1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * SMP initialisation and IPI support 4 * Based on arch/arm/kernel/smp.c 5 * 6 * Copyright (C) 2012 ARM Ltd. 7 */ 8 9 #include <linux/acpi.h> 10 #include <linux/arm_sdei.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/hotplug.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/interrupt.h> 18 #include <linux/cache.h> 19 #include <linux/profile.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/err.h> 23 #include <linux/cpu.h> 24 #include <linux/smp.h> 25 #include <linux/seq_file.h> 26 #include <linux/irq.h> 27 #include <linux/irqchip/arm-gic-v3.h> 28 #include <linux/percpu.h> 29 #include <linux/clockchips.h> 30 #include <linux/completion.h> 31 #include <linux/of.h> 32 #include <linux/irq_work.h> 33 #include <linux/kernel_stat.h> 34 #include <linux/kexec.h> 35 #include <linux/kgdb.h> 36 #include <linux/kvm_host.h> 37 #include <linux/nmi.h> 38 39 #include <asm/alternative.h> 40 #include <asm/atomic.h> 41 #include <asm/cacheflush.h> 42 #include <asm/cpu.h> 43 #include <asm/cputype.h> 44 #include <asm/cpu_ops.h> 45 #include <asm/daifflags.h> 46 #include <asm/kvm_mmu.h> 47 #include <asm/mmu_context.h> 48 #include <asm/numa.h> 49 #include <asm/processor.h> 50 #include <asm/smp_plat.h> 51 #include <asm/sections.h> 52 #include <asm/tlbflush.h> 53 #include <asm/ptrace.h> 54 #include <asm/virt.h> 55 56 #include <trace/events/ipi.h> 57 58 /* 59 * as from 2.5, kernels no longer have an init_tasks structure 60 * so we need some other way of telling a new secondary core 61 * where to place its SVC stack 62 */ 63 struct secondary_data secondary_data; 64 /* Number of CPUs which aren't online, but looping in kernel text. */ 65 static int cpus_stuck_in_kernel; 66 67 enum ipi_msg_type { 68 IPI_RESCHEDULE, 69 IPI_CALL_FUNC, 70 IPI_CPU_STOP, 71 IPI_CPU_STOP_NMI, 72 IPI_TIMER, 73 IPI_IRQ_WORK, 74 NR_IPI, 75 /* 76 * Any enum >= NR_IPI and < MAX_IPI is special and not tracable 77 * with trace_ipi_* 78 */ 79 IPI_CPU_BACKTRACE = NR_IPI, 80 IPI_KGDB_ROUNDUP, 81 MAX_IPI 82 }; 83 84 static int ipi_irq_base __ro_after_init; 85 static int nr_ipi __ro_after_init = NR_IPI; 86 static struct irq_desc *ipi_desc[MAX_IPI] __ro_after_init; 87 88 static bool crash_stop; 89 90 static void ipi_setup(int cpu); 91 92 #ifdef CONFIG_HOTPLUG_CPU 93 static void ipi_teardown(int cpu); 94 static int op_cpu_kill(unsigned int cpu); 95 #else 96 static inline int op_cpu_kill(unsigned int cpu) 97 { 98 return -ENOSYS; 99 } 100 #endif 101 102 103 /* 104 * Boot a secondary CPU, and assign it the specified idle task. 105 * This also gives us the initial stack to use for this CPU. 106 */ 107 static int boot_secondary(unsigned int cpu, struct task_struct *idle) 108 { 109 const struct cpu_operations *ops = get_cpu_ops(cpu); 110 111 if (ops->cpu_boot) 112 return ops->cpu_boot(cpu); 113 114 return -EOPNOTSUPP; 115 } 116 117 static DECLARE_COMPLETION(cpu_running); 118 119 int __cpu_up(unsigned int cpu, struct task_struct *idle) 120 { 121 int ret; 122 long status; 123 124 /* 125 * We need to tell the secondary core where to find its stack and the 126 * page tables. 127 */ 128 secondary_data.task = idle; 129 update_cpu_boot_status(CPU_MMU_OFF); 130 131 /* Now bring the CPU into our world */ 132 ret = boot_secondary(cpu, idle); 133 if (ret) { 134 if (ret != -EPERM) 135 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 136 return ret; 137 } 138 139 /* 140 * CPU was successfully started, wait for it to come online or 141 * time out. 142 */ 143 wait_for_completion_timeout(&cpu_running, 144 msecs_to_jiffies(5000)); 145 if (cpu_online(cpu)) 146 return 0; 147 148 pr_crit("CPU%u: failed to come online\n", cpu); 149 secondary_data.task = NULL; 150 status = READ_ONCE(secondary_data.status); 151 if (status == CPU_MMU_OFF) 152 status = READ_ONCE(__early_cpu_boot_status); 153 154 switch (status & CPU_BOOT_STATUS_MASK) { 155 default: 156 pr_err("CPU%u: failed in unknown state : 0x%lx\n", 157 cpu, status); 158 cpus_stuck_in_kernel++; 159 break; 160 case CPU_KILL_ME: 161 if (!op_cpu_kill(cpu)) { 162 pr_crit("CPU%u: died during early boot\n", cpu); 163 break; 164 } 165 pr_crit("CPU%u: may not have shut down cleanly\n", cpu); 166 fallthrough; 167 case CPU_STUCK_IN_KERNEL: 168 pr_crit("CPU%u: is stuck in kernel\n", cpu); 169 if (status & CPU_STUCK_REASON_52_BIT_VA) 170 pr_crit("CPU%u: does not support 52-bit VAs\n", cpu); 171 if (status & CPU_STUCK_REASON_NO_GRAN) { 172 pr_crit("CPU%u: does not support %luK granule\n", 173 cpu, PAGE_SIZE / SZ_1K); 174 } 175 cpus_stuck_in_kernel++; 176 break; 177 case CPU_PANIC_KERNEL: 178 panic("CPU%u detected unsupported configuration\n", cpu); 179 } 180 181 return -EIO; 182 } 183 184 static void init_gic_priority_masking(void) 185 { 186 u32 cpuflags; 187 188 if (WARN_ON(!gic_enable_sre())) 189 return; 190 191 cpuflags = read_sysreg(daif); 192 193 WARN_ON(!