590 val &= ~BIT(CTR_EL0_DIC_SHIFT); 591 592 /* ... and fake IminLine to reduce the number of traps. */ 593 val &= ~CTR_EL0_IminLine_MASK; 594 val |= (PAGE_SHIFT - 2) & CTR_EL0_IminLine_MASK; 595 } 596 597 pt_regs_write_reg(regs, rt, val); 598 599 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); 600 } 601 602 static void cntvct_read_handler(unsigned long esr, struct pt_regs *regs) 603 { 604 int rt = ESR_ELx_SYS64_ISS_RT(esr); 605 606 pt_regs_write_reg(regs, rt, arch_timer_read_counter()); 607 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); 608 } 609 610 static void cntfrq_read_handler(unsigned long esr, struct pt_regs *regs) 611 { 612 int rt = ESR_ELx_SYS64_ISS_RT(esr); 613 614 pt_regs_write_reg(regs, rt, arch_timer_get_rate()); 615 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); 616 } 617 618 static void mrs_handler(unsigned long esr, struct pt_regs *regs) 619 { 620 u32 sysreg, rt; 621 622 rt = ESR_ELx_SYS64_ISS_RT(esr); 623 sysreg = esr_sys64_to_sysreg(esr); 624 625 if (do_emulate_mrs(regs, sysreg, rt) != 0) 626 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0); 627 } 628 629 static void wfi_handler(unsigned long esr, struct pt_regs *regs) 630 { 631 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); 632 } 633 634 struct sys64_hook { 635 unsigned long esr_mask; 636 unsigned long esr_val; 637 void (*handler)(unsigned long esr, struct pt_regs *regs); 638 }; 639 640 static const struct sys64_hook sys64_hooks[] = { 641 { 642 .esr_mask = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_MASK, 643 .esr_val = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_VAL, 644 .handler = user_cache_maint_handler, 645 }, 646 { 647 /* Trap read access to CTR_EL0 */ 648 .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK, 649 .esr_val = ESR_ELx_SYS64_ISS_SYS_CTR_READ, 650 .handler = ctr_read_handler, 651 }, 652 { 653 /* Trap read access to CNTVCT_EL0 */ 654 .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK, 655 .esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCT, 656 .handler = cntvct_read_handler, 657 }, 658 { 659 /* Trap read access to CNTVCTSS_EL0 */ 660 .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK, 661 .esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCTSS, 662 .handler = cntvct_read_handler, 663 }, 664 { 665 /* Trap read access to CNTFRQ_EL0 */ 666 .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK, 667 .esr_val = ESR_ELx_SYS64_ISS_SYS_CNTFRQ, 668 .handler = cntfrq_read_handler, 669 }, 670 { 671 /* Trap read access to CPUID registers */ 672 .esr_mask = ESR_ELx_SYS64_ISS_SYS_MRS_OP_MASK, 673 .esr_val = ESR_ELx_SYS64_ISS_SYS_MRS_OP_VAL, 674 .handler = mrs_handler, 675 }, 676 { 677 /* Trap WFI instructions executed in userspace */ 678 .esr_mask = ESR_ELx_WFx_MASK, 679 .esr_val = ESR_ELx_WFx_WFI_VAL, 680 .handler = wfi_handler, 681 }, 682 {}, 683 }; 684 685 #ifdef CONFIG_COMPAT 686 static bool cp15_cond_valid(unsigned long esr, struct pt_regs *regs) 687 { 688 int cond; 689 690 /* Only a T32 instruction can trap without CV being set */ 691 if (!