1 /* 2 * arch/arm64/kernel/topology.c 3 * 4 * Copyright (C) 2011,2013,2014 Linaro Limited. 5 * 6 * Based on the arm32 version written by Vincent Guittot in turn based on 7 * arch/sh/kernel/topology.c 8 * 9 * This file is subject to the terms and conditions of the GNU General Public 10 * License. See the file "COPYING" in the main directory of this archive 11 * for more details. 12 */ 13 14 #include <linux/acpi.h> 15 #include <linux/arch_topology.h> 16 #include <linux/cacheinfo.h> 17 #include <linux/cpufreq.h> 18 #include <linux/init.h> 19 #include <linux/percpu.h> 20 21 #include <asm/cpu.h> 22 #include <asm/cputype.h> 23 #include <asm/topology.h> 24 25 #ifdef CONFIG_ACPI 26 static bool __init acpi_cpu_is_threaded(int cpu) 27 { 28 int is_threaded = acpi_pptt_cpu_is_thread(cpu); 29 30 /* 31 * if the PPTT doesn't have thread information, assume a homogeneous 32 * machine and return the current CPU's thread state. 33 */ 34 if (is_threaded < 0) 35 is_threaded = read_cpuid_mpidr() & MPIDR_MT_BITMASK; 36 37 return !!is_threaded; 38 } 39 40 /* 41 * Propagate the topology information of the processor_topology_node tree to the 42 * cpu_topology array. 43 */ 44 int __init parse_acpi_topology(void) 45 { 46 int cpu, topology_id; 47 48 if (acpi_disabled) 49 return 0; 50 51 for_each_possible_cpu(cpu) { 52 topology_id = find_acpi_cpu_topology(cpu, 0); 53 if (topology_id < 0) 54 return topology_id; 55 56 if (acpi_cpu_is_threaded(cpu)) { 57 cpu_topology[cpu].thread_id = topology_id; 58 topology_id = find_acpi_cpu_topology(cpu, 1); 59 cpu_topology[cpu].core_id = topology_id; 60 } else { 61 cpu_topology[cpu].thread_id = -1; 62 cpu_topology[cpu].core_id = topology_id; 63 } 64 topology_id = find_acpi_cpu_topology_cluster(cpu); 65 cpu_topology[cpu].cluster_id = topology_id; 66 topology_id = find_acpi_cpu_topology_package(cpu); 67 cpu_topology[cpu].package_id = topology_id; 68 } 69 70 return 0; 71 } 72 #endif 73 74 #ifdef CONFIG_ARM64_AMU_EXTN 75 #define read_corecnt() read_sysreg_s(SYS_AMEVCNTR0_CORE_EL0) 76 #define read_constcnt() read_sysreg_s(SYS_AMEVCNTR0_CONST_EL0) 77 #else 78 #define read_corecnt() (0UL) 79 #define read_constcnt() (0UL) 80 #endif 81 82 #undef pr_fmt 83 #define pr_fmt(fmt) "AMU: " fmt 84 85 static DEFINE_PER_CPU_READ_MOSTLY(unsigned long, arch_max_freq_scale); 86 static DEFINE_PER_CPU(u64, arch_const_cycles_prev); 87 static DEFINE_PER_CPU(u64, arch_core_cycles_prev); 88 static cpumask_var_t amu_fie_cpus; 89 90 void update_freq_counters_refs(void) 91 { 92 this_cpu_write(arch_core_cycles_prev, read_corecnt()); 93 this_cpu_write(arch_const_cycles_prev, read_constcnt()); 94 } 95 96 static inline bool freq_counters_valid(int cpu) 97 { 98 if ((cpu >= nr_cpu_ids) || !cpumask_test_cpu(cpu, cpu_present_mask)) 99 return false; 100 101 if (!cpu_has_amu_feat(cpu)) { 102 pr_debug("CPU%d: counters are not supported.\n", cpu); 103 return false; 104 } 105 106 if (unlikely(!per_cpu(arch_const_cycles_prev, cpu) || 107 !per_cpu(arch_core_cycles_prev, cpu))) { 108 pr_debug("CPU%d: cycle counters are not enabled.\n", cpu); 109 return false; 110 } 111 112 return true; 113 } 114 115 static int freq_inv_set_max_ratio(int cpu, u64 max_rate, u64 ref_rate) 116 { 117 u64 ratio; 118 119 if (unlikely(!max_rate || !ref_rate)) { 120 pr_debug("CPU%d: invalid maximum or reference frequency.