1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * SMP initialisation and IPI support 4 * Based on arch/arm/kernel/smp.c 5 * 6 * Copyright (C) 2012 ARM Ltd. 7 */ 8 9 #include <linux/acpi.h> 10 #include <linux/arm_sdei.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/hotplug.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/interrupt.h> 18 #include <linux/cache.h> 19 #include <linux/profile.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/err.h> 23 #include <linux/cpu.h> 24 #include <linux/smp.h> 25 #include <linux/seq_file.h> 26 #include <linux/irq.h> 27 #include <linux/irqchip/arm-gic-v3.h> 28 #include <linux/percpu.h> 29 #include <linux/clockchips.h> 30 #include <linux/completion.h> 31 #include <linux/of.h> 32 #include <linux/irq_work.h> 33 #include <linux/kernel_stat.h> 34 #include <linux/kexec.h> 35 #include <linux/kgdb.h> 36 #include <linux/kvm_host.h> 37 #include <linux/nmi.h> 38 39 #include <asm/alternative.h> 40 #include <asm/atomic.h> 41 #include <asm/cacheflush.h> 42 #include <asm/cpu.h> 43 #include <asm/cputype.h> 44 #include <asm/cpu_ops.h> 45 #include <asm/daifflags.h> 46 #include <asm/kvm_mmu.h> 47 #include <asm/mmu_context.h> 48 #include <asm/numa.h> 49 #include <asm/processor.h> 50 #include <asm/smp_plat.h> 51 #include <asm/sections.h> 52 #include <asm/tlbflush.h> 53 #include <asm/ptrace.h> 54 #include <asm/virt.h> 55 56 #include <trace/events/ipi.h> 57 58 /* 59 * as from 2.5, kernels no longer have an init_tasks structure 60 * so we need some other way of telling a new secondary core 61 * where to place its SVC stack 62 */ 63 struct secondary_data secondary_data; 64 /* Number of CPUs which aren't online, but looping in kernel text. */ 65 static int cpus_stuck_in_kernel; 66 67 enum ipi_msg_type { 68 IPI_RESCHEDULE, 69 IPI_CALL_FUNC, 70 IPI_CPU_STOP, 71 IPI_CPU_CRASH_STOP, 72 IPI_TIMER, 73 IPI_IRQ_WORK, 74 NR_IPI, 75 /* 76 * Any enum >= NR_IPI and < MAX_IPI is special and not tracable 77 * with trace_ipi_* 78 */ 79 IPI_CPU_BACKTRACE = NR_IPI, 80 IPI_KGDB_ROUNDUP, 81 MAX_IPI 82 }; 83 84 static int ipi_irq_base __ro_after_init; 85 static int nr_ipi __ro_after_init = NR_IPI; 86 static struct irq_desc *ipi_desc[MAX_IPI] __ro_after_init; 87 88 static void ipi_setup(int cpu); 89 90 #ifdef CONFIG_HOTPLUG_CPU 91 static void ipi_teardown(int cpu); 92 static int op_cpu_kill(unsigned int cpu); 93 #else 94 static inline int op_cpu_kill(unsigned int cpu) 95 { 96 return -ENOSYS; 97 } 98 #endif 99 100 101 /* 102 * Boot a secondary CPU, and assign it the specified idle task. 103 * This also gives us the initial stack to use for this CPU. 104 */ 105 static int boot_secondary(unsigned int cpu, struct task_struct *idle) 106 { 107 const struct cpu_operations *ops = get_cpu_ops(cpu); 108 109 if (ops->cpu_boot) 110 return ops->cpu_boot(cpu); 111 112 return -EOPNOTSUPP; 113 } 114 115 static DECLARE_COMPLETION(cpu_running); 116 117 int __cpu_up(unsigned int cpu, struct task_struct *idle) 118 { 119 int ret; 120 long status; 121 122 /* 123 * We need to tell the secondary core where to find its stack and the 124 * page tables. 125 */ 126 secondary_data.task = idle; 127 update_cpu_boot_status(CPU_MMU_OFF); 128 129 /* Now bring the CPU into our world */ 130 ret = boot_secondary(cpu, idle); 131 if (ret) { 132 if (ret != -EPERM) 133 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 134 return ret; 135 } 136 137 /* 138 * CPU was successfully started, wait for it to come online or 139 * time out. 140 */ 141 wait_for_completion_timeout(&cpu_running, 142 msecs_to_jiffies(5000)); 143 if (cpu_online(cpu)) 144 return 0; 145 146 pr_crit("CPU%u: failed to come online\n", cpu); 147 secondary_data.task = NULL; 148 status = READ_ONCE(secondary_data.status); 149 if (status == CPU_MMU_OFF) 150 status = READ_ONCE(__early_cpu_boot_status); 151 152 switch (status & CPU_BOOT_STATUS_MASK) { 153 default: 154 pr_err("CPU%u: failed in unknown state : 0x%lx\n", 155 cpu, status); 156 cpus_stuck_in_kernel++; 157 break; 158 case CPU_KILL_ME: 159 if (!op_cpu_kill(cpu)) { 160 pr_crit("CPU%u: died during early boot\n", cpu); 161 break; 162 } 163 pr_crit("CPU%u: may not have shut down cleanly\n", cpu); 164 fallthrough; 165 case CPU_STUCK_IN_KERNEL: 166 pr_crit("CPU%u: is stuck in kernel\n", cpu); 167 if (status & CPU_STUCK_REASON_52_BIT_VA) 168 pr_crit("CPU%u: does not support 52-bit VAs\n", cpu); 169 if (status & CPU_STUCK_REASON_NO_GRAN) { 170 pr_crit("CPU%u: does not support %luK granule\n", 171 cpu, PAGE_SIZE / SZ_1K); 172 } 173 cpus_stuck_in_kernel++; 174 break; 175 case CPU_PANIC_KERNEL: 176 panic("CPU%u detected unsupported configuration\n", cpu); 177 } 178 179 return -EIO; 180 } 181 182 static void init_gic_priority_masking(void) 183 { 184 u32 cpuflags; 185 186 if (WARN_ON(!gic_enable_sre())) 187 return; 188 189 cpuflags = read_sysreg(daif); 190 191 WARN_ON(!(cpuflags & PSR_I_BIT)); 192 WARN_ON(!(cpuflags & PSR_F_BIT)); 193 194 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET); 195 } 196 197 /* 198 * This is the secondary CPU boot entry. We're using this CPUs 199 * idle thread stack, but a set of temporary page tables. 200 */ 201 asmlinkage notrace void secondary_start_kernel(void) 202 { 203 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; 204 struct mm_struct *mm = &init_mm; 205 const struct cpu_operations *ops; 206 unsigned int cpu = smp_processor_id(); 207 208 /* 209 * All kernel threads share the same mm context; grab a 210 * reference and switch to it. 211 */ 212 mmgrab(mm); 213 current->active_mm = mm; 214 215 /* 216 * TTBR0 is only used for the identity mapping at this stage. Make it 217 * point to zero page to avoid speculatively fetching new entries. 218 */ 219 cpu_uninstall_idmap(); 220 221 if (system_uses_irq_prio_masking()) 222 init_gic_priority_masking(); 223 224 rcutree_report_cpu_starting(cpu); 225 trace_hardirqs_off(); 226 227 /* 228 * If the system has established the capabilities, make sure 229 * this CPU ticks all of those. If it doesn't, the CPU will 230 * fail to come online. 231 */ 232 check_local_cpu_capabilities(); 233 234 ops = get_cpu_ops(cpu); 235 if (ops->cpu_postboot) 236 ops->cpu_postboot(); 237 238 /* 239 * Log the CPU info before it is marked online and might get read. 240 */ 241 cpuinfo_store_cpu(); 242 store_cpu_topology(cpu); 243 244 /* 245 * Enable GIC and timers. 246 */ 247 notify_cpu_starting(cpu); 248 249 ipi_setup(cpu); 250 251 numa_add_cpu(cpu); 252 253 /* 254 * OK, now it's safe to let the boot CPU continue. Wait for 255 * the CPU migration code to notice that the CPU is online 256 * before we continue. 257 */ 258 pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n", 259 cpu, (unsigned long)mpidr, 260 read_cpuid_id()); 261 update_cpu_boot_status(CPU_BOOT_SUCCESS); 262 set_cpu_online(cpu, true); 263 complete(&cpu_running); 264 265 /* 266 * Secondary CPUs enter the kernel with all DAIF exceptions masked. 267 * 268 * As with setup_arch() we must unmask Debug and SError exceptions, and 269 * as the root irqchip has already been detected and initialized we can 270 * unmask IRQ and FIQ at the same time. 271 */ 272 local_daif_restore(DAIF_PROCCTX); 273 274 /* 275 * OK, it's off to the idle thread for us 276 */ 277 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 278 } 279 280 #ifdef CONFIG_HOTPLUG_CPU 281 static int op_cpu_disable(unsigned int cpu) 282 { 283 const struct cpu_operations *ops = get_cpu_ops(cpu); 284 285 /* 286 * If we don't have a cpu_die method, abort before we reach the point 287 * of no return. CPU0 may not have an cpu_ops, so test for it. 288 */ 289 if (!ops || !ops->cpu_die) 290 return -EOPNOTSUPP; 291 292 /* 293 * We may need to abort a hot unplug for some other mechanism-specific 294 * reason. 295 */ 296 if (ops->cpu_disable) 297 return ops->cpu_disable(cpu); 298 299 return 0; 300 } 301 302 /* 303 * __cpu_disable runs on the processor to be shutdown. 