1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * SMP initialisation and IPI support 4 * Based on arch/arm/kernel/smp.c 5 * 6 * Copyright (C) 2012 ARM Ltd. 7 */ 8 9 #include <linux/acpi.h> 10 #include <linux/arm_sdei.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/hotplug.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/interrupt.h> 18 #include <linux/cache.h> 19 #include <linux/profile.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/err.h> 23 #include <linux/cpu.h> 24 #include <linux/smp.h> 25 #include <linux/seq_file.h> 26 #include <linux/irq.h> 27 #include <linux/irqchip/arm-gic-v3.h> 28 #include <linux/percpu.h> 29 #include <linux/clockchips.h> 30 #include <linux/completion.h> 31 #include <linux/of.h> 32 #include <linux/irq_work.h> 33 #include <linux/kernel_stat.h> 34 #include <linux/kexec.h> 35 #include <linux/kvm_host.h> 36 37 #include <asm/alternative.h> 38 #include <asm/atomic.h> 39 #include <asm/cacheflush.h> 40 #include <asm/cpu.h> 41 #include <asm/cputype.h> 42 #include <asm/cpu_ops.h> 43 #include <asm/daifflags.h> 44 #include <asm/kvm_mmu.h> 45 #include <asm/mmu_context.h> 46 #include <asm/numa.h> 47 #include <asm/processor.h> 48 #include <asm/smp_plat.h> 49 #include <asm/sections.h> 50 #include <asm/tlbflush.h> 51 #include <asm/ptrace.h> 52 #include <asm/virt.h> 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/ipi.h> 56 57 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number); 58 EXPORT_PER_CPU_SYMBOL(cpu_number); 59 60 /* 61 * as from 2.5, kernels no longer have an init_tasks structure 62 * so we need some other way of telling a new secondary core 63 * where to place its SVC stack 64 */ 65 struct secondary_data secondary_data; 66 /* Number of CPUs which aren't online, but looping in kernel text. */ 67 static int cpus_stuck_in_kernel; 68 69 enum ipi_msg_type { 70 IPI_RESCHEDULE, 71 IPI_CALL_FUNC, 72 IPI_CPU_STOP, 73 IPI_CPU_CRASH_STOP, 74 IPI_TIMER, 75 IPI_IRQ_WORK, 76 IPI_WAKEUP, 77 NR_IPI 78 }; 79 80 static int ipi_irq_base __read_mostly; 81 static int nr_ipi __read_mostly = NR_IPI; 82 static struct irq_desc *ipi_desc[NR_IPI] __read_mostly; 83 84 static void ipi_setup(int cpu); 85 86 #ifdef CONFIG_HOTPLUG_CPU 87 static void ipi_teardown(int cpu); 88 static int op_cpu_kill(unsigned int cpu); 89 #else 90 static inline int op_cpu_kill(unsigned int cpu) 91 { 92 return -ENOSYS; 93 } 94 #endif 95 96 97 /* 98 * Boot a secondary CPU, and assign it the specified idle task. 99 * This also gives us the initial stack to use for this CPU. 100 */ 101 static int boot_secondary(unsigned int cpu, struct task_struct *idle) 102 { 103 const struct cpu_operations *ops = get_cpu_ops(cpu); 104 105 if (ops->cpu_boot) 106 return ops->cpu_boot(cpu); 107 108 return -EOPNOTSUPP; 109 } 110 111 static DECLARE_COMPLETION(cpu_running); 112 113 int __cpu_up(unsigned int cpu, struct task_struct *idle) 114 { 115 int ret; 116 long status; 117 118 /* 119 * We need to tell the secondary core where to find its stack and the 120 * page tables. 121 */ 122 secondary_data.task = idle; 123 secondary_data.stack = task_stack_page(idle) + THREAD_SIZE; 124 update_cpu_boot_status(CPU_MMU_OFF); 125 __flush_dcache_area(&secondary_data, sizeof(secondary_data)); 126 127 /* Now bring the CPU into our world */ 128 ret = boot_secondary(cpu, idle); 129 if (ret) { 130 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 131 return ret; 132 } 133 134 /* 135 * CPU was successfully started, wait for it to come online or 136 * time out. 137 */ 138 wait_for_completion_timeout(&cpu_running, 139 msecs_to_jiffies(5000)); 140 if (cpu_online(cpu)) 141 