xref: /linux/arch/arm64/kernel/smp.c (revision e6a901a00822659181c93c86d8bbc2a17779fddc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * SMP initialisation and IPI support
4  * Based on arch/arm/kernel/smp.c
5  *
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/arm_sdei.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/interrupt.h>
18 #include <linux/cache.h>
19 #include <linux/profile.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/cpu.h>
24 #include <linux/smp.h>
25 #include <linux/seq_file.h>
26 #include <linux/irq.h>
27 #include <linux/irqchip/arm-gic-v3.h>
28 #include <linux/percpu.h>
29 #include <linux/clockchips.h>
30 #include <linux/completion.h>
31 #include <linux/of.h>
32 #include <linux/irq_work.h>
33 #include <linux/kernel_stat.h>
34 #include <linux/kexec.h>
35 #include <linux/kgdb.h>
36 #include <linux/kvm_host.h>
37 #include <linux/nmi.h>
38 
39 #include <asm/alternative.h>
40 #include <asm/atomic.h>
41 #include <asm/cacheflush.h>
42 #include <asm/cpu.h>
43 #include <asm/cputype.h>
44 #include <asm/cpu_ops.h>
45 #include <asm/daifflags.h>
46 #include <asm/kvm_mmu.h>
47 #include <asm/mmu_context.h>
48 #include <asm/numa.h>
49 #include <asm/processor.h>
50 #include <asm/smp_plat.h>
51 #include <asm/sections.h>
52 #include <asm/tlbflush.h>
53 #include <asm/ptrace.h>
54 #include <asm/virt.h>
55 
56 #include <trace/events/ipi.h>
57 
58 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
59 EXPORT_PER_CPU_SYMBOL(cpu_number);
60 
61 /*
62  * as from 2.5, kernels no longer have an init_tasks structure
63  * so we need some other way of telling a new secondary core
64  * where to place its SVC stack
65  */
66 struct secondary_data secondary_data;
67 /* Number of CPUs which aren't online, but looping in kernel text. */
68 static int cpus_stuck_in_kernel;
69 
70 enum ipi_msg_type {
71 	IPI_RESCHEDULE,
72 	IPI_CALL_FUNC,
73 	IPI_CPU_STOP,
74 	IPI_CPU_CRASH_STOP,
75 	IPI_TIMER,
76 	IPI_IRQ_WORK,
77 	NR_IPI,
78 	/*
79 	 * Any enum >= NR_IPI and < MAX_IPI is special and not tracable
80 	 * with trace_ipi_*
81 	 */
82 	IPI_CPU_BACKTRACE = NR_IPI,
83 	IPI_KGDB_ROUNDUP,
84 	MAX_IPI
85 };
86 
87 static int ipi_irq_base __ro_after_init;
88 static int nr_ipi __ro_after_init = NR_IPI;
89 static struct irq_desc *ipi_desc[MAX_IPI] __ro_after_init;
90 
91 static void ipi_setup(int cpu);
92 
93 #ifdef CONFIG_HOTPLUG_CPU
94 static void ipi_teardown(int cpu);
95 static int op_cpu_kill(unsigned int cpu);
96 #else
97 static inline int op_cpu_kill(unsigned int cpu)
98 {
99 	return -ENOSYS;
100 }
101 #endif
102 
103 
104 /*
105  * Boot a secondary CPU, and assign it the specified idle task.
106  * This also gives us the initial stack to use for this CPU.
107  */
108 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
109 {
110 	const struct cpu_operations *ops = get_cpu_ops(cpu);
111 
112 	if (ops->cpu_boot)
113 		return ops->cpu_boot(cpu);
114 
115 	return -EOPNOTSUPP;
116 }
117 
118 static DECLARE_COMPLETION(cpu_running);
119 
120 int __cpu_up(unsigned int cpu, struct task_struct *idle)
121 {
122 	int ret;
123 	long status;
124 
125 	/*
126 	 * We need to tell the secondary core where to find its stack and the
127 	 * page tables.
128 	 */
129 	secondary_data.task = idle;
130 	update_cpu_boot_status(CPU_MMU_OFF);
131 
132 	/* Now bring the CPU into our world */
133 	ret = boot_secondary(cpu, idle);
134 	if (ret) {
135 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
136 		return ret;
137 	}
138 
139 	/*
140 	 * CPU was successfully started, wait for it to come online or
141 	 * time out.