304 */ 305 int __cpu_disable(void) 306 { 307 unsigned int cpu = smp_processor_id(); 308 int ret; 309 310 ret = op_cpu_disable(cpu); 311 if (ret) 312 return ret; 313 314 remove_cpu_topology(cpu); 315 numa_remove_cpu(cpu); 316 317 /* 318 * Take this CPU offline. Once we clear this, we can't return, 319 * and we must not schedule until we're ready to give up the cpu. 320 */ 321 set_cpu_online(cpu, false); 322 ipi_teardown(cpu); 323 324 /* 325 * OK - migrate IRQs away from this CPU 326 */ 327 irq_migrate_all_off_this_cpu(); 328 329 return 0; 330 } 331 332 static int op_cpu_kill(unsigned int cpu) 333 { 334 const struct cpu_operations *ops = get_cpu_ops(cpu); 335 336 /* 337 * If we have no means of synchronising with the dying CPU, then assume 338 * that it is really dead. We can only wait for an arbitrary length of 339 * time and hope that it's dead, so let's skip the wait and just hope. 340 */ 341 if (!ops->cpu_kill) 342 return 0; 343 344 return ops->cpu_kill(cpu); 345 } 346 347 /* 348 * Called on the thread which is asking for a CPU to be shutdown after the 349 * shutdown completed. 350 */ 351 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) 352 { 353 int err; 354 355 pr_debug("CPU%u: shutdown\n", cpu); 356 357 /* 358 * Now that the dying CPU is beyond the point of no return w.r.t. 359 * in-kernel synchronisation, try to get the firwmare to help us to 360 * verify that it has really left the kernel before we consider 361 * clobbering anything it might still be using. 362 */ 363 err = op_cpu_kill(cpu); 364 if (err) 365 pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err); 366 } 367 368 /* 369 * Called from the idle thread for the CPU which has been shutdown. 370 * 371 */ 372 void __noreturn cpu_die(void) 373 { 374 unsigned int cpu = smp_processor_id(); 375 const struct cpu_operations *ops = get_cpu_ops(cpu); 376 377 idle_task_exit(); 378 379 local_daif_mask(); 380 381 /* Tell cpuhp_bp_sync_dead() that this CPU is now safe to dispose of */ 382 cpuhp_ap_report_dead(); 383 384 /* 385 * Actually shutdown the CPU. This must never fail. The specific hotplug 386 * mechanism must perform all required cache maintenance to ensure that 387 * no dirty lines are lost in the process of shutting down the CPU. 388 */ 389 ops->cpu_die(cpu); 390 391 BUG(); 392 } 393 #endif 394 395 static void __cpu_try_die(int cpu) 396 { 397 #ifdef CONFIG_HOTPLUG_CPU 398 const struct cpu_operations *ops = get_cpu_ops(cpu); 399 400 if (ops && ops->cpu_die) 401 ops->cpu_die(cpu); 402 #endif 403 } 404 405 /* 406 * Kill the calling secondary CPU, early in bringup before it is turned 407 * online. 408 */ 409 void __noreturn cpu_die_early(void) 410 { 411 int cpu = smp_processor_id(); 412 413 pr_crit("CPU%d: will not boot\n", cpu); 414 415 /* Mark this CPU absent */ 416 set_cpu_present(cpu, 0); 417 rcutree_report_cpu_dead(); 418 419 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) { 420 update_cpu_boot_status(CPU_KILL_ME); 421 __cpu_try_die(cpu); 422 } 423 424 update_cpu_boot_status(CPU_STUCK_IN_KERNEL); 425 426 cpu_park_loop(); 427 } 428 429 static void __init hyp_mode_check(void) 430 { 431 if (is_hyp_mode_available()) 432 pr_info("CPU: All CPU(s) started at EL2\n"); 433 else if (is_hyp_mode_mismatched()) 434 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC, 435 "CPU: CPUs started in inconsistent modes"); 436 else 437 pr_info("CPU: All CPU(s) started at EL1\n"); 438 if (IS_ENABLED(CONFIG_KVM) && !is_kernel_in_hyp_mode()) { 439 kvm_compute_layout(); 440 kvm_apply_hyp_relocations(); 441 } 442 } 443 444 void __init smp_cpus_done(unsigned int max_cpus) 445 { 446 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus()); 447 hyp_mode_check(); 448 setup_system_features(); 449 setup_user_features(); 450 mark_linear_text_alias_ro(); 451 } 452 453 void __init smp_prepare_boot_cpu(void) 454 { 455 /* 456 * The runtime per-cpu areas have been allocated by 457 * setup_per_cpu_areas(), and CPU0's boot time per-cpu area will be 458 * freed shortly, so we must move over to the runtime per-cpu area. 459 */ 460 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 461 462 cpuinfo_store_boot_cpu(); 463 setup_boot_cpu_features(); 464 465 /* Conditionally switch to GIC PMR for interrupt masking */ 466 if (system_uses_irq_prio_masking()) 467 init_gic_priority_masking(); 468 469 kasan_init_hw_tags(); 470 /* Init percpu seeds for random tags after cpus are set up. */ 471 kasan_init_sw_tags(); 472 } 473 474 /* 475 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized 476 * entries and check for duplicates. If any is found just ignore the 477 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid 478 * matching valid MPIDR values. 