(cpuflags & PSR_I_BIT)); 194 WARN_ON(!(cpuflags & PSR_F_BIT)); 195 196 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET); 197 } 198 199 /* 200 * This is the secondary CPU boot entry. We're using this CPUs 201 * idle thread stack, but a set of temporary page tables. 202 */ 203 asmlinkage notrace void secondary_start_kernel(void) 204 { 205 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; 206 struct mm_struct *mm = &init_mm; 207 const struct cpu_operations *ops; 208 unsigned int cpu = smp_processor_id(); 209 210 /* 211 * All kernel threads share the same mm context; grab a 212 * reference and switch to it. 213 */ 214 mmgrab(mm); 215 current->active_mm = mm; 216 217 /* 218 * TTBR0 is only used for the identity mapping at this stage. Make it 219 * point to zero page to avoid speculatively fetching new entries. 220 */ 221 cpu_uninstall_idmap(); 222 223 if (system_uses_irq_prio_masking()) 224 init_gic_priority_masking(); 225 226 rcutree_report_cpu_starting(cpu); 227 trace_hardirqs_off(); 228 229 /* 230 * If the system has established the capabilities, make sure 231 * this CPU ticks all of those. If it doesn't, the CPU will 232 * fail to come online. 233 */ 234 check_local_cpu_capabilities(); 235 236 ops = get_cpu_ops(cpu); 237 if (ops->cpu_postboot) 238 ops->cpu_postboot(); 239 240 /* 241 * Log the CPU info before it is marked online and might get read. 242 */ 243 cpuinfo_store_cpu(); 244 store_cpu_topology(cpu); 245 246 /* 247 * Enable GIC and timers. 248 */ 249 notify_cpu_starting(cpu); 250 251 ipi_setup(cpu); 252 253 numa_add_cpu(cpu); 254 255 /* 256 * OK, now it's safe to let the boot CPU continue. Wait for 257 * the CPU migration code to notice that the CPU is online 258 * before we continue. 259 */ 260 pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n", 261 cpu, (unsigned long)mpidr, 262 read_cpuid_id()); 263 update_cpu_boot_status(CPU_BOOT_SUCCESS); 264 set_cpu_online(cpu, true); 265 complete(&cpu_running); 266 267 /* 268 * Secondary CPUs enter the kernel with all DAIF exceptions masked. 269 * 270 * As with setup_arch() we must unmask Debug and SError exceptions, and 271 * as the root irqchip has already been detected and initialized we can 272 * unmask IRQ and FIQ at the same time. 273 */ 274 local_daif_restore(DAIF_PROCCTX); 275 276 /* 277 * OK, it's off to the idle thread for us 278 */ 279 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 280 } 281 282 #ifdef CONFIG_HOTPLUG_CPU 283 static int op_cpu_disable(unsigned int cpu) 284 { 285 const struct cpu_operations *ops = get_cpu_ops(cpu); 286 287 /* 288 * If we don't have a cpu_die method, abort before we reach the point 289 * of no return. CPU0 may not have an cpu_ops, so test for it. 290 */ 291 if (!ops || !ops->cpu_die) 292 return -EOPNOTSUPP; 293 294 /* 295 * We may need to abort a hot unplug for some other mechanism-specific 296 * reason. 297 */ 298 if (ops->cpu_disable) 299 return ops->cpu_disable(cpu); 300 301 return 0; 302 } 303 304 /* 305 * __cpu_disable runs on the processor to be shutdown. 306 */ 307 int __cpu_disable(void) 308 { 309 unsigned int cpu = smp_processor_id(); 310 int ret; 311 312 ret = op_cpu_disable(cpu); 313 if (ret) 314 return ret; 315 316 remove_cpu_topology(cpu); 317 numa_remove_cpu(cpu); 318 319 /* 320 * Take this CPU offline. Once we clear this, we can't return, 321 * and we must not schedule until we're ready to give up the cpu. 322 */ 323 set_cpu_online(cpu, false); 324 ipi_teardown(cpu); 325 326 /* 327 * OK - migrate IRQs away from this CPU 328 */ 329 irq_migrate_all_off_this_cpu(); 330 331 return 0; 332 } 333 334 static int op_cpu_kill(unsigned int cpu) 335 { 336 const struct cpu_operations *ops = get_cpu_ops(cpu); 337 338 /* 339 * If we have no means of synchronising with the dying CPU, then assume 340 * that it is really dead. We can only wait for an arbitrary length of 341 * time and hope that it's dead, so let's skip the wait and just hope. 342 */ 343 if (!ops->cpu_kill) 344 return 0; 345 346 return ops->cpu_kill(cpu); 347 } 348 349 /* 350 * Called on the thread which is asking for a CPU to be shutdown after the 351 * shutdown completed. 