142 	 */
143 	wait_for_completion_timeout(&cpu_running,
144 				    msecs_to_jiffies(5000));
145 	if (cpu_online(cpu))
146 		return 0;
147 
148 	pr_crit("CPU%u: failed to come online\n", cpu);
149 	secondary_data.task = NULL;
150 	status = READ_ONCE(secondary_data.status);
151 	if (status == CPU_MMU_OFF)
152 		status = READ_ONCE(__early_cpu_boot_status);
153 
154 	switch (status & CPU_BOOT_STATUS_MASK) {
155 	default:
156 		pr_err("CPU%u: failed in unknown state : 0x%lx\n",
157 		       cpu, status);
158 		cpus_stuck_in_kernel++;
159 		break;
160 	case CPU_KILL_ME:
161 		if (!op_cpu_kill(cpu)) {
162 			pr_crit("CPU%u: died during early boot\n", cpu);
163 			break;
164 		}
165 		pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
166 		fallthrough;
167 	case CPU_STUCK_IN_KERNEL:
168 		pr_crit("CPU%u: is stuck in kernel\n", cpu);
169 		if (status & CPU_STUCK_REASON_52_BIT_VA)
170 			pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
171 		if (status & CPU_STUCK_REASON_NO_GRAN) {
172 			pr_crit("CPU%u: does not support %luK granule\n",
173 				cpu, PAGE_SIZE / SZ_1K);
174 		}
175 		cpus_stuck_in_kernel++;
176 		break;
177 	case CPU_PANIC_KERNEL:
178 		panic("CPU%u detected unsupported configuration\n", cpu);
179 	}
180 
181 	return -EIO;
182 }
183 
184 static void init_gic_priority_masking(void)
185 {
186 	u32 cpuflags;
187 
188 	if (WARN_ON(!gic_enable_sre()))
189 		return;
190 
191 	cpuflags = read_sysreg(daif);
192 
193 	WARN_ON(!(cpuflags & PSR_I_BIT));
194 	WARN_ON(!(cpuflags & PSR_F_BIT));
195 
196 	gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
197 }
198 
199 /*
200  * This is the secondary CPU boot entry.  We're using this CPUs
201  * idle thread stack, but a set of temporary page tables.
202  */
203 asmlinkage notrace void secondary_start_kernel(void)
204 {
205 	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
206 	struct mm_struct *mm = &init_mm;
207 	const struct cpu_operations *ops;
208 	unsigned int cpu = smp_processor_id();
209 
210 	/*
211 	 * All kernel threads share the same mm context; grab a
212 	 * reference and switch to it.
213 	 */
214 	mmgrab(mm);
215 	current->active_mm = mm;
216 
217 	/*
218 	 * TTBR0 is only used for the identity mapping at this stage. Make it
219 	 * point to zero page to avoid speculatively fetching new entries.
220 	 */
221 	cpu_uninstall_idmap();
222 
223 	if (system_uses_irq_prio_masking())
224 		init_gic_priority_masking();
225 
226 	rcutree_report_cpu_starting(cpu);
227 	trace_hardirqs_off();
228 
229 	/*
230 	 * If the system has established the capabilities, make sure
231 	 * this CPU ticks all of those. If it doesn't, the CPU will
232 	 * fail to come online.
233 	 */
234 	check_local_cpu_capabilities();
235 
236 	ops = get_cpu_ops(cpu);
237 	if (ops->cpu_postboot)
238 		ops->cpu_postboot();
239 
240 	/*
241 	 * Log the CPU info before it is marked online and might get read.
242 	 */
243 	cpuinfo_store_cpu();
244 	store_cpu_topology(cpu);
245 
246 	/*
247 	 * Enable GIC and timers.
248 	 */
249 	notify_cpu_starting(cpu);
250 
251 	ipi_setup(cpu);
252 
253 	numa_add_cpu(cpu);
254 
255 	/*
256 	 * OK, now it's safe to let the boot CPU continue.  Wait for
257 	 * the CPU migration code to notice that the CPU is online
258 	 * before we continue.
259 	 */
260 	pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
261 					 cpu, (unsigned long)mpidr,
262 					 read_cpuid_id());
263 	update_cpu_boot_status(CPU_BOOT_SUCCESS);
264 	set_cpu_online(cpu, true);
265 	complete(&cpu_running);
266 
267 	local_daif_restore(DAIF_PROCCTX);
268 
269 	/*
270 	 * OK, it's off to the idle thread for us
271 	 */
272 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
273 }
274 
275 #ifdef CONFIG_HOTPLUG_CPU
276 static int op_cpu_disable(unsigned int cpu)
277 {
278 	const struct cpu_operations *ops = get_cpu_ops(cpu);
279 
280 	/*
281 	 * If we don't have a cpu_die method, abort before we reach the point
282 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
283 	 */
284 	if (!ops || !ops->cpu_die)
285 		return -EOPNOTSUPP;
286 
287 	/*
288 	 * We may need to abort a hot unplug for some other mechanism-specific
289 	 * reason.