479 */ 480 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid) 481 { 482 unsigned int i; 483 484 for (i = 1; (i < cpu) && (i < NR_CPUS); i++) 485 if (cpu_logical_map(i) == hwid) 486 return true; 487 return false; 488 } 489 490 /* 491 * Initialize cpu operations for a logical cpu and 492 * set it in the possible mask on success 493 */ 494 static int __init smp_cpu_setup(int cpu) 495 { 496 const struct cpu_operations *ops; 497 498 if (init_cpu_ops(cpu)) 499 return -ENODEV; 500 501 ops = get_cpu_ops(cpu); 502 if (ops->cpu_init(cpu)) 503 return -ENODEV; 504 505 set_cpu_possible(cpu, true); 506 507 return 0; 508 } 509 510 static bool bootcpu_valid __initdata; 511 static unsigned int cpu_count = 1; 512 513 int arch_register_cpu(int cpu) 514 { 515 acpi_handle acpi_handle = acpi_get_processor_handle(cpu); 516 struct cpu *c = &per_cpu(cpu_devices, cpu); 517 518 if (!acpi_disabled && !acpi_handle && 519 IS_ENABLED(CONFIG_ACPI_HOTPLUG_CPU)) 520 return -EPROBE_DEFER; 521 522 #ifdef CONFIG_ACPI_HOTPLUG_CPU 523 /* For now block anything that looks like physical CPU Hotplug */ 524 if (invalid_logical_cpuid(cpu) || !cpu_present(cpu)) { 525 pr_err_once("Changing CPU present bit is not supported\n"); 526 return -ENODEV; 527 } 528 #endif 529 530 /* 531 * Availability of the acpi handle is sufficient to establish 532 * that _STA has aleady been checked. No need to recheck here. 533 */ 534 c->hotpluggable = arch_cpu_is_hotpluggable(cpu); 535 536 return register_cpu(c, cpu); 537 } 538 539 #ifdef CONFIG_ACPI_HOTPLUG_CPU 540 void arch_unregister_cpu(int cpu) 541 { 542 acpi_handle acpi_handle = acpi_get_processor_handle(cpu); 543 struct cpu *c = &per_cpu(cpu_devices, cpu); 544 acpi_status status; 545 unsigned long long sta; 546 547 if (!acpi_handle) { 548 pr_err_once("Removing a CPU without associated ACPI handle\n"); 549 return; 550 } 551 552 status = acpi_evaluate_integer(acpi_handle, "_STA", NULL, &sta); 553 if (ACPI_FAILURE(status)) 554 return; 555 556 /* For now do not allow anything that looks like physical CPU HP */ 557 if (cpu_present(cpu) && !(sta & ACPI_STA_DEVICE_PRESENT)) { 558 pr_err_once("Changing CPU present bit is not supported\n"); 559 return; 560 } 561 562 unregister_cpu(c); 563 } 564 #endif /* CONFIG_ACPI_HOTPLUG_CPU */ 565 566 #ifdef CONFIG_ACPI 567 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS]; 568 569 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu) 570 { 571 return &cpu_madt_gicc[cpu]; 572 } 573 EXPORT_SYMBOL_GPL(acpi_cpu_get_madt_gicc); 574 575 /* 576 * acpi_map_gic_cpu_interface - parse processor MADT entry 577 * 578 * Carry out sanity checks on MADT processor entry and initialize 579 * cpu_logical_map on success 580 */ 581 static void __init 582 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor) 583 { 584 u64 hwid = processor->arm_mpidr; 585 586 if (!(processor->flags & 587 (ACPI_MADT_ENABLED | ACPI_MADT_GICC_ONLINE_CAPABLE))) { 588 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid); 589 return; 590 } 591 592 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) { 593 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid); 594 return; 595 } 596 597 if (is_mpidr_duplicate(cpu_count, hwid)) { 598 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid); 599 return; 600 } 601 602 /* Check if GICC structure of boot CPU is available in the MADT */ 603 if (cpu_logical_map(0) == hwid) { 604 if (bootcpu_valid) { 605 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n", 606 hwid); 607 