(esr & ESR_ELx_CV)) { 692 u32 it; 693 694 it = compat_get_it_state(regs); 695 if (!it) 696 return true; 697 698 cond = it >> 4; 699 } else { 700 cond = (esr & ESR_ELx_COND_MASK) >> ESR_ELx_COND_SHIFT; 701 } 702 703 return aarch32_opcode_cond_checks[cond](regs->pstate); 704 } 705 706 static void compat_cntfrq_read_handler(unsigned long esr, struct pt_regs *regs) 707 { 708 int reg = (esr & ESR_ELx_CP15_32_ISS_RT_MASK) >> ESR_ELx_CP15_32_ISS_RT_SHIFT; 709 710 pt_regs_write_reg(regs, reg, arch_timer_get_rate()); 711 arm64_skip_faulting_instruction(regs, 4); 712 } 713 714 static const struct sys64_hook cp15_32_hooks[] = { 715 { 716 .esr_mask = ESR_ELx_CP15_32_ISS_SYS_MASK, 717 .esr_val = ESR_ELx_CP15_32_ISS_SYS_CNTFRQ, 718 .handler = compat_cntfrq_read_handler, 719 }, 720 {}, 721 }; 722 723 static void compat_cntvct_read_handler(unsigned long esr, struct pt_regs *regs) 724 { 725 int rt = (esr & ESR_ELx_CP15_64_ISS_RT_MASK) >> ESR_ELx_CP15_64_ISS_RT_SHIFT; 726 int rt2 = (esr & ESR_ELx_CP15_64_ISS_RT2_MASK) >> ESR_ELx_CP15_64_ISS_RT2_SHIFT; 727 u64 val = arch_timer_read_counter(); 728 729 pt_regs_write_reg(regs, rt, lower_32_bits(val)); 730 pt_regs_write_reg(regs, rt2, upper_32_bits(val)); 731 arm64_skip_faulting_instruction(regs, 4); 732 } 733 734 static const struct sys64_hook cp15_64_hooks[] = { 735 { 736 .esr_mask = ESR_ELx_CP15_64_ISS_SYS_MASK, 737 .esr_val = ESR_ELx_CP15_64_ISS_SYS_CNTVCT, 738 .handler = compat_cntvct_read_handler, 739 }, 740 { 741 .esr_mask = ESR_ELx_CP15_64_ISS_SYS_MASK, 742 .esr_val = ESR_ELx_CP15_64_ISS_SYS_CNTVCTSS, 743 .handler = compat_cntvct_read_handler, 744 }, 745 {}, 746 }; 747 748 void do_el0_cp15(unsigned long esr, struct pt_regs *regs) 749 { 750 const struct sys64_hook *hook, *hook_base; 751 752 if (!cp15_cond_valid(esr, regs)) { 753 /* 754 * There is no T16 variant of a CP access, so we 755 * always advance PC by 4 bytes. 756 */ 757 arm64_skip_faulting_instruction(regs, 4); 758 return; 759 } 760 761 switch (ESR_ELx_EC(esr)) { 762 case ESR_ELx_EC_CP15_32: 763 hook_base = cp15_32_hooks; 764 break; 765 case ESR_ELx_EC_CP15_64: 766 hook_base = cp15_64_hooks; 767 break; 768 default: 769 do_el0_undef(regs, esr); 770 return; 771 } 772 773 for (hook = hook_base; hook->handler; hook++) 774 if ((hook->esr_mask & esr) == hook->esr_val) { 775 hook->handler(esr, regs); 776 return; 777 } 778 779 /* 780 * New cp15 instructions may previously have been undefined at 781 * EL0. Fall back to our usual undefined instruction handler 782 * so that we handle these consistently. 