352 */ 353 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) 354 { 355 int err; 356 357 pr_debug("CPU%u: shutdown\n", cpu); 358 359 /* 360 * Now that the dying CPU is beyond the point of no return w.r.t. 361 * in-kernel synchronisation, try to get the firwmare to help us to 362 * verify that it has really left the kernel before we consider 363 * clobbering anything it might still be using. 364 */ 365 err = op_cpu_kill(cpu); 366 if (err) 367 pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err); 368 } 369 370 /* 371 * Called from the idle thread for the CPU which has been shutdown. 372 * 373 */ 374 void __noreturn cpu_die(void) 375 { 376 unsigned int cpu = smp_processor_id(); 377 const struct cpu_operations *ops = get_cpu_ops(cpu); 378 379 idle_task_exit(); 380 381 local_daif_mask(); 382 383 /* Tell cpuhp_bp_sync_dead() that this CPU is now safe to dispose of */ 384 cpuhp_ap_report_dead(); 385 386 /* 387 * Actually shutdown the CPU. This must never fail. The specific hotplug 388 * mechanism must perform all required cache maintenance to ensure that 389 * no dirty lines are lost in the process of shutting down the CPU. 390 */ 391 ops->cpu_die(cpu); 392 393 BUG(); 394 } 395 #endif 396 397 static void __cpu_try_die(int cpu) 398 { 399 #ifdef CONFIG_HOTPLUG_CPU 400 const struct cpu_operations *ops = get_cpu_ops(cpu); 401 402 if (ops && ops->cpu_die) 403 ops->cpu_die(cpu); 404 #endif 405 } 406 407 /* 408 * Kill the calling secondary CPU, early in bringup before it is turned 409 * online. 410 */ 411 void __noreturn cpu_die_early(void) 412 { 413 int cpu = smp_processor_id(); 414 415 pr_crit("CPU%d: will not boot\n", cpu); 416 417 /* Mark this CPU absent */ 418 set_cpu_present(cpu, 0); 419 rcutree_report_cpu_dead(); 420 421 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) { 422 update_cpu_boot_status(CPU_KILL_ME); 423 __cpu_try_die(cpu); 424 } 425 426 update_cpu_boot_status(CPU_STUCK_IN_KERNEL); 427 428 cpu_park_loop(); 429 } 430 431 static void __init hyp_mode_check(void) 432 { 433 if (is_hyp_mode_available()) 434 pr_info("CPU: All CPU(s) started at EL2\n"); 435 else if (is_hyp_mode_mismatched()) 436 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC, 437 "CPU: CPUs started in inconsistent modes"); 438 else 439 pr_info("CPU: All CPU(s) started at EL1\n"); 440 if (IS_ENABLED(CONFIG_KVM) && !is_kernel_in_hyp_mode()) { 441 kvm_compute_layout(); 442 kvm_apply_hyp_relocations(); 443 } 444 } 445 446 void __init smp_cpus_done(unsigned int max_cpus) 447 { 448 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus()); 449 hyp_mode_check(); 450 setup_system_features(); 451 setup_user_features(); 452 mark_linear_text_alias_ro(); 453 } 454 455 void __init smp_prepare_boot_cpu(void) 456 { 457 /* 458 * The runtime per-cpu areas have been allocated by 459 * setup_per_cpu_areas(), and CPU0's boot time per-cpu area will be 460 * freed shortly, so we must move over to the runtime per-cpu area. 461 */ 462 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 463 464 cpuinfo_store_boot_cpu(); 465 setup_boot_cpu_features(); 466 467 /* Conditionally switch to GIC PMR for interrupt masking */ 468 if (system_uses_irq_prio_masking()) 469 init_gic_priority_masking(); 470 471 kasan_init_hw_tags(); 472 /* Init percpu seeds for random tags after cpus are set up. */ 473 kasan_init_sw_tags(); 474 } 475 476 /* 477 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized 478 * entries and check for duplicates. If any is found just ignore the 479 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid 480 * matching valid MPIDR values. 