1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * SMP initialisation and IPI support 4 * Based on arch/arm/kernel/smp.c 5 * 6 * Copyright (C) 2012 ARM Ltd. 7 */ 8 9 #include <linux/acpi.h> 10 #include <linux/arm_sdei.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/hotplug.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/interrupt.h> 18 #include <linux/cache.h> 19 #include <linux/profile.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/err.h> 23 #include <linux/cpu.h> 24 #include <linux/smp.h> 25 #include <linux/seq_file.h> 26 #include <linux/irq.h> 27 #include <linux/irqchip/arm-gic-v3.h> 28 #include <linux/percpu.h> 29 #include <linux/clockchips.h> 30 #include <linux/completion.h> 31 #include <linux/of.h> 32 #include <linux/irq_work.h> 33 #include <linux/kernel_stat.h> 34 #include <linux/kexec.h> 35 #include <linux/kgdb.h> 36 #include <linux/kvm_host.h> 37 #include <linux/nmi.h> 38 39 #include <asm/alternative.h> 40 #include <asm/atomic.h> 41 #include <asm/cacheflush.h> 42 #include <asm/cpu.h> 43 #include <asm/cputype.h> 44 #include <asm/cpu_ops.h> 45 #include <asm/daifflags.h> 46 #include <asm/kvm_mmu.h> 47 #include <asm/mmu_context.h> 48 #include <asm/numa.h> 49 #include <asm/processor.h> 50 #include <asm/smp_plat.h> 51 #include <asm/sections.h> 52 #include <asm/tlbflush.h> 53 #include <asm/ptrace.h> 54 #include <asm/virt.h> 55 56 #include <trace/events/ipi.h> 57 58 /* 59 * as from 2.5, kernels no longer have an init_tasks structure 60 * so we need some other way of telling a new secondary core 61 * where to place its SVC stack 62 */ 63 struct secondary_data secondary_data; 64 /* Number of CPUs which aren't online, but looping in kernel text. */ 65 static int cpus_stuck_in_kernel; 66 67 enum ipi_msg_type { 68 IPI_RESCHEDULE, 69 IPI_CALL_FUNC, 70 IPI_CPU_STOP, 71 IPI_CPU_CRASH_STOP, 72 IPI_TIMER, 73 IPI_IRQ_WORK, 74 NR_IPI, 75 /* 76 * Any enum >= NR_IPI and < MAX_IPI is special and not tracable 77 * with trace_ipi_* 78 */ 79 IPI_CPU_BACKTRACE = NR_IPI, 80 IPI_KGDB_ROUNDUP, 81 MAX_IPI 82 }; 83 84 static int ipi_irq_base __ro_after_init; 85 static int nr_ipi __ro_after_init = NR_IPI; 86 static struct irq_desc *ipi_desc[MAX_IPI] __ro_after_init; 87 88 static void ipi_setup(int cpu); 89 90 #ifdef CONFIG_HOTPLUG_CPU 91 static void ipi_teardown(int cpu); 92 static int op_cpu_kill(unsigned int cpu); 93 #else 94 static inline int op_cpu_kill(unsigned int cpu) 95 { 96 return -ENOSYS; 97 } 98 #endif 99 100 101 /* 102 * Boot a secondary CPU, and assign it the specified idle task. 103 * This also gives us the initial stack to use for this CPU. 104 */ 105 static int boot_secondary(unsigned int cpu, struct task_struct *idle) 106 { 107 const struct cpu_operations *ops = get_cpu_ops(cpu); 108 109 if (ops->cpu_boot) 110 return ops->cpu_boot(cpu); 111 112 return -EOPNOTSUPP; 113 } 114 115 static DECLARE_COMPLETION(cpu_running); 116 117 int __cpu_up(unsigned int cpu, struct task_struct *idle) 118 { 119 int ret; 120 long status; 121 122 /* 123 * We need to tell the secondary core where to find its stack and the 124 * page tables. 125 */ 126 secondary_data.task = idle; 127 update_cpu_boot_status(CPU_MMU_OFF); 128 129 /* Now bring the CPU into our world */ 130 ret = boot_secondary(cpu, idle); 131 if (ret) { 132 if (ret != -EPERM) 133 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 134 return ret; 135 } 136 137 /* 138 * CPU was successfully started, wait for it to come online or 139 * time out. 140 */ 141 wait_for_completion_timeout(&cpu_running, 142 msecs_to_jiffies(5000)); 143 if (cpu_online(cpu)) 144 return 0; 145 146 pr_crit("CPU%u: failed to come online\n", cpu); 147 secondary_data.task = NULL; 148 status = READ_ONCE(secondary_data.status); 149 if (status == CPU_MMU_OFF) 150 status = READ_ONCE(__early_cpu_boot_status); 151 152 switch (status & CPU_BOOT_STATUS_MASK) { 153 default: 154 pr_err("CPU%u: failed in unknown state : 0x%lx\n", 155 cpu, status); 156 cpus_stuck_in_kernel++; 157 break; 158 case CPU_KILL_ME: 