return; 608 } 609 bootcpu_valid = true; 610 cpu_madt_gicc[0] = *processor; 611 return; 612 } 613 614 if (cpu_count >= NR_CPUS) 615 return; 616 617 /* map the logical cpu id to cpu MPIDR */ 618 set_cpu_logical_map(cpu_count, hwid); 619 620 cpu_madt_gicc[cpu_count] = *processor; 621 622 /* 623 * Set-up the ACPI parking protocol cpu entries 624 * while initializing the cpu_logical_map to 625 * avoid parsing MADT entries multiple times for 626 * nothing (ie a valid cpu_logical_map entry should 627 * contain a valid parking protocol data set to 628 * initialize the cpu if the parking protocol is 629 * the only available enable method). 630 */ 631 acpi_set_mailbox_entry(cpu_count, processor); 632 633 cpu_count++; 634 } 635 636 static int __init 637 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header, 638 const unsigned long end) 639 { 640 struct acpi_madt_generic_interrupt *processor; 641 642 processor = (struct acpi_madt_generic_interrupt *)header; 643 if (BAD_MADT_GICC_ENTRY(processor, end)) 644 return -EINVAL; 645 646 acpi_table_print_madt_entry(&header->common); 647 648 acpi_map_gic_cpu_interface(processor); 649 650 return 0; 651 } 652 653 static void __init acpi_parse_and_init_cpus(void) 654 { 655 int i; 656 657 /* 658 * do a walk of MADT to determine how many CPUs 659 * we have including disabled CPUs, and get information 660 * we need for SMP init. 661 */ 662 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, 663 acpi_parse_gic_cpu_interface, 0); 664 665 /* 666 * In ACPI, SMP and CPU NUMA information is provided in separate 667 * static tables, namely the MADT and the SRAT. 668 * 669 * Thus, it is simpler to first create the cpu logical map through 670 * an MADT walk and then map the logical cpus to their node ids 671 * as separate steps. 672 */ 673 acpi_map_cpus_to_nodes(); 674 675 for (i = 0; i < nr_cpu_ids; i++) 676 early_map_cpu_to_node(i, acpi_numa_get_nid(i)); 677 } 678 #else 679 #define acpi_parse_and_init_cpus(...) do { } while (0) 680 #endif 681 682 /* 683 * Enumerate the possible CPU set from the device tree and build the 684 * cpu logical map array containing MPIDR values related to logical 685 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 686 */ 687 static void __init of_parse_and_init_cpus(void) 688 { 689 struct device_node *dn; 690 691 for_each_of_cpu_node(dn) { 692 u64 hwid = of_get_cpu_hwid(dn, 0); 693 694 if (hwid & ~MPIDR_HWID_BITMASK) 695 goto next; 696 697 if (is_mpidr_duplicate(cpu_count, hwid)) { 698 pr_err("%pOF: duplicate cpu reg properties in the DT\n", 699 dn); 700 goto next; 701 } 702 703 /* 704 * The numbering scheme requires that the boot CPU 705 * must be assigned logical id 0. Record it so that 706 * the logical map built from DT is validated and can 707 * be used. 708 */ 709 if (hwid == cpu_logical_map(0)) { 710 if (bootcpu_valid) { 711 pr_err("%pOF: duplicate boot cpu reg property in DT\n", 712 dn); 713 goto next; 714 } 715 716 bootcpu_valid = true; 717 early_map_cpu_to_node(0, of_node_to_nid(dn)); 718 719 /* 720 * cpu_logical_map has already been 721 * initialized and the boot cpu doesn't need 722 * the enable-method so continue without 723 * incrementing cpu. 724 */ 725 continue; 726 } 727 728 if (cpu_count >= NR_CPUS) 729 goto next; 730 731 pr_debug("cpu logical map 0x%llx\n", hwid); 732 set_cpu_logical_map(cpu_count, hwid); 733 734 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn)); 735 next: 736 cpu_count++; 737 } 738 } 739 740 /* 741 * Enumerate the possible CPU set from the device tree or ACPI and build the 742 * cpu logical map array containing MPIDR values related to logical 743 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 744 */ 745 void __init smp_init_cpus(void) 746 { 747 int i; 748 749 if (acpi_disabled) 750 of_parse_and_init_cpus(); 751 else 752 acpi_parse_and_init_cpus(); 753 754 if (cpu_count > nr_cpu_ids) 755 pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n", 756 cpu_count, nr_cpu_ids); 757 758 if (!bootcpu_valid) { 759 pr_err("missing boot CPU MPIDR, not enabling secondaries\n"); 760 return; 761 } 762 763 /* 764 * We need to set the cpu_logical_map entries before enabling 765 * the cpus so that cpu processor description entries (DT cpu nodes 766 * and ACPI MADT entries) can be retrieved by matching the cpu hwid 767 * with entries in cpu_logical_map while initializing the cpus. 768 * If the cpu set-up fails, invalidate the cpu_logical_map entry. 