481 */ 482 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid) 483 { 484 unsigned int i; 485 486 for (i = 1; (i < cpu) && (i < NR_CPUS); i++) 487 if (cpu_logical_map(i) == hwid) 488 return true; 489 return false; 490 } 491 492 /* 493 * Initialize cpu operations for a logical cpu and 494 * set it in the possible mask on success 495 */ 496 static int __init smp_cpu_setup(int cpu) 497 { 498 const struct cpu_operations *ops; 499 500 if (init_cpu_ops(cpu)) 501 return -ENODEV; 502 503 ops = get_cpu_ops(cpu); 504 if (ops->cpu_init(cpu)) 505 return -ENODEV; 506 507 set_cpu_possible(cpu, true); 508 509 return 0; 510 } 511 512 static bool bootcpu_valid __initdata; 513 static unsigned int cpu_count = 1; 514 515 int arch_register_cpu(int cpu) 516 { 517 acpi_handle acpi_handle = acpi_get_processor_handle(cpu); 518 struct cpu *c = &per_cpu(cpu_devices, cpu); 519 520 if (!acpi_disabled && !acpi_handle && 521 IS_ENABLED(CONFIG_ACPI_HOTPLUG_CPU)) 522 return -EPROBE_DEFER; 523 524 #ifdef CONFIG_ACPI_HOTPLUG_CPU 525 /* For now block anything that looks like physical CPU Hotplug */ 526 if (invalid_logical_cpuid(cpu) || !cpu_present(cpu)) { 527 pr_err_once("Changing CPU present bit is not supported\n"); 528 return -ENODEV; 529 } 530 #endif 531 532 /* 533 * Availability of the acpi handle is sufficient to establish 534 * that _STA has aleady been checked. No need to recheck here. 535 */ 536 c->hotpluggable = arch_cpu_is_hotpluggable(cpu); 537 538 return register_cpu(c, cpu); 539 } 540 541 #ifdef CONFIG_ACPI_HOTPLUG_CPU 542 void arch_unregister_cpu(int cpu) 543 { 544 acpi_handle acpi_handle = acpi_get_processor_handle(cpu); 545 struct cpu *c = &per_cpu(cpu_devices, cpu); 546 acpi_status status; 547 unsigned long long sta; 548 549 if (!acpi_handle) { 550 pr_err_once("Removing a CPU without associated ACPI handle\n"); 551 return; 552 } 553 554 status = acpi_evaluate_integer(acpi_handle, "_STA", NULL, &sta); 555 if (ACPI_FAILURE(status)) 556 return; 557 558 /* For now do not allow anything that looks like physical CPU HP */ 559 if (cpu_present(cpu) && !(sta & ACPI_STA_DEVICE_PRESENT)) { 560 pr_err_once("Changing CPU present bit is not supported\n"); 561 return; 562 } 563 564 unregister_cpu(c); 565 } 566 #endif /* CONFIG_ACPI_HOTPLUG_CPU */ 567 568 #ifdef CONFIG_ACPI 569 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS]; 570 571 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu) 572 { 573 return &cpu_madt_gicc[cpu]; 574 } 575 EXPORT_SYMBOL_GPL(acpi_cpu_get_madt_gicc); 576 577 /* 578 * acpi_map_gic_cpu_interface - parse processor MADT entry 579 * 580 * Carry out sanity checks on MADT processor entry and initialize 581 * cpu_logical_map on success 582 */ 583 static void __init 584 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor) 585 { 586 u64 hwid = processor->arm_mpidr; 587 588 if (!(processor->flags & 589 (ACPI_MADT_ENABLED | ACPI_MADT_GICC_ONLINE_CAPABLE))) { 590 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid); 591 return; 592 } 593 594 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) { 595 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid); 596 return; 597 } 598 599 if (is_mpidr_duplicate(cpu_count, hwid)) { 600 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid); 601 return; 602 } 603 604 /* Check if GICC structure of boot CPU is available in the MADT */ 605 if (cpu_logical_map(0) == hwid) { 606 if (bootcpu_valid) { 607 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n", 608 hwid); 609 return; 610 } 611 bootcpu_valid = true; 612 cpu_madt_gicc[0] = *processor; 613 return; 614 } 615 616 if (cpu_count >= NR_CPUS) 617 return; 618 619 /* map the logical cpu id to cpu MPIDR */ 620 set_cpu_logical_map(cpu_count, hwid); 621 622 cpu_madt_gicc[cpu_count] = *processor; 623 624 /* 625 * Set-up the ACPI parking protocol cpu entries 626 * while initializing the cpu_logical_map to 627 * avoid parsing MADT entries multiple times for 628 * nothing (ie a valid cpu_logical_map entry should 629 * contain a valid parking protocol data set to 630 * initialize the cpu if the parking protocol is 631 * the only available enable method). 