783 */ 784 do_el0_undef(regs, esr); 785 } 786 #endif 787 788 void do_el0_sys(unsigned long esr, struct pt_regs *regs) 789 { 790 const struct sys64_hook *hook; 791 792 for (hook = sys64_hooks; hook->handler; hook++) 793 if ((hook->esr_mask & esr) == hook->esr_val) { 794 hook->handler(esr, regs); 795 return; 796 } 797 798 /* 799 * New SYS instructions may previously have been undefined at EL0. Fall 800 * back to our usual undefined instruction handler so that we handle 801 * these consistently. 802 */ 803 do_el0_undef(regs, esr); 804 } 805 806 static const char *esr_class_str[] = { 807 [0 ... ESR_ELx_EC_MAX] = "UNRECOGNIZED EC", 808 [ESR_ELx_EC_UNKNOWN] = "Unknown/Uncategorized", 809 [ESR_ELx_EC_WFx] = "WFI/WFE", 810 [ESR_ELx_EC_CP15_32] = "CP15 MCR/MRC", 811 [ESR_ELx_EC_CP15_64] = "CP15 MCRR/MRRC", 812 [ESR_ELx_EC_CP14_MR] = "CP14 MCR/MRC", 813 [ESR_ELx_EC_CP14_LS] = "CP14 LDC/STC", 814 [ESR_ELx_EC_FP_ASIMD] = "ASIMD", 815 [ESR_ELx_EC_CP10_ID] = "CP10 MRC/VMRS", 816 [ESR_ELx_EC_PAC] = "PAC", 817 [ESR_ELx_EC_CP14_64] = "CP14 MCRR/MRRC", 818 [ESR_ELx_EC_BTI] = "BTI", 819 [ESR_ELx_EC_ILL] = "PSTATE.IL", 820 [ESR_ELx_EC_SVC32] = "SVC (AArch32)", 821 [ESR_ELx_EC_HVC32] = "HVC (AArch32)", 822 [ESR_ELx_EC_SMC32] = "SMC (AArch32)", 823 [ESR_ELx_EC_SVC64] = "SVC (AArch64)", 824 [ESR_ELx_EC_HVC64] = "HVC (AArch64)", 825 [ESR_ELx_EC_SMC64] = "SMC (AArch64)", 826 [ESR_ELx_EC_SYS64] = "MSR/MRS (AArch64)", 827 [ESR_ELx_EC_SVE] = "SVE", 828 [ESR_ELx_EC_ERET] = "ERET/ERETAA/ERETAB", 829 [ESR_ELx_EC_FPAC] = "FPAC", 830 [ESR_ELx_EC_SME] = "SME", 831 [ESR_ELx_EC_IMP_DEF] = "EL3 IMP DEF", 832 [ESR_ELx_EC_IABT_LOW] = "IABT (lower EL)", 833 [ESR_ELx_EC_IABT_CUR] = "IABT (current EL)", 834 [ESR_ELx_EC_PC_ALIGN] = "PC Alignment", 835 [ESR_ELx_EC_DABT_LOW] = "DABT (lower EL)", 836 [ESR_ELx_EC_DABT_CUR] = "DABT (current EL)", 837 [ESR_ELx_EC_SP_ALIGN] = "SP Alignment", 838 [ESR_ELx_EC_MOPS] = "MOPS", 839 [ESR_ELx_EC_FP_EXC32] = "FP (AArch32)", 840 [ESR_ELx_EC_FP_EXC64] = "FP (AArch64)", 841 [ESR_ELx_EC_SERROR] = "SError", 842 [ESR_ELx_EC_BREAKPT_LOW] = "Breakpoint (lower EL)", 843 [ESR_ELx_EC_BREAKPT_CUR] = "Breakpoint (current EL)", 844 [ESR_ELx_EC_SOFTSTP_LOW] = "Software Step (lower EL)", 845 [ESR_ELx_EC_SOFTSTP_CUR] = "Software Step (current EL)", 846 [ESR_ELx_EC_WATCHPT_LOW] = "Watchpoint (lower EL)", 847 [ESR_ELx_EC_WATCHPT_CUR] = "Watchpoint (current EL)", 848 [ESR_ELx_EC_BKPT32] = "BKPT (AArch32)", 849 [ESR_ELx_EC_VECTOR32] = "Vector catch (AArch32)", 850 [ESR_ELx_EC_BRK64] = "BRK (AArch64)", 851 }; 852 853 const char *esr_get_class_string(unsigned long esr) 854 { 855 return esr_class_str[ESR_ELx_EC(esr)]; 856 } 857 858 /* 859 * bad_el0_sync handles unexpected, but potentially recoverable synchronous 860 * exceptions taken from EL0. 