1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * SMP initialisation and IPI support 4 * Based on arch/arm/kernel/smp.c 5 * 6 * Copyright (C) 2012 ARM Ltd. 7 */ 8 9 #include <linux/acpi.h> 10 #include <linux/arm_sdei.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/hotplug.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/interrupt.h> 18 #include <linux/cache.h> 19 #include <linux/profile.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/err.h> 23 #include <linux/cpu.h> 24 #include <linux/smp.h> 25 #include <linux/seq_file.h> 26 #include <linux/irq.h> 27 #include <linux/irqchip/arm-gic-v3.h> 28 #include <linux/percpu.h> 29 #include <linux/clockchips.h> 30 #include <linux/completion.h> 31 #include <linux/of.h> 32 #include <linux/irq_work.h> 33 #include <linux/kernel_stat.h> 34 #include <linux/kexec.h> 35 #include <linux/kgdb.h> 36 #include <linux/kvm_host.h> 37 #include <linux/nmi.h> 38 39 #include <asm/alternative.h> 40 #include <asm/atomic.h> 41 #include <asm/cacheflush.h> 42 #include <asm/cpu.h> 43 #include <asm/cputype.h> 44 #include <asm/cpu_ops.h> 45 #include <asm/daifflags.h> 46 #include <asm/kvm_mmu.h> 47 #include <asm/mmu_context.h> 48 #include <asm/numa.h> 49 #include <asm/processor.h> 50 #include <asm/smp_plat.h> 51 #include <asm/sections.h> 52 #include <asm/tlbflush.h> 53 #include <asm/ptrace.h> 54 #include <asm/virt.h> 55 56 #include <trace/events/ipi.h> 57 58 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number); 59 EXPORT_PER_CPU_SYMBOL(cpu_number); 60 61 /* 62 * as from 2.5, kernels no longer have an init_tasks structure 63 * so we need some other way of telling a new secondary core 64 * where to place its SVC stack 65 */ 66 struct secondary_data secondary_data; 67 /* Number of CPUs which aren't online, but looping in kernel text. */ 68 static int cpus_stuck_in_kernel; 69 70 enum ipi_msg_type { 71 IPI_RESCHEDULE, 72 IPI_CALL_FUNC, 73 IPI_CPU_STOP, 74 IPI_CPU_CRASH_STOP, 75 IPI_TIMER, 76 IPI_IRQ_WORK, 77 NR_IPI, 78 /* 79 * Any enum >= NR_IPI and < MAX_IPI is special and not tracable 80 * with trace_ipi_* 81 */ 82 IPI_CPU_BACKTRACE = NR_IPI, 83 IPI_KGDB_ROUNDUP, 84 MAX_IPI 85 }; 86 87 static int ipi_irq_base __ro_after_init; 88 static int nr_ipi __ro_after_init = NR_IPI; 89 static struct irq_desc *ipi_desc[MAX_IPI] __ro_after_init; 90 91 static void ipi_setup(int cpu); 92 93 #ifdef CONFIG_HOTPLUG_CPU 94 static void ipi_teardown(int cpu); 95 static int op_cpu_kill(unsigned int cpu); 96 #else 97 static inline int op_cpu_kill(unsigned int cpu) 98 { 99 return -ENOSYS; 100 } 101 #endif 102 103 104 /* 105 * Boot a secondary CPU, and assign it the specified idle task. 106 * This also gives us the initial stack to use for this CPU. 107 */ 108 static int boot_secondary(unsigned int cpu, struct task_struct *idle) 109 { 110 const struct cpu_operations *ops = get_cpu_ops(cpu); 111 112 if (ops->cpu_boot) 113 return ops->cpu_boot(cpu); 114 115 return -EOPNOTSUPP; 116 } 117 118 static DECLARE_COMPLETION(cpu_running); 119 120 int __cpu_up(unsigned int cpu, struct task_struct *idle) 121 { 122 int ret; 123 long status; 124 125 /* 126 * We need to tell the secondary core where to find its stack and the 127 * page tables. 