159 if (!op_cpu_kill(cpu)) { 160 pr_crit("CPU%u: died during early boot\n", cpu); 161 break; 162 } 163 pr_crit("CPU%u: may not have shut down cleanly\n", cpu); 164 fallthrough; 165 case CPU_STUCK_IN_KERNEL: 166 pr_crit("CPU%u: is stuck in kernel\n", cpu); 167 if (status & CPU_STUCK_REASON_52_BIT_VA) 168 pr_crit("CPU%u: does not support 52-bit VAs\n", cpu); 169 if (status & CPU_STUCK_REASON_NO_GRAN) { 170 pr_crit("CPU%u: does not support %luK granule\n", 171 cpu, PAGE_SIZE / SZ_1K); 172 } 173 cpus_stuck_in_kernel++; 174 break; 175 case CPU_PANIC_KERNEL: 176 panic("CPU%u detected unsupported configuration\n", cpu); 177 } 178 179 return -EIO; 180 } 181 182 static void init_gic_priority_masking(void) 183 { 184 u32 cpuflags; 185 186 if (WARN_ON(!gic_enable_sre())) 187 return; 188 189 cpuflags = read_sysreg(daif); 190 191 WARN_ON(!(cpuflags & PSR_I_BIT)); 192 WARN_ON(!(cpuflags & PSR_F_BIT)); 193 194 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET); 195 } 196 197 /* 198 * This is the secondary CPU boot entry. We're using this CPUs 199 * idle thread stack, but a set of temporary page tables. 200 */ 201 asmlinkage notrace void secondary_start_kernel(void) 202 { 203 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; 204 struct mm_struct *mm = &init_mm; 205 const struct cpu_operations *ops; 206 unsigned int cpu = smp_processor_id(); 207 208 /* 209 * All kernel threads share the same mm context; grab a 210 * reference and switch to it. 211 */ 212 mmgrab(mm); 213 current->active_mm = mm; 214 215 /* 216 * TTBR0 is only used for the identity mapping at this stage. Make it 217 * point to zero page to avoid speculatively fetching new entries. 218 */ 219 cpu_uninstall_idmap(); 220 221 if (system_uses_irq_prio_masking()) 222 init_gic_priority_masking(); 223 224 rcutree_report_cpu_starting(cpu); 225 trace_hardirqs_off(); 226 227 /* 228 * If the system has established the capabilities, make sure 229 * this CPU ticks all of those. If it doesn't, the CPU will 230 * fail to come online. 231 */ 232 check_local_cpu_capabilities(); 233 234 ops = get_cpu_ops(cpu); 235 if (ops->cpu_postboot) 236 ops->cpu_postboot(); 237 238 /* 239 * Log the CPU info before it is marked online and might get read. 240 */ 241 cpuinfo_store_cpu(); 242 store_cpu_topology(cpu); 243 244 /* 245 * Enable GIC and timers. 246 */ 247 notify_cpu_starting(cpu); 248 249 ipi_setup(cpu); 250 251 numa_add_cpu(cpu); 252 253 /* 254 * OK, now it's safe to let the boot CPU continue. Wait for 255 * the CPU migration code to notice that the CPU is online 256 * before we continue. 257 */ 258 pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n", 259 cpu, (unsigned long)mpidr, 260 read_cpuid_id()); 261 update_cpu_boot_status(CPU_BOOT_SUCCESS); 262 set_cpu_online(cpu, true); 263 complete(&cpu_running); 264 265 /* 266 * Secondary CPUs enter the kernel with all DAIF exceptions masked. 267 * 268 * As with setup_arch() we must unmask Debug and SError exceptions, and 269 * as the root irqchip has already been detected and initialized we can 270 * unmask IRQ and FIQ at the same time. 271 */ 272 local_daif_restore(DAIF_PROCCTX); 273 274 /* 275 * OK, it's off to the idle thread for us 276 */ 277 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 278 } 279 280 #ifdef CONFIG_HOTPLUG_CPU 281 static int op_cpu_disable(unsigned int cpu) 282 { 283 const struct cpu_operations *ops = get_cpu_ops(cpu); 284 285 /* 286 * If we don't have a cpu_die method, abort before we reach the point 287 * of no return. CPU0 may not have an cpu_ops, so test for it. 288 */ 289 if (!ops || !ops->cpu_die) 290 return -EOPNOTSUPP; 291 292 /* 293 * We may need to abort a hot unplug for some other mechanism-specific 294 * reason. 295 */ 296 if (ops->cpu_disable) 297 return ops->cpu_disable(cpu); 298 299 return 0; 300 } 301 302 /* 303 * __cpu_disable runs on the processor to be shutdown. 