xref: /linux/arch/arm64/kernel/topology.c (revision c79c3c34f75d72a066e292b10aa50fc758c97c89)
1 /*
2  * arch/arm64/kernel/topology.c
3  *
4  * Copyright (C) 2011,2013,2014 Linaro Limited.
5  *
6  * Based on the arm32 version written by Vincent Guittot in turn based on
7  * arch/sh/kernel/topology.c
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 
14 #include <linux/acpi.h>
15 #include <linux/arch_topology.h>
16 #include <linux/cacheinfo.h>
17 #include <linux/cpufreq.h>
18 #include <linux/init.h>
19 #include <linux/percpu.h>
20 
21 #include <asm/cpu.h>
22 #include <asm/cputype.h>
23 #include <asm/topology.h>
24 
25 void store_cpu_topology(unsigned int cpuid)
26 {
27 	struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
28 	u64 mpidr;
29 
30 	if (cpuid_topo->package_id != -1)
31 		goto topology_populated;
32 
33 	mpidr = read_cpuid_mpidr();
34 
35 	/* Uniprocessor systems can rely on default topology values */
36 	if (mpidr & MPIDR_UP_BITMASK)
37 		return;
38 
39 	/*
40 	 * This would be the place to create cpu topology based on MPIDR.
41 	 *
42 	 * However, it cannot be trusted to depict the actual topology; some
43 	 * pieces of the architecture enforce an artificial cap on Aff0 values
44 	 * (e.g. GICv3's ICC_SGI1R_EL1 limits it to 15), leading to an
45 	 * artificial cycling of Aff1, Aff2 and Aff3 values. IOW, these end up
46 	 * having absolutely no relationship to the actual underlying system
47 	 * topology, and cannot be reasonably used as core / package ID.
48 	 *
49 	 * If the MT bit is set, Aff0 *could* be used to define a thread ID, but
50 	 * we still wouldn't be able to obtain a sane core ID. This means we
51 	 * need to entirely ignore MPIDR for any topology deduction.
52 	 */
53 	cpuid_topo->thread_id  = -1;
54 	cpuid_topo->core_id    = cpuid;
55 	cpuid_topo->package_id = cpu_to_node(cpuid);
56 
57 	pr_debug("CPU%u: cluster %d core %d thread %d mpidr %#016llx\n",
58 		 cpuid, cpuid_topo->package_id, cpuid_topo->core_id,
59 		 cpuid_topo->thread_id, mpidr);
60 
61 topology_populated:
62 	update_siblings_masks(cpuid);
63 }
64 
65 #ifdef CONFIG_ACPI
66 static bool __init acpi_cpu_is_threaded(int cpu)
67 {
68 	int is_threaded = acpi_pptt_cpu_is_thread(cpu);
69 
70 	/*
71 	 * if the PPTT doesn't have thread information, assume a homogeneous
72 	 * machine and return the current CPU's thread state.
73 	 */
74 	if (is_threaded < 0)
75 		is_threaded = read_cpuid_mpidr() & MPIDR_MT_BITMASK;
76 
77 	return !!is_threaded;
78 }
79 
80 /*
81  * Propagate the topology information of the processor_topology_node tree to the
82  * cpu_topology array.
83  */
84 int __init parse_acpi_topology(void)
85 {
86 	int cpu, topology_id;
87 
88 	if (acpi_disabled)
89 		return 0;
90 
91 	for_each_possible_cpu(cpu) {
92 		int i, cache_id;
93 
94 		topology_id = find_acpi_cpu_topology(cpu, 0);
95 		if (topology_id < 0)
96 			return topology_id;
97 
98 		if (acpi_cpu_is_threaded(cpu)) {
99 			cpu_topology[cpu].thread_id = topology_id;
100 			topology_id = find_acpi_cpu_topology(cpu, 1);
101 			cpu_topology[cpu].core_id   = topology_id;
102 		} else {
103 			cpu_topology[cpu].thread_id  = -1;
104 			cpu_topology[cpu].core_id    = topology_id;
105 		}
106 		topology_id = find_acpi_cpu_topology_package(cpu);
107 		cpu_topology[cpu].package_id = topology_id;
108 
109 		i = acpi_find_last_cache_level(cpu);
110 
111 		if (i > 0) {
112 			/*
113 			 * this is the only part of cpu_topology that has
114 			 * a direct relationship with the cache topology
115 			 */
116 			cache_id = find_acpi_cpu_cache_topology(cpu, i);
117 			if (cache_id > 0)
118 				cpu_topology[cpu].llc_id = cache_id;
119 		}
120 	}
121 
122 	return 0;
123 }
124 #endif
125 
126 #ifdef CONFIG_ARM64_AMU_EXTN
127 #define read_corecnt()	read_sysreg_s(SYS_AMEVCNTR0_CORE_EL0)
128 #define read_constcnt()	read_sysreg_s(SYS_AMEVCNTR0_CONST_EL0)
129 #else
130 #define read_corecnt()	(0UL)
131 #define read_constcnt()	(0UL)
132 #endif
133 
134 #undef pr_fmt
135 #define pr_fmt(fmt) "AMU: " fmt
136 
137 static DEFINE_PER_CPU_READ_MOSTLY(unsigned long, arch_max_freq_scale);