290 	 */
291 	if (ops->cpu_disable)
292 		return ops->cpu_disable(cpu);
293 
294 	return 0;
295 }
296 
297 /*
298  * __cpu_disable runs on the processor to be shutdown.
299  */
300 int __cpu_disable(void)
301 {
302 	unsigned int cpu = smp_processor_id();
303 	int ret;
304 
305 	ret = op_cpu_disable(cpu);
306 	if (ret)
307 		return ret;
308 
309 	remove_cpu_topology(cpu);
310 	numa_remove_cpu(cpu);
311 
312 	/*
313 	 * Take this CPU offline.  Once we clear this, we can't return,
314 	 * and we must not schedule until we're ready to give up the cpu.
315 	 */
316 	set_cpu_online(cpu, false);
317 	ipi_teardown(cpu);
318 
319 	/*
320 	 * OK - migrate IRQs away from this CPU
321 	 */
322 	irq_migrate_all_off_this_cpu();
323 
324 	return 0;
325 }
326 
327 static int op_cpu_kill(unsigned int cpu)
328 {
329 	const struct cpu_operations *ops = get_cpu_ops(cpu);
330 
331 	/*
332 	 * If we have no means of synchronising with the dying CPU, then assume
333 	 * that it is really dead. We can only wait for an arbitrary length of
334 	 * time and hope that it's dead, so let's skip the wait and just hope.
335 	 */
336 	if (!ops->cpu_kill)
337 		return 0;
338 
339 	return ops->cpu_kill(cpu);
340 }
341 
342 /*
343  * Called on the thread which is asking for a CPU to be shutdown after the
344  * shutdown completed.
345  */
346 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
347 {
348 	int err;
349 
350 	pr_debug("CPU%u: shutdown\n", cpu);
351 
352 	/*
353 	 * Now that the dying CPU is beyond the point of no return w.r.t.
354 	 * in-kernel synchronisation, try to get the firwmare to help us to
355 	 * verify that it has really left the kernel before we consider
356 	 * clobbering anything it might still be using.
357 	 */
358 	err = op_cpu_kill(cpu);
359 	if (err)
360 		pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err);
361 }
362 
363 /*
364  * Called from the idle thread for the CPU which has been shutdown.
365  *
366  */
367 void __noreturn cpu_die(void)
368 {
369 	unsigned int cpu = smp_processor_id();
370 	const struct cpu_operations *ops = get_cpu_ops(cpu);
371 
372 	idle_task_exit();
373 
374 	local_daif_mask();
375 
376 	/* Tell cpuhp_bp_sync_dead() that this CPU is now safe to dispose of */
377 	cpuhp_ap_report_dead();
378 
379 	/*
380 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
381 	 * mechanism must perform all required cache maintenance to ensure that
382 	 * no dirty lines are lost in the process of shutting down the CPU.
383 	 */
384 	ops->cpu_die(cpu);
385 
386 	BUG();
387 }
388 #endif
389 
390 static void __cpu_try_die(int cpu)
391 {
392 #ifdef CONFIG_HOTPLUG_CPU
393 	const struct cpu_operations *ops = get_cpu_ops(cpu);
394 
395 	if (ops && ops->cpu_die)
396 		ops->cpu_die(cpu);
397 #endif
398 }
399 
400 /*
401  * Kill the calling secondary CPU, early in bringup before it is turned
402  * online.
403  */
404 void __noreturn cpu_die_early(void)
405 {
406 	int cpu = smp_processor_id();
407 
408 	pr_crit("CPU%d: will not boot\n", cpu);
409 
410 	/* Mark this CPU absent */
411 	set_cpu_present(cpu, 0);
412 	rcutree_report_cpu_dead();
413 
414 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
415 		update_cpu_boot_status(CPU_KILL_ME);
416 		__cpu_try_die(cpu);
417 	}
418 
419 	update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
420 
421 	cpu_park_loop();
422 }
423 
424 static void __init hyp_mode_check(void)
425 {
426 	if (is_hyp_mode_available())
427 		pr_info("CPU: All CPU(s) started at EL2\n");
428 	else if (is_hyp_mode_mismatched())
429 		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
430 			   "CPU: CPUs started in inconsistent modes");
431 	else
432 		pr_info("CPU: All CPU(s) started at EL1\n");
433 	if (IS_ENABLED(CONFIG_KVM) && !is_kernel_in_hyp_mode()) {
434 		kvm_compute_layout();
435 		kvm_apply_hyp_relocations();
436 	}
437 }
438 
439 void __init smp_cpus_done(unsigned int max_cpus)
440 {
441 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
442 	hyp_mode_check();
443 	setup_system_features();
444 	setup_user_features();
445 	mark_linear_text_alias_ro();
446 }
447 
448 void __init smp_prepare_boot_cpu(void)
449 {
450 	/*
451 	 * The runtime per-cpu areas have been allocated by
452 	 * setup_per_cpu_areas(), and CPU0's boot time per-cpu area will be
453 	 * freed shortly, so we must move over to the runtime per-cpu area.
