xref: /linux/arch/arm64/kernel/smp.c (revision 90d32e92011eaae8e70a9169b4e7acf4ca8f9d3a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * SMP initialisation and IPI support
4  * Based on arch/arm/kernel/smp.c
5  *
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/arm_sdei.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/interrupt.h>
18 #include <linux/cache.h>
19 #include <linux/profile.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/cpu.h>
24 #include <linux/smp.h>
25 #include <linux/seq_file.h>
26 #include <linux/irq.h>
27 #include <linux/irqchip/arm-gic-v3.h>
28 #include <linux/percpu.h>
29 #include <linux/clockchips.h>
30 #include <linux/completion.h>
31 #include <linux/of.h>
32 #include <linux/irq_work.h>
33 #include <linux/kernel_stat.h>
34 #include <linux/kexec.h>
35 #include <linux/kgdb.h>
36 #include <linux/kvm_host.h>
37 #include <linux/nmi.h>
38 
39 #include <asm/alternative.h>
40 #include <asm/atomic.h>
41 #include <asm/cacheflush.h>
42 #include <asm/cpu.h>
43 #include <asm/cputype.h>
44 #include <asm/cpu_ops.h>
45 #include <asm/daifflags.h>
46 #include <asm/kvm_mmu.h>
47 #include <asm/mmu_context.h>
48 #include <asm/numa.h>
49 #include <asm/processor.h>
50 #include <asm/smp_plat.h>
51 #include <asm/sections.h>
52 #include <asm/tlbflush.h>
53 #include <asm/ptrace.h>
54 #include <asm/virt.h>
55 
56 #include <trace/events/ipi.h>
57 
58 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
59 EXPORT_PER_CPU_SYMBOL(cpu_number);
60 
61 /*
62  * as from 2.5, kernels no longer have an init_tasks structure
63  * so we need some other way of telling a new secondary core
64  * where to place its SVC stack
65  */
66 struct secondary_data secondary_data;
67 /* Number of CPUs which aren't online, but looping in kernel text. */
68 static int cpus_stuck_in_kernel;
69 
70 enum ipi_msg_type {
71 	IPI_RESCHEDULE,
72 	IPI_CALL_FUNC,
73 	IPI_CPU_STOP,
74 	IPI_CPU_CRASH_STOP,
75 	IPI_TIMER,
76 	IPI_IRQ_WORK,
77 	NR_IPI,
78 	/*
79 	 * Any enum >= NR_IPI and < MAX_IPI is special and not tracable
80 	 * with trace_ipi_*
81 	 */
82 	IPI_CPU_BACKTRACE = NR_IPI,
83 	IPI_KGDB_ROUNDUP,
84 	MAX_IPI
85 };
86 
87 static int ipi_irq_base __ro_after_init;
88 static int nr_ipi __ro_after_init = NR_IPI;
89 static struct irq_desc *ipi_desc[MAX_IPI] __ro_after_init;
90 
91 static void ipi_setup(int cpu);
92 
93 #ifdef CONFIG_HOTPLUG_CPU
94 static void ipi_teardown(int cpu);
95 static int op_cpu_kill(unsigned int cpu);
96 #else
97 static inline int op_cpu_kill(unsigned int cpu)
98 {
99 	return -ENOSYS;
100 }
101 #endif
102 
103 
104 /*
105  * Boot a secondary CPU, and assign it the specified idle task.
106  * This also gives us the initial stack to use for this CPU.
107  */
108 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
109 {
110 	const struct cpu_operations *ops = get_cpu_ops(cpu);
111 
112 	if (ops->cpu_boot)
113 		return ops->cpu_boot(cpu);
114 
115 	return -EOPNOTSUPP;
116 }
117 
118 static DECLARE_COMPLETION(cpu_running);
119 
120 int __cpu_up(unsigned int cpu, struct task_struct *idle)
121 {
122 	int ret;
123 	long status;
124 
125 	/*
126 	 * We need to tell the secondary core where to find its stack and the
127 	 * page tables.
128 	 */
129 	secondary_data.task = idle;
130 	update_cpu_boot_status(CPU_MMU_OFF);
131 
132 	/* Now bring the CPU into our world */
133 	ret = boot_secondary(cpu, idle);
134 	if (ret) {
135 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
136 		return ret;
137 	}
138 
139 	/*
140 	 * CPU was successfully started, wait for it to come online or
141 	 * time out.