128 */ 129 secondary_data.task = idle; 130 update_cpu_boot_status(CPU_MMU_OFF); 131 132 /* Now bring the CPU into our world */ 133 ret = boot_secondary(cpu, idle); 134 if (ret) { 135 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 136 return ret; 137 } 138 139 /* 140 * CPU was successfully started, wait for it to come online or 141 * time out. 142 */ 143 wait_for_completion_timeout(&cpu_running, 144 msecs_to_jiffies(5000)); 145 if (cpu_online(cpu)) 146 return 0; 147 148 pr_crit("CPU%u: failed to come online\n", cpu); 149 secondary_data.task = NULL; 150 status = READ_ONCE(secondary_data.status); 151 if (status == CPU_MMU_OFF) 152 status = READ_ONCE(__early_cpu_boot_status); 153 154 switch (status & CPU_BOOT_STATUS_MASK) { 155 default: 156 pr_err("CPU%u: failed in unknown state : 0x%lx\n", 157 cpu, status); 158 cpus_stuck_in_kernel++; 159 break; 160 case CPU_KILL_ME: 161 if (!op_cpu_kill(cpu)) { 162 pr_crit("CPU%u: died during early boot\n", cpu); 163 break; 164 } 165 pr_crit("CPU%u: may not have shut down cleanly\n", cpu); 166 fallthrough; 167 case CPU_STUCK_IN_KERNEL: 168 pr_crit("CPU%u: is stuck in kernel\n", cpu); 169 if (status & CPU_STUCK_REASON_52_BIT_VA) 170 pr_crit("CPU%u: does not support 52-bit VAs\n", cpu); 171 if (status & CPU_STUCK_REASON_NO_GRAN) { 172 pr_crit("CPU%u: does not support %luK granule\n", 173 cpu, PAGE_SIZE / SZ_1K); 174 } 175 cpus_stuck_in_kernel++; 176 break; 177 case CPU_PANIC_KERNEL: 178 panic("CPU%u detected unsupported configuration\n", cpu); 179 } 180 181 return -EIO; 182 } 183 184 static void init_gic_priority_masking(void) 185 { 186 u32 cpuflags; 187 188 if (WARN_ON(!gic_enable_sre())) 189 return; 190 191 cpuflags = read_sysreg(daif); 192 193 WARN_ON(!(cpuflags & PSR_I_BIT)); 194 WARN_ON(!(cpuflags & PSR_F_BIT)); 195 196 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET); 197 } 198 199 /* 200 * This is the secondary CPU boot entry. We're using this CPUs 201 * idle thread stack, but a set of temporary page tables. 202 */ 203 asmlinkage notrace void secondary_start_kernel(void) 204 { 205 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; 206 struct mm_struct *mm = &init_mm; 207 const struct cpu_operations *ops; 208 unsigned int cpu = smp_processor_id(); 209 210 /* 211 * All kernel threads share the same mm context; grab a 212 * reference and switch to it. 213 */ 214 mmgrab(mm); 215 current->active_mm = mm; 216 217 /* 218 * TTBR0 is only used for the identity mapping at this stage. Make it 219 * point to zero page to avoid speculatively fetching new entries. 220 */ 221 cpu_uninstall_idmap(); 222 223 if (system_uses_irq_prio_masking()) 224 init_gic_priority_masking(); 225 226 rcutree_report_cpu_starting(cpu); 227 trace_hardirqs_off(); 228 229 /* 230 * If the system has established the capabilities, make sure 231 * this CPU ticks all of those. If it doesn't, the CPU will 232 * fail to come online. 233 */ 234 check_local_cpu_capabilities(); 235 236 ops = get_cpu_ops(cpu); 237 if (ops->cpu_postboot) 238 ops->cpu_postboot(); 239 240 /* 241 * Log the CPU info before it is marked online and might get read. 242 */ 243 cpuinfo_store_cpu(); 244 store_cpu_topology(cpu); 245 246 /* 247 * Enable GIC and timers. 248 */ 249 notify_cpu_starting(cpu); 250 251 ipi_setup(cpu); 252 253 numa_add_cpu(cpu); 254 255 /* 256 * OK, now it's safe to let the boot CPU continue. Wait for 257 * the CPU migration code to notice that the CPU is online 258 * before we continue. 259 */ 260 pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n", 261 cpu, (unsigned long)mpidr, 262 read_cpuid_id()); 263 update_cpu_boot_status(CPU_BOOT_SUCCESS); 264 set_cpu_online(cpu, true); 265 complete(&cpu_running); 266 267 local_daif_restore(DAIF_PROCCTX); 268 269 /* 270 * OK, it's off to the idle thread for us 271 */ 272 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 273 } 274 275 #ifdef CONFIG_HOTPLUG_CPU 276 static int op_cpu_disable(unsigned int cpu) 277 { 278 const struct cpu_operations *ops = get_cpu_ops(cpu); 279 280 /* 281 * If we don't have a cpu_die method, abort before we reach the point 282 * of no return. CPU0 may not have an cpu_ops, so test for it. 283 */ 284 if (!ops || !ops->cpu_die) 285 return -EOPNOTSUPP; 286 287 /* 288 * We may need to abort a hot unplug for some other mechanism-specific 289 * reason. 