769 */ 770 for (i = 1; i < nr_cpu_ids; i++) { 771 if (cpu_logical_map(i) != INVALID_HWID) { 772 if (smp_cpu_setup(i)) 773 set_cpu_logical_map(i, INVALID_HWID); 774 } 775 } 776 } 777 778 void __init smp_prepare_cpus(unsigned int max_cpus) 779 { 780 const struct cpu_operations *ops; 781 int err; 782 unsigned int cpu; 783 unsigned int this_cpu; 784 785 init_cpu_topology(); 786 787 this_cpu = smp_processor_id(); 788 store_cpu_topology(this_cpu); 789 numa_store_cpu_info(this_cpu); 790 numa_add_cpu(this_cpu); 791 792 /* 793 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set 794 * secondary CPUs present. 795 */ 796 if (max_cpus == 0) 797 return; 798 799 /* 800 * Initialise the present map (which describes the set of CPUs 801 * actually populated at the present time) and release the 802 * secondaries from the bootloader. 803 */ 804 for_each_possible_cpu(cpu) { 805 806 if (cpu == smp_processor_id()) 807 continue; 808 809 ops = get_cpu_ops(cpu); 810 if (!ops) 811 continue; 812 813 err = ops->cpu_prepare(cpu); 814 if (err) 815 continue; 816 817 set_cpu_present(cpu, true); 818 numa_store_cpu_info(cpu); 819 } 820 } 821 822 static const char *ipi_types[MAX_IPI] __tracepoint_string = { 823 [IPI_RESCHEDULE] = "Rescheduling interrupts", 824 [IPI_CALL_FUNC] = "Function call interrupts", 825 [IPI_CPU_STOP] = "CPU stop interrupts", 826 [IPI_CPU_CRASH_STOP] = "CPU stop (for crash dump) interrupts", 827 [IPI_TIMER] = "Timer broadcast interrupts", 828 [IPI_IRQ_WORK] = "IRQ work interrupts", 829 [IPI_CPU_BACKTRACE] = "CPU backtrace interrupts", 830 [IPI_KGDB_ROUNDUP] = "KGDB roundup interrupts", 831 }; 832 833 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr); 834 835 unsigned long irq_err_count; 836 837 int arch_show_interrupts(struct seq_file *p, int prec) 838 { 839 unsigned int cpu, i; 840 841 for (i = 0; i < MAX_IPI; i++) { 842 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, 843 prec >= 4 ? " " : ""); 844 for_each_online_cpu(cpu) 845 seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu)); 846 seq_printf(p, " %s\n", ipi_types[i]); 847 } 848 849 seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count); 850 return 0; 851 } 852 853 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 854 { 855 smp_cross_call(mask, IPI_CALL_FUNC); 856 } 857 858 void arch_send_call_function_single_ipi(int cpu) 859 { 860 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); 861 } 862 863 #ifdef CONFIG_IRQ_WORK 864 void arch_irq_work_raise(void) 865 { 866 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 867 } 868 #endif 869 870 static void __noreturn local_cpu_stop(void) 871 { 872 set_cpu_online(smp_processor_id(), false); 873 874 local_daif_mask(); 875 sdei_mask_local_cpu(); 876 cpu_park_loop(); 877 } 878 879 /* 880 * We need to implement panic_smp_self_stop() for parallel panic() calls, so 881 * that cpu_online_mask gets correctly updated and smp_send_stop() can skip 882 * CPUs that have already stopped themselves. 883 */ 884 void __noreturn panic_smp_self_stop(void) 885 { 886 local_cpu_stop(); 887 } 888 889 #ifdef CONFIG_KEXEC_CORE 890 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0); 891 #endif 892 893 static void __noreturn ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs) 894 { 895 #ifdef CONFIG_KEXEC_CORE 896 crash_save_cpu(regs, cpu); 897 898 atomic_dec(&waiting_for_crash_ipi); 899 900 local_irq_disable(); 901 sdei_mask_local_cpu(); 902 903 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 904 __cpu_try_die(cpu); 905 906 /* just in case */ 907 cpu_park_loop(); 908 #else 909 BUG(); 910 #endif 911 } 912 913 static