142 	 */
143 	wait_for_completion_timeout(&cpu_running,
144 				    msecs_to_jiffies(5000));
145 	if (cpu_online(cpu))
146 		return 0;
147 
148 	pr_crit("CPU%u: failed to come online\n", cpu);
149 	secondary_data.task = NULL;
150 	status = READ_ONCE(secondary_data.status);
151 	if (status == CPU_MMU_OFF)
152 		status = READ_ONCE(__early_cpu_boot_status);
153 
154 	switch (status & CPU_BOOT_STATUS_MASK) {
155 	default:
156 		pr_err("CPU%u: failed in unknown state : 0x%lx\n",
157 		       cpu, status);
158 		cpus_stuck_in_kernel++;
159 		break;
160 	case CPU_KILL_ME:
161 		if (!op_cpu_kill(cpu)) {
162 			pr_crit("CPU%u: died during early boot\n", cpu);
163 			break;
164 		}
165 		pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
166 		fallthrough;
167 	case CPU_STUCK_IN_KERNEL:
168 		pr_crit("CPU%u: is stuck in kernel\n", cpu);
169 		if (status & CPU_STUCK_REASON_52_BIT_VA)
170 			pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
171 		if (status & CPU_STUCK_REASON_NO_GRAN) {
172 			pr_crit("CPU%u: does not support %luK granule\n",
173 				cpu, PAGE_SIZE / SZ_1K);
174 		}
175 		cpus_stuck_in_kernel++;
176 		break;
177 	case CPU_PANIC_KERNEL:
178 		panic("CPU%u detected unsupported configuration\n", cpu);
179 	}
180 
181 	return -EIO;
182 }
183 
184 static void init_gic_priority_masking(void)
185 {
186 	u32 cpuflags;
187 
188 	if (WARN_ON(!gic_enable_sre()))
189 		return;
190 
191 	cpuflags = read_sysreg(daif);
192 
193 	WARN_ON(!(cpuflags & PSR_I_BIT));
194 	WARN_ON(!(cpuflags & PSR_F_BIT));
195 
196 	gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
197 }
198 
199 /*
200  * This is the secondary CPU boot entry.  We're using this CPUs
201  * idle thread stack, but a set of temporary page tables.
202  */
203 asmlinkage notrace void secondary_start_kernel(void)
204 {
205 	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
206 	struct mm_struct *mm = &init_mm;
207 	const struct cpu_operations *ops;
208 	unsigned int cpu = smp_processor_id();
209 
210 	/*
211 	 * All kernel threads share the same mm context; grab a
212 	 * reference and switch to it.
213 	 */
214 	mmgrab(mm);
215 	current->active_mm = mm;
216 
217 	/*
218 	 * TTBR0 is only used for the identity mapping at this stage. Make it
219 	 * point to zero page to avoid speculatively fetching new entries.
220 	 */
221 	cpu_uninstall_idmap();
222 
223 	if (system_uses_irq_prio_masking())
224 		init_gic_priority_masking();
225 
226 	rcutree_report_cpu_starting(cpu);
227 	trace_hardirqs_off();
228 
229 	/*
230 	 * If the system has established the capabilities, make sure
231 	 * this CPU ticks all of those. If it doesn't, the CPU will
232 	 * fail to come online.
233 	 */
234 	check_local_cpu_capabilities();
235 
236 	ops = get_cpu_ops(cpu);
237 	if (ops->cpu_postboot)
238 		ops->cpu_postboot();
239 
240 	/*
241 	 * Log the CPU info before it is marked online and might get read.
242 	 */
243 	cpuinfo_store_cpu();
244 	store_cpu_topology(cpu);
245 
246 	/*
247 	 * Enable GIC and timers.
248 	 */
249 	notify_cpu_starting(cpu);
250 
251 	ipi_setup(cpu);
252 
253 	numa_add_cpu(cpu);
254 
255 	/*
256 	 * OK, now it's safe to let the boot CPU continue.  Wait for
257 	 * the CPU migration code to notice that the CPU is online
258 	 * before we continue.
259 	 */
260 	pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
261 					 cpu, (unsigned long)mpidr,
262 					 read_cpuid_id());
263 	update_cpu_boot_status(CPU_BOOT_SUCCESS);
264 	set_cpu_online(cpu, true);
265 	complete(&cpu_running);
266 
267 	/*
268 	 * Secondary CPUs enter the kernel with all DAIF exceptions masked.
269 	 *
270 	 * As with setup_arch() we must unmask Debug and SError exceptions, and
271 	 * as the root irqchip has already been detected and initialized we can
272 	 * unmask IRQ and FIQ at the same time.