return 0; 142 143 pr_crit("CPU%u: failed to come online\n", cpu); 144 secondary_data.task = NULL; 145 secondary_data.stack = NULL; 146 __flush_dcache_area(&secondary_data, sizeof(secondary_data)); 147 status = READ_ONCE(secondary_data.status); 148 if (status == CPU_MMU_OFF) 149 status = READ_ONCE(__early_cpu_boot_status); 150 151 switch (status & CPU_BOOT_STATUS_MASK) { 152 default: 153 pr_err("CPU%u: failed in unknown state : 0x%lx\n", 154 cpu, status); 155 cpus_stuck_in_kernel++; 156 break; 157 case CPU_KILL_ME: 158 if (!op_cpu_kill(cpu)) { 159 pr_crit("CPU%u: died during early boot\n", cpu); 160 break; 161 } 162 pr_crit("CPU%u: may not have shut down cleanly\n", cpu); 163 fallthrough; 164 case CPU_STUCK_IN_KERNEL: 165 pr_crit("CPU%u: is stuck in kernel\n", cpu); 166 if (status & CPU_STUCK_REASON_52_BIT_VA) 167 pr_crit("CPU%u: does not support 52-bit VAs\n", cpu); 168 if (status & CPU_STUCK_REASON_NO_GRAN) { 169 pr_crit("CPU%u: does not support %luK granule\n", 170 cpu, PAGE_SIZE / SZ_1K); 171 } 172 cpus_stuck_in_kernel++; 173 break; 174 case CPU_PANIC_KERNEL: 175 panic("CPU%u detected unsupported configuration\n", cpu); 176 } 177 178 return -EIO; 179 } 180 181 static void init_gic_priority_masking(void) 182 { 183 u32 cpuflags; 184 185 if (WARN_ON(!gic_enable_sre())) 186 return; 187 188 cpuflags = read_sysreg(daif); 189 190 WARN_ON(!(cpuflags & PSR_I_BIT)); 191 WARN_ON(!(cpuflags & PSR_F_BIT)); 192 193 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET); 194 } 195 196 /* 197 * This is the secondary CPU boot entry. We're using this CPUs 198 * idle thread stack, but a set of temporary page tables. 199 */ 200 asmlinkage notrace void secondary_start_kernel(void) 201 { 202 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; 203 struct mm_struct *mm = &init_mm; 204 const struct cpu_operations *ops; 205 unsigned int cpu; 206 207 cpu = task_cpu(current); 208 set_my_cpu_offset(per_cpu_offset(cpu)); 209 210 /* 211 * All kernel threads share the same mm context; grab a 212 * reference and switch to it. 213 */ 214 mmgrab(mm); 215 current->active_mm = mm; 216 217 /* 218 * TTBR0 is only used for the identity mapping at this stage. Make it 219 * point to zero page to avoid speculatively fetching new entries. 220 */ 221 cpu_uninstall_idmap(); 222 223 if (system_uses_irq_prio_masking()) 224 init_gic_priority_masking(); 225 226 rcu_cpu_starting(cpu); 227 preempt_disable(); 228 trace_hardirqs_off(); 229 230 /* 231 * If the system has established the capabilities, make sure 232 * this CPU ticks all of those. If it doesn't, the CPU will 233 * fail to come online. 234 */ 235 check_local_cpu_capabilities(); 236 237 ops = get_cpu_ops(cpu); 238 if (ops->cpu_postboot) 239 ops->cpu_postboot(); 240 241 /* 242 * Log the CPU info before it is marked online and might get read. 243 */ 244 cpuinfo_store_cpu(); 245 246 /* 247 * Enable GIC and timers. 248 */ 249 notify_cpu_starting(cpu); 250 251 ipi_setup(cpu); 252 253 store_cpu_topology(cpu); 254 numa_add_cpu(cpu); 255 256 /* 257 * OK, now it's safe to let the boot CPU continue. Wait for 258 * the CPU migration code to notice that the CPU is online 259 * before we continue. 260 */ 261 pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n", 262 cpu, (unsigned long)mpidr, 263 read_cpuid_id()); 264 update_cpu_boot_status(CPU_BOOT_SUCCESS); 265 set_cpu_online(cpu, true); 266 complete(&cpu_running); 267 268 local_daif_restore(DAIF_PROCCTX); 269 270 /* 271 * OK, it's off to the idle thread for us 272 */ 273 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 274 } 275 276 #ifdef CONFIG_HOTPLUG_CPU 277 static int op_cpu_disable(unsigned int cpu) 278 { 279 const struct cpu_operations *ops = get_cpu_ops(cpu); 280 281 /* 282 * If we don't have a cpu_die method, abort before we reach the point 283 * of no return. CPU0 may not have an cpu_ops, so test for it. 284 */ 285 if (!ops || !ops->cpu_die) 286 return -EOPNOTSUPP; 287 288 /* 289 * We may need to abort a hot unplug for some other mechanism-specific 290 * reason. 