632 */ 633 acpi_set_mailbox_entry(cpu_count, processor); 634 635 cpu_count++; 636 } 637 638 static int __init 639 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header, 640 const unsigned long end) 641 { 642 struct acpi_madt_generic_interrupt *processor; 643 644 processor = (struct acpi_madt_generic_interrupt *)header; 645 if (BAD_MADT_GICC_ENTRY(processor, end)) 646 return -EINVAL; 647 648 acpi_table_print_madt_entry(&header->common); 649 650 acpi_map_gic_cpu_interface(processor); 651 652 return 0; 653 } 654 655 static void __init acpi_parse_and_init_cpus(void) 656 { 657 int i; 658 659 /* 660 * do a walk of MADT to determine how many CPUs 661 * we have including disabled CPUs, and get information 662 * we need for SMP init. 663 */ 664 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, 665 acpi_parse_gic_cpu_interface, 0); 666 667 /* 668 * In ACPI, SMP and CPU NUMA information is provided in separate 669 * static tables, namely the MADT and the SRAT. 670 * 671 * Thus, it is simpler to first create the cpu logical map through 672 * an MADT walk and then map the logical cpus to their node ids 673 * as separate steps. 674 */ 675 acpi_map_cpus_to_nodes(); 676 677 for (i = 0; i < nr_cpu_ids; i++) 678 early_map_cpu_to_node(i, acpi_numa_get_nid(i)); 679 } 680 #else 681 #define acpi_parse_and_init_cpus(...) do { } while (0) 682 #endif 683 684 /* 685 * Enumerate the possible CPU set from the device tree and build the 686 * cpu logical map array containing MPIDR values related to logical 687 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 688 */ 689 static void __init of_parse_and_init_cpus(void) 690 { 691 struct device_node *dn; 692 693 for_each_of_cpu_node(dn) { 694 u64 hwid = of_get_cpu_hwid(dn, 0); 695 696 if (hwid & ~MPIDR_HWID_BITMASK) 697 goto next; 698 699 if (is_mpidr_duplicate(cpu_count, hwid)) { 700 pr_err("%pOF: duplicate cpu reg properties in the DT\n", 701 dn); 702 goto next; 703 } 704 705 /* 706 * The numbering scheme requires that the boot CPU 707 * must be assigned logical id 0. Record it so that 708 * the logical map built from DT is validated and can 709 * be used. 710 */ 711 if (hwid == cpu_logical_map(0)) { 712 if (bootcpu_valid) { 713 pr_err("%pOF: duplicate boot cpu reg property in DT\n", 714 dn); 715 goto next; 716 } 717 718 bootcpu_valid = true; 719 early_map_cpu_to_node(0, of_node_to_nid(dn)); 720 721 /* 722 * cpu_logical_map has already been 723 * initialized and the boot cpu doesn't need 724 * the enable-method so continue without 725 * incrementing cpu. 726 */ 727 continue; 728 } 729 730 if (cpu_count >= NR_CPUS) 731 goto next; 732 733 pr_debug("cpu logical map 0x%llx\n", hwid); 734 set_cpu_logical_map(cpu_count, hwid); 735 736 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn)); 737 next: 738 cpu_count++; 739 } 740 } 741 742 /* 743 * Enumerate the possible CPU set from the device tree or ACPI and build the 744 * cpu logical map array containing MPIDR values related to logical 745 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 746 */ 747 void __init smp_init_cpus(void) 748 { 749 int i; 750 751 if (acpi_disabled) 752 of_parse_and_init_cpus(); 753 else 754 acpi_parse_and_init_cpus(); 755 756 if (cpu_count > nr_cpu_ids) 757 pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n", 758 cpu_count, nr_cpu_ids); 759 760 if (!bootcpu_valid) { 761 pr_err("missing boot CPU MPIDR, not enabling secondaries\n"); 762 return; 763 } 764 765 /* 766 * We need to set the cpu_logical_map entries before enabling 767 * the cpus so that cpu processor description entries (DT cpu nodes 768 * and ACPI MADT entries) can be retrieved by matching the cpu hwid 769 * with entries in cpu_logical_map while initializing the cpus. 770 * If the cpu set-up fails, invalidate the cpu_logical_map entry. 771 */ 772 for (i = 1; i < nr_cpu_ids; i++) { 773 if (cpu_logical_map(i) != INVALID_HWID) { 774 if (smp_cpu_setup(i)) 775 set_cpu_logical_map(i, INVALID_HWID); 776 } 777 } 778 } 779 780 void __init smp_prepare_cpus(unsigned int max_cpus) 781 { 782 const struct cpu_operations *ops; 783 int err; 784 unsigned int cpu; 785 unsigned int this_cpu; 786 787 init_cpu_topology(); 788 789 this_cpu = smp_processor_id(); 790 store_cpu_topology(this_cpu); 791 numa_store_cpu_info(this_cpu); 792 numa_add_cpu(this_cpu); 793 794 /* 795 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set 796 * secondary CPUs present. 