273 	 */
274 	local_daif_restore(DAIF_PROCCTX);
275 
276 	/*
277 	 * OK, it's off to the idle thread for us
278 	 */
279 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
280 }
281 
282 #ifdef CONFIG_HOTPLUG_CPU
283 static int op_cpu_disable(unsigned int cpu)
284 {
285 	const struct cpu_operations *ops = get_cpu_ops(cpu);
286 
287 	/*
288 	 * If we don't have a cpu_die method, abort before we reach the point
289 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
290 	 */
291 	if (!ops || !ops->cpu_die)
292 		return -EOPNOTSUPP;
293 
294 	/*
295 	 * We may need to abort a hot unplug for some other mechanism-specific
296 	 * reason.
297 	 */
298 	if (ops->cpu_disable)
299 		return ops->cpu_disable(cpu);
300 
301 	return 0;
302 }
303 
304 /*
305  * __cpu_disable runs on the processor to be shutdown.
306  */
307 int __cpu_disable(void)
308 {
309 	unsigned int cpu = smp_processor_id();
310 	int ret;
311 
312 	ret = op_cpu_disable(cpu);
313 	if (ret)
314 		return ret;
315 
316 	remove_cpu_topology(cpu);
317 	numa_remove_cpu(cpu);
318 
319 	/*
320 	 * Take this CPU offline.  Once we clear this, we can't return,
321 	 * and we must not schedule until we're ready to give up the cpu.
322 	 */
323 	set_cpu_online(cpu, false);
324 	ipi_teardown(cpu);
325 
326 	/*
327 	 * OK - migrate IRQs away from this CPU
328 	 */
329 	irq_migrate_all_off_this_cpu();
330 
331 	return 0;
332 }
333 
334 static int op_cpu_kill(unsigned int cpu)
335 {
336 	const struct cpu_operations *ops = get_cpu_ops(cpu);
337 
338 	/*
339 	 * If we have no means of synchronising with the dying CPU, then assume
340 	 * that it is really dead. We can only wait for an arbitrary length of
341 	 * time and hope that it's dead, so let's skip the wait and just hope.
342 	 */
343 	if (!ops->cpu_kill)
344 		return 0;
345 
346 	return ops->cpu_kill(cpu);
347 }
348 
349 /*
350  * Called on the thread which is asking for a CPU to be shutdown after the
351  * shutdown completed.
352  */
353 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
354 {
355 	int err;
356 
357 	pr_debug("CPU%u: shutdown\n", cpu);
358 
359 	/*
360 	 * Now that the dying CPU is beyond the point of no return w.r.t.
361 	 * in-kernel synchronisation, try to get the firwmare to help us to
362 	 * verify that it has really left the kernel before we consider
363 	 * clobbering anything it might still be using.
364 	 */
365 	err = op_cpu_kill(cpu);
366 	if (err)
367 		pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err);
368 }
369 
370 /*
371  * Called from the idle thread for the CPU which has been shutdown.
372  *
373  */
374 void __noreturn cpu_die(void)
375 {
376 	unsigned int cpu = smp_processor_id();
377 	const struct cpu_operations *ops = get_cpu_ops(cpu);
378 
379 	idle_task_exit();
380 
381 	local_daif_mask();
382 
383 	/* Tell cpuhp_bp_sync_dead() that this CPU is now safe to dispose of */
384 	cpuhp_ap_report_dead();
385 
386 	/*
387 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
388 	 * mechanism must perform all required cache maintenance to ensure that
389 	 * no dirty lines are lost in the process of shutting down the CPU.
390 	 */
391 	ops->cpu_die(cpu);
392 
393 	BUG();
394 }
395 #endif
396 
397 static void __cpu_try_die(int cpu)
398 {
399 #ifdef CONFIG_HOTPLUG_CPU
400 	const struct cpu_operations *ops = get_cpu_ops(cpu);
401 
402 	if (ops && ops->cpu_die)
403 		ops->cpu_die(cpu);
404 #endif
405 }
406 
407 /*
408  * Kill the calling secondary CPU, early in bringup before it is turned
409  * online.
410  */
411 void __noreturn cpu_die_early(void)
412 {
413 	int cpu = smp_processor_id();
414 
415 	pr_crit("CPU%d: will not boot\n", cpu);
416 
417 	/* Mark this CPU absent */
418 	set_cpu_present(cpu, 0);
419 	rcutree_report_cpu_dead();
420 
421 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
422 		update_cpu_boot_status(CPU_KILL_ME);
423 		__cpu_try_die(cpu);
424 	}
425 
426 	update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
427 
428 	cpu_park_loop();
429 }
430 
431 static void __init hyp_mode_check(void)
432 {
433 	if (is_hyp_mode_available())
434 		pr_info("CPU: All CPU(s) started at EL2\n");
435 	else if (is_hyp_mode_mismatched())
436 		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
437 			   "CPU: CPUs started in inconsistent modes");
438 	else
439 		pr_info("CPU: All CPU(s) started at EL1\n");
440 	if (IS_ENABLED(CONFIG_KVM) && !is_kernel_in_hyp_mode()) {
441 		kvm_compute_layout();
442 		kvm_apply_hyp_relocations();
443 	}
444 }
445 
446 void __init smp_cpus_done(unsigned int max_cpus)
447 {
448 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
449 	hyp_mode_check();
450 	setup_system_features();
451 	setup_user_features();
452 	mark_linear_text_alias_ro();
453 }
454 
455 void __init smp_prepare_boot_cpu(void)
456 {
457 	/*
458 	 * The runtime per-cpu areas have been allocated by
459 	 * setup_per_cpu_areas(), and CPU0's boot time per-cpu area will be
460 	 * freed shortly, so we must move over to the runtime per-cpu area.