290 */ 291 if (ops->cpu_disable) 292 return ops->cpu_disable(cpu); 293 294 return 0; 295 } 296 297 /* 298 * __cpu_disable runs on the processor to be shutdown. 299 */ 300 int __cpu_disable(void) 301 { 302 unsigned int cpu = smp_processor_id(); 303 int ret; 304 305 ret = op_cpu_disable(cpu); 306 if (ret) 307 return ret; 308 309 remove_cpu_topology(cpu); 310 numa_remove_cpu(cpu); 311 312 /* 313 * Take this CPU offline. Once we clear this, we can't return, 314 * and we must not schedule until we're ready to give up the cpu. 315 */ 316 set_cpu_online(cpu, false); 317 ipi_teardown(cpu); 318 319 /* 320 * OK - migrate IRQs away from this CPU 321 */ 322 irq_migrate_all_off_this_cpu(); 323 324 return 0; 325 } 326 327 static int op_cpu_kill(unsigned int cpu) 328 { 329 const struct cpu_operations *ops = get_cpu_ops(cpu); 330 331 /* 332 * If we have no means of synchronising with the dying CPU, then assume 333 * that it is really dead. We can only wait for an arbitrary length of 334 * time and hope that it's dead, so let's skip the wait and just hope. 335 */ 336 if (!ops->cpu_kill) 337 return 0; 338 339 return ops->cpu_kill(cpu); 340 } 341 342 /* 343 * Called on the thread which is asking for a CPU to be shutdown after the 344 * shutdown completed. 345 */ 346 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) 347 { 348 int err; 349 350 pr_debug("CPU%u: shutdown\n", cpu); 351 352 /* 353 * Now that the dying CPU is beyond the point of no return w.r.t. 354 * in-kernel synchronisation, try to get the firwmare to help us to 355 * verify that it has really left the kernel before we consider 356 * clobbering anything it might still be using. 357 */ 358 err = op_cpu_kill(cpu); 359 if (err) 360 pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err); 361 } 362 363 /* 364 * Called from the idle thread for the CPU which has been shutdown. 365 * 366 */ 367 void __noreturn cpu_die(void) 368 { 369 unsigned int cpu = smp_processor_id(); 370 const struct cpu_operations *ops = get_cpu_ops(cpu); 371 372 idle_task_exit(); 373 374 local_daif_mask(); 375 376 /* Tell cpuhp_bp_sync_dead() that this CPU is now safe to dispose of */ 377 cpuhp_ap_report_dead(); 378 379 /* 380 * Actually shutdown the CPU. This must never fail. The specific hotplug 381 * mechanism must perform all required cache maintenance to ensure that 382 * no dirty lines are lost in the process of shutting down the CPU. 383 */ 384 ops->cpu_die(cpu); 385 386 BUG(); 387 } 388 #endif 389 390 static void __cpu_try_die(int cpu) 391 { 392 #ifdef CONFIG_HOTPLUG_CPU 393 const struct cpu_operations *ops = get_cpu_ops(cpu); 394 395 if (ops && ops->cpu_die) 396 ops->cpu_die(cpu); 397 #endif 398 } 399 400 /* 401 * Kill the calling secondary CPU, early in bringup before it is turned 402 * online. 403 */ 404 void __noreturn cpu_die_early(void) 405 { 406 int cpu = smp_processor_id(); 407 408 pr_crit("CPU%d: will not boot\n", cpu); 409 410 /* Mark this CPU absent */ 411 set_cpu_present(cpu, 0); 412 rcutree_report_cpu_dead(); 413 414 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) { 415 update_cpu_boot_status(CPU_KILL_ME); 416 __cpu_try_die(cpu); 417 } 418 419 update_cpu_boot_status(CPU_STUCK_IN_KERNEL); 420 421 cpu_park_loop(); 422 } 423 424 static void __init hyp_mode_check(void) 425 { 426 if (is_hyp_mode_available()) 427 pr_info("CPU: All CPU(s) started at EL2\n"); 428 else if (is_hyp_mode_mismatched()) 429 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC, 430 "CPU: CPUs started in inconsistent modes"); 431 else 432 pr_info("CPU: All CPU(s) started at EL1\n"); 433 if (IS_ENABLED(CONFIG_KVM) && !is_kernel_in_hyp_mode()) { 434 kvm_compute_layout(); 435 kvm_apply_hyp_relocations(); 436 } 437 } 438 439 void __init smp_cpus_done(unsigned int max_cpus) 440 { 441 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus()); 442 hyp_mode_check(); 443 setup_system_features(); 444 setup_user_features(); 445 mark_linear_text_alias_ro(); 446 } 447 448 void __init smp_prepare_boot_cpu(void) 449 { 450 /* 451 * The runtime per-cpu areas have been allocated by 452 * setup_per_cpu_areas(), and CPU0's boot time per-cpu area will be 453 * freed shortly, so we must move over to the runtime per-cpu area. 454 */ 455 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 456 457 cpuinfo_store_boot_cpu(); 458 setup_boot_cpu_features(); 459 460 /* Conditionally switch to GIC PMR for interrupt masking */ 461 if (system_uses_irq_prio_masking()) 462 init_gic_priority_masking(); 463 464 kasan_init_hw_tags(); 465 } 466 467 /* 468 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized 469 * entries and check for duplicates. If any is found just ignore the 470 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid 471 * matching valid MPIDR values. 472 */ 473 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid) 474 { 475 unsigned int i; 476 477 for (i = 1; (i < cpu) && (i < NR_CPUS); i++) 478 if (cpu_logical_map(i) == hwid) 479 return true; 480 return false; 481 } 482 483 /* 484 * Initialize cpu operations for a logical cpu and 485 * set it in the possible mask on success 486 */ 487 static int __init smp_cpu_setup(int cpu) 488 { 489 const struct cpu_operations *ops; 490 491 if (init_cpu_ops(cpu)) 492 return -ENODEV; 493 494 ops = get_cpu_ops(cpu); 495 if (ops->cpu_init(cpu)) 496 return -ENODEV; 497 498 set_cpu_possible(cpu, true); 499 500 return 0; 501 } 502 503 static bool bootcpu_valid __initdata; 504 static unsigned int cpu_count = 1; 505 506 #ifdef CONFIG_ACPI 507 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS]; 508 509 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu) 510 { 511 return &cpu_madt_gicc[cpu]; 512 } 513 EXPORT_SYMBOL_GPL(acpi_cpu_get_madt_gicc); 514 515 /* 516 * acpi_map_gic_cpu_interface - parse processor MADT entry 517 * 518 * Carry out sanity checks on MADT processor entry and initialize 519 * cpu_logical_map on success 520 */ 521 static void __init 522 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor) 523 { 524 u64 hwid = processor->arm_mpidr; 525 526 if (!acpi_gicc_is_usable(processor)) { 527 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid); 528 return; 529 } 530 531 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) { 532 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid); 533 return; 534 } 535 536 if (is_mpidr_duplicate(cpu_count, hwid)) { 537 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid); 538 return; 539 } 540 541 /* Check if GICC structure of boot CPU is available in the MADT */ 542 if (cpu_logical_map(0) == hwid) { 543 if (bootcpu_valid) { 544 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n", 545 hwid); 546 return; 547 } 548 bootcpu_valid = true; 549 cpu_madt_gicc[0] = *processor; 550 return; 551 } 552 553 if (cpu_count >= NR_CPUS) 554 return; 555 556 /* map the logical cpu id to cpu MPIDR */ 557 set_cpu_logical_map(cpu_count, hwid); 558 559 cpu_madt_gicc[cpu_count] = *processor; 560 561 /* 562 * Set-up the ACPI parking protocol cpu entries 563 * while initializing the cpu_logical_map to 564 * avoid parsing MADT entries multiple times for 565 * nothing (ie a valid cpu_logical_map entry should 566 * contain a valid parking protocol data set to 567 * initialize the cpu if the parking protocol is 568 * the only available enable method). 