797 */ 798 if (max_cpus == 0) 799 return; 800 801 /* 802 * Initialise the present map (which describes the set of CPUs 803 * actually populated at the present time) and release the 804 * secondaries from the bootloader. 805 */ 806 for_each_possible_cpu(cpu) { 807 808 if (cpu == smp_processor_id()) 809 continue; 810 811 ops = get_cpu_ops(cpu); 812 if (!ops) 813 continue; 814 815 err = ops->cpu_prepare(cpu); 816 if (err) 817 continue; 818 819 set_cpu_present(cpu, true); 820 numa_store_cpu_info(cpu); 821 } 822 } 823 824 static const char *ipi_types[MAX_IPI] __tracepoint_string = { 825 [IPI_RESCHEDULE] = "Rescheduling interrupts", 826 [IPI_CALL_FUNC] = "Function call interrupts", 827 [IPI_CPU_STOP] = "CPU stop interrupts", 828 [IPI_CPU_STOP_NMI] = "CPU stop NMIs", 829 [IPI_TIMER] = "Timer broadcast interrupts", 830 [IPI_IRQ_WORK] = "IRQ work interrupts", 831 [IPI_CPU_BACKTRACE] = "CPU backtrace interrupts", 832 [IPI_KGDB_ROUNDUP] = "KGDB roundup interrupts", 833 }; 834 835 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr); 836 837 unsigned long irq_err_count; 838 839 int arch_show_interrupts(struct seq_file *p, int prec) 840 { 841 unsigned int cpu, i; 842 843 for (i = 0; i < MAX_IPI; i++) { 844 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, 845 prec >= 4 ? " " : ""); 846 for_each_online_cpu(cpu) 847 seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu)); 848 seq_printf(p, " %s\n", ipi_types[i]); 849 } 850 851 seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count); 852 return 0; 853 } 854 855 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 856 { 857 smp_cross_call(mask, IPI_CALL_FUNC); 858 } 859 860 void arch_send_call_function_single_ipi(int cpu) 861 { 862 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); 863 } 864 865 #ifdef CONFIG_IRQ_WORK 866 void arch_irq_work_raise(void) 867 { 868 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 869 } 870 #endif 871 872 static void __noreturn local_cpu_stop(unsigned int cpu) 873 { 874 set_cpu_online(cpu, false); 875 876 local_daif_mask(); 877 sdei_mask_local_cpu(); 878 cpu_park_loop(); 879 } 880 881 /* 882 * We need to implement panic_smp_self_stop() for parallel panic() calls, so 883 * that cpu_online_mask gets correctly updated and smp_send_stop() can skip 884 * CPUs that have already stopped themselves. 885 */ 886 void __noreturn panic_smp_self_stop(void) 887 { 888 local_cpu_stop(smp_processor_id()); 889 } 890 891 static void __noreturn ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs) 892 { 893 #ifdef CONFIG_KEXEC_CORE 894 /* 895 * Use local_daif_mask() instead of local_irq_disable() to make sure 896 * that pseudo-NMIs are disabled. The "crash stop" code starts with 897 * an IRQ and falls back to NMI (which might be pseudo). If the IRQ 898 * finally goes through right as we're timing out then the NMI could 899 * interrupt us. It's better to prevent the NMI and let the IRQ 900 * finish since the pt_regs will be better. 901 */ 902 local_daif_mask(); 903 904 crash_save_cpu(regs, cpu); 905 906 set_cpu_online(cpu, false); 907 908 sdei_mask_local_cpu(); 909 910 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 911 __cpu_try_die(cpu); 912 913 /* just in case */ 914 cpu_park_loop(); 915 #else 916 BUG(); 917 #endif 918 } 919 920 static void arm64_backtrace_ipi(cpumask_t *mask) 921 { 922 __ipi_send_mask(ipi_desc[IPI_CPU_BACKTRACE], mask); 923 } 924 925 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, int exclude_cpu) 926 { 927 /* 928 * NOTE: though nmi_trigger_cpumask_backtrace() has "nmi_" in the name, 929 * nothing about it truly needs to be implemented using an NMI, it's 930 * just that it's _allowed_ to work with NMIs. If ipi_should_be_nmi() 931 * returned false our backtrace attempt will just use a regular IPI. 932 */ 933 nmi_trigger_cpumask_backtrace(mask, exclude_cpu, arm64_backtrace_ipi); 934 } 935 936 #ifdef CONFIG_KGDB 937 void kgdb_roundup_cpus(void) 938 { 939 int this_cpu = raw_smp_processor_id(); 940 int cpu; 941 942 for_each_online_cpu(cpu) { 943 /* No need to roundup ourselves */ 944 if (cpu == this_cpu) 945 continue; 946 947 __ipi_send_single(ipi_desc[IPI_KGDB_ROUNDUP], cpu); 948 } 949 } 950 #endif 951 952 /* 953 * Main handler for inter-processor interrupts 954 */ 955 static void do_handle_IPI(int ipinr) 956 { 957 unsigned int