461 	 */
462 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
463 
464 	cpuinfo_store_boot_cpu();
465 	setup_boot_cpu_features();
466 
467 	/* Conditionally switch to GIC PMR for interrupt masking */
468 	if (system_uses_irq_prio_masking())
469 		init_gic_priority_masking();
470 
471 	kasan_init_hw_tags();
472 }
473 
474 /*
475  * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
476  * entries and check for duplicates. If any is found just ignore the
477  * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
478  * matching valid MPIDR values.
479  */
480 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
481 {
482 	unsigned int i;
483 
484 	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
485 		if (cpu_logical_map(i) == hwid)
486 			return true;
487 	return false;
488 }
489 
490 /*
491  * Initialize cpu operations for a logical cpu and
492  * set it in the possible mask on success
493  */
494 static int __init smp_cpu_setup(int cpu)
495 {
496 	const struct cpu_operations *ops;
497 
498 	if (init_cpu_ops(cpu))
499 		return -ENODEV;
500 
501 	ops = get_cpu_ops(cpu);
502 	if (ops->cpu_init(cpu))
503 		return -ENODEV;
504 
505 	set_cpu_possible(cpu, true);
506 
507 	return 0;
508 }
509 
510 static bool bootcpu_valid __initdata;
511 static unsigned int cpu_count = 1;
512 
513 #ifdef CONFIG_ACPI
514 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
515 
516 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
517 {
518 	return &cpu_madt_gicc[cpu];
519 }
520 EXPORT_SYMBOL_GPL(acpi_cpu_get_madt_gicc);
521 
522 /*
523  * acpi_map_gic_cpu_interface - parse processor MADT entry
524  *
525  * Carry out sanity checks on MADT processor entry and initialize
526  * cpu_logical_map on success
527  */
528 static void __init
529 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
530 {
531 	u64 hwid = processor->arm_mpidr;
532 
533 	if (!acpi_gicc_is_usable(processor)) {
534 		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
535 		return;
536 	}
537 
538 	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
539 		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
540 		return;
541 	}
542 
543 	if (is_mpidr_duplicate(cpu_count, hwid)) {
544 		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
545 		return;
546 	}
547 
548 	/* Check if GICC structure of boot CPU is available in the MADT */
549 	if (cpu_logical_map(0) == hwid) {
550 		if (bootcpu_valid) {
551 			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
552 			       hwid);
553 			return;
554 		}
555 		bootcpu_valid = true;
556 		cpu_madt_gicc[0] = *processor;
557 		return;
558 	}
559 
560 	if (cpu_count >= NR_CPUS)
561 		return;
562 
563 	/* map the logical cpu id to cpu MPIDR */
564 	set_cpu_logical_map(cpu_count, hwid);
565 
566 	cpu_madt_gicc[cpu_count] = *processor;
567 
568 	/*
569 	 * Set-up the ACPI parking protocol cpu entries
570 	 * while initializing the cpu_logical_map to
571 	 * avoid parsing MADT entries multiple times for
572 	 * nothing (ie a valid cpu_logical_map entry should
573 	 * contain a valid parking protocol data set to
574 	 * initialize the cpu if the parking protocol is
575 	 * the only available enable method).
576 	 */
577 	acpi_set_mailbox_entry(cpu_count, processor);
578 
579 	cpu_count++;
580 }
581 
582 static int __init
583 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header,
584 			     const unsigned long end)
585 {
586 	struct acpi_madt_generic_interrupt *processor;
587 
588 	processor = (struct acpi_madt_generic_interrupt *)header;
589 	if (BAD_MADT_GICC_ENTRY(processor, end))
590 		return -EINVAL;
591 
592 	acpi_table_print_madt_entry(&header->common);
593 
594 	acpi_map_gic_cpu_interface(processor);
595 
596 	return 0;
597 }
598 
599 static void __init acpi_parse_and_init_cpus(void)
600 {
601 	int i;
602 
603 	/*
604 	 * do a walk of MADT to determine how many CPUs
605 	 * we have including disabled CPUs, and get information
606 	 * we need for SMP init.