\n", 121 cpu); 122 return -EINVAL; 123 } 124 125 /* 126 * Pre-compute the fixed ratio between the frequency of the constant 127 * reference counter and the maximum frequency of the CPU. 128 * 129 * ref_rate 130 * arch_max_freq_scale = ---------- * SCHED_CAPACITY_SCALE² 131 * max_rate 132 * 133 * We use a factor of 2 * SCHED_CAPACITY_SHIFT -> SCHED_CAPACITY_SCALE² 134 * in order to ensure a good resolution for arch_max_freq_scale for 135 * very low reference frequencies (down to the KHz range which should 136 * be unlikely). 137 */ 138 ratio = ref_rate << (2 * SCHED_CAPACITY_SHIFT); 139 ratio = div64_u64(ratio, max_rate); 140 if (!ratio) { 141 WARN_ONCE(1, "Reference frequency too low.\n"); 142 return -EINVAL; 143 } 144 145 per_cpu(arch_max_freq_scale, cpu) = (unsigned long)ratio; 146 147 return 0; 148 } 149 150 static void amu_scale_freq_tick(void) 151 { 152 u64 prev_core_cnt, prev_const_cnt; 153 u64 core_cnt, const_cnt, scale; 154 155 prev_const_cnt = this_cpu_read(arch_const_cycles_prev); 156 prev_core_cnt = this_cpu_read(arch_core_cycles_prev); 157 158 update_freq_counters_refs(); 159 160 const_cnt = this_cpu_read(arch_const_cycles_prev); 161 core_cnt = this_cpu_read(arch_core_cycles_prev); 162 163 if (unlikely(core_cnt <= prev_core_cnt || 164 const_cnt <= prev_const_cnt)) 165 return; 166 167 /* 168 * /\core arch_max_freq_scale 169 * scale = ------- * -------------------- 170 * /\const SCHED_CAPACITY_SCALE 171 * 172 * See validate_cpu_freq_invariance_counters() for details on 173 * arch_max_freq_scale and the use of SCHED_CAPACITY_SHIFT. 174 */ 175 scale = core_cnt - prev_core_cnt; 176 scale *= this_cpu_read(arch_max_freq_scale); 177 scale = div64_u64(scale >> SCHED_CAPACITY_SHIFT, 178 const_cnt - prev_const_cnt); 179 180 scale = min_t(unsigned long, scale, SCHED_CAPACITY_SCALE); 181 this_cpu_write(arch_freq_scale, (unsigned long)scale); 182 } 183 184 static struct scale_freq_data amu_sfd = { 185 .source = SCALE_FREQ_SOURCE_ARCH, 186 .set_freq_scale = amu_scale_freq_tick, 187 }; 188 189 static void amu_fie_setup(const struct cpumask *cpus) 190 { 191 int cpu; 192 193 /* We are already set since the last insmod of cpufreq driver */ 194 if (unlikely(cpumask_subset(cpus, amu_fie_cpus))) 195 return; 196 197 for_each_cpu(cpu, cpus) { 198 if (!freq_counters_valid(cpu) || 199 freq_inv_set_max_ratio(cpu, 200 cpufreq_get_hw_max_freq(cpu) * 1000ULL, 201 arch_timer_get_rate())) 202 return; 203 } 204 205 cpumask_or(amu_fie_cpus, amu_fie_cpus, cpus); 206 207 topology_set_scale_freq_source(&amu_sfd, amu_fie_cpus); 208 209 pr_debug("CPUs[%*pbl]: counters will be used for FIE.", 210 cpumask_pr_args(cpus)); 211 } 212 213 static int init_amu_fie_callback(struct notifier_block *nb, unsigned long val, 214 void *data) 215 { 216 struct cpufreq_policy *policy = data; 217 218 if (val == CPUFREQ_CREATE_POLICY) 219 amu_fie_setup(policy->related_cpus); 220 221 /* 222 * We don't need to handle CPUFREQ_REMOVE_POLICY event as the AMU 223 * counters don't have any dependency on cpufreq driver once we have 224 * initialized AMU support and enabled invariance. The AMU counters will 225 * keep on working just fine in the absence of the cpufreq driver, and 226 * for the CPUs for which there are no counters available, the last set 227 * value of arch_freq_scale