454 	 */
455 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
456 
457 	cpuinfo_store_boot_cpu();
458 	setup_boot_cpu_features();
459 
460 	/* Conditionally switch to GIC PMR for interrupt masking */
461 	if (system_uses_irq_prio_masking())
462 		init_gic_priority_masking();
463 
464 	kasan_init_hw_tags();
465 }
466 
467 /*
468  * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
469  * entries and check for duplicates. If any is found just ignore the
470  * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
471  * matching valid MPIDR values.
472  */
473 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
474 {
475 	unsigned int i;
476 
477 	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
478 		if (cpu_logical_map(i) == hwid)
479 			return true;
480 	return false;
481 }
482 
483 /*
484  * Initialize cpu operations for a logical cpu and
485  * set it in the possible mask on success
486  */
487 static int __init smp_cpu_setup(int cpu)
488 {
489 	const struct cpu_operations *ops;
490 
491 	if (init_cpu_ops(cpu))
492 		return -ENODEV;
493 
494 	ops = get_cpu_ops(cpu);
495 	if (ops->cpu_init(cpu))
496 		return -ENODEV;
497 
498 	set_cpu_possible(cpu, true);
499 
500 	return 0;
501 }
502 
503 static bool bootcpu_valid __initdata;
504 static unsigned int cpu_count = 1;
505 
506 #ifdef CONFIG_ACPI
507 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
508 
509 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
510 {
511 	return &cpu_madt_gicc[cpu];
512 }
513 EXPORT_SYMBOL_GPL(acpi_cpu_get_madt_gicc);
514 
515 /*
516  * acpi_map_gic_cpu_interface - parse processor MADT entry
517  *
518  * Carry out sanity checks on MADT processor entry and initialize
519  * cpu_logical_map on success
520  */
521 static void __init
522 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
523 {
524 	u64 hwid = processor->arm_mpidr;
525 
526 	if (!acpi_gicc_is_usable(processor)) {
527 		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
528 		return;
529 	}
530 
531 	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
532 		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
533 		return;
534 	}
535 
536 	if (is_mpidr_duplicate(cpu_count, hwid)) {
537 		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
538 		return;
539 	}
540 
541 	/* Check if GICC structure of boot CPU is available in the MADT */
542 	if (cpu_logical_map(0) == hwid) {
543 		if (bootcpu_valid) {
544 			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
545 			       hwid);
546 			return;
547 		}
548 		bootcpu_valid = true;
549 		cpu_madt_gicc[0] = *processor;
550 		return;
551 	}
552 
553 	if (cpu_count >= NR_CPUS)
554 		return;
555 
556 	/* map the logical cpu id to cpu MPIDR */
557 	set_cpu_logical_map(cpu_count, hwid);
558 
559 	cpu_madt_gicc[cpu_count] = *processor;
560 
561 	/*
562 	 * Set-up the ACPI parking protocol cpu entries
563 	 * while initializing the cpu_logical_map to
564 	 * avoid parsing MADT entries multiple times for
565 	 * nothing (ie a valid cpu_logical_map entry should
566 	 * contain a valid parking protocol data set to
567 	 * initialize the cpu if the parking protocol is
568 	 * the only available enable method).
569 	 */
570 	acpi_set_mailbox_entry(cpu_count, processor);
571 
572 	cpu_count++;
573 }
574 
575 static int __init
576 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header,
577 			     const unsigned long end)
578 {
579 	struct acpi_madt_generic_interrupt *processor;
580 
581 	processor = (struct acpi_madt_generic_interrupt *)header;
582 	if (BAD_MADT_GICC_ENTRY(processor, end))
583 		return -EINVAL;
584 
585 	acpi_table_print_madt_entry(&header->common);
586 
587 	acpi_map_gic_cpu_interface(processor);
588 
589 	return 0;
590 }
591 
592 static void __init acpi_parse_and_init_cpus(void)
593 {
594 	int i;
595 
596 	/*
597 	 * do a walk of MADT to determine how many CPUs
598 	 * we have including disabled CPUs, and get information
599 	 * we need for SMP init.