607 	 */
608 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
609 				      acpi_parse_gic_cpu_interface, 0);
610 
611 	/*
612 	 * In ACPI, SMP and CPU NUMA information is provided in separate
613 	 * static tables, namely the MADT and the SRAT.
614 	 *
615 	 * Thus, it is simpler to first create the cpu logical map through
616 	 * an MADT walk and then map the logical cpus to their node ids
617 	 * as separate steps.
618 	 */
619 	acpi_map_cpus_to_nodes();
620 
621 	for (i = 0; i < nr_cpu_ids; i++)
622 		early_map_cpu_to_node(i, acpi_numa_get_nid(i));
623 }
624 #else
625 #define acpi_parse_and_init_cpus(...)	do { } while (0)
626 #endif
627 
628 /*
629  * Enumerate the possible CPU set from the device tree and build the
630  * cpu logical map array containing MPIDR values related to logical
631  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
632  */
633 static void __init of_parse_and_init_cpus(void)
634 {
635 	struct device_node *dn;
636 
637 	for_each_of_cpu_node(dn) {
638 		u64 hwid = of_get_cpu_hwid(dn, 0);
639 
640 		if (hwid & ~MPIDR_HWID_BITMASK)
641 			goto next;
642 
643 		if (is_mpidr_duplicate(cpu_count, hwid)) {
644 			pr_err("%pOF: duplicate cpu reg properties in the DT\n",
645 				dn);
646 			goto next;
647 		}
648 
649 		/*
650 		 * The numbering scheme requires that the boot CPU
651 		 * must be assigned logical id 0. Record it so that
652 		 * the logical map built from DT is validated and can
653 		 * be used.
654 		 */
655 		if (hwid == cpu_logical_map(0)) {
656 			if (bootcpu_valid) {
657 				pr_err("%pOF: duplicate boot cpu reg property in DT\n",
658 					dn);
659 				goto next;
660 			}
661 
662 			bootcpu_valid = true;
663 			early_map_cpu_to_node(0, of_node_to_nid(dn));
664 
665 			/*
666 			 * cpu_logical_map has already been
667 			 * initialized and the boot cpu doesn't need
668 			 * the enable-method so continue without
669 			 * incrementing cpu.
670 			 */
671 			continue;
672 		}
673 
674 		if (cpu_count >= NR_CPUS)
675 			goto next;
676 
677 		pr_debug("cpu logical map 0x%llx\n", hwid);
678 		set_cpu_logical_map(cpu_count, hwid);
679 
680 		early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
681 next:
682 		cpu_count++;
683 	}
684 }
685 
686 /*
687  * Enumerate the possible CPU set from the device tree or ACPI and build the
688  * cpu logical map array containing MPIDR values related to logical
689  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
690  */
691 void __init smp_init_cpus(void)
692 {
693 	int i;
694 
695 	if (acpi_disabled)
696 		of_parse_and_init_cpus();
697 	else
698 		acpi_parse_and_init_cpus();
699 
700 	if (cpu_count > nr_cpu_ids)
701 		pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
702 			cpu_count, nr_cpu_ids);
703 
704 	if (!bootcpu_valid) {
705 		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
706 		return;
707 	}
708 
709 	/*
710 	 * We need to set the cpu_logical_map entries before enabling
711 	 * the cpus so that cpu processor description entries (DT cpu nodes
712 	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
713 	 * with entries in cpu_logical_map while initializing the cpus.
714 	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
715 	 */
716 	for (i = 1; i < nr_cpu_ids; i++) {
717 		if (cpu_logical_map(i) != INVALID_HWID) {
718 			if (smp_cpu_setup(i))
719 				set_cpu_logical_map(i, INVALID_HWID);
720 		}
721 	}
722 }
723 
724 void __init smp_prepare_cpus(unsigned int max_cpus)
725 {
726 	const struct cpu_operations *ops;
727 	int err;
728 	unsigned int cpu;
729 	unsigned int this_cpu;
730 
731 	init_cpu_topology();
732 
733 	this_cpu = smp_processor_id();
734 	store_cpu_topology(this_cpu);
735 	numa_store_cpu_info(this_cpu);
736 	numa_add_cpu(this_cpu);
737 
738 	/*
739 	 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
740 	 * secondary CPUs present.
741 	 */
742 	if (max_cpus == 0)
743 		return;
744 
745 	/*
746 	 * Initialise the present map (which describes the set of CPUs
747 	 * actually populated at the present time) and release the
748 	 * secondaries from the bootloader.