861 */ 862 void bad_el0_sync(struct pt_regs *regs, int reason, unsigned long esr) 863 { 864 unsigned long pc = instruction_pointer(regs); 865 866 current->thread.fault_address = 0; 867 current->thread.fault_code = esr; 868 869 arm64_force_sig_fault(SIGILL, ILL_ILLOPC, pc, 870 "Bad EL0 synchronous exception"); 871 } 872 873 #ifdef CONFIG_VMAP_STACK 874 875 DEFINE_PER_CPU(unsigned long [OVERFLOW_STACK_SIZE/sizeof(long)], overflow_stack) 876 __aligned(16); 877 878 void __noreturn panic_bad_stack(struct pt_regs *regs, unsigned long esr, unsigned long far) 879 { 880 unsigned long tsk_stk = (unsigned long)current->stack; 881 unsigned long irq_stk = (unsigned long)this_cpu_read(irq_stack_ptr); 882 unsigned long ovf_stk = (unsigned long)this_cpu_ptr(overflow_stack); 883 884 console_verbose(); 885 pr_emerg("Insufficient stack space to handle exception!"); 886 887 pr_emerg("ESR: 0x%016lx -- %s\n", esr, esr_get_class_string(esr)); 888 pr_emerg("FAR: 0x%016lx\n", far); 889 890 pr_emerg("Task stack: [0x%016lx..0x%016lx]\n", 891 tsk_stk, tsk_stk + THREAD_SIZE); 892 pr_emerg("IRQ stack: [0x%016lx..0x%016lx]\n", 893 irq_stk, irq_stk + IRQ_STACK_SIZE); 894 pr_emerg("Overflow stack: [0x%016lx..0x%016lx]\n", 895 ovf_stk, ovf_stk + OVERFLOW_STACK_SIZE); 896 897 __show_regs(regs); 898 899 /* 900 * We use nmi_panic to limit the potential for recusive overflows, and 901 * to get a better stack trace. 902 */ 903 nmi_panic(NULL, "kernel stack overflow"); 904 cpu_park_loop(); 905 } 906 #endif 907 908 void __noreturn arm64_serror_panic(struct pt_regs *regs, unsigned long esr) 909 { 910 console_verbose(); 911 912 pr_crit("SError Interrupt on CPU%d, code 0x%016lx -- %s\n", 913 smp_processor_id(), esr, esr_get_class_string(esr)); 914 if (regs) 915 __show_regs(regs); 916 917 nmi_panic(regs, "Asynchronous SError Interrupt"); 918 919 cpu_park_loop(); 920 } 921 922 bool arm64_is_fatal_ras_serror(struct pt_regs *regs, unsigned long esr) 923 { 924 unsigned long aet = arm64_ras_serror_get_severity(esr); 925 926 switch (aet) { 927 case ESR_ELx_AET_CE: /* corrected error */ 928 case ESR_ELx_AET_UEO: /* restartable, not yet consumed */ 929 /* 930 * The CPU can make progress. We may take UEO again as 931 * a more severe error. 932 */ 933 return false; 934 935 case ESR_ELx_AET_UEU: /* Uncorrected Unrecoverable */ 936 case ESR_ELx_AET_UER: /* Uncorrected Recoverable */ 937 /* 938 * The CPU can't make progress. The exception may have 939 * been imprecise. 940 * 941 * Neoverse-N1 #1349291 means a non-KVM SError reported as 942 * Unrecoverable should be treated as Uncontainable. We 943 * call arm64_serror_panic() in both cases. 