304 */ 305 int __cpu_disable(void) 306 { 307 unsigned int cpu = smp_processor_id(); 308 int ret; 309 310 ret = op_cpu_disable(cpu); 311 if (ret) 312 return ret; 313 314 remove_cpu_topology(cpu); 315 numa_remove_cpu(cpu); 316 317 /* 318 * Take this CPU offline. Once we clear this, we can't return, 319 * and we must not schedule until we're ready to give up the cpu. 320 */ 321 set_cpu_online(cpu, false); 322 ipi_teardown(cpu); 323 324 /* 325 * OK - migrate IRQs away from this CPU 326 */ 327 irq_migrate_all_off_this_cpu(); 328 329 return 0; 330 } 331 332 static int op_cpu_kill(unsigned int cpu) 333 { 334 const struct cpu_operations *ops = get_cpu_ops(cpu); 335 336 /* 337 * If we have no means of synchronising with the dying CPU, then assume 338 * that it is really dead. We can only wait for an arbitrary length of 339 * time and hope that it's dead, so let's skip the wait and just hope. 340 */ 341 if (!ops->cpu_kill) 342 return 0; 343 344 return ops->cpu_kill(cpu); 345 } 346 347 /* 348 * Called on the thread which is asking for a CPU to be shutdown after the 349 * shutdown completed. 350 */ 351 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) 352 { 353 int err; 354 355 pr_debug("CPU%u: shutdown\n", cpu); 356 357 /* 358 * Now that the dying CPU is beyond the point of no return w.r.t. 359 * in-kernel synchronisation, try to get the firwmare to help us to 360 * verify that it has really left the kernel before we consider 361 * clobbering anything it might still be using. 362 */ 363 err = op_cpu_kill(cpu); 364 if (err) 365 pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err); 366 } 367 368 /* 369 * Called from the idle thread for the CPU which has been shutdown. 370 * 371 */ 372 void __noreturn cpu_die(void) 373 { 374 unsigned int cpu = smp_processor_id(); 375 const struct cpu_operations *ops = get_cpu_ops(cpu); 376 377 idle_task_exit(); 378 379 local_daif_mask(); 380 381 /* Tell cpuhp_bp_sync_dead() that this CPU is now safe to dispose of */ 382 cpuhp_ap_report_dead(); 383 384 /* 385 * Actually shutdown the CPU. This must never fail. The specific hotplug 386 * mechanism must perform all required cache maintenance to ensure that 387 * no dirty lines are lost in the process of shutting down the CPU. 388 */ 389 ops->cpu_die(cpu); 390 391 BUG(); 392 } 393 #endif 394 395 static void __cpu_try_die(int cpu) 396 { 397 #ifdef CONFIG_HOTPLUG_CPU 398 const struct cpu_operations *ops = get_cpu_ops(cpu); 399 400 if (ops && ops->cpu_die) 401 ops->cpu_die(cpu); 402 #endif 403 } 404 405 /* 406 * Kill the calling secondary CPU, early in bringup before it is turned 407 * online. 408 */ 409 void __noreturn cpu_die_early(void) 410 { 411 int cpu = smp_processor_id(); 412 413 pr_crit("CPU%d: will not boot\n", cpu); 414 415 /* Mark this CPU absent */ 416 set_cpu_present(cpu, 0); 417 rcutree_report_cpu_dead(); 418 419 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) { 420 update_cpu_boot_status(CPU_KILL_ME); 421 __cpu_try_die(cpu); 422 } 423 424 update_cpu_boot_status(CPU_STUCK_IN_KERNEL); 425 426 cpu_park_loop(); 427 } 428 429 static void __init hyp_mode_check(void) 430 { 431 if (is_hyp_mode_available()) 432 pr_info("CPU: All CPU(s) started at EL2\n"); 433 else if (is_hyp_mode_mismatched()) 434 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC, 435 "CPU: CPUs started in inconsistent modes"); 436 else 437 pr_info("CPU: All CPU(s) started at EL1\n"); 438 if (IS_ENABLED(CONFIG_KVM) && !is_kernel_in_hyp_mode()) { 439 kvm_compute_layout(); 440 kvm_apply_hyp_relocations(); 441 } 442 } 443 444 void __init smp_cpus_done(unsigned int max_cpus) 445 { 446 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus()); 447 hyp_mode_check(); 448 setup_system_features(); 449 setup_user_features(); 450 mark_linear_text_alias_ro(); 451 } 452 453 void __init smp_prepare_boot_cpu(void) 454 { 455 /* 456 * The runtime per-cpu areas have been allocated by 457 * setup_per_cpu_areas(), and CPU0's boot time per-cpu area will be 458 * freed shortly, so we must move over to the runtime per-cpu area. 459 */ 460 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 461 462 cpuinfo_store_boot_cpu(); 463 setup_boot_cpu_features(); 464 465 /* Conditionally switch to GIC PMR for interrupt masking */ 466 if (system_uses_irq_prio_masking()) 467 init_gic_priority_masking(); 468 469 kasan_init_hw_tags(); 470 } 471 472 /* 473 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized 474 * entries and check for duplicates. If any is found just ignore the 475 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid 476 * matching valid MPIDR values. 