749 	 */
750 	for_each_possible_cpu(cpu) {
751 
752 		per_cpu(cpu_number, cpu) = cpu;
753 
754 		if (cpu == smp_processor_id())
755 			continue;
756 
757 		ops = get_cpu_ops(cpu);
758 		if (!ops)
759 			continue;
760 
761 		err = ops->cpu_prepare(cpu);
762 		if (err)
763 			continue;
764 
765 		set_cpu_present(cpu, true);
766 		numa_store_cpu_info(cpu);
767 	}
768 }
769 
770 static const char *ipi_types[NR_IPI] __tracepoint_string = {
771 	[IPI_RESCHEDULE]	= "Rescheduling interrupts",
772 	[IPI_CALL_FUNC]		= "Function call interrupts",
773 	[IPI_CPU_STOP]		= "CPU stop interrupts",
774 	[IPI_CPU_CRASH_STOP]	= "CPU stop (for crash dump) interrupts",
775 	[IPI_TIMER]		= "Timer broadcast interrupts",
776 	[IPI_IRQ_WORK]		= "IRQ work interrupts",
777 };
778 
779 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr);
780 
781 unsigned long irq_err_count;
782 
783 int arch_show_interrupts(struct seq_file *p, int prec)
784 {
785 	unsigned int cpu, i;
786 
787 	for (i = 0; i < NR_IPI; i++) {
788 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
789 			   prec >= 4 ? " " : "");
790 		for_each_online_cpu(cpu)
791 			seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu));
792 		seq_printf(p, "      %s\n", ipi_types[i]);
793 	}
794 
795 	seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count);
796 	return 0;
797 }
798 
799 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
800 {
801 	smp_cross_call(mask, IPI_CALL_FUNC);
802 }
803 
804 void arch_send_call_function_single_ipi(int cpu)
805 {
806 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
807 }
808 
809 #ifdef CONFIG_IRQ_WORK
810 void arch_irq_work_raise(void)
811 {
812 	smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
813 }
814 #endif
815 
816 static void __noreturn local_cpu_stop(void)
817 {
818 	set_cpu_online(smp_processor_id(), false);
819 
820 	local_daif_mask();
821 	sdei_mask_local_cpu();
822 	cpu_park_loop();
823 }
824 
825 /*
826  * We need to implement panic_smp_self_stop() for parallel panic() calls, so
827  * that cpu_online_mask gets correctly updated and smp_send_stop() can skip
828  * CPUs that have already stopped themselves.
829  */
830 void __noreturn panic_smp_self_stop(void)
831 {
832 	local_cpu_stop();
833 }
834 
835 #ifdef CONFIG_KEXEC_CORE
836 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
837 #endif
838 
839 static void __noreturn ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
840 {
841 #ifdef CONFIG_KEXEC_CORE
842 	crash_save_cpu(regs, cpu);
843 
844 	atomic_dec(&waiting_for_crash_ipi);
845 
846 	local_irq_disable();
847 	sdei_mask_local_cpu();
848 
849 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
850 		__cpu_try_die(cpu);
851 
852 	/* just in case */
853 	cpu_park_loop();
854 #else
855 	BUG();
856 #endif
857 }
858 
859 static void arm64_backtrace_ipi(cpumask_t *mask)
860 {
861 	__ipi_send_mask(ipi_desc[IPI_CPU_BACKTRACE], mask);
862 }
863 
864 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, int exclude_cpu)
865 {
866 	/*
867 	 * NOTE: though nmi_trigger_cpumask_backtrace() has "nmi_" in the name,
868 	 * nothing about it truly needs to be implemented using an NMI, it's
869 	 * just that it's _allowed_ to work with NMIs. If ipi_should_be_nmi()
870 	 * returned false our backtrace attempt will just use a regular IPI.