569 */ 570 acpi_set_mailbox_entry(cpu_count, processor); 571 572 cpu_count++; 573 } 574 575 static int __init 576 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header, 577 const unsigned long end) 578 { 579 struct acpi_madt_generic_interrupt *processor; 580 581 processor = (struct acpi_madt_generic_interrupt *)header; 582 if (BAD_MADT_GICC_ENTRY(processor, end)) 583 return -EINVAL; 584 585 acpi_table_print_madt_entry(&header->common); 586 587 acpi_map_gic_cpu_interface(processor); 588 589 return 0; 590 } 591 592 static void __init acpi_parse_and_init_cpus(void) 593 { 594 int i; 595 596 /* 597 * do a walk of MADT to determine how many CPUs 598 * we have including disabled CPUs, and get information 599 * we need for SMP init. 600 */ 601 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, 602 acpi_parse_gic_cpu_interface, 0); 603 604 /* 605 * In ACPI, SMP and CPU NUMA information is provided in separate 606 * static tables, namely the MADT and the SRAT. 607 * 608 * Thus, it is simpler to first create the cpu logical map through 609 * an MADT walk and then map the logical cpus to their node ids 610 * as separate steps. 611 */ 612 acpi_map_cpus_to_nodes(); 613 614 for (i = 0; i < nr_cpu_ids; i++) 615 early_map_cpu_to_node(i, acpi_numa_get_nid(i)); 616 } 617 #else 618 #define acpi_parse_and_init_cpus(...) do { } while (0) 619 #endif 620 621 /* 622 * Enumerate the possible CPU set from the device tree and build the 623 * cpu logical map array containing MPIDR values related to logical 624 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 625 */ 626 static void __init of_parse_and_init_cpus(void) 627 { 628 struct device_node *dn; 629 630 for_each_of_cpu_node(dn) { 631 u64 hwid = of_get_cpu_hwid(dn, 0); 632 633 if (hwid & ~MPIDR_HWID_BITMASK) 634 goto next; 635 636 if (is_mpidr_duplicate(cpu_count, hwid)) { 637 pr_err("%pOF: duplicate cpu reg properties in the DT\n", 638 dn); 639 goto next; 640 } 641 642 /* 643 * The numbering scheme requires that the boot CPU 644 * must be assigned logical id 0. Record it so that 645 * the logical map built from DT is validated and can 646 * be used. 647 */ 648 if (hwid == cpu_logical_map(0)) { 649 if (bootcpu_valid) { 650 pr_err("%pOF: duplicate boot cpu reg property in DT\n", 651 dn); 652 goto next; 653 } 654 655 bootcpu_valid = true; 656 early_map_cpu_to_node(0, of_node_to_nid(dn)); 657 658 /* 659 * cpu_logical_map has already been 660 * initialized and the boot cpu doesn't need 661 * the enable-method so continue without 662 * incrementing cpu. 663 */ 664 continue; 665 } 666 667 if (cpu_count >= NR_CPUS) 668 goto next; 669 670 pr_debug("cpu logical map 0x%llx\n", hwid); 671 set_cpu_logical_map(cpu_count, hwid); 672 673 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn)); 674 next: 675 cpu_count++; 676 } 677 } 678 679 /* 680 * Enumerate the possible CPU set from the device tree or ACPI and build the 681 * cpu logical map array containing MPIDR values related to logical 682 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 683 */ 684 void __init smp_init_cpus(void) 685 { 686 int i; 687 688 if (acpi_disabled) 689 of_parse_and_init_cpus(); 690 else 691 acpi_parse_and_init_cpus(); 692 693 if (cpu_count > nr_cpu_ids) 694 pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n", 695 cpu_count, nr_cpu_ids); 696 697 if (!bootcpu_valid) { 698 pr_err("missing boot CPU MPIDR, not enabling secondaries\n"); 699 return; 700 } 701 702 /* 703 * We need to set the cpu_logical_map entries before enabling 704 * the cpus so that cpu processor description entries (DT cpu nodes 705 * and ACPI MADT entries) can be retrieved by matching the cpu hwid 706 * with entries in cpu_logical_map while initializing the cpus. 707 * If the cpu set-up fails, invalidate the cpu_logical_map entry. 