291 */ 292 if (ops->cpu_disable) 293 return ops->cpu_disable(cpu); 294 295 return 0; 296 } 297 298 /* 299 * __cpu_disable runs on the processor to be shutdown. 300 */ 301 int __cpu_disable(void) 302 { 303 unsigned int cpu = smp_processor_id(); 304 int ret; 305 306 ret = op_cpu_disable(cpu); 307 if (ret) 308 return ret; 309 310 remove_cpu_topology(cpu); 311 numa_remove_cpu(cpu); 312 313 /* 314 * Take this CPU offline. Once we clear this, we can't return, 315 * and we must not schedule until we're ready to give up the cpu. 316 */ 317 set_cpu_online(cpu, false); 318 ipi_teardown(cpu); 319 320 /* 321 * OK - migrate IRQs away from this CPU 322 */ 323 irq_migrate_all_off_this_cpu(); 324 325 return 0; 326 } 327 328 static int op_cpu_kill(unsigned int cpu) 329 { 330 const struct cpu_operations *ops = get_cpu_ops(cpu); 331 332 /* 333 * If we have no means of synchronising with the dying CPU, then assume 334 * that it is really dead. We can only wait for an arbitrary length of 335 * time and hope that it's dead, so let's skip the wait and just hope. 336 */ 337 if (!ops->cpu_kill) 338 return 0; 339 340 return ops->cpu_kill(cpu); 341 } 342 343 /* 344 * called on the thread which is asking for a CPU to be shutdown - 345 * waits until shutdown has completed, or it is timed out. 346 */ 347 void __cpu_die(unsigned int cpu) 348 { 349 int err; 350 351 if (!cpu_wait_death(cpu, 5)) { 352 pr_crit("CPU%u: cpu didn't die\n", cpu); 353 return; 354 } 355 pr_notice("CPU%u: shutdown\n", cpu); 356 357 /* 358 * Now that the dying CPU is beyond the point of no return w.r.t. 359 * in-kernel synchronisation, try to get the firwmare to help us to 360 * verify that it has really left the kernel before we consider 361 * clobbering anything it might still be using. 362 */ 363 err = op_cpu_kill(cpu); 364 if (err) 365 pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err); 366 } 367 368 /* 369 * Called from the idle thread for the CPU which has been shutdown. 370 * 371 */ 372 void cpu_die(void) 373 { 374 unsigned int cpu = smp_processor_id(); 375 const struct cpu_operations *ops = get_cpu_ops(cpu); 376 377 idle_task_exit(); 378 379 local_daif_mask(); 380 381 /* Tell __cpu_die() that this CPU is now safe to dispose of */ 382 (void)cpu_report_death(); 383 384 /* 385 * Actually shutdown the CPU. This must never fail. The specific hotplug 386 * mechanism must perform all required cache maintenance to ensure that 387 * no dirty lines are lost in the process of shutting down the CPU. 388 */ 389 ops->cpu_die(cpu); 390 391 BUG(); 392 } 393 #endif 394 395 static void __cpu_try_die(int cpu) 396 { 397 #ifdef CONFIG_HOTPLUG_CPU 398 const struct cpu_operations *ops = get_cpu_ops(cpu); 399 400 if (ops && ops->cpu_die) 401 ops->cpu_die(cpu); 402 #endif 403 } 404 405 /* 406 * Kill the calling secondary CPU, early in bringup before it is turned 407 * online. 