void arm64_backtrace_ipi(cpumask_t *mask) 914 { 915 __ipi_send_mask(ipi_desc[IPI_CPU_BACKTRACE], mask); 916 } 917 918 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, int exclude_cpu) 919 { 920 /* 921 * NOTE: though nmi_trigger_cpumask_backtrace() has "nmi_" in the name, 922 * nothing about it truly needs to be implemented using an NMI, it's 923 * just that it's _allowed_ to work with NMIs. If ipi_should_be_nmi() 924 * returned false our backtrace attempt will just use a regular IPI. 925 */ 926 nmi_trigger_cpumask_backtrace(mask, exclude_cpu, arm64_backtrace_ipi); 927 } 928 929 #ifdef CONFIG_KGDB 930 void kgdb_roundup_cpus(void) 931 { 932 int this_cpu = raw_smp_processor_id(); 933 int cpu; 934 935 for_each_online_cpu(cpu) { 936 /* No need to roundup ourselves */ 937 if (cpu == this_cpu) 938 continue; 939 940 __ipi_send_single(ipi_desc[IPI_KGDB_ROUNDUP], cpu); 941 } 942 } 943 #endif 944 945 /* 946 * Main handler for inter-processor interrupts 947 */ 948 static void do_handle_IPI(int ipinr) 949 { 950 unsigned int cpu = smp_processor_id(); 951 952 if ((unsigned)ipinr < NR_IPI) 953 trace_ipi_entry(ipi_types[ipinr]); 954 955 switch (ipinr) { 956 case IPI_RESCHEDULE: 957 scheduler_ipi(); 958 break; 959 960 case IPI_CALL_FUNC: 961 generic_smp_call_function_interrupt(); 962 break; 963 964 case IPI_CPU_STOP: 965 local_cpu_stop(); 966 break; 967 968 case IPI_CPU_CRASH_STOP: 969 if (IS_ENABLED(CONFIG_KEXEC_CORE)) { 970 ipi_cpu_crash_stop(cpu, get_irq_regs()); 971 972 unreachable(); 973 } 974 break; 975 976 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 977 case IPI_TIMER: 978 tick_receive_broadcast(); 979 break; 980 #endif 981 982 #ifdef CONFIG_IRQ_WORK 983 case IPI_IRQ_WORK: 984 irq_work_run(); 985 break; 986 #endif 987 988 case IPI_CPU_BACKTRACE: 989 /* 990 * NOTE: in some cases this _won't_ be NMI context. See the 991 * comment in arch_trigger_cpumask_backtrace(). 992 */ 993 nmi_cpu_backtrace(get_irq_regs()); 994 break; 995 996 case IPI_KGDB_ROUNDUP: 997 kgdb_nmicallback(cpu, get_irq_regs()); 998 break; 999 1000 default: 1001 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr); 1002 break; 1003 } 1004 1005 if ((unsigned)ipinr < NR_IPI) 1006 trace_ipi_exit(ipi_types[ipinr]); 1007 } 1008 1009 static irqreturn_t ipi_handler(int irq, void *data) 1010 { 1011 do_handle_IPI(irq - ipi_irq_base); 1012 return IRQ_HANDLED; 1013 } 1014 1015 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 1016 { 1017 trace_ipi_raise(target, ipi_types[ipinr]); 1018 __ipi_send_mask(ipi_desc[ipinr], target); 1019 } 1020 1021 static bool ipi_should_be_nmi(enum ipi_msg_type ipi) 1022 { 1023 if (!system_uses_irq_prio_masking()) 1024 return false; 1025 1026 switch (ipi) { 1027 case IPI_CPU_STOP: 1028 case IPI_CPU_CRASH_STOP: 1029 case IPI_CPU_BACKTRACE: 1030 case IPI_KGDB_ROUNDUP: 1031 return true; 1032 default: 1033 return false; 1034 } 1035 } 1036 1037 static void ipi_setup(int cpu) 1038 { 1039 int i; 1040 1041 if (WARN_ON_ONCE(!ipi_irq_base)) 1042 return; 1043 1044 for (i = 0; i < nr_ipi; i++) { 1045 if (ipi_should_be_nmi(i)) { 1046 prepare_percpu_nmi(ipi_irq_base + i); 1047 enable_percpu_nmi(ipi_irq_base + i, 0); 1048 } else { 1049 enable_percpu_irq(ipi_irq_base + i, 0); 1050 } 1051 } 1052 } 1053 1054 #ifdef CONFIG_HOTPLUG_CPU 1055 static void ipi_teardown(int cpu) 1056 { 1057 int i; 1058 1059 if (WARN_ON_ONCE(!ipi_irq_base)) 1060 return; 1061 1062 for (i = 0; i < nr_ipi; i++) { 1063 if (ipi_should_be_nmi(i)) { 1064 disable_percpu_nmi(ipi_irq_base + i); 1065 teardown_percpu_nmi(ipi_irq_base + i); 1066 } else { 1067 disable_percpu_irq(ipi_irq_base + i); 1068 } 1069 } 1070 } 1071 #endif 1072 1073 void __init set_smp_ipi_range(int ipi_base, int n) 1074 { 1075 int i; 1076 1077 WARN_ON(n < MAX_IPI); 1078 nr_ipi = min(n, MAX_IPI); 1079 1080 for (i = 0; i < nr_ipi; i++) { 1081 int err; 1082 1083 if (ipi_should_be_nmi(i)) { 1084 err = request_percpu_nmi(ipi_base + i, ipi_handler, 1085 "IPI", &irq_stat); 1086 WARN(err, "Could not request IPI %d as NMI, err=%d\n", 