708 */ 709 for (i = 1; i < nr_cpu_ids; i++) { 710 if (cpu_logical_map(i) != INVALID_HWID) { 711 if (smp_cpu_setup(i)) 712 set_cpu_logical_map(i, INVALID_HWID); 713 } 714 } 715 } 716 717 void __init smp_prepare_cpus(unsigned int max_cpus) 718 { 719 const struct cpu_operations *ops; 720 int err; 721 unsigned int cpu; 722 unsigned int this_cpu; 723 724 init_cpu_topology(); 725 726 this_cpu = smp_processor_id(); 727 store_cpu_topology(this_cpu); 728 numa_store_cpu_info(this_cpu); 729 numa_add_cpu(this_cpu); 730 731 /* 732 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set 733 * secondary CPUs present. 734 */ 735 if (max_cpus == 0) 736 return; 737 738 /* 739 * Initialise the present map (which describes the set of CPUs 740 * actually populated at the present time) and release the 741 * secondaries from the bootloader. 742 */ 743 for_each_possible_cpu(cpu) { 744 745 per_cpu(cpu_number, cpu) = cpu; 746 747 if (cpu == smp_processor_id()) 748 continue; 749 750 ops = get_cpu_ops(cpu); 751 if (!ops) 752 continue; 753 754 err = ops->cpu_prepare(cpu); 755 if (err) 756 continue; 757 758 set_cpu_present(cpu, true); 759 numa_store_cpu_info(cpu); 760 } 761 } 762 763 static const char *ipi_types[NR_IPI] __tracepoint_string = { 764 [IPI_RESCHEDULE] = "Rescheduling interrupts", 765 [IPI_CALL_FUNC] = "Function call interrupts", 766 [IPI_CPU_STOP] = "CPU stop interrupts", 767 [IPI_CPU_CRASH_STOP] = "CPU stop (for crash dump) interrupts", 768 [IPI_TIMER] = "Timer broadcast interrupts", 769 [IPI_IRQ_WORK] = "IRQ work interrupts", 770 }; 771 772 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr); 773 774 unsigned long irq_err_count; 775 776 int arch_show_interrupts(struct seq_file *p, int prec) 777 { 778 unsigned int cpu, i; 779 780 for (i = 0; i < NR_IPI; i++) { 781 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, 782 prec >= 4 ? " " : ""); 783 for_each_online_cpu(cpu) 784 seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu)); 785 seq_printf(p, " %s\n", ipi_types[i]); 786 } 787 788 seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count); 789 return 0; 790 } 791 792 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 793 { 794 smp_cross_call(mask, IPI_CALL_FUNC); 795 } 796 797 void arch_send_call_function_single_ipi(int cpu) 798 { 799 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); 800 } 801 802 #ifdef CONFIG_IRQ_WORK 803 void arch_irq_work_raise(void) 804 { 805 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 806 } 807 #endif 808 809 static void __noreturn local_cpu_stop(void) 810 { 811 set_cpu_online(smp_processor_id(), false); 812 813 local_daif_mask(); 814 sdei_mask_local_cpu(); 815 cpu_park_loop(); 816 } 817 818 /* 819 * We need to implement panic_smp_self_stop() for parallel panic() calls, so 820 * that cpu_online_mask gets correctly updated and smp_send_stop() can skip 821 * CPUs that have already stopped themselves. 822 */ 823 void __noreturn panic_smp_self_stop(void) 824 { 825 local_cpu_stop(); 826 } 827 828 #ifdef CONFIG_KEXEC_CORE 829 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0); 830 #endif 831 832 static void __noreturn ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs) 833 { 834 #ifdef CONFIG_KEXEC_CORE 835 crash_save_cpu(regs, cpu); 836 837 atomic_dec(&waiting_for_crash_ipi); 838 839 local_irq_disable(); 840 sdei_mask_local_cpu(); 841 842 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 843 __cpu_try_die(cpu); 844 845 /* just in case */ 846 cpu_park_loop(); 847 #else 848 BUG(); 849 #endif 850 } 851 852 static void arm64_backtrace_ipi(cpumask_t *mask) 853 { 854 __ipi_send_mask(ipi_desc[IPI_CPU_BACKTRACE], mask); 855 } 856 857 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, int exclude_cpu) 858 { 859 /* 860 * NOTE: though nmi_trigger_cpumask_backtrace() has "nmi_" in the name, 861 * nothing about it truly needs to be implemented using an NMI, it's 862 * just that it's _allowed_ to work with NMIs. If ipi_should_be_nmi() 863 * returned false