xref: /linux/arch/arm64/kernel/smp.c (revision 8e07e0e3964ca4e23ce7b68e2096fe660a888942)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * SMP initialisation and IPI support
4  * Based on arch/arm/kernel/smp.c
5  *
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/arm_sdei.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/interrupt.h>
18 #include <linux/cache.h>
19 #include <linux/profile.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/cpu.h>
24 #include <linux/smp.h>
25 #include <linux/seq_file.h>
26 #include <linux/irq.h>
27 #include <linux/irqchip/arm-gic-v3.h>
28 #include <linux/percpu.h>
29 #include <linux/clockchips.h>
30 #include <linux/completion.h>
31 #include <linux/of.h>
32 #include <linux/irq_work.h>
33 #include <linux/kernel_stat.h>
34 #include <linux/kexec.h>
35 #include <linux/kgdb.h>
36 #include <linux/kvm_host.h>
37 #include <linux/nmi.h>
38 
39 #include <asm/alternative.h>
40 #include <asm/atomic.h>
41 #include <asm/cacheflush.h>
42 #include <asm/cpu.h>
43 #include <asm/cputype.h>
44 #include <asm/cpu_ops.h>
45 #include <asm/daifflags.h>
46 #include <asm/kvm_mmu.h>
47 #include <asm/mmu_context.h>
48 #include <asm/numa.h>
49 #include <asm/processor.h>
50 #include <asm/smp_plat.h>
51 #include <asm/sections.h>
52 #include <asm/tlbflush.h>
53 #include <asm/ptrace.h>
54 #include <asm/virt.h>
55 
56 #include <trace/events/ipi.h>
57 
58 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
59 EXPORT_PER_CPU_SYMBOL(cpu_number);
60 
61 /*
62  * as from 2.5, kernels no longer have an init_tasks structure
63  * so we need some other way of telling a new secondary core
64  * where to place its SVC stack
65  */
66 struct secondary_data secondary_data;
67 /* Number of CPUs which aren't online, but looping in kernel text. */
68 static int cpus_stuck_in_kernel;
69 
70 enum ipi_msg_type {
71 	IPI_RESCHEDULE,
72 	IPI_CALL_FUNC,
73 	IPI_CPU_STOP,
74 	IPI_CPU_CRASH_STOP,
75 	IPI_TIMER,
76 	IPI_IRQ_WORK,
77 	NR_IPI,
78 	/*
79 	 * Any enum >= NR_IPI and < MAX_IPI is special and not tracable
80 	 * with trace_ipi_*
81 	 */
82 	IPI_CPU_BACKTRACE = NR_IPI,
83 	IPI_KGDB_ROUNDUP,
84 	MAX_IPI
85 };
86 
87 static int ipi_irq_base __ro_after_init;
88 static int nr_ipi __ro_after_init = NR_IPI;
89 static struct irq_desc *ipi_desc[MAX_IPI] __ro_after_init;
90 
91 static void ipi_setup(int cpu);
92 
93 #ifdef CONFIG_HOTPLUG_CPU
94 static void ipi_teardown(int cpu);
95 static int op_cpu_kill(unsigned int cpu);
96 #else
97 static inline int op_cpu_kill(unsigned int cpu)
98 {
99 	return -ENOSYS;
100 }
101 #endif
102 
103 
104 /*
105  * Boot a secondary CPU, and assign it the specified idle task.
106  * This also gives us the initial stack to use for this CPU.
107  */
108 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
109 {
110 	const struct cpu_operations *ops = get_cpu_ops(cpu);
111 
112 	if (ops->cpu_boot)
113 		return ops->cpu_boot(cpu);
114 
115 	return -EOPNOTSUPP;
116 }
117 
118 static DECLARE_COMPLETION(cpu_running);
119 
120 int __cpu_up(unsigned int cpu, struct task_struct *idle)
121 {
122 	int ret;
123 	long status;
124 
125 	/*
126 	 * We need to tell the secondary core where to find its stack and the
127 	 * page tables.