477 */ 478 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid) 479 { 480 unsigned int i; 481 482 for (i = 1; (i < cpu) && (i < NR_CPUS); i++) 483 if (cpu_logical_map(i) == hwid) 484 return true; 485 return false; 486 } 487 488 /* 489 * Initialize cpu operations for a logical cpu and 490 * set it in the possible mask on success 491 */ 492 static int __init smp_cpu_setup(int cpu) 493 { 494 const struct cpu_operations *ops; 495 496 if (init_cpu_ops(cpu)) 497 return -ENODEV; 498 499 ops = get_cpu_ops(cpu); 500 if (ops->cpu_init(cpu)) 501 return -ENODEV; 502 503 set_cpu_possible(cpu, true); 504 505 return 0; 506 } 507 508 static bool bootcpu_valid __initdata; 509 static unsigned int cpu_count = 1; 510 511 int arch_register_cpu(int cpu) 512 { 513 acpi_handle acpi_handle = acpi_get_processor_handle(cpu); 514 struct cpu *c = &per_cpu(cpu_devices, cpu); 515 516 if (!acpi_disabled && !acpi_handle && 517 IS_ENABLED(CONFIG_ACPI_HOTPLUG_CPU)) 518 return -EPROBE_DEFER; 519 520 #ifdef CONFIG_ACPI_HOTPLUG_CPU 521 /* For now block anything that looks like physical CPU Hotplug */ 522 if (invalid_logical_cpuid(cpu) || !cpu_present(cpu)) { 523 pr_err_once("Changing CPU present bit is not supported\n"); 524 return -ENODEV; 525 } 526 #endif 527 528 /* 529 * Availability of the acpi handle is sufficient to establish 530 * that _STA has aleady been checked. No need to recheck here. 531 */ 532 c->hotpluggable = arch_cpu_is_hotpluggable(cpu); 533 534 return register_cpu(c, cpu); 535 } 536 537 #ifdef CONFIG_ACPI_HOTPLUG_CPU 538 void arch_unregister_cpu(int cpu) 539 { 540 acpi_handle acpi_handle = acpi_get_processor_handle(cpu); 541 struct cpu *c = &per_cpu(cpu_devices, cpu); 542 acpi_status status; 543 unsigned long long sta; 544 545 if (!acpi_handle) { 546 pr_err_once("Removing a CPU without associated ACPI handle\n"); 547 return; 548 } 549 550 status = acpi_evaluate_integer(acpi_handle, "_STA", NULL, &sta); 551 if (ACPI_FAILURE(status)) 552 return; 553 554 /* For now do not allow anything that looks like physical CPU HP */ 555 if (cpu_present(cpu) && !(sta & ACPI_STA_DEVICE_PRESENT)) { 556 pr_err_once("Changing CPU present bit is not supported\n"); 557 return; 558 } 559 560 unregister_cpu(c); 561 } 562 #endif /* CONFIG_ACPI_HOTPLUG_CPU */ 563 564 #ifdef CONFIG_ACPI 565 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS]; 566 567 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu) 568 { 569 return &cpu_madt_gicc[cpu]; 570 } 571 EXPORT_SYMBOL_GPL(acpi_cpu_get_madt_gicc); 572 573 /* 574 * acpi_map_gic_cpu_interface - parse processor MADT entry 575 * 576 * Carry out sanity checks on MADT processor entry and initialize 577 * cpu_logical_map on success 578 */ 579 static void __init 580 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor) 581 { 582 u64 hwid = processor->arm_mpidr; 583 584 if (!(processor->flags & 585 (ACPI_MADT_ENABLED | ACPI_MADT_GICC_ONLINE_CAPABLE))) { 586 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid); 587 return; 588 } 589 590 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) { 591 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid); 592 return; 593 } 594 595 if (is_mpidr_duplicate(cpu_count, hwid)) { 596 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid); 597 return; 598 } 599 600 /* Check if GICC structure of boot CPU is available in the MADT */ 601 if (cpu_logical_map(0) == hwid) { 602 if (bootcpu_valid) { 603 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n", 604 hwid); 605 return; 606 } 607 bootcpu_valid = true; 608 cpu_madt_gicc[0] = *processor; 609 return; 610 } 611 612 if (cpu_count >= NR_CPUS) 613 return; 614 615 /* map the logical cpu id to cpu MPIDR */ 616 set_cpu_logical_map(cpu_count, hwid); 617 618 cpu_madt_gicc[cpu_count] = *processor; 619 620 /* 621 * Set-up the ACPI parking protocol cpu entries 622 * while initializing the cpu_logical_map to 623 * avoid parsing MADT entries multiple times for 624 * nothing (ie a valid cpu_logical_map entry should 625 * contain a valid parking protocol data set to 626 * initialize the cpu if the parking protocol is 627 * the only available enable method). 