944 */ 945 return true; 946 947 case ESR_ELx_AET_UC: /* Uncontainable or Uncategorized error */ 948 default: 949 /* Error has been silently propagated */ 950 arm64_serror_panic(regs, esr); 951 } 952 } 953 954 void do_serror(struct pt_regs *regs, unsigned long esr) 955 { 956 /* non-RAS errors are not containable */ 957 if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(regs, esr)) 958 arm64_serror_panic(regs, esr); 959 } 960 961 /* GENERIC_BUG traps */ 962 #ifdef CONFIG_GENERIC_BUG 963 int is_valid_bugaddr(unsigned long addr) 964 { 965 /* 966 * bug_handler() only called for BRK #BUG_BRK_IMM. 967 * So the answer is trivial -- any spurious instances with no 968 * bug table entry will be rejected by report_bug() and passed 969 * back to the debug-monitors code and handled as a fatal 970 * unexpected debug exception. 971 */ 972 return 1; 973 } 974 #endif 975 976 static int bug_handler(struct pt_regs *regs, unsigned long esr) 977 { 978 switch (report_bug(regs->pc, regs)) { 979 case BUG_TRAP_TYPE_BUG: 980 die("Oops - BUG", regs, esr); 981 break; 982 983 case BUG_TRAP_TYPE_WARN: 984 break; 985 986 default: 987 /* unknown/unrecognised bug trap type */ 988 return DBG_HOOK_ERROR; 989 } 990 991 /* If thread survives, skip over the BUG instruction and continue: */ 992 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); 993 return DBG_HOOK_HANDLED; 994 } 995 996 static struct break_hook bug_break_hook = { 997 .fn = bug_handler, 998 .imm = BUG_BRK_IMM, 999 }; 1000 1001 #ifdef CONFIG_CFI_CLANG 1002 static int cfi_handler(struct pt_regs *regs, unsigned long esr) 1003 { 1004 unsigned long target; 1005 u32 type; 1006 1007 target = pt_regs_read_reg(regs, FIELD_GET(CFI_BRK_IMM_TARGET, esr)); 1008 type = (u32)pt_regs_read_reg(regs, FIELD_GET(CFI_BRK_IMM_TYPE, esr)); 1009 1010 switch (report_cfi_failure(regs, regs->pc, &target, type)) { 1011 case BUG_TRAP_TYPE_BUG: 1012 die("Oops - CFI", regs, esr); 1013 break; 1014 1015 case BUG_TRAP_TYPE_WARN: 1016 break; 1017 1018 default: 1019 return DBG_HOOK_ERROR; 1020 } 1021 1022 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); 1023 return DBG_HOOK_HANDLED; 1024 } 1025 1026 static struct break_hook cfi_break_hook = { 1027 .fn = cfi_handler, 1028 .imm = CFI_BRK_IMM_BASE, 1029 .mask = CFI_BRK_IMM_MASK, 1030 }; 1031 #endif /* CONFIG_CFI_CLANG */ 1032 1033 static int reserved_fault_handler(struct pt_regs *regs, unsigned long esr) 1034 { 1035 pr_err("%s generated an invalid instruction at %pS!\n", 1036 "Kernel text patching", 1037 (void *)instruction_pointer(regs)); 1038 1039 /* We cannot handle this */ 1040 return DBG_HOOK_ERROR; 1041 } 1042 1043 static struct break_hook fault_break_hook = { 1044 .fn = reserved_fault_handler, 1045 .imm = FAULT_BRK_IMM, 1046 }; 1047 1048 #ifdef CONFIG_KASAN_SW_TAGS 1049 1050 #define KASAN_ESR_RECOVER 0x20 1051 #define KASAN_ESR_WRITE 0x10 1052 #define KASAN_ESR_SIZE_MASK 0x0f 1053 #define KASAN_ESR_SIZE(esr) (1 << ((esr) & KASAN_ESR_SIZE_MASK)) 1054 1055 static int kasan_handler(struct pt_regs *regs, unsigned long esr) 1056 { 1057 bool recover = esr & KASAN_ESR_RECOVER; 1058 bool write = esr & KASAN_ESR_WRITE; 1059 size_t size = KASAN_ESR_SIZE(esr); 1060 void *addr = (void *)regs->regs[0]; 1061 u64 pc = regs->pc; 1062 1063 kasan_report(addr, size, write, pc); 1064 1065 /* 1066 * The instrumentation allows to control whether we can proceed after 1067 * a crash was detected. This is done by passing the -recover flag to 1068 * the compiler. Disabling recovery allows to generate more compact 1069 * code. 1070 * 1071 * Unfortunately disabling recovery doesn't work for the kernel right 1072 * now. KASAN reporting is disabled in some contexts (for example when 1073 * the allocator accesses slab object metadata; this is controlled by 1074 * current->kasan_depth). All these accesses are detected by the tool, 1075 * even though the reports for them are not printed. 1076 * 1077 * This is something that might be fixed at some point in the future. 1078 */ 1079 if (!recover) 1080 die("Oops - KASAN", regs, esr); 1081 1082 /* If thread survives, skip over the brk instruction and continue: */ 1083 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); 1084 return DBG_HOOK_HANDLED; 1085 } 1086 1087 static struct break_hook kasan_break_hook = { 1088 .fn = kasan_handler, 1089 .imm = KASAN_BRK_IMM, 1090 .mask = KASAN_BRK_MASK, 1091 }; 1092 #endif 1093 1094 #ifdef CONFIG_UBSAN_TRAP 1095 static int ubsan_handler(struct pt_regs *regs, unsigned long esr) 1096 { 1097 die(report_ubsan_failure(regs, esr & UBSAN_BRK_MASK), regs, esr); 1098 return DBG_HOOK_HANDLED; 1099 } 1100 1101 static struct break_hook ubsan_break_hook = { 1102 .fn = ubsan_handler, 1103 .imm = UBSAN_BRK_IMM, 1104 .mask = UBSAN_BRK_MASK, 1105 }; 1106 #endif 1107 1108 /* 1109 * Initial handler for AArch64 BRK exceptions 1110 * This handler only used until debug_traps_init(). 1111 */ 1112 int __init early_brk64(unsigned long addr, unsigned long esr, 1113 struct pt_regs *regs) 1114 { 1115 #ifdef CONFIG_CFI_CLANG 1116 if (esr_is_cfi_brk(esr)) 1117 return cfi_handler(regs, esr) != DBG_HOOK_HANDLED; 1118 #endif 1119 #ifdef CONFIG_KASAN_SW_TAGS 1120 if ((esr_brk_comment(esr) & ~KASAN_BRK_MASK) == KASAN_BRK_IMM) 1121 return kasan_handler(regs, esr) != DBG_HOOK_HANDLED; 1122 #endif 1123 #ifdef CONFIG_UBSAN_TRAP 1124 if ((esr_brk_comment(esr) & ~UBSAN_BRK_MASK) == UBSAN_BRK_IMM) 1125 return ubsan_handler(regs, esr) != DBG_HOOK_HANDLED; 1126 #endif 1127 return bug_handler(regs, esr) != DBG_HOOK_HANDLED; 1128 } 1129 1130 void __init trap_init(void) 1131 { 1132 register_kernel_break_hook(&bug_break_hook); 1133 #ifdef CONFIG_CFI_CLANG 1134 register_kernel_break_hook(&cfi_break_hook); 1135 #endif 1136 register_kernel_break_hook(&fault_break_hook); 1137 #ifdef CONFIG_KASAN_SW_TAGS 1138 register_kernel_break_hook(&kasan_break_hook); 1139 #endif 1140 #ifdef CONFIG_UBSAN_TRAP 1141 register_kernel_break_hook(&ubsan_break_hook); 1142 #endif 1143 debug_traps_init(); 1144 } 1145