128 	 */
129 	secondary_data.task = idle;
130 	update_cpu_boot_status(CPU_MMU_OFF);
131 
132 	/* Now bring the CPU into our world */
133 	ret = boot_secondary(cpu, idle);
134 	if (ret) {
135 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
136 		return ret;
137 	}
138 
139 	/*
140 	 * CPU was successfully started, wait for it to come online or
141 	 * time out.
142 	 */
143 	wait_for_completion_timeout(&cpu_running,
144 				    msecs_to_jiffies(5000));
145 	if (cpu_online(cpu))
146 		return 0;
147 
148 	pr_crit("CPU%u: failed to come online\n", cpu);
149 	secondary_data.task = NULL;
150 	status = READ_ONCE(secondary_data.status);
151 	if (status == CPU_MMU_OFF)
152 		status = READ_ONCE(__early_cpu_boot_status);
153 
154 	switch (status & CPU_BOOT_STATUS_MASK) {
155 	default:
156 		pr_err("CPU%u: failed in unknown state : 0x%lx\n",
157 		       cpu, status);
158 		cpus_stuck_in_kernel++;
159 		break;
160 	case CPU_KILL_ME:
161 		if (!op_cpu_kill(cpu)) {
162 			pr_crit("CPU%u: died during early boot\n", cpu);
163 			break;
164 		}
165 		pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
166 		fallthrough;
167 	case CPU_STUCK_IN_KERNEL:
168 		pr_crit("CPU%u: is stuck in kernel\n", cpu);
169 		if (status & CPU_STUCK_REASON_52_BIT_VA)
170 			pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
171 		if (status & CPU_STUCK_REASON_NO_GRAN) {
172 			pr_crit("CPU%u: does not support %luK granule\n",
173 				cpu, PAGE_SIZE / SZ_1K);
174 		}
175 		cpus_stuck_in_kernel++;
176 		break;
177 	case CPU_PANIC_KERNEL:
178 		panic("CPU%u detected unsupported configuration\n", cpu);
179 	}
180 
181 	return -EIO;
182 }
183 
184 static void init_gic_priority_masking(void)
185 {
186 	u32 cpuflags;
187 
188 	if (WARN_ON(!gic_enable_sre()))
189 		return;
190 
191 	cpuflags = read_sysreg(daif);
192 
193 	WARN_ON(!(cpuflags & PSR_I_BIT));
194 	WARN_ON(!(cpuflags & PSR_F_BIT));
195 
196 	gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
197 }
198 
199 /*
200  * This is the secondary CPU boot entry.  We're using this CPUs
201  * idle thread stack, but a set of temporary page tables.
202  */
203 asmlinkage notrace void secondary_start_kernel(void)
204 {
205 	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
206 	struct mm_struct *mm = &init_mm;
207 	const struct cpu_operations *ops;
208 	unsigned int cpu = smp_processor_id();
209 
210 	/*
211 	 * All kernel threads share the same mm context; grab a
212 	 * reference and switch to it.
213 	 */
214 	mmgrab(mm);
215 	current->active_mm = mm;
216 
217 	/*
218 	 * TTBR0 is only used for the identity mapping at this stage. Make it
219 	 * point to zero page to avoid speculatively fetching new entries.
220 	 */
221 	cpu_uninstall_idmap();
222 
223 	if (system_uses_irq_prio_masking())
224 		init_gic_priority_masking();
225 
226 	rcutree_report_cpu_starting(cpu);
227 	trace_hardirqs_off();
228 
229 	/*
230 	 * If the system has established the capabilities, make sure
231 	 * this CPU ticks all of those. If it doesn't, the CPU will
232 	 * fail to come online.
233 	 */
234 	check_local_cpu_capabilities();
235 
236 	ops = get_cpu_ops(cpu);
237 	if (ops->cpu_postboot)
238 		ops->cpu_postboot();
239 
240 	/*
241 	 * Log the CPU info before it is marked online and might get read.
242 	 */
243 	cpuinfo_store_cpu();
244 	store_cpu_topology(cpu);
245 
246 	/*
247 	 * Enable GIC and timers.