628 */ 629 acpi_set_mailbox_entry(cpu_count, processor); 630 631 cpu_count++; 632 } 633 634 static int __init 635 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header, 636 const unsigned long end) 637 { 638 struct acpi_madt_generic_interrupt *processor; 639 640 processor = (struct acpi_madt_generic_interrupt *)header; 641 if (BAD_MADT_GICC_ENTRY(processor, end)) 642 return -EINVAL; 643 644 acpi_table_print_madt_entry(&header->common); 645 646 acpi_map_gic_cpu_interface(processor); 647 648 return 0; 649 } 650 651 static void __init acpi_parse_and_init_cpus(void) 652 { 653 int i; 654 655 /* 656 * do a walk of MADT to determine how many CPUs 657 * we have including disabled CPUs, and get information 658 * we need for SMP init. 659 */ 660 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, 661 acpi_parse_gic_cpu_interface, 0); 662 663 /* 664 * In ACPI, SMP and CPU NUMA information is provided in separate 665 * static tables, namely the MADT and the SRAT. 666 * 667 * Thus, it is simpler to first create the cpu logical map through 668 * an MADT walk and then map the logical cpus to their node ids 669 * as separate steps. 670 */ 671 acpi_map_cpus_to_nodes(); 672 673 for (i = 0; i < nr_cpu_ids; i++) 674 early_map_cpu_to_node(i, acpi_numa_get_nid(i)); 675 } 676 #else 677 #define acpi_parse_and_init_cpus(...) do { } while (0) 678 #endif 679 680 /* 681 * Enumerate the possible CPU set from the device tree and build the 682 * cpu logical map array containing MPIDR values related to logical 683 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 684 */ 685 static void __init of_parse_and_init_cpus(void) 686 { 687 struct device_node *dn; 688 689 for_each_of_cpu_node(dn) { 690 u64 hwid = of_get_cpu_hwid(dn, 0); 691 692 if (hwid & ~MPIDR_HWID_BITMASK) 693 goto next; 694 695 if (is_mpidr_duplicate(cpu_count, hwid)) { 696 pr_err("%pOF: duplicate cpu reg properties in the DT\n", 697 dn); 698 goto next; 699 } 700 701 /* 702 * The numbering scheme requires that the boot CPU 703 * must be assigned logical id 0. Record it so that 704 * the logical map built from DT is validated and can 705 * be used. 706 */ 707 if (hwid == cpu_logical_map(0)) { 708 if (bootcpu_valid) { 709 pr_err("%pOF: duplicate boot cpu reg property in DT\n", 710 dn); 711 goto next; 712 } 713 714 bootcpu_valid = true; 715 early_map_cpu_to_node(0, of_node_to_nid(dn)); 716 717 /* 718 * cpu_logical_map has already been 719 * initialized and the boot cpu doesn't need 720 * the enable-method so continue without 721 * incrementing cpu. 722 */ 723 continue; 724 } 725 726 if (cpu_count >= NR_CPUS) 727 goto next; 728 729 pr_debug("cpu logical map 0x%llx\n", hwid); 730 set_cpu_logical_map(cpu_count, hwid); 731 732 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn)); 733 next: 734 cpu_count++; 735 } 736 } 737 738 /* 739 * Enumerate the possible CPU set from the device tree or ACPI and build the 740 * cpu logical map array containing MPIDR values related to logical 741 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 742 */ 743 void __init smp_init_cpus(void) 744 { 745 int i; 746 747 if (acpi_disabled) 748 of_parse_and_init_cpus(); 749 else 750 acpi_parse_and_init_cpus(); 751 752 if (cpu_count > nr_cpu_ids) 753 pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n", 754 cpu_count, nr_cpu_ids); 755 756 if (!bootcpu_valid) { 757 pr_err("missing boot CPU MPIDR, not enabling secondaries\n"); 758 return; 759 } 760 761 /* 762 * We need to set the cpu_logical_map entries before enabling 763 * the cpus so that cpu processor description entries (DT cpu nodes 764 * and ACPI MADT entries) can be retrieved by matching the cpu hwid 765 * with entries in cpu_logical_map while initializing the cpus. 766 * If the cpu set-up fails, invalidate the cpu_logical_map entry. 