600 	 */
601 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
602 				      acpi_parse_gic_cpu_interface, 0);
603 
604 	/*
605 	 * In ACPI, SMP and CPU NUMA information is provided in separate
606 	 * static tables, namely the MADT and the SRAT.
607 	 *
608 	 * Thus, it is simpler to first create the cpu logical map through
609 	 * an MADT walk and then map the logical cpus to their node ids
610 	 * as separate steps.
611 	 */
612 	acpi_map_cpus_to_nodes();
613 
614 	for (i = 0; i < nr_cpu_ids; i++)
615 		early_map_cpu_to_node(i, acpi_numa_get_nid(i));
616 }
617 #else
618 #define acpi_parse_and_init_cpus(...)	do { } while (0)
619 #endif
620 
621 /*
622  * Enumerate the possible CPU set from the device tree and build the
623  * cpu logical map array containing MPIDR values related to logical
624  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
625  */
626 static void __init of_parse_and_init_cpus(void)
627 {
628 	struct device_node *dn;
629 
630 	for_each_of_cpu_node(dn) {
631 		u64 hwid = of_get_cpu_hwid(dn, 0);
632 
633 		if (hwid & ~MPIDR_HWID_BITMASK)
634 			goto next;
635 
636 		if (is_mpidr_duplicate(cpu_count, hwid)) {
637 			pr_err("%pOF: duplicate cpu reg properties in the DT\n",
638 				dn);
639 			goto next;
640 		}
641 
642 		/*
643 		 * The numbering scheme requires that the boot CPU
644 		 * must be assigned logical id 0. Record it so that
645 		 * the logical map built from DT is validated and can
646 		 * be used.
647 		 */
648 		if (hwid == cpu_logical_map(0)) {
649 			if (bootcpu_valid) {
650 				pr_err("%pOF: duplicate boot cpu reg property in DT\n",
651 					dn);
652 				goto next;
653 			}
654 
655 			bootcpu_valid = true;
656 			early_map_cpu_to_node(0, of_node_to_nid(dn));
657 
658 			/*
659 			 * cpu_logical_map has already been
660 			 * initialized and the boot cpu doesn't need
661 			 * the enable-method so continue without
662 			 * incrementing cpu.
663 			 */
664 			continue;
665 		}
666 
667 		if (cpu_count >= NR_CPUS)
668 			goto next;
669 
670 		pr_debug("cpu logical map 0x%llx\n", hwid);
671 		set_cpu_logical_map(cpu_count, hwid);
672 
673 		early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
674 next:
675 		cpu_count++;
676 	}
677 }
678 
679 /*
680  * Enumerate the possible CPU set from the device tree or ACPI and build the
681  * cpu logical map array containing MPIDR values related to logical
682  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
683  */
684 void __init smp_init_cpus(void)
685 {
686 	int i;
687 
688 	if (acpi_disabled)
689 		of_parse_and_init_cpus();
690 	else
691 		acpi_parse_and_init_cpus();
692 
693 	if (cpu_count > nr_cpu_ids)
694 		pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
695 			cpu_count, nr_cpu_ids);
696 
697 	if (!bootcpu_valid) {
698 		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
699 		return;
700 	}
701 
702 	/*
703 	 * We need to set the cpu_logical_map entries before enabling
704 	 * the cpus so that cpu processor description entries (DT cpu nodes
705 	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
706 	 * with entries in cpu_logical_map while initializing the cpus.
707 	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
708 	 */
709 	for (i = 1; i < nr_cpu_ids; i++) {
710 		if (cpu_logical_map(i) != INVALID_HWID) {
711 			if (smp_cpu_setup(i))
712 				set_cpu_logical_map(i, INVALID_HWID);
713 		}
714 	}
715 }
716 
717 void __init smp_prepare_cpus(unsigned int max_cpus)
718 {
719 	const struct cpu_operations *ops;
720 	int err;
721 	unsigned int cpu;
722 	unsigned int this_cpu;
723 
724 	init_cpu_topology();
725 
726 	this_cpu = smp_processor_id();
727 	store_cpu_topology(this_cpu);
728 	numa_store_cpu_info(this_cpu);
729 	numa_add_cpu(this_cpu);
730 
731 	/*
732 	 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
733 	 * secondary CPUs present.
734 	 */
735 	if (max_cpus == 0)
736 		return;
737 
738 	/*
739 	 * Initialise the present map (which describes the set of CPUs
740 	 * actually populated at the present time) and release the
741 	 * secondaries from the bootloader.