248 	 */
249 	notify_cpu_starting(cpu);
250 
251 	ipi_setup(cpu);
252 
253 	numa_add_cpu(cpu);
254 
255 	/*
256 	 * OK, now it's safe to let the boot CPU continue.  Wait for
257 	 * the CPU migration code to notice that the CPU is online
258 	 * before we continue.
259 	 */
260 	pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
261 					 cpu, (unsigned long)mpidr,
262 					 read_cpuid_id());
263 	update_cpu_boot_status(CPU_BOOT_SUCCESS);
264 	set_cpu_online(cpu, true);
265 	complete(&cpu_running);
266 
267 	local_daif_restore(DAIF_PROCCTX);
268 
269 	/*
270 	 * OK, it's off to the idle thread for us
271 	 */
272 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
273 }
274 
275 #ifdef CONFIG_HOTPLUG_CPU
276 static int op_cpu_disable(unsigned int cpu)
277 {
278 	const struct cpu_operations *ops = get_cpu_ops(cpu);
279 
280 	/*
281 	 * If we don't have a cpu_die method, abort before we reach the point
282 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
283 	 */
284 	if (!ops || !ops->cpu_die)
285 		return -EOPNOTSUPP;
286 
287 	/*
288 	 * We may need to abort a hot unplug for some other mechanism-specific
289 	 * reason.
290 	 */
291 	if (ops->cpu_disable)
292 		return ops->cpu_disable(cpu);
293 
294 	return 0;
295 }
296 
297 /*
298  * __cpu_disable runs on the processor to be shutdown.
299  */
300 int __cpu_disable(void)
301 {
302 	unsigned int cpu = smp_processor_id();
303 	int ret;
304 
305 	ret = op_cpu_disable(cpu);
306 	if (ret)
307 		return ret;
308 
309 	remove_cpu_topology(cpu);
310 	numa_remove_cpu(cpu);
311 
312 	/*
313 	 * Take this CPU offline.  Once we clear this, we can't return,
314 	 * and we must not schedule until we're ready to give up the cpu.
315 	 */
316 	set_cpu_online(cpu, false);
317 	ipi_teardown(cpu);
318 
319 	/*
320 	 * OK - migrate IRQs away from this CPU
321 	 */
322 	irq_migrate_all_off_this_cpu();
323 
324 	return 0;
325 }
326 
327 static int op_cpu_kill(unsigned int cpu)
328 {
329 	const struct cpu_operations *ops = get_cpu_ops(cpu);
330 
331 	/*
332 	 * If we have no means of synchronising with the dying CPU, then assume
333 	 * that it is really dead. We can only wait for an arbitrary length of
334 	 * time and hope that it's dead, so let's skip the wait and just hope.
335 	 */
336 	if (!ops->cpu_kill)
337 		return 0;
338 
339 	return ops->cpu_kill(cpu);
340 }
341 
342 /*
343  * Called on the thread which is asking for a CPU to be shutdown after the
344  * shutdown completed.
345  */
346 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
347 {
348 	int err;
349 
350 	pr_debug("CPU%u: shutdown\n", cpu);
351 
352 	/*
353 	 * Now that the dying CPU is beyond the point of no return w.r.t.
354 	 * in-kernel synchronisation, try to get the firwmare to help us to
355 	 * verify that it has really left the kernel before we consider
356 	 * clobbering anything it might still be using.
357 	 */
358 	err = op_cpu_kill(cpu);
359 	if (err)
360 		pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err);
361 }
362 
363 /*
364  * Called from the idle thread for the CPU which has been shutdown.
365  *
366  */
367 void __noreturn cpu_die(void)
368 {
369 	unsigned int cpu = smp_processor_id();
370 	const struct cpu_operations *ops = get_cpu_ops(cpu);
371 
372 	idle_task_exit();
373 
374 	local_daif_mask();
375 
376 	/* Tell cpuhp_bp_sync_dead() that this CPU is now safe to dispose of */
377 	cpuhp_ap_report_dead();
378 
379 	/*
380 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
381 	 * mechanism must perform all required cache maintenance to ensure that
382 	 * no dirty lines are lost in the process of shutting down the CPU.