138 static DEFINE_PER_CPU(u64, arch_const_cycles_prev);
139 static DEFINE_PER_CPU(u64, arch_core_cycles_prev);
140 static cpumask_var_t amu_fie_cpus;
141 
142 void update_freq_counters_refs(void)
143 {
144 	this_cpu_write(arch_core_cycles_prev, read_corecnt());
145 	this_cpu_write(arch_const_cycles_prev, read_constcnt());
146 }
147 
148 static inline bool freq_counters_valid(int cpu)
149 {
150 	if ((cpu >= nr_cpu_ids) || !cpumask_test_cpu(cpu, cpu_present_mask))
151 		return false;
152 
153 	if (!cpu_has_amu_feat(cpu)) {
154 		pr_debug("CPU%d: counters are not supported.\n", cpu);
155 		return false;
156 	}
157 
158 	if (unlikely(!per_cpu(arch_const_cycles_prev, cpu) ||
159 		     !per_cpu(arch_core_cycles_prev, cpu))) {
160 		pr_debug("CPU%d: cycle counters are not enabled.\n", cpu);
161 		return false;
162 	}
163 
164 	return true;
165 }
166 
167 static int freq_inv_set_max_ratio(int cpu, u64 max_rate, u64 ref_rate)
168 {
169 	u64 ratio;
170 
171 	if (unlikely(!max_rate || !ref_rate)) {
172 		pr_debug("CPU%d: invalid maximum or reference frequency.\n",
173 			 cpu);
174 		return -EINVAL;
175 	}
176 
177 	/*
178 	 * Pre-compute the fixed ratio between the frequency of the constant
179 	 * reference counter and the maximum frequency of the CPU.
180 	 *
181 	 *			    ref_rate
182 	 * arch_max_freq_scale =   ---------- * SCHED_CAPACITY_SCALE²
183 	 *			    max_rate
184 	 *
185 	 * We use a factor of 2 * SCHED_CAPACITY_SHIFT -> SCHED_CAPACITY_SCALE²
186 	 * in order to ensure a good resolution for arch_max_freq_scale for
187 	 * very low reference frequencies (down to the KHz range which should
188 	 * be unlikely).
189 	 */
190 	ratio = ref_rate << (2 * SCHED_CAPACITY_SHIFT);
191 	ratio = div64_u64(ratio, max_rate);
192 	if (!ratio) {
193 		WARN_ONCE(1, "Reference frequency too low.\n");
194 		return -EINVAL;
195 	}
196 
197 	per_cpu(arch_max_freq_scale, cpu) = (unsigned long)ratio;
198 
199 	return 0;
200 }
201 
202 static DEFINE_STATIC_KEY_FALSE(amu_fie_key);
203 #define amu_freq_invariant() static_branch_unlikely(&amu_fie_key)
204 
205 static void amu_fie_setup(const struct cpumask *cpus)
206 {
207 	bool invariant;
208 	int cpu;
209 
210 	/* We are already set since the last insmod of cpufreq driver */
211 	if (unlikely(cpumask_subset(cpus, amu_fie_cpus)))
212 		return;
213 
214 	for_each_cpu(cpu, cpus) {
215 		if (!freq_counters_valid(cpu) ||
216 		    freq_inv_set_max_ratio(cpu,
217 					   cpufreq_get_hw_max_freq(cpu) * 1000,
218 					   arch_timer_get_rate()))
219 			return;
220 	}
221 
222 	cpumask_or(amu_fie_cpus, amu_fie_cpus, cpus);
223 
224 	invariant = topology_scale_freq_invariant();
225 
226 	/* We aren't fully invariant yet */
227 	if (!invariant && !cpumask_equal(amu_fie_cpus, cpu_present_mask))
228 		return;
229 
230 	static_branch_enable(&amu_fie_key);
231 
232 	pr_debug("CPUs[%*pbl]: counters will be used for FIE.",
233 		 cpumask_pr_args(cpus));
234 
235 	/*
236 	 * Task scheduler behavior depends on frequency invariance support,
237 	 * either cpufreq or counter driven. If the support status changes as
238 	 * a result of counter initialisation and use, retrigger the build of
239 	 * scheduling domains to ensure the information is propagated properly.
240 	 */
241 	if (!invariant)
242 		rebuild_sched_domains_energy();
243 }
244 
245 static int init_amu_fie_callback(struct notifier_block *nb, unsigned long val,
246 				 void *data)
247 {
248 	struct cpufreq_policy *policy = data;
249 
250 	if (val == CPUFREQ_CREATE_POLICY)
251 		amu_fie_setup(policy->related_cpus);
252 
253 	/*
254 	 * We don't need to handle CPUFREQ_REMOVE_POLICY event as the AMU
255 	 * counters don't have any dependency on cpufreq driver once we have
256 	 * initialized AMU support and enabled invariance. The AMU counters will
257 	 * keep on working just fine in the absence of the cpufreq driver, and
258 	 * for the CPUs for which there are no counters available, the last set
259 	 * value of freq_scale will remain valid as that is the frequency those
260 	 * CPUs are running at.