871 	 */
872 	nmi_trigger_cpumask_backtrace(mask, exclude_cpu, arm64_backtrace_ipi);
873 }
874 
875 #ifdef CONFIG_KGDB
876 void kgdb_roundup_cpus(void)
877 {
878 	int this_cpu = raw_smp_processor_id();
879 	int cpu;
880 
881 	for_each_online_cpu(cpu) {
882 		/* No need to roundup ourselves */
883 		if (cpu == this_cpu)
884 			continue;
885 
886 		__ipi_send_single(ipi_desc[IPI_KGDB_ROUNDUP], cpu);
887 	}
888 }
889 #endif
890 
891 /*
892  * Main handler for inter-processor interrupts
893  */
894 static void do_handle_IPI(int ipinr)
895 {
896 	unsigned int cpu = smp_processor_id();
897 
898 	if ((unsigned)ipinr < NR_IPI)
899 		trace_ipi_entry(ipi_types[ipinr]);
900 
901 	switch (ipinr) {
902 	case IPI_RESCHEDULE:
903 		scheduler_ipi();
904 		break;
905 
906 	case IPI_CALL_FUNC:
907 		generic_smp_call_function_interrupt();
908 		break;
909 
910 	case IPI_CPU_STOP:
911 		local_cpu_stop();
912 		break;
913 
914 	case IPI_CPU_CRASH_STOP:
915 		if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
916 			ipi_cpu_crash_stop(cpu, get_irq_regs());
917 
918 			unreachable();
919 		}
920 		break;
921 
922 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
923 	case IPI_TIMER:
924 		tick_receive_broadcast();
925 		break;
926 #endif
927 
928 #ifdef CONFIG_IRQ_WORK
929 	case IPI_IRQ_WORK:
930 		irq_work_run();
931 		break;
932 #endif
933 
934 	case IPI_CPU_BACKTRACE:
935 		/*
936 		 * NOTE: in some cases this _won't_ be NMI context. See the
937 		 * comment in arch_trigger_cpumask_backtrace().
938 		 */
939 		nmi_cpu_backtrace(get_irq_regs());
940 		break;
941 
942 	case IPI_KGDB_ROUNDUP:
943 		kgdb_nmicallback(cpu, get_irq_regs());
944 		break;
945 
946 	default:
947 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
948 		break;
949 	}
950 
951 	if ((unsigned)ipinr < NR_IPI)
952 		trace_ipi_exit(ipi_types[ipinr]);
953 }
954 
955 static irqreturn_t ipi_handler(int irq, void *data)
956 {
957 	do_handle_IPI(irq - ipi_irq_base);
958 	return IRQ_HANDLED;
959 }
960 
961 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
962 {
963 	trace_ipi_raise(target, ipi_types[ipinr]);
964 	__ipi_send_mask(ipi_desc[ipinr], target);
965 }
966 
967 static bool ipi_should_be_nmi(enum ipi_msg_type ipi)
968 {
969 	if (!system_uses_irq_prio_masking())
970 		return false;
971 
972 	switch (ipi) {
973 	case IPI_CPU_STOP:
974 	case IPI_CPU_CRASH_STOP:
975 	case IPI_CPU_BACKTRACE:
976 	case IPI_KGDB_ROUNDUP:
977 		return true;
978 	default:
979 		return false;
980 	}
981 }
982 
983 static void ipi_setup(int cpu)
984 {
985 	int i;
986 
987 	if (WARN_ON_ONCE(!ipi_irq_base))
988 		return;
989 
990 	for (i = 0; i < nr_ipi; i++) {
991 		if (ipi_should_be_nmi(i)) {
992 			prepare_percpu_nmi(ipi_irq_base + i);
993 			enable_percpu_nmi(ipi_irq_base + i, 0);
994 		} else {
995 			enable_percpu_irq(ipi_irq_base + i, 0);
996 		}
997 	}
998 }
999 
1000 #ifdef CONFIG_HOTPLUG_CPU
1001 static void ipi_teardown(int cpu)
1002 {
1003 	int i;
1004 
1005 	if (WARN_ON_ONCE(!ipi_irq_base))
1006 		return;
1007 
1008 	for (i = 0; i < nr_ipi; i++) {
1009 		if (ipi_should_be_nmi(i)) {
1010 			disable_percpu_nmi(ipi_irq_base + i);
1011 			teardown_percpu_nmi(ipi_irq_base + i);
1012 		} else {
1013 			disable_percpu_irq(ipi_irq_base + i);
1014 		}
1015 	}
1016 }
1017 #endif
1018 
1019 void __init set_smp_ipi_range(int ipi_base, int n)
1020 {
1021 	int i;
1022 
1023 	WARN_ON(n < MAX_IPI);
1024 	nr_ipi = min(n, MAX_IPI);
1025 
1026 	for (i = 0; i < nr_ipi; i++) {
1027 		int err;
1028 
1029 		if (ipi_should_be_nmi(i)) {
1030 			err = request_percpu_nmi(ipi_base + i, ipi_handler,
1031 						 "IPI", &cpu_number);
1032 			WARN(err, "Could not request IPI %d as NMI, err=%d\n",
1033 			     i, err);
1034 		} else {
1035 			err = request_percpu_irq(ipi_base + i, ipi_handler,
1036 						 "IPI", &cpu_number);
1037 			WARN(err, "Could not request IPI %d as IRQ, err=%d\n",
1038 			     i, err);
1039 		}
1040 
1041 		ipi_desc[i] = irq_to_desc(ipi_base + i);
1042 		irq_set_status_flags(ipi_base + i, IRQ_HIDDEN);
1043 	}
1044 
1045 	ipi_irq_base = ipi_base;
1046 
1047 	/* Setup the boot CPU immediately */
1048 	ipi_setup(smp_processor_id());
1049 }
1050 
1051 void arch_smp_send_reschedule(int cpu)
1052 {
1053 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
1054 }
1055 
1056 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
1057 void arch_send_wakeup_ipi(unsigned int cpu)
1058 {
1059 	/*
1060 	 * We use a scheduler IPI to wake the CPU as this avoids the need for a
1061 	 * dedicated IPI and we can safely handle spurious scheduler IPIs.