408 */ 409 void cpu_die_early(void) 410 { 411 int cpu = smp_processor_id(); 412 413 pr_crit("CPU%d: will not boot\n", cpu); 414 415 /* Mark this CPU absent */ 416 set_cpu_present(cpu, 0); 417 rcu_report_dead(cpu); 418 419 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) { 420 update_cpu_boot_status(CPU_KILL_ME); 421 __cpu_try_die(cpu); 422 } 423 424 update_cpu_boot_status(CPU_STUCK_IN_KERNEL); 425 426 cpu_park_loop(); 427 } 428 429 static void __init hyp_mode_check(void) 430 { 431 if (is_hyp_mode_available()) 432 pr_info("CPU: All CPU(s) started at EL2\n"); 433 else if (is_hyp_mode_mismatched()) 434 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC, 435 "CPU: CPUs started in inconsistent modes"); 436 else 437 pr_info("CPU: All CPU(s) started at EL1\n"); 438 if (IS_ENABLED(CONFIG_KVM) && !is_kernel_in_hyp_mode()) { 439 kvm_compute_layout(); 440 kvm_apply_hyp_relocations(); 441 } 442 } 443 444 void __init smp_cpus_done(unsigned int max_cpus) 445 { 446 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus()); 447 setup_cpu_features(); 448 hyp_mode_check(); 449 apply_alternatives_all(); 450 mark_linear_text_alias_ro(); 451 } 452 453 void __init smp_prepare_boot_cpu(void) 454 { 455 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 456 cpuinfo_store_boot_cpu(); 457 458 /* 459 * We now know enough about the boot CPU to apply the 460 * alternatives that cannot wait until interrupt handling 461 * and/or scheduling is enabled. 462 */ 463 apply_boot_alternatives(); 464 465 /* Conditionally switch to GIC PMR for interrupt masking */ 466 if (system_uses_irq_prio_masking()) 467 init_gic_priority_masking(); 468 469 kasan_init_hw_tags(); 470 } 471 472 static u64 __init of_get_cpu_mpidr(struct device_node *dn) 473 { 474 const __be32 *cell; 475 u64 hwid; 476 477 /* 478 * A cpu node with missing "reg" property is 479 * considered invalid to build a cpu_logical_map 480 * entry. 481 */ 482 cell = of_get_property(dn, "reg", NULL); 483 if (!cell) { 484 pr_err("%pOF: missing reg property\n", dn); 485 return INVALID_HWID; 486 } 487 488 hwid = of_read_number(cell, of_n_addr_cells(dn)); 489 /* 490 * Non affinity bits must be set to 0 in the DT 491 */ 492 if (hwid & ~MPIDR_HWID_BITMASK) { 493 pr_err("%pOF: invalid reg property\n", dn); 494 return INVALID_HWID; 495 } 496 return hwid; 497 } 498 499 /* 500 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized 501 * entries and check for duplicates. If any is found just ignore the 502 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid 503 * matching valid MPIDR values. 504 */ 505 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid) 506 { 507 unsigned int i; 508 509 for (i = 1; (i < cpu) && (i < NR_CPUS); i++) 510 if (cpu_logical_map(i) == hwid) 511 return true; 512 return false; 513 } 514 515 /* 516 * Initialize cpu operations for a logical cpu and 517 * set it in the possible mask on success 518 */ 519 static int __init smp_cpu_setup(int cpu) 520 { 521 const struct cpu_operations *ops; 522 523 if (init_cpu_ops(cpu)) 524 return -ENODEV; 525 526 ops = get_cpu_ops(cpu); 527 if (ops->cpu_init(cpu)) 528 return -ENODEV; 529 530 set_cpu_possible(cpu, true); 531 532 return 0; 533 } 534 535 static bool bootcpu_valid __initdata; 536 static unsigned int cpu_count = 1; 537 538 #ifdef CONFIG_ACPI 539 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS]; 540 541 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu) 542 { 543 return &cpu_madt_gicc[cpu]; 544 } 545 546 /* 547 * acpi_map_gic_cpu_interface - parse processor MADT entry 548 * 549 * Carry out sanity checks on MADT processor entry and initialize 550 * cpu_logical_map on success 551 */ 552 static void __init 553 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor) 554 { 555 u64 hwid = processor->arm_mpidr; 556 557 if (!