261 	 */
262 
263 	return 0;
264 }
265 
266 static struct notifier_block init_amu_fie_notifier = {
267 	.notifier_call = init_amu_fie_callback,
268 };
269 
270 static int __init init_amu_fie(void)
271 {
272 	int ret;
273 
274 	if (!zalloc_cpumask_var(&amu_fie_cpus, GFP_KERNEL))
275 		return -ENOMEM;
276 
277 	ret = cpufreq_register_notifier(&init_amu_fie_notifier,
278 					CPUFREQ_POLICY_NOTIFIER);
279 	if (ret)
280 		free_cpumask_var(amu_fie_cpus);
281 
282 	return ret;
283 }
284 core_initcall(init_amu_fie);
285 
286 bool arch_freq_counters_available(const struct cpumask *cpus)
287 {
288 	return amu_freq_invariant() &&
289 	       cpumask_subset(cpus, amu_fie_cpus);
290 }
291 
292 void topology_scale_freq_tick(void)
293 {
294 	u64 prev_core_cnt, prev_const_cnt;
295 	u64 core_cnt, const_cnt, scale;
296 	int cpu = smp_processor_id();
297 
298 	if (!amu_freq_invariant())
299 		return;
300 
301 	if (!cpumask_test_cpu(cpu, amu_fie_cpus))
302 		return;
303 
304 	prev_const_cnt = this_cpu_read(arch_const_cycles_prev);
305 	prev_core_cnt = this_cpu_read(arch_core_cycles_prev);
306 
307 	update_freq_counters_refs();
308 
309 	const_cnt = this_cpu_read(arch_const_cycles_prev);
310 	core_cnt = this_cpu_read(arch_core_cycles_prev);
311 
312 	if (unlikely(core_cnt <= prev_core_cnt ||
313 		     const_cnt <= prev_const_cnt))
314 		return;
315 
316 	/*
317 	 *	    /\core    arch_max_freq_scale
318 	 * scale =  ------- * --------------------
319 	 *	    /\const   SCHED_CAPACITY_SCALE
320 	 *
321 	 * See validate_cpu_freq_invariance_counters() for details on
322 	 * arch_max_freq_scale and the use of SCHED_CAPACITY_SHIFT.
323 	 */
324 	scale = core_cnt - prev_core_cnt;
325 	scale *= this_cpu_read(arch_max_freq_scale);
326 	scale = div64_u64(scale >> SCHED_CAPACITY_SHIFT,
327 			  const_cnt - prev_const_cnt);
328 
329 	scale = min_t(unsigned long, scale, SCHED_CAPACITY_SCALE);
330 	this_cpu_write(freq_scale, (unsigned long)scale);
331 }
332 
333 #ifdef CONFIG_ACPI_CPPC_LIB
334 #include <acpi/cppc_acpi.h>
335 
336 static void cpu_read_corecnt(void *val)
337 {
338 	*(u64 *)val = read_corecnt();
339 }
340 
341 static void cpu_read_constcnt(void *val)
342 {
343 	*(u64 *)val = read_constcnt();
344 }
345 
346 static inline
347 int counters_read_on_cpu(int cpu, smp_call_func_t func, u64 *val)
348 {
349 	/*
350 	 * Abort call on counterless CPU or when interrupts are
351 	 * disabled - can lead to deadlock in smp sync call.
352 	 */
353 	if (!cpu_has_amu_feat(cpu))
354 		return -EOPNOTSUPP;
355 
356 	if (WARN_ON_ONCE(irqs_disabled()))
357 		return -EPERM;
358 
359 	smp_call_function_single(cpu, func, val, 1);
360 
361 	return 0;
362 }
363 
364 /*
365  * Refer to drivers/acpi/cppc_acpi.c for the description of the functions
366  * below.
367  */
368 bool cpc_ffh_supported(void)
369 {
370 	return freq_counters_valid(get_cpu_with_amu_feat());
371 }
372 
373 int cpc_read_ffh(int cpu, struct cpc_reg *reg, u64 *val)
374 {
375 	int ret = -EOPNOTSUPP;
376 
377 	switch ((u64)reg->address) {
378 	case 0x0:
379 		ret = counters_read_on_cpu(cpu, cpu_read_corecnt, val);
380 		break;
381 	case 0x1:
382 		ret = counters_read_on_cpu(cpu, cpu_read_constcnt, val);
383 		break;
384 	}
385 
386 	if (!ret) {
387 		*val &= GENMASK_ULL(reg->bit_offset + reg->bit_width - 1,
388 				    reg->bit_offset);
389 		*val >>= reg->bit_offset;
390 	}
391 
392 	return ret;
393 }
394 
395 int cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
396 {
397 	return -EOPNOTSUPP;
398 }
399 #endif /* CONFIG_ACPI_CPPC_LIB */
400