1087 i, err); 1088 } else { 1089 err = request_percpu_irq(ipi_base + i, ipi_handler, 1090 "IPI", &irq_stat); 1091 WARN(err, "Could not request IPI %d as IRQ, err=%d\n", 1092 i, err); 1093 } 1094 1095 ipi_desc[i] = irq_to_desc(ipi_base + i); 1096 irq_set_status_flags(ipi_base + i, IRQ_HIDDEN); 1097 } 1098 1099 ipi_irq_base = ipi_base; 1100 1101 /* Setup the boot CPU immediately */ 1102 ipi_setup(smp_processor_id()); 1103 } 1104 1105 void arch_smp_send_reschedule(int cpu) 1106 { 1107 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 1108 } 1109 1110 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 1111 void arch_send_wakeup_ipi(unsigned int cpu) 1112 { 1113 /* 1114 * We use a scheduler IPI to wake the CPU as this avoids the need for a 1115 * dedicated IPI and we can safely handle spurious scheduler IPIs. 1116 */ 1117 smp_send_reschedule(cpu); 1118 } 1119 #endif 1120 1121 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 1122 void tick_broadcast(const struct cpumask *mask) 1123 { 1124 smp_cross_call(mask, IPI_TIMER); 1125 } 1126 #endif 1127 1128 /* 1129 * The number of CPUs online, not counting this CPU (which may not be 1130 * fully online and so not counted in num_online_cpus()). 1131 */ 1132 static inline unsigned int num_other_online_cpus(void) 1133 { 1134 unsigned int this_cpu_online = cpu_online(smp_processor_id()); 1135 1136 return num_online_cpus() - this_cpu_online; 1137 } 1138 1139 void smp_send_stop(void) 1140 { 1141 unsigned long timeout; 1142 1143 if (num_other_online_cpus()) { 1144 cpumask_t mask; 1145 1146 cpumask_copy(&mask, cpu_online_mask); 1147 cpumask_clear_cpu(smp_processor_id(), &mask); 1148 1149 if (system_state <= SYSTEM_RUNNING) 1150 pr_crit("SMP: stopping secondary CPUs\n"); 1151 smp_cross_call(&mask, IPI_CPU_STOP); 1152 } 1153 1154 /* Wait up to one second for other CPUs to stop */ 1155 timeout = USEC_PER_SEC; 1156 while (num_other_online_cpus() && timeout--) 1157 udelay(1); 1158 1159 if (num_other_online_cpus()) 1160 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n", 1161 cpumask_pr_args(cpu_online_mask)); 1162 1163 sdei_mask_local_cpu(); 1164 } 1165 1166 #ifdef CONFIG_KEXEC_CORE 1167 void crash_smp_send_stop(void) 1168 { 1169 static int cpus_stopped; 1170 cpumask_t mask; 1171 unsigned long timeout; 1172 1173 /* 1174 * This function can be called twice in panic path, but obviously 1175 * we execute this only once. 1176 */ 1177 if (cpus_stopped) 1178 return; 1179 1180 cpus_stopped = 1; 1181 1182 /* 1183 * If this cpu is the only one alive at this point in time, online or 1184 * not, there are no stop messages to be sent around, so just back out. 1185 */ 1186 if (num_other_online_cpus() == 0) 1187 goto skip_ipi; 1188 1189 cpumask_copy(&mask, cpu_online_mask); 1190 cpumask_clear_cpu(smp_processor_id(), &mask); 1191 1192 atomic_set(&waiting_for_crash_ipi, num_other_online_cpus()); 1193 1194 pr_crit("SMP: stopping secondary CPUs\n"); 1195 smp_cross_call(&mask, IPI_CPU_CRASH_STOP); 1196 1197 /* Wait up to one second for other CPUs to stop */ 1198 timeout = USEC_PER_SEC; 1199 while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--) 1200 udelay(1); 1201 1202 if (atomic_read(&waiting_for_crash_ipi) > 0) 1203 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n", 1204 cpumask_pr_args(&mask)); 1205 1206 skip_ipi: 1207 sdei_mask_local_cpu(); 1208 sdei_handler_abort(); 1209 } 1210 1211 bool smp_crash_stop_failed(void) 1212 { 1213 return (atomic_read(&waiting_for_crash_ipi) > 0); 1214 } 1215 #endif 1216 1217 static bool have_cpu_die(void) 1218 { 1219 #ifdef CONFIG_HOTPLUG_CPU 1220 int any_cpu = raw_smp_processor_id(); 1221 const struct cpu_operations *ops = get_cpu_ops(any_cpu); 1222 1223 if (ops && ops->cpu_die) 1224 return true; 1225 #endif 1226 return false; 1227 } 1228 1229 bool cpus_are_stuck_in_kernel(void) 1230 { 1231 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die()); 1232 1233 return !!cpus_stuck_in_kernel || smp_spin_tables || 1234 is_protected_kvm_enabled(); 1235 } 1236