(processor->flags & ACPI_MADT_ENABLED)) { 558 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid); 559 return; 560 } 561 562 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) { 563 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid); 564 return; 565 } 566 567 if (is_mpidr_duplicate(cpu_count, hwid)) { 568 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid); 569 return; 570 } 571 572 /* Check if GICC structure of boot CPU is available in the MADT */ 573 if (cpu_logical_map(0) == hwid) { 574 if (bootcpu_valid) { 575 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n", 576 hwid); 577 return; 578 } 579 bootcpu_valid = true; 580 cpu_madt_gicc[0] = *processor; 581 return; 582 } 583 584 if (cpu_count >= NR_CPUS) 585 return; 586 587 /* map the logical cpu id to cpu MPIDR */ 588 set_cpu_logical_map(cpu_count, hwid); 589 590 cpu_madt_gicc[cpu_count] = *processor; 591 592 /* 593 * Set-up the ACPI parking protocol cpu entries 594 * while initializing the cpu_logical_map to 595 * avoid parsing MADT entries multiple times for 596 * nothing (ie a valid cpu_logical_map entry should 597 * contain a valid parking protocol data set to 598 * initialize the cpu if the parking protocol is 599 * the only available enable method). 600 */ 601 acpi_set_mailbox_entry(cpu_count, processor); 602 603 cpu_count++; 604 } 605 606 static int __init 607 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header, 608 const unsigned long end) 609 { 610 struct acpi_madt_generic_interrupt *processor; 611 612 processor = (struct acpi_madt_generic_interrupt *)header; 613 if (BAD_MADT_GICC_ENTRY(processor, end)) 614 return -EINVAL; 615 616 acpi_table_print_madt_entry(&header->common); 617 618 acpi_map_gic_cpu_interface(processor); 619 620 return 0; 621 } 622 623 static void __init acpi_parse_and_init_cpus(void) 624 { 625 int i; 626 627 /* 628 * do a walk of MADT to determine how many CPUs 629 * we have including disabled CPUs, and get information 630 * we need for SMP init. 631 */ 632 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, 633 acpi_parse_gic_cpu_interface, 0); 634 635 /* 636 * In ACPI, SMP and CPU NUMA information is provided in separate 637 * static tables, namely the MADT and the SRAT. 638 * 639 * Thus, it is simpler to first create the cpu logical map through 640 * an MADT walk and then map the logical cpus to their node ids 641 * as separate steps. 642 */ 643 acpi_map_cpus_to_nodes(); 644 645 for (i = 0; i < nr_cpu_ids; i++) 646 early_map_cpu_to_node(i, acpi_numa_get_nid(i)); 647 } 648 #else 649 #define acpi_parse_and_init_cpus(...) do { } while (0) 650 #endif 651 652 /* 653 * Enumerate the possible CPU set from the device tree and build the 654 * cpu logical map array containing MPIDR values related to logical 655 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 656 */ 657 static void __init of_parse_and_init_cpus(void) 658 { 659 struct device_node *dn; 660 661 for_each_of_cpu_node(dn) { 662 u64 hwid = of_get_cpu_mpidr(dn); 663 664 if (hwid == INVALID_HWID) 665 goto next; 666 667 if (is_mpidr_duplicate(cpu_count, hwid)) { 668 pr_err("%pOF: duplicate cpu reg properties in the DT\n", 669 dn); 670 goto next; 671 } 672 673 /* 674 * The numbering scheme requires that the boot CPU 675 * must be assigned logical id 0. Record it so that 676 * the logical map built from DT is validated and can 677 * be used. 678 */ 679 if (hwid == cpu_logical_map(0)) { 680 if (bootcpu_valid) { 681 pr_err("%pOF: duplicate boot cpu reg property in DT\n", 682 dn); 683 goto next; 684 } 685 686 bootcpu_valid = true; 687 early_map_cpu_to_node(0, of_node_to_nid(dn)); 688 689 /* 690 * cpu_logical_map has already been 691 * initialized and the boot cpu doesn't need 692 * the enable-method so continue