cpu = smp_processor_id(); 958 959 if ((unsigned)ipinr < NR_IPI) 960 trace_ipi_entry(ipi_types[ipinr]); 961 962 switch (ipinr) { 963 case IPI_RESCHEDULE: 964 scheduler_ipi(); 965 break; 966 967 case IPI_CALL_FUNC: 968 generic_smp_call_function_interrupt(); 969 break; 970 971 case IPI_CPU_STOP: 972 case IPI_CPU_STOP_NMI: 973 if (IS_ENABLED(CONFIG_KEXEC_CORE) && crash_stop) { 974 ipi_cpu_crash_stop(cpu, get_irq_regs()); 975 unreachable(); 976 } else { 977 local_cpu_stop(cpu); 978 } 979 break; 980 981 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 982 case IPI_TIMER: 983 tick_receive_broadcast(); 984 break; 985 #endif 986 987 #ifdef CONFIG_IRQ_WORK 988 case IPI_IRQ_WORK: 989 irq_work_run(); 990 break; 991 #endif 992 993 case IPI_CPU_BACKTRACE: 994 /* 995 * NOTE: in some cases this _won't_ be NMI context. See the 996 * comment in arch_trigger_cpumask_backtrace(). 997 */ 998 nmi_cpu_backtrace(get_irq_regs()); 999 break; 1000 1001 case IPI_KGDB_ROUNDUP: 1002 kgdb_nmicallback(cpu, get_irq_regs()); 1003 break; 1004 1005 default: 1006 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr); 1007 break; 1008 } 1009 1010 if ((unsigned)ipinr < NR_IPI) 1011 trace_ipi_exit(ipi_types[ipinr]); 1012 } 1013 1014 static irqreturn_t ipi_handler(int irq, void *data) 1015 { 1016 do_handle_IPI(irq - ipi_irq_base); 1017 return IRQ_HANDLED; 1018 } 1019 1020 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 1021 { 1022 trace_ipi_raise(target, ipi_types[ipinr]); 1023 __ipi_send_mask(ipi_desc[ipinr], target); 1024 } 1025 1026 static bool ipi_should_be_nmi(enum ipi_msg_type ipi) 1027 { 1028 if (!system_uses_irq_prio_masking()) 1029 return false; 1030 1031 switch (ipi) { 1032 case IPI_CPU_STOP_NMI: 1033 case IPI_CPU_BACKTRACE: 1034 case IPI_KGDB_ROUNDUP: 1035 return true; 1036 default: 1037 return false; 1038 } 1039 } 1040 1041 static void ipi_setup(int cpu) 1042 { 1043 int i; 1044 1045 if (WARN_ON_ONCE(!ipi_irq_base)) 1046 return; 1047 1048 for (i = 0; i < nr_ipi; i++) { 1049 if (ipi_should_be_nmi(i)) { 1050 prepare_percpu_nmi(ipi_irq_base + i); 1051 enable_percpu_nmi(ipi_irq_base + i, 0); 1052 } else { 1053 enable_percpu_irq(ipi_irq_base + i, 0); 1054 } 1055 } 1056 } 1057 1058 #ifdef CONFIG_HOTPLUG_CPU 1059 static void ipi_teardown(int cpu) 1060 { 1061 int i; 1062 1063 if (WARN_ON_ONCE(!ipi_irq_base)) 1064 return; 1065 1066 for (i = 0; i < nr_ipi; i++) { 1067 if (ipi_should_be_nmi(i)) { 1068 disable_percpu_nmi(ipi_irq_base + i); 1069 teardown_percpu_nmi(ipi_irq_base + i); 1070 } else { 1071 disable_percpu_irq(ipi_irq_base + i); 1072 } 1073 } 1074 } 1075 #endif 1076 1077 void __init set_smp_ipi_range(int ipi_base, int n) 1078 { 1079 int i; 1080 1081 WARN_ON(n < MAX_IPI); 1082 nr_ipi = min(n, MAX_IPI); 1083 1084 for (i = 0; i < nr_ipi; i++) { 1085 int err; 1086 1087 if (ipi_should_be_nmi(i)) { 1088 err = request_percpu_nmi(ipi_base + i, ipi_handler, 1089 "IPI", &irq_stat); 1090 WARN(err, "Could not request IPI %d as NMI, err=%d\n", 1091 i, err); 1092 } else { 1093 err = request_percpu_irq(ipi_base + i, ipi_handler, 1094 "IPI", &irq_stat); 1095 WARN(err, "Could not request IPI %d as IRQ, err=%d\n", 1096 i, err); 1097 } 1098 1099 ipi_desc[i] = irq_to_desc(ipi_base + i); 1100 irq_set_status_flags(ipi_base + i, IRQ_HIDDEN); 1101 } 1102 1103 ipi_irq_base = ipi_base; 1104 1105 /* Setup the boot CPU immediately */ 1106 ipi_setup(smp_processor_id()); 1107 } 1108 1109 void arch_smp_send_reschedule(int cpu) 1110 { 1111 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 1112 } 1113 1114 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 1115 void arch_send_wakeup_ipi(unsigned int cpu) 1116 { 1117 /* 1118 * We use a scheduler IPI to wake the CPU as this avoids the need for a 1119 * dedicated IPI and we can safely handle spurious scheduler IPIs. 1120 */ 1121 smp_send_reschedule(cpu); 1122 } 1123 #endif 1124 1125 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 1126 void tick_broadcast(const struct cpumask *mask) 1127 { 1128 smp_cross_call(mask, IPI_TIMER); 1129 } 1130 #endif 1131 1132 /* 1133 * The number of CPUs online, not counting this CPU (which may not be 1134 * fully online and so not counted in num_online_cpus()). 