742 	 */
743 	for_each_possible_cpu(cpu) {
744 
745 		per_cpu(cpu_number, cpu) = cpu;
746 
747 		if (cpu == smp_processor_id())
748 			continue;
749 
750 		ops = get_cpu_ops(cpu);
751 		if (!ops)
752 			continue;
753 
754 		err = ops->cpu_prepare(cpu);
755 		if (err)
756 			continue;
757 
758 		set_cpu_present(cpu, true);
759 		numa_store_cpu_info(cpu);
760 	}
761 }
762 
763 static const char *ipi_types[NR_IPI] __tracepoint_string = {
764 	[IPI_RESCHEDULE]	= "Rescheduling interrupts",
765 	[IPI_CALL_FUNC]		= "Function call interrupts",
766 	[IPI_CPU_STOP]		= "CPU stop interrupts",
767 	[IPI_CPU_CRASH_STOP]	= "CPU stop (for crash dump) interrupts",
768 	[IPI_TIMER]		= "Timer broadcast interrupts",
769 	[IPI_IRQ_WORK]		= "IRQ work interrupts",
770 };
771 
772 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr);
773 
774 unsigned long irq_err_count;
775 
776 int arch_show_interrupts(struct seq_file *p, int prec)
777 {
778 	unsigned int cpu, i;
779 
780 	for (i = 0; i < NR_IPI; i++) {
781 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
782 			   prec >= 4 ? " " : "");
783 		for_each_online_cpu(cpu)
784 			seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu));
785 		seq_printf(p, "      %s\n", ipi_types[i]);
786 	}
787 
788 	seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count);
789 	return 0;
790 }
791 
792 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
793 {
794 	smp_cross_call(mask, IPI_CALL_FUNC);
795 }
796 
797 void arch_send_call_function_single_ipi(int cpu)
798 {
799 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
800 }
801 
802 #ifdef CONFIG_IRQ_WORK
803 void arch_irq_work_raise(void)
804 {
805 	smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
806 }
807 #endif
808 
809 static void __noreturn local_cpu_stop(void)
810 {
811 	set_cpu_online(smp_processor_id(), false);
812 
813 	local_daif_mask();
814 	sdei_mask_local_cpu();
815 	cpu_park_loop();
816 }
817 
818 /*
819  * We need to implement panic_smp_self_stop() for parallel panic() calls, so
820  * that cpu_online_mask gets correctly updated and smp_send_stop() can skip
821  * CPUs that have already stopped themselves.
822  */
823 void __noreturn panic_smp_self_stop(void)
824 {
825 	local_cpu_stop();
826 }
827 
828 #ifdef CONFIG_KEXEC_CORE
829 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
830 #endif
831 
832 static void __noreturn ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
833 {
834 #ifdef CONFIG_KEXEC_CORE
835 	crash_save_cpu(regs, cpu);
836 
837 	atomic_dec(&waiting_for_crash_ipi);
838 
839 	local_irq_disable();
840 	sdei_mask_local_cpu();
841 
842 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
843 		__cpu_try_die(cpu);
844 
845 	/* just in case */
846 	cpu_park_loop();
847 #else
848 	BUG();
849 #endif
850 }
851 
852 static void arm64_backtrace_ipi(cpumask_t *mask)
853 {
854 	__ipi_send_mask(ipi_desc[IPI_CPU_BACKTRACE], mask);
855 }
856 
857 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, int exclude_cpu)
858 {
859 	/*
860 	 * NOTE: though nmi_trigger_cpumask_backtrace() has "nmi_" in the name,
861 	 * nothing about it truly needs to be implemented using an NMI, it's
862 	 * just that it's _allowed_ to work with NMIs. If ipi_should_be_nmi()
863 	 * returned false our backtrace attempt will just use a regular IPI.