767 */ 768 for (i = 1; i < nr_cpu_ids; i++) { 769 if (cpu_logical_map(i) != INVALID_HWID) { 770 if (smp_cpu_setup(i)) 771 set_cpu_logical_map(i, INVALID_HWID); 772 } 773 } 774 } 775 776 void __init smp_prepare_cpus(unsigned int max_cpus) 777 { 778 const struct cpu_operations *ops; 779 int err; 780 unsigned int cpu; 781 unsigned int this_cpu; 782 783 init_cpu_topology(); 784 785 this_cpu = smp_processor_id(); 786 store_cpu_topology(this_cpu); 787 numa_store_cpu_info(this_cpu); 788 numa_add_cpu(this_cpu); 789 790 /* 791 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set 792 * secondary CPUs present. 793 */ 794 if (max_cpus == 0) 795 return; 796 797 /* 798 * Initialise the present map (which describes the set of CPUs 799 * actually populated at the present time) and release the 800 * secondaries from the bootloader. 801 */ 802 for_each_possible_cpu(cpu) { 803 804 if (cpu == smp_processor_id()) 805 continue; 806 807 ops = get_cpu_ops(cpu); 808 if (!ops) 809 continue; 810 811 err = ops->cpu_prepare(cpu); 812 if (err) 813 continue; 814 815 set_cpu_present(cpu, true); 816 numa_store_cpu_info(cpu); 817 } 818 } 819 820 static const char *ipi_types[MAX_IPI] __tracepoint_string = { 821 [IPI_RESCHEDULE] = "Rescheduling interrupts", 822 [IPI_CALL_FUNC] = "Function call interrupts", 823 [IPI_CPU_STOP] = "CPU stop interrupts", 824 [IPI_CPU_CRASH_STOP] = "CPU stop (for crash dump) interrupts", 825 [IPI_TIMER] = "Timer broadcast interrupts", 826 [IPI_IRQ_WORK] = "IRQ work interrupts", 827 [IPI_CPU_BACKTRACE] = "CPU backtrace interrupts", 828 [IPI_KGDB_ROUNDUP] = "KGDB roundup interrupts", 829 }; 830 831 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr); 832 833 unsigned long irq_err_count; 834 835 int arch_show_interrupts(struct seq_file *p, int prec) 836 { 837 unsigned int cpu, i; 838 839 for (i = 0; i < MAX_IPI; i++) { 840 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, 841 prec >= 4 ? " " : ""); 842 for_each_online_cpu(cpu) 843 seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu)); 844 seq_printf(p, " %s\n", ipi_types[i]); 845 } 846 847 seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count); 848 return 0; 849 } 850 851 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 852 { 853 smp_cross_call(mask, IPI_CALL_FUNC); 854 } 855 856 void arch_send_call_function_single_ipi(int cpu) 857 { 858 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); 859 } 860 861 #ifdef CONFIG_IRQ_WORK 862 void arch_irq_work_raise(void) 863 { 864 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 865 } 866 #endif 867 868 static void __noreturn local_cpu_stop(void) 869 { 870 set_cpu_online(smp_processor_id(), false); 871 872 local_daif_mask(); 873 sdei_mask_local_cpu(); 874 cpu_park_loop(); 875 } 876 877 /* 878 * We need to implement panic_smp_self_stop() for parallel panic() calls, so 879 * that cpu_online_mask gets correctly updated and smp_send_stop() can skip 880 * CPUs that have already stopped themselves. 881 */ 882 void __noreturn panic_smp_self_stop(void) 883 { 884 local_cpu_stop(); 885 } 886 887 #ifdef CONFIG_KEXEC_CORE 888 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0); 889 #endif 890 891 static void __noreturn ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs) 892 { 893 #ifdef CONFIG_KEXEC_CORE 894 crash_save_cpu(regs, cpu); 895 896 atomic_dec(&waiting_for_crash_ipi); 897 898 local_irq_disable(); 899 sdei_mask_local_cpu(); 900 901 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 902 __cpu_try_die(cpu); 903 904 /* just in case */ 905 cpu_park_loop(); 906 #else 907 BUG(); 908 #endif 909 } 910 911 static void arm64_backtrace_ipi(cpumask_t *mask) 912 { 913 __ipi_send_mask(ipi_desc[IPI_CPU_BACKTRACE], mask); 914 } 915 916 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, int exclude_cpu) 917 { 918 /* 919 * NOTE: though nmi_trigger_cpumask_backtrace() has "nmi_" in the name, 920 * nothing about it truly needs to be implemented using an NMI, it's 921 * just that it's _allowed_ to work with NMIs. If ipi_should_be_nmi() 922 * returned false our backtrace attempt will just use a regular IPI. 923 */ 924 nmi_trigger_cpumask_backtrace(mask, exclude_cpu, arm64_backtrace_ipi); 925 } 926 927 #ifdef CONFIG_KGDB 928 void kgdb_roundup_cpus(void) 929 { 930 int this_cpu = raw_smp_processor_id(); 931 int cpu; 932 933 for_each_online_cpu(cpu) { 934 /* No need to roundup ourselves */ 935 if (cpu == this_cpu) 936 continue; 937 938 __ipi_send_single(ipi_desc[IPI_KGDB_ROUNDUP], cpu); 939 } 940 } 941 #endif 942 943 /* 944 * Main handler for inter-processor interrupts 945 */ 946 static void do_handle_IPI(int ipinr) 947 { 948 unsigned int cpu = smp_processor_id(); 949 950 if ((unsigned)ipinr < NR_IPI) 951 trace_ipi_entry(ipi_types[ipinr]); 952 953 switch (ipinr) { 954 case IPI_RESCHEDULE: 955 scheduler_ipi(); 956 break; 957 958 case IPI_CALL_FUNC: 959 generic_smp_call_function_interrupt(); 960 break; 961 962 case IPI_CPU_STOP: 963 local_cpu_stop(); 964 break; 965 966 case IPI_CPU_CRASH_STOP: 967 if (IS_ENABLED(CONFIG_KEXEC_CORE)) { 968 ipi_cpu_crash_stop(cpu, get_irq_regs()); 969 970 unreachable(); 971 } 972 break; 973 974 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 975 case IPI_TIMER: 976 tick_receive_broadcast(); 977 break; 978 #endif 979 980 #ifdef CONFIG_IRQ_WORK 981 case IPI_IRQ_WORK: 982 irq_work_run(); 983 break; 984 #endif 985 986 case IPI_CPU_BACKTRACE: 987 /* 988 * NOTE: in some cases this _won't_ be NMI context. See the 989 * comment in arch_trigger_cpumask_backtrace(). 990 */ 991 nmi_cpu_backtrace(get_irq_regs()); 992 break; 993 994 case IPI_KGDB_ROUNDUP: 995 kgdb_nmicallback(cpu, get_irq_regs()); 996 break; 997 998 default: 999 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr); 1000 break; 1001 } 1002 1003 if ((unsigned)ipinr < NR_IPI) 1004 trace_ipi_exit(ipi_types[ipinr]); 1005 } 1006 1007 static irqreturn_t ipi_handler(int irq, void *data) 1008 { 1009 do_handle_IPI(irq - ipi_irq_base); 1010 return IRQ_HANDLED; 1011 } 1012 1013 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 1014 { 1015 trace_ipi_raise(target, ipi_types[ipinr]); 1016 __ipi_send_mask(ipi_desc[ipinr], target); 1017 } 1018 1019 static bool ipi_should_be_nmi(enum ipi_msg_type ipi) 1020 { 1021 if (!system_uses_irq_prio_masking()) 1022 return false; 1023 1024 switch (ipi) { 1025 case IPI_CPU_STOP: 1026 case IPI_CPU_CRASH_STOP: 1027 case IPI_CPU_BACKTRACE: 1028 case IPI_KGDB_ROUNDUP: 1029 return true; 1030 default: 1031 return false; 1032 } 1033 } 1034 1035 static void ipi_setup(int cpu) 1036 { 1037 int i; 1038 1039 if (WARN_ON_ONCE(!ipi_irq_base)) 1040 return; 1041 1042 for (i = 0; i < nr_ipi; i++) { 1043 if (ipi_should_be_nmi(i)) { 1044 prepare_percpu_nmi(ipi_irq_base + i); 1045 enable_percpu_nmi(ipi_irq_base + i, 0); 1046 } else { 1047 enable_percpu_irq(ipi_irq_base + i, 0); 1048 } 1049 } 1050 } 1051 1052 #ifdef CONFIG_HOTPLUG_CPU 1053 static void ipi_teardown(int cpu) 1054 { 1055 int i; 1056 1057 if (WARN_ON_ONCE(!ipi_irq_base)) 1058 return; 1059 1060 for (i = 0; i < nr_ipi; i++) { 1061 if (ipi_should_be_nmi(i)) { 1062 disable_percpu_nmi(ipi_irq_base + i); 1063 teardown_percpu_nmi(ipi_irq_base + i); 1064 } else { 1065 disable_percpu_irq(ipi_irq_base + i); 1066 } 1067 } 1068 } 1069 #endif 1070 1071 void __init set_smp_ipi_range(int ipi_base, int n) 1072 { 1073 int i; 1074 1075 WARN_ON(n < MAX_IPI); 1076 nr_ipi = min(n, MAX_IPI); 1077 1078 for (i = 0; i < nr_ipi; i++) { 1079 int err; 1080 1081 if (ipi_should_be_nmi(i)) { 1082 err = request_percpu_nmi(ipi_base + i, ipi_handler, 1083 "IPI", &irq_stat); 1084 WARN(err, "Could not request IPI %d as NMI, err=%d\n", 1085 