without 693 * incrementing cpu. 694 */ 695 continue; 696 } 697 698 if (cpu_count >= NR_CPUS) 699 goto next; 700 701 pr_debug("cpu logical map 0x%llx\n", hwid); 702 set_cpu_logical_map(cpu_count, hwid); 703 704 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn)); 705 next: 706 cpu_count++; 707 } 708 } 709 710 /* 711 * Enumerate the possible CPU set from the device tree or ACPI and build the 712 * cpu logical map array containing MPIDR values related to logical 713 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 714 */ 715 void __init smp_init_cpus(void) 716 { 717 int i; 718 719 if (acpi_disabled) 720 of_parse_and_init_cpus(); 721 else 722 acpi_parse_and_init_cpus(); 723 724 if (cpu_count > nr_cpu_ids) 725 pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n", 726 cpu_count, nr_cpu_ids); 727 728 if (!bootcpu_valid) { 729 pr_err("missing boot CPU MPIDR, not enabling secondaries\n"); 730 return; 731 } 732 733 /* 734 * We need to set the cpu_logical_map entries before enabling 735 * the cpus so that cpu processor description entries (DT cpu nodes 736 * and ACPI MADT entries) can be retrieved by matching the cpu hwid 737 * with entries in cpu_logical_map while initializing the cpus. 738 * If the cpu set-up fails, invalidate the cpu_logical_map entry. 739 */ 740 for (i = 1; i < nr_cpu_ids; i++) { 741 if (cpu_logical_map(i) != INVALID_HWID) { 742 if (smp_cpu_setup(i)) 743 set_cpu_logical_map(i, INVALID_HWID); 744 } 745 } 746 } 747 748 void __init smp_prepare_cpus(unsigned int max_cpus) 749 { 750 const struct cpu_operations *ops; 751 int err; 752 unsigned int cpu; 753 unsigned int this_cpu; 754 755 init_cpu_topology(); 756 757 this_cpu = smp_processor_id(); 758 store_cpu_topology(this_cpu); 759 numa_store_cpu_info(this_cpu); 760 numa_add_cpu(this_cpu); 761 762 /* 763 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set 764 * secondary CPUs present. 765 */ 766 if (max_cpus == 0) 767 return; 768 769 /* 770 * Initialise the present map (which describes the set of CPUs 771 * actually populated at the present time) and release the 772 * secondaries from the bootloader. 773 */ 774 for_each_possible_cpu(cpu) { 775 776 per_cpu(cpu_number, cpu) = cpu; 777 778 if (cpu == smp_processor_id()) 779 continue; 780 781 ops = get_cpu_ops(cpu); 782 if (!ops) 783 continue; 784 785 err = ops->cpu_prepare(cpu); 786 if (err) 787 continue; 788 789 set_cpu_present(cpu, true); 790 numa_store_cpu_info(cpu); 791 } 792 } 793 794 static const char *ipi_types[NR_IPI] __tracepoint_string = { 795 [IPI_RESCHEDULE] = "Rescheduling interrupts", 796 [IPI_CALL_FUNC] = "Function call interrupts", 797 [IPI_CPU_STOP] = "CPU stop interrupts", 798 [IPI_CPU_CRASH_STOP] = "CPU stop (for crash dump) interrupts", 799 [IPI_TIMER] = "Timer broadcast interrupts", 800 [IPI_IRQ_WORK] = "IRQ work interrupts", 801 [IPI_WAKEUP] = "CPU wake-up interrupts", 802 }; 803 804 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr); 805 806 unsigned long irq_err_count; 807 808 int arch_show_interrupts(struct seq_file *p, int prec) 809 { 810 unsigned int cpu, i; 811 812 for (i = 0; i < NR_IPI; i++) { 813 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, 814 prec >= 4 ? " " : ""); 815 for_each_online_cpu(cpu) 816 seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu)); 817 seq_printf(p, " %s\n", ipi_types[i]); 818 } 819 820 seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count); 821 return 0; 822 } 823 824 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 825 { 826 smp_cross_call(mask, IPI_CALL_FUNC); 827 } 828 829 void arch_send_call_function_single_ipi(int cpu) 830 { 