our backtrace attempt will just use a regular IPI. 864 */ 865 nmi_trigger_cpumask_backtrace(mask, exclude_cpu, arm64_backtrace_ipi); 866 } 867 868 #ifdef CONFIG_KGDB 869 void kgdb_roundup_cpus(void) 870 { 871 int this_cpu = raw_smp_processor_id(); 872 int cpu; 873 874 for_each_online_cpu(cpu) { 875 /* No need to roundup ourselves */ 876 if (cpu == this_cpu) 877 continue; 878 879 __ipi_send_single(ipi_desc[IPI_KGDB_ROUNDUP], cpu); 880 } 881 } 882 #endif 883 884 /* 885 * Main handler for inter-processor interrupts 886 */ 887 static void do_handle_IPI(int ipinr) 888 { 889 unsigned int cpu = smp_processor_id(); 890 891 if ((unsigned)ipinr < NR_IPI) 892 trace_ipi_entry(ipi_types[ipinr]); 893 894 switch (ipinr) { 895 case IPI_RESCHEDULE: 896 scheduler_ipi(); 897 break; 898 899 case IPI_CALL_FUNC: 900 generic_smp_call_function_interrupt(); 901 break; 902 903 case IPI_CPU_STOP: 904 local_cpu_stop(); 905 break; 906 907 case IPI_CPU_CRASH_STOP: 908 if (IS_ENABLED(CONFIG_KEXEC_CORE)) { 909 ipi_cpu_crash_stop(cpu, get_irq_regs()); 910 911 unreachable(); 912 } 913 break; 914 915 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 916 case IPI_TIMER: 917 tick_receive_broadcast(); 918 break; 919 #endif 920 921 #ifdef CONFIG_IRQ_WORK 922 case IPI_IRQ_WORK: 923 irq_work_run(); 924 break; 925 #endif 926 927 case IPI_CPU_BACKTRACE: 928 /* 929 * NOTE: in some cases this _won't_ be NMI context. See the 930 * comment in arch_trigger_cpumask_backtrace(). 931 */ 932 nmi_cpu_backtrace(get_irq_regs()); 933 break; 934 935 case IPI_KGDB_ROUNDUP: 936 kgdb_nmicallback(cpu, get_irq_regs()); 937 break; 938 939 default: 940 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr); 941 break; 942 } 943 944 if ((unsigned)ipinr < NR_IPI) 945 trace_ipi_exit(ipi_types[ipinr]); 946 } 947 948 static irqreturn_t ipi_handler(int irq, void *data) 949 { 950 do_handle_IPI(irq - ipi_irq_base); 951 return IRQ_HANDLED; 952 } 953 954 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 955 { 956 trace_ipi_raise(target, ipi_types[ipinr]); 957 __ipi_send_mask(ipi_desc[ipinr], target); 958 } 959 960 static bool ipi_should_be_nmi(enum ipi_msg_type ipi) 961 { 962 if (!system_uses_irq_prio_masking()) 963 return false; 964 965 switch (ipi) { 966 case IPI_CPU_STOP: 967 case IPI_CPU_CRASH_STOP: 968 case IPI_CPU_BACKTRACE: 969 case IPI_KGDB_ROUNDUP: 970 return true; 971 default: 972 return false; 973 } 974 } 975 976 static void ipi_setup(int cpu) 977 { 978 int i; 979 980 if (WARN_ON_ONCE(!ipi_irq_base)) 981 return; 982 983 for (i = 0; i < nr_ipi; i++) { 984 if (ipi_should_be_nmi(i)) { 985 prepare_percpu_nmi(ipi_irq_base + i); 986 enable_percpu_nmi(ipi_irq_base + i, 0); 987 } else { 988 enable_percpu_irq(ipi_irq_base + i, 0); 989 } 990 } 991 } 992 993 #ifdef CONFIG_HOTPLUG_CPU 994 static void ipi_teardown(int cpu) 995 { 996 int i; 997 998 if (WARN_ON_ONCE(!ipi_irq_base)) 999 return; 1000 1001 for (i = 0; i < nr_ipi; i++) { 1002 if (ipi_should_be_nmi(i)) { 1003 disable_percpu_nmi(ipi_irq_base + i); 1004 teardown_percpu_nmi(ipi_irq_base + i); 1005 } else { 1006 disable_percpu_irq(ipi_irq_base + i); 1007 } 1008 } 1009 } 1010 #endif 1011 1012 void __init set_smp_ipi_range(int ipi_base, int n) 1013 { 1014 int i; 1015 1016 WARN_ON(n < MAX_IPI); 1017 nr_ipi = min(n, MAX_IPI); 1018 1019 for (i = 0; i < nr_ipi; i++) { 1020 int err; 1021 1022 if (ipi_should_be_nmi(i)) { 1023 err = request_percpu_nmi(ipi_base + i, ipi_handler, 1024 "IPI", &cpu_number); 1025 WARN(err, "Could not request IPI %d as NMI, err=%d\n", 1026 i, err); 1027 } else { 1028 err = request_percpu_irq(ipi_base + i, ipi_handler, 1029 "IPI", &cpu_number); 1030 WARN(err, "Could not request IPI %d as IRQ, err=%d\n", 1031 i, err); 1032 } 1033 1034 ipi_desc[i] = irq_to_desc(ipi_base + i); 1035 