i, err); 1086 } else { 1087 err = request_percpu_irq(ipi_base + i, ipi_handler, 1088 "IPI", &irq_stat); 1089 WARN(err, "Could not request IPI %d as IRQ, err=%d\n", 1090 i, err); 1091 } 1092 1093 ipi_desc[i] = irq_to_desc(ipi_base + i); 1094 irq_set_status_flags(ipi_base + i, IRQ_HIDDEN); 1095 } 1096 1097 ipi_irq_base = ipi_base; 1098 1099 /* Setup the boot CPU immediately */ 1100 ipi_setup(smp_processor_id()); 1101 } 1102 1103 void arch_smp_send_reschedule(int cpu) 1104 { 1105 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 1106 } 1107 1108 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 1109 void arch_send_wakeup_ipi(unsigned int cpu) 1110 { 1111 /* 1112 * We use a scheduler IPI to wake the CPU as this avoids the need for a 1113 * dedicated IPI and we can safely handle spurious scheduler IPIs. 1114 */ 1115 smp_send_reschedule(cpu); 1116 } 1117 #endif 1118 1119 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 1120 void tick_broadcast(const struct cpumask *mask) 1121 { 1122 smp_cross_call(mask, IPI_TIMER); 1123 } 1124 #endif 1125 1126 /* 1127 * The number of CPUs online, not counting this CPU (which may not be 1128 * fully online and so not counted in num_online_cpus()). 1129 */ 1130 static inline unsigned int num_other_online_cpus(void) 1131 { 1132 unsigned int this_cpu_online = cpu_online(smp_processor_id()); 1133 1134 return num_online_cpus() - this_cpu_online; 1135 } 1136 1137 void smp_send_stop(void) 1138 { 1139 unsigned long timeout; 1140 1141 if (num_other_online_cpus()) { 1142 cpumask_t mask; 1143 1144 cpumask_copy(&mask, cpu_online_mask); 1145 cpumask_clear_cpu(smp_processor_id(), &mask); 1146 1147 if (system_state <= SYSTEM_RUNNING) 1148 pr_crit("SMP: stopping secondary CPUs\n"); 1149 smp_cross_call(&mask, IPI_CPU_STOP); 1150 } 1151 1152 /* Wait up to one second for other CPUs to stop */ 1153 timeout = USEC_PER_SEC; 1154 while (num_other_online_cpus() && timeout--) 1155 udelay(1); 1156 1157 if (num_other_online_cpus()) 1158 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n", 1159 cpumask_pr_args(cpu_online_mask)); 1160 1161 sdei_mask_local_cpu(); 1162 } 1163 1164 #ifdef CONFIG_KEXEC_CORE 1165 void crash_smp_send_stop(void) 1166 { 1167 static int cpus_stopped; 1168 cpumask_t mask; 1169 unsigned long timeout; 1170 1171 /* 1172 * This function can be called twice in panic path, but obviously 1173 * we execute this only once. 1174 */ 1175 if (cpus_stopped) 1176 return; 1177 1178 cpus_stopped = 1; 1179 1180 /* 1181 * If this cpu is the only one alive at this point in time, online or 1182 * not, there are no stop messages to be sent around, so just back out. 1183 */ 1184 if (num_other_online_cpus() == 0) 1185 goto skip_ipi; 1186 1187 cpumask_copy(&mask, cpu_online_mask); 1188 cpumask_clear_cpu(smp_processor_id(), &mask); 1189 1190 atomic_set(&waiting_for_crash_ipi, num_other_online_cpus()); 1191 1192 pr_crit("SMP: stopping secondary CPUs\n"); 1193 smp_cross_call(&mask, IPI_CPU_CRASH_STOP); 1194 1195 /* Wait up to one second for other CPUs to stop */ 1196 timeout = USEC_PER_SEC; 1197 while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--) 1198 udelay(1); 1199 1200 if (atomic_read(&waiting_for_crash_ipi) > 0) 1201 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n", 1202 cpumask_pr_args(&mask)); 1203 1204 skip_ipi: 1205 sdei_mask_local_cpu(); 1206 sdei_handler_abort(); 1207 } 1208 1209 bool smp_crash_stop_failed(void) 1210 { 1211 return (atomic_read(&waiting_for_crash_ipi) > 0); 1212 } 1213 #endif 1214 1215 static bool have_cpu_die(void) 1216 { 1217 #ifdef CONFIG_HOTPLUG_CPU 1218 int any_cpu = raw_smp_processor_id(); 1219 const struct cpu_operations *ops = get_cpu_ops(any_cpu); 1220 1221 if (ops && ops->cpu_die) 1222 return true; 1223 #endif 1224 return false; 1225 } 1226 1227 bool cpus_are_stuck_in_kernel(void) 1228 { 1229 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die()); 1230 1231 return !!cpus_stuck_in_kernel || smp_spin_tables || 1232 is_protected_kvm_enabled(); 1233 } 1234