831 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); 832 } 833 834 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 835 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 836 { 837 smp_cross_call(mask, IPI_WAKEUP); 838 } 839 #endif 840 841 #ifdef CONFIG_IRQ_WORK 842 void arch_irq_work_raise(void) 843 { 844 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 845 } 846 #endif 847 848 static void local_cpu_stop(void) 849 { 850 set_cpu_online(smp_processor_id(), false); 851 852 local_daif_mask(); 853 sdei_mask_local_cpu(); 854 cpu_park_loop(); 855 } 856 857 /* 858 * We need to implement panic_smp_self_stop() for parallel panic() calls, so 859 * that cpu_online_mask gets correctly updated and smp_send_stop() can skip 860 * CPUs that have already stopped themselves. 861 */ 862 void panic_smp_self_stop(void) 863 { 864 local_cpu_stop(); 865 } 866 867 #ifdef CONFIG_KEXEC_CORE 868 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0); 869 #endif 870 871 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs) 872 { 873 #ifdef CONFIG_KEXEC_CORE 874 crash_save_cpu(regs, cpu); 875 876 atomic_dec(&waiting_for_crash_ipi); 877 878 local_irq_disable(); 879 sdei_mask_local_cpu(); 880 881 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 882 __cpu_try_die(cpu); 883 884 /* just in case */ 885 cpu_park_loop(); 886 #endif 887 } 888 889 /* 890 * Main handler for inter-processor interrupts 891 */ 892 static void do_handle_IPI(int ipinr) 893 { 894 unsigned int cpu = smp_processor_id(); 895 896 if ((unsigned)ipinr < NR_IPI) 897 trace_ipi_entry_rcuidle(ipi_types[ipinr]); 898 899 switch (ipinr) { 900 case IPI_RESCHEDULE: 901 scheduler_ipi(); 902 break; 903 904 case IPI_CALL_FUNC: 905 generic_smp_call_function_interrupt(); 906 break; 907 908 case IPI_CPU_STOP: 909 local_cpu_stop(); 910 break; 911 912 case IPI_CPU_CRASH_STOP: 913 if (IS_ENABLED(CONFIG_KEXEC_CORE)) { 914 ipi_cpu_crash_stop(cpu, get_irq_regs()); 915 916 unreachable(); 917 } 918 break; 919 920 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 921 case IPI_TIMER: 922 tick_receive_broadcast(); 923 break; 924 #endif 925 926 #ifdef CONFIG_IRQ_WORK 927 case IPI_IRQ_WORK: 928 irq_work_run(); 929 break; 930 #endif 931 932 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 933 case IPI_WAKEUP: 934 WARN_ONCE(!acpi_parking_protocol_valid(cpu), 935 "CPU%u: Wake-up IPI outside the ACPI parking protocol\n", 936 cpu); 937 break; 938 #endif 939 940 default: 941 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr); 942 break; 943 } 944 945 if ((unsigned)ipinr < NR_IPI) 946 trace_ipi_exit_rcuidle(ipi_types[ipinr]); 947 } 948 949 static irqreturn_t ipi_handler(int irq, void *data) 950 { 951 do_handle_IPI(irq - ipi_irq_base); 952 return IRQ_HANDLED; 953 } 954 955 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 956 { 957 trace_ipi_raise(target, ipi_types[ipinr]); 958 __ipi_send_mask(ipi_desc[ipinr], target); 959 } 960 961 static void ipi_setup(int cpu) 962 { 963 int i; 964 965 if (WARN_ON_ONCE(!ipi_irq_base)) 966 return; 967 968 for (i = 0; i < nr_ipi; i++) 969 enable_percpu_irq(ipi_irq_base + i, 0); 970 } 971 972 #ifdef CONFIG_HOTPLUG_CPU 973 static void ipi_teardown(int cpu) 974 { 975 int i; 976 977 if (WARN_ON_ONCE(!ipi_irq_base)) 978 return; 979 980 for (i = 0; i < nr_ipi; i++) 981 disable_percpu_irq(ipi_irq_base + i); 982 } 983 #endif 984 985 void __init set_smp_ipi_range(int ipi_base, int n) 986 { 987 int i; 988 989 WARN_ON(n < NR_IPI); 990 nr_ipi = min(n, NR_IPI); 991 992 for (i = 0; i < nr_ipi; i++) { 993 int err; 994 995 err = request_percpu_irq(ipi_base + i, ipi_handler, 996 "IPI", &cpu_number); 997 WARN_ON(err); 998 999 ipi_desc[i] = irq_to_desc(ipi_base + i); 1000 irq_set_status_flags(ipi_base + i, IRQ_HIDDEN); 1001 } 1002 1003 ipi_irq_base = ipi_base; 1004 1005 /* Setup the boot CPU immediately */ 1006 ipi_setup(smp_processor_id()); 1007 } 1008 1009 void smp_send_reschedule(int cpu) 1010 { 1011 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 1012 } 1013 1014 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 1015 void tick_broadcast(const struct cpumask *mask) 1016 { 1017 smp_cross_call(mask, IPI_TIMER); 1018 } 1019 #endif 1020 1021 /* 1022 * The number of CPUs online, not counting this CPU (which may not be 1023 * fully online and so not counted in num_online_cpus()). 1024 */ 1025 static inline unsigned int num_other_online_cpus(void) 1026 { 1027 unsigned int this_cpu_online = cpu_online(smp_processor_id()); 1028 1029 return num_online_cpus() - this_cpu_online; 1030 } 1031 1032 void smp_send_stop(void) 1033 { 1034 unsigned long timeout; 1035 1036 if (num_other_online_cpus()) { 1037 cpumask_t mask; 1038 1039 cpumask_copy(&mask, cpu_online_mask); 1040 cpumask_clear_cpu(smp_processor_id(), &mask); 1041 1042 if (system_state <= SYSTEM_RUNNING) 1043 pr_crit("SMP: stopping secondary CPUs\n"); 1044 smp_cross_call(&mask, IPI_CPU_STOP); 1045 } 1046 1047 /* Wait up to one second for other CPUs to stop */ 1048 timeout = USEC_PER_SEC; 1049 while (num_other_online_cpus() && timeout--) 1050 udelay(1); 1051 1052 if (num_other_online_cpus()) 1053 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n", 1054 cpumask_pr_args(cpu_online_mask)); 1055 1056 sdei_mask_local_cpu(); 1057 } 1058 1059 #ifdef CONFIG_KEXEC_CORE 1060 void crash_smp_send_stop(void) 1061 { 1062 static int cpus_stopped; 1063 cpumask_t mask; 1064 unsigned long timeout; 1065 1066 /* 1067 * This function can be called twice in panic path, but obviously 1068 * we execute this only once. 1069 */ 1070 if (cpus_stopped) 1071 return; 1072 1073 cpus_stopped = 1; 1074 1075 /* 1076 * If this cpu is the only one alive at this point in time, online or 1077 * not, there are no stop messages to be sent around, so just back out. 1078 */ 1079 if (num_other_online_cpus() == 0) { 1080 sdei_mask_local_cpu(); 1081 return; 1082 } 1083 1084 cpumask_copy(&mask, cpu_online_mask); 1085 cpumask_clear_cpu(smp_processor_id(), &mask); 1086 1087 atomic_set(&waiting_for_crash_ipi, num_other_online_cpus()); 1088 1089 pr_crit("SMP: stopping secondary CPUs\n"); 1090 smp_cross_call(&mask, IPI_CPU_CRASH_STOP); 1091 1092 /* Wait up to one second for other CPUs to stop */ 1093 timeout = USEC_PER_SEC; 1094 while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--) 1095 udelay(1); 1096 1097 if (atomic_read(&waiting_for_crash_ipi) > 0) 1098 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n", 1099 cpumask_pr_args(&mask)); 1100 1101 sdei_mask_local_cpu(); 1102 } 1103 1104 bool smp_crash_stop_failed(void) 1105 { 1106 return (atomic_read(&waiting_for_crash_ipi) > 0); 1107 } 1108 #endif 1109 1110 /* 1111 * not supported here 1112 */ 1113 int setup_profiling_timer(unsigned int multiplier) 1114 { 1115 return -EINVAL; 1116 } 1117 1118 static bool have_cpu_die(void) 1119 { 1120 #ifdef CONFIG_HOTPLUG_CPU 1121 int any_cpu = raw_smp_processor_id(); 1122 const struct cpu_operations *ops = get_cpu_ops(any_cpu); 1123 1124 if (ops && ops->cpu_die) 1125 return true; 1126 #endif 1127 return false; 1128 } 1129 1130 bool cpus_are_stuck_in_kernel(void) 1131 { 1132 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die()); 1133 1134 return !!cpus_stuck_in_kernel || smp_spin_tables; 1135 } 1136