will remain valid as that is the frequency 228 * those CPUs are running at. 229 */ 230 231 return 0; 232 } 233 234 static struct notifier_block init_amu_fie_notifier = { 235 .notifier_call = init_amu_fie_callback, 236 }; 237 238 static int __init init_amu_fie(void) 239 { 240 int ret; 241 242 if (!zalloc_cpumask_var(&amu_fie_cpus, GFP_KERNEL)) 243 return -ENOMEM; 244 245 ret = cpufreq_register_notifier(&init_amu_fie_notifier, 246 CPUFREQ_POLICY_NOTIFIER); 247 if (ret) 248 free_cpumask_var(amu_fie_cpus); 249 250 return ret; 251 } 252 core_initcall(init_amu_fie); 253 254 #ifdef CONFIG_ACPI_CPPC_LIB 255 #include <acpi/cppc_acpi.h> 256 257 static void cpu_read_corecnt(void *val) 258 { 259 /* 260 * A value of 0 can be returned if the current CPU does not support AMUs 261 * or if the counter is disabled for this CPU. A return value of 0 at 262 * counter read is properly handled as an error case by the users of the 263 * counter. 264 */ 265 *(u64 *)val = read_corecnt(); 266 } 267 268 static void cpu_read_constcnt(void *val) 269 { 270 /* 271 * Return 0 if the current CPU is affected by erratum 2457168. A value 272 * of 0 is also returned if the current CPU does not support AMUs or if 273 * the counter is disabled. A return value of 0 at counter read is 274 * properly handled as an error case by the users of the counter. 275 */ 276 *(u64 *)val = this_cpu_has_cap(ARM64_WORKAROUND_2457168) ? 277 0UL : read_constcnt(); 278 } 279 280 static inline 281 int counters_read_on_cpu(int cpu, smp_call_func_t func, u64 *val) 282 { 283 /* 284 * Abort call on counterless CPU or when interrupts are 285 * disabled - can lead to deadlock in smp sync call. 286 */ 287 if (!cpu_has_amu_feat(cpu)) 288 return -EOPNOTSUPP; 289 290 if (WARN_ON_ONCE(irqs_disabled())) 291 return -EPERM; 292 293 smp_call_function_single(cpu, func, val, 1); 294 295 return 0; 296 } 297 298 /* 299 * Refer to drivers/acpi/cppc_acpi.c for the description of the functions 300 * below. 301 */ 302 bool cpc_ffh_supported(void) 303 { 304 int cpu = get_cpu_with_amu_feat(); 305 306 /* 307 * FFH is considered supported if there is at least one present CPU that 308 * supports AMUs. Using FFH to read core and reference counters for CPUs 309 * that do not support AMUs, have counters disabled or that are affected 310 * by errata, will result in a return value of 0. 311 * 312 * This is done to allow any enabled and valid counters to be read 313 * through FFH, knowing that potentially returning 0 as counter value is 314 * properly handled by the users of these counters. 315 */ 316 if ((cpu >= nr_cpu_ids) || !cpumask_test_cpu(cpu, cpu_present_mask)) 317 return false; 318 319 return true; 320 } 321 322 int cpc_read_ffh(int cpu, struct cpc_reg *reg, u64 *val) 323 { 324 int ret = -EOPNOTSUPP; 325 326 switch ((u64)reg->address) { 327 case 0x0: 328 ret = counters_read_on_cpu(cpu, cpu_read_corecnt, val); 329 break; 330 case 0x1: 331 ret = counters_read_on_cpu(cpu, cpu_read_constcnt, val); 332 break; 333 } 334 335 if (!ret) { 336 *val &= GENMASK_ULL(reg->bit_offset + reg->bit_width - 1, 337 reg->bit_offset); 338 *val >>= reg->bit_offset; 339 } 340 341 return ret; 342 } 343 344 int cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val) 345 { 346 return -EOPNOTSUPP; 347 } 348 #endif /* CONFIG_ACPI_CPPC_LIB */ 349