864 	 */
865 	nmi_trigger_cpumask_backtrace(mask, exclude_cpu, arm64_backtrace_ipi);
866 }
867 
868 #ifdef CONFIG_KGDB
869 void kgdb_roundup_cpus(void)
870 {
871 	int this_cpu = raw_smp_processor_id();
872 	int cpu;
873 
874 	for_each_online_cpu(cpu) {
875 		/* No need to roundup ourselves */
876 		if (cpu == this_cpu)
877 			continue;
878 
879 		__ipi_send_single(ipi_desc[IPI_KGDB_ROUNDUP], cpu);
880 	}
881 }
882 #endif
883 
884 /*
885  * Main handler for inter-processor interrupts
886  */
887 static void do_handle_IPI(int ipinr)
888 {
889 	unsigned int cpu = smp_processor_id();
890 
891 	if ((unsigned)ipinr < NR_IPI)
892 		trace_ipi_entry(ipi_types[ipinr]);
893 
894 	switch (ipinr) {
895 	case IPI_RESCHEDULE:
896 		scheduler_ipi();
897 		break;
898 
899 	case IPI_CALL_FUNC:
900 		generic_smp_call_function_interrupt();
901 		break;
902 
903 	case IPI_CPU_STOP:
904 		local_cpu_stop();
905 		break;
906 
907 	case IPI_CPU_CRASH_STOP:
908 		if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
909 			ipi_cpu_crash_stop(cpu, get_irq_regs());
910 
911 			unreachable();
912 		}
913 		break;
914 
915 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
916 	case IPI_TIMER:
917 		tick_receive_broadcast();
918 		break;
919 #endif
920 
921 #ifdef CONFIG_IRQ_WORK
922 	case IPI_IRQ_WORK:
923 		irq_work_run();
924 		break;
925 #endif
926 
927 	case IPI_CPU_BACKTRACE:
928 		/*
929 		 * NOTE: in some cases this _won't_ be NMI context. See the
930 		 * comment in arch_trigger_cpumask_backtrace().
931 		 */
932 		nmi_cpu_backtrace(get_irq_regs());
933 		break;
934 
935 	case IPI_KGDB_ROUNDUP:
936 		kgdb_nmicallback(cpu, get_irq_regs());
937 		break;
938 
939 	default:
940 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
941 		break;
942 	}
943 
944 	if ((unsigned)ipinr < NR_IPI)
945 		trace_ipi_exit(ipi_types[ipinr]);
946 }
947 
948 static irqreturn_t ipi_handler(int irq, void *data)
949 {
950 	do_handle_IPI(irq - ipi_irq_base);
951 	return IRQ_HANDLED;
952 }
953 
954 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
955 {
956 	trace_ipi_raise(target, ipi_types[ipinr]);
957 	__ipi_send_mask(ipi_desc[ipinr], target);
958 }
959 
960 static bool ipi_should_be_nmi(enum ipi_msg_type ipi)
961 {
962 	if (!system_uses_irq_prio_masking())
963 		return false;
964 
965 	switch (ipi) {
966 	case IPI_CPU_STOP:
967 	case IPI_CPU_CRASH_STOP:
968 	case IPI_CPU_BACKTRACE:
969 	case IPI_KGDB_ROUNDUP:
970 		return true;
971 	default:
972 		return false;
973 	}
974 }
975 
976 static void ipi_setup(int cpu)
977 {
978 	int i;
979 
980 	if (WARN_ON_ONCE(!ipi_irq_base))
981 		return;
982 
983 	for (i = 0; i < nr_ipi; i++) {
984 		if (ipi_should_be_nmi(i)) {
985 			prepare_percpu_nmi(ipi_irq_base + i);
986 			enable_percpu_nmi(ipi_irq_base + i, 0);
987 		} else {
988 			enable_percpu_irq(ipi_irq_base + i, 0);
989 		}
990 	}
991 }
992 
993 #ifdef CONFIG_HOTPLUG_CPU
994 static void ipi_teardown(int cpu)
995 {
996 	int i;
997 
998 	if (WARN_ON_ONCE(!ipi_irq_base))
999 		return;
1000 
1001 	for (i = 0; i < nr_ipi; i++) {
1002 		if (ipi_should_be_nmi(i)) {
1003 			disable_percpu_nmi(ipi_irq_base + i);
1004 			teardown_percpu_nmi(ipi_irq_base + i);
1005 		} else {
1006 			disable_percpu_irq(ipi_irq_base + i);
1007 		}
1008 	}
1009 }
1010 #endif
1011 
1012 void __init set_smp_ipi_range(int ipi_base, int n)
1013 {
1014 	int i;
1015 
1016 	WARN_ON(n < MAX_IPI);
1017 	nr_ipi = min(n, MAX_IPI);
1018 
1019 	for (i = 0; i < nr_ipi; i++) {
1020 		int err;
1021 
1022 		if (ipi_should_be_nmi(i)) {
1023 			err = request_percpu_nmi(ipi_base + i, ipi_handler,
1024 						 "IPI", &cpu_number);
1025 			WARN(err, "Could not request IPI %d as NMI, err=%d\n",
1026 			     i, err);
1027 		} else {
1028 			err = request_percpu_irq(ipi_base + i, ipi_handler,
1029 						 "IPI", &cpu_number);
1030 			WARN(err, "Could not request IPI %d as IRQ, err=%d\n",
1031 			     i, err);
1032 		}
1033 
1034 		ipi_desc[i] = irq_to_desc(ipi_base + i);
1035 		irq_set_status_flags(ipi_base + i, IRQ_HIDDEN);
1036 	}
1037 
1038 	ipi_irq_base = ipi_base;
1039 
1040 	/* Setup the boot CPU immediately */
1041 	ipi_setup(smp_processor_id());
1042 }
1043 
1044 void arch_smp_send_reschedule(int cpu)
1045 {
1046 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
1047 }
1048 
1049 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
1050 void arch_send_wakeup_ipi(unsigned int cpu)
1051 {
1052 	/*
1053 	 * We use a scheduler IPI to wake the CPU as this avoids the need for a
1054 	 * dedicated IPI and we can safely handle spurious scheduler IPIs.