irq_set_status_flags(ipi_base + i, IRQ_HIDDEN); 1036 } 1037 1038 ipi_irq_base = ipi_base; 1039 1040 /* Setup the boot CPU immediately */ 1041 ipi_setup(smp_processor_id()); 1042 } 1043 1044 void arch_smp_send_reschedule(int cpu) 1045 { 1046 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 1047 } 1048 1049 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 1050 void arch_send_wakeup_ipi(unsigned int cpu) 1051 { 1052 /* 1053 * We use a scheduler IPI to wake the CPU as this avoids the need for a 1054 * dedicated IPI and we can safely handle spurious scheduler IPIs. 1055 */ 1056 smp_send_reschedule(cpu); 1057 } 1058 #endif 1059 1060 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 1061 void tick_broadcast(const struct cpumask *mask) 1062 { 1063 smp_cross_call(mask, IPI_TIMER); 1064 } 1065 #endif 1066 1067 /* 1068 * The number of CPUs online, not counting this CPU (which may not be 1069 * fully online and so not counted in num_online_cpus()). 1070 */ 1071 static inline unsigned int num_other_online_cpus(void) 1072 { 1073 unsigned int this_cpu_online = cpu_online(smp_processor_id()); 1074 1075 return num_online_cpus() - this_cpu_online; 1076 } 1077 1078 void smp_send_stop(void) 1079 { 1080 unsigned long timeout; 1081 1082 if (num_other_online_cpus()) { 1083 cpumask_t mask; 1084 1085 cpumask_copy(&mask, cpu_online_mask); 1086 cpumask_clear_cpu(smp_processor_id(), &mask); 1087 1088 if (system_state <= SYSTEM_RUNNING) 1089 pr_crit("SMP: stopping secondary CPUs\n"); 1090 smp_cross_call(&mask, IPI_CPU_STOP); 1091 } 1092 1093 /* Wait up to one second for other CPUs to stop */ 1094 timeout = USEC_PER_SEC; 1095 while (num_other_online_cpus() && timeout--) 1096 udelay(1); 1097 1098 if (num_other_online_cpus()) 1099 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n", 1100 cpumask_pr_args(cpu_online_mask)); 1101 1102 sdei_mask_local_cpu(); 1103 } 1104 1105 #ifdef CONFIG_KEXEC_CORE 1106 void crash_smp_send_stop(void) 1107 { 1108 static int cpus_stopped; 1109 cpumask_t mask; 1110 unsigned long timeout; 1111 1112 /* 1113 * This function can be called twice in panic path, but obviously 1114 * we execute this only once. 1115 */ 1116 if (cpus_stopped) 1117 return; 1118 1119 cpus_stopped = 1; 1120 1121 /* 1122 * If this cpu is the only one alive at this point in time, online or 1123 * not, there are no stop messages to be sent around, so just back out. 1124 */ 1125 if (num_other_online_cpus() == 0) 1126 goto skip_ipi; 1127 1128 cpumask_copy(&mask, cpu_online_mask); 1129 cpumask_clear_cpu(smp_processor_id(), &mask); 1130 1131 atomic_set(&waiting_for_crash_ipi, num_other_online_cpus()); 1132 1133 pr_crit("SMP: stopping secondary CPUs\n"); 1134 smp_cross_call(&mask, IPI_CPU_CRASH_STOP); 1135 1136 /* Wait up to one second for other CPUs to stop */ 1137 timeout = USEC_PER_SEC; 1138 while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--) 1139 udelay(1); 1140 1141 if (atomic_read(&waiting_for_crash_ipi) > 0) 1142 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n", 1143 cpumask_pr_args(&mask)); 1144 1145 skip_ipi: 1146 sdei_mask_local_cpu(); 1147 sdei_handler_abort(); 1148 } 1149 1150 bool smp_crash_stop_failed(void) 1151 { 1152 return (atomic_read(&waiting_for_crash_ipi) > 0); 1153 } 1154 #endif 1155 1156 static bool have_cpu_die(void) 1157 { 1158 #ifdef CONFIG_HOTPLUG_CPU 1159 int any_cpu = raw_smp_processor_id(); 1160 const struct cpu_operations *ops = get_cpu_ops(any_cpu); 1161 1162 if (ops && ops->cpu_die) 1163 return true; 1164 #endif 1165 return false; 1166 } 1167 1168 bool cpus_are_stuck_in_kernel(void) 1169 { 1170 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die()); 1171 1172 return !!cpus_stuck_in_kernel || smp_spin_tables || 1173 is_protected_kvm_enabled(); 1174 } 1175