1135 */ 1136 static inline unsigned int num_other_online_cpus(void) 1137 { 1138 unsigned int this_cpu_online = cpu_online(smp_processor_id()); 1139 1140 return num_online_cpus() - this_cpu_online; 1141 } 1142 1143 void smp_send_stop(void) 1144 { 1145 static unsigned long stop_in_progress; 1146 cpumask_t mask; 1147 unsigned long timeout; 1148 1149 /* 1150 * If this cpu is the only one alive at this point in time, online or 1151 * not, there are no stop messages to be sent around, so just back out. 1152 */ 1153 if (num_other_online_cpus() == 0) 1154 goto skip_ipi; 1155 1156 /* Only proceed if this is the first CPU to reach this code */ 1157 if (test_and_set_bit(0, &stop_in_progress)) 1158 return; 1159 1160 /* 1161 * Send an IPI to all currently online CPUs except the CPU running 1162 * this code. 1163 * 1164 * NOTE: we don't do anything here to prevent other CPUs from coming 1165 * online after we snapshot `cpu_online_mask`. Ideally, the calling code 1166 * should do something to prevent other CPUs from coming up. This code 1167 * can be called in the panic path and thus it doesn't seem wise to 1168 * grab the CPU hotplug mutex ourselves. Worst case: 1169 * - If a CPU comes online as we're running, we'll likely notice it 1170 * during the 1 second wait below and then we'll catch it when we try 1171 * with an NMI (assuming NMIs are enabled) since we re-snapshot the 1172 * mask before sending an NMI. 1173 * - If we leave the function and see that CPUs are still online we'll 1174 * at least print a warning. Especially without NMIs this function 1175 * isn't foolproof anyway so calling code will just have to accept 1176 * the fact that there could be cases where a CPU can't be stopped. 1177 */ 1178 cpumask_copy(&mask, cpu_online_mask); 1179 cpumask_clear_cpu(smp_processor_id(), &mask); 1180 1181 if (system_state <= SYSTEM_RUNNING) 1182 pr_crit("SMP: stopping secondary CPUs\n"); 1183 1184 /* 1185 * Start with a normal IPI and wait up to one second for other CPUs to 1186 * stop. We do this first because it gives other processors a chance 1187 * to exit critical sections / drop locks and makes the rest of the 1188 * stop process (especially console flush) more robust. 1189 */ 1190 smp_cross_call(&mask, IPI_CPU_STOP); 1191 timeout = USEC_PER_SEC; 1192 while (num_other_online_cpus() && timeout--) 1193 udelay(1); 1194 1195 /* 1196 * If CPUs are still online, try an NMI. There's no excuse for this to 1197 * be slow, so we only give them an extra 10 ms to respond. 1198 */ 1199 if (num_other_online_cpus() && ipi_should_be_nmi(IPI_CPU_STOP_NMI)) { 1200 smp_rmb(); 1201 cpumask_copy(&mask, cpu_online_mask); 1202 cpumask_clear_cpu(smp_processor_id(), &mask); 1203 1204 pr_info("SMP: retry stop with NMI for CPUs %*pbl\n", 1205 cpumask_pr_args(&mask)); 1206 1207 smp_cross_call(&mask, IPI_CPU_STOP_NMI); 1208 timeout = USEC_PER_MSEC * 10; 1209 while (num_other_online_cpus() && timeout--) 1210 udelay(1); 1211 } 1212 1213 if (num_other_online_cpus()) { 1214 smp_rmb(); 1215 cpumask_copy(&mask, cpu_online_mask); 1216 cpumask_clear_cpu(smp_processor_id(), &mask); 1217 1218 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n", 1219 cpumask_pr_args(&mask)); 1220 } 1221 1222 skip_ipi: 1223 sdei_mask_local_cpu(); 1224 } 1225 1226 #ifdef CONFIG_KEXEC_CORE 1227 void crash_smp_send_stop(void) 1228 { 1229 /* 1230 * This function can be called twice in panic path, but obviously 1231 * we execute this only once. 1232 * 1233 * We use this same boolean to tell whether the IPI we send was a 1234 * stop or a "crash stop". 1235 */ 1236 if (crash_stop) 1237 return; 1238 crash_stop = 1; 1239 1240 smp_send_stop(); 1241 1242 sdei_handler_abort(); 1243 } 1244 1245 bool smp_crash_stop_failed(void) 1246 { 1247 return num_other_online_cpus() != 0; 1248 } 1249 #endif 1250 1251 static bool have_cpu_die(void) 1252 { 1253 #ifdef CONFIG_HOTPLUG_CPU 1254 int any_cpu = raw_smp_processor_id(); 1255 const struct cpu_operations *ops = get_cpu_ops(any_cpu); 1256 1257 if (ops && ops->cpu_die) 1258 return true; 1259 #endif 1260 return false; 1261 } 1262 1263 bool cpus_are_stuck_in_kernel(void) 1264 { 1265 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die()); 1266 1267 return !!cpus_stuck_in_kernel || smp_spin_tables || 1268 is_protected_kvm_enabled(); 1269 } 1270