1055 	 */
1056 	smp_send_reschedule(cpu);
1057 }
1058 #endif
1059 
1060 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
1061 void tick_broadcast(const struct cpumask *mask)
1062 {
1063 	smp_cross_call(mask, IPI_TIMER);
1064 }
1065 #endif
1066 
1067 /*
1068  * The number of CPUs online, not counting this CPU (which may not be
1069  * fully online and so not counted in num_online_cpus()).
1070  */
1071 static inline unsigned int num_other_online_cpus(void)
1072 {
1073 	unsigned int this_cpu_online = cpu_online(smp_processor_id());
1074 
1075 	return num_online_cpus() - this_cpu_online;
1076 }
1077 
1078 void smp_send_stop(void)
1079 {
1080 	unsigned long timeout;
1081 
1082 	if (num_other_online_cpus()) {
1083 		cpumask_t mask;
1084 
1085 		cpumask_copy(&mask, cpu_online_mask);
1086 		cpumask_clear_cpu(smp_processor_id(), &mask);
1087 
1088 		if (system_state <= SYSTEM_RUNNING)
1089 			pr_crit("SMP: stopping secondary CPUs\n");
1090 		smp_cross_call(&mask, IPI_CPU_STOP);
1091 	}
1092 
1093 	/* Wait up to one second for other CPUs to stop */
1094 	timeout = USEC_PER_SEC;
1095 	while (num_other_online_cpus() && timeout--)
1096 		udelay(1);
1097 
1098 	if (num_other_online_cpus())
1099 		pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1100 			cpumask_pr_args(cpu_online_mask));
1101 
1102 	sdei_mask_local_cpu();
1103 }
1104 
1105 #ifdef CONFIG_KEXEC_CORE
1106 void crash_smp_send_stop(void)
1107 {
1108 	static int cpus_stopped;
1109 	cpumask_t mask;
1110 	unsigned long timeout;
1111 
1112 	/*
1113 	 * This function can be called twice in panic path, but obviously
1114 	 * we execute this only once.
1115 	 */
1116 	if (cpus_stopped)
1117 		return;
1118 
1119 	cpus_stopped = 1;
1120 
1121 	/*
1122 	 * If this cpu is the only one alive at this point in time, online or
1123 	 * not, there are no stop messages to be sent around, so just back out.
1124 	 */
1125 	if (num_other_online_cpus() == 0)
1126 		goto skip_ipi;
1127 
1128 	cpumask_copy(&mask, cpu_online_mask);
1129 	cpumask_clear_cpu(smp_processor_id(), &mask);
1130 
1131 	atomic_set(&waiting_for_crash_ipi, num_other_online_cpus());
1132 
1133 	pr_crit("SMP: stopping secondary CPUs\n");
1134 	smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
1135 
1136 	/* Wait up to one second for other CPUs to stop */
1137 	timeout = USEC_PER_SEC;
1138 	while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
1139 		udelay(1);
1140 
1141 	if (atomic_read(&waiting_for_crash_ipi) > 0)
1142 		pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1143 			cpumask_pr_args(&mask));
1144 
1145 skip_ipi:
1146 	sdei_mask_local_cpu();
1147 	sdei_handler_abort();
1148 }
1149 
1150 bool smp_crash_stop_failed(void)
1151 {
1152 	return (atomic_read(&waiting_for_crash_ipi) > 0);
1153 }
1154 #endif
1155 
1156 static bool have_cpu_die(void)
1157 {
1158 #ifdef CONFIG_HOTPLUG_CPU
1159 	int any_cpu = raw_smp_processor_id();
1160 	const struct cpu_operations *ops = get_cpu_ops(any_cpu);
1161 
1162 	if (ops && ops->cpu_die)
1163 		return true;
1164 #endif
1165 	return false;
1166 }
1167 
1168 bool cpus_are_stuck_in_kernel(void)
1169 {
1170 	bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1171 
1172 	return !!cpus_stuck_in_kernel || smp_spin_tables ||
1173 		is_protected_kvm_enabled();
1174 }
1175