1062 	 */
1063 	smp_send_reschedule(cpu);
1064 }
1065 #endif
1066 
1067 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
1068 void tick_broadcast(const struct cpumask *mask)
1069 {
1070 	smp_cross_call(mask, IPI_TIMER);
1071 }
1072 #endif
1073 
1074 /*
1075  * The number of CPUs online, not counting this CPU (which may not be
1076  * fully online and so not counted in num_online_cpus()).
1077  */
1078 static inline unsigned int num_other_online_cpus(void)
1079 {
1080 	unsigned int this_cpu_online = cpu_online(smp_processor_id());
1081 
1082 	return num_online_cpus() - this_cpu_online;
1083 }
1084 
1085 void smp_send_stop(void)
1086 {
1087 	unsigned long timeout;
1088 
1089 	if (num_other_online_cpus()) {
1090 		cpumask_t mask;
1091 
1092 		cpumask_copy(&mask, cpu_online_mask);
1093 		cpumask_clear_cpu(smp_processor_id(), &mask);
1094 
1095 		if (system_state <= SYSTEM_RUNNING)
1096 			pr_crit("SMP: stopping secondary CPUs\n");
1097 		smp_cross_call(&mask, IPI_CPU_STOP);
1098 	}
1099 
1100 	/* Wait up to one second for other CPUs to stop */
1101 	timeout = USEC_PER_SEC;
1102 	while (num_other_online_cpus() && timeout--)
1103 		udelay(1);
1104 
1105 	if (num_other_online_cpus())
1106 		pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1107 			cpumask_pr_args(cpu_online_mask));
1108 
1109 	sdei_mask_local_cpu();
1110 }
1111 
1112 #ifdef CONFIG_KEXEC_CORE
1113 void crash_smp_send_stop(void)
1114 {
1115 	static int cpus_stopped;
1116 	cpumask_t mask;
1117 	unsigned long timeout;
1118 
1119 	/*
1120 	 * This function can be called twice in panic path, but obviously
1121 	 * we execute this only once.
1122 	 */
1123 	if (cpus_stopped)
1124 		return;
1125 
1126 	cpus_stopped = 1;
1127 
1128 	/*
1129 	 * If this cpu is the only one alive at this point in time, online or
1130 	 * not, there are no stop messages to be sent around, so just back out.
1131 	 */
1132 	if (num_other_online_cpus() == 0)
1133 		goto skip_ipi;
1134 
1135 	cpumask_copy(&mask, cpu_online_mask);
1136 	cpumask_clear_cpu(smp_processor_id(), &mask);
1137 
1138 	atomic_set(&waiting_for_crash_ipi, num_other_online_cpus());
1139 
1140 	pr_crit("SMP: stopping secondary CPUs\n");
1141 	smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
1142 
1143 	/* Wait up to one second for other CPUs to stop */
1144 	timeout = USEC_PER_SEC;
1145 	while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
1146 		udelay(1);
1147 
1148 	if (atomic_read(&waiting_for_crash_ipi) > 0)
1149 		pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1150 			cpumask_pr_args(&mask));
1151 
1152 skip_ipi:
1153 	sdei_mask_local_cpu();
1154 	sdei_handler_abort();
1155 }
1156 
1157 bool smp_crash_stop_failed(void)
1158 {
1159 	return (atomic_read(&waiting_for_crash_ipi) > 0);
1160 }
1161 #endif
1162 
1163 static bool have_cpu_die(void)
1164 {
1165 #ifdef CONFIG_HOTPLUG_CPU
1166 	int any_cpu = raw_smp_processor_id();
1167 	const struct cpu_operations *ops = get_cpu_ops(any_cpu);
1168 
1169 	if (ops && ops->cpu_die)
1170 		return true;
1171 #endif
1172 	return false;
1173 }
1174 
1175 bool cpus_are_stuck_in_kernel(void)
1176 {
1177 	bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1178 
1179 	return !!cpus_stuck_in_kernel || smp_spin_tables ||
1180 		is_protected_kvm_enabled();
1181 }
1182