383 	 */
384 	ops->cpu_die(cpu);
385 
386 	BUG();
387 }
388 #endif
389 
390 static void __cpu_try_die(int cpu)
391 {
392 #ifdef CONFIG_HOTPLUG_CPU
393 	const struct cpu_operations *ops = get_cpu_ops(cpu);
394 
395 	if (ops && ops->cpu_die)
396 		ops->cpu_die(cpu);
397 #endif
398 }
399 
400 /*
401  * Kill the calling secondary CPU, early in bringup before it is turned
402  * online.
403  */
404 void __noreturn cpu_die_early(void)
405 {
406 	int cpu = smp_processor_id();
407 
408 	pr_crit("CPU%d: will not boot\n", cpu);
409 
410 	/* Mark this CPU absent */
411 	set_cpu_present(cpu, 0);
412 	rcutree_report_cpu_dead();
413 
414 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
415 		update_cpu_boot_status(CPU_KILL_ME);
416 		__cpu_try_die(cpu);
417 	}
418 
419 	update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
420 
421 	cpu_park_loop();
422 }
423 
424 static void __init hyp_mode_check(void)
425 {
426 	if (is_hyp_mode_available())
427 		pr_info("CPU: All CPU(s) started at EL2\n");
428 	else if (is_hyp_mode_mismatched())
429 		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
430 			   "CPU: CPUs started in inconsistent modes");
431 	else
432 		pr_info("CPU: All CPU(s) started at EL1\n");
433 	if (IS_ENABLED(CONFIG_KVM) && !is_kernel_in_hyp_mode()) {
434 		kvm_compute_layout();
435 		kvm_apply_hyp_relocations();
436 	}
437 }
438 
439 void __init smp_cpus_done(unsigned int max_cpus)
440 {
441 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
442 	setup_system_features();
443 	hyp_mode_check();
444 	apply_alternatives_all();
445 	setup_user_features();
446 	mark_linear_text_alias_ro();
447 }
448 
449 void __init smp_prepare_boot_cpu(void)
450 {
451 	/*
452 	 * The runtime per-cpu areas have been allocated by
453 	 * setup_per_cpu_areas(), and CPU0's boot time per-cpu area will be
454 	 * freed shortly, so we must move over to the runtime per-cpu area.
455 	 */
456 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
457 	cpuinfo_store_boot_cpu();
458 
459 	/*
460 	 * We now know enough about the boot CPU to apply the
461 	 * alternatives that cannot wait until interrupt handling
462 	 * and/or scheduling is enabled.
463 	 */
464 	apply_boot_alternatives();
465 
466 	/* Conditionally switch to GIC PMR for interrupt masking */
467 	if (system_uses_irq_prio_masking())
468 		init_gic_priority_masking();
469 
470 	kasan_init_hw_tags();
471 }
472 
473 /*
474  * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
475  * entries and check for duplicates. If any is found just ignore the
476  * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
477  * matching valid MPIDR values.
478  */
479 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
480 {
481 	unsigned int i;
482 
483 	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
484 		if (cpu_logical_map(i) == hwid)
485 			return true;
486 	return false;
487 }
488 
489 /*
490  * Initialize cpu operations for a logical cpu and
491  * set it in the possible mask on success
492  */
493 static int __init smp_cpu_setup(int cpu)
494 {
495 	const struct cpu_operations *ops;
496 
497 	if (init_cpu_ops(cpu))
498 		return -ENODEV;
499 
500 	ops = get_cpu_ops(cpu);
501 	if (ops->cpu_init(cpu))
502 		return -ENODEV;
503 
504 	set_cpu_possible(cpu, true);
505 
506 	return 0;
507 }
508 
509 static bool bootcpu_valid __initdata;
510 static unsigned int cpu_count = 1;
511 
512 #ifdef CONFIG_ACPI
513 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
514 
515 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
516 {
517 	return &cpu_madt_gicc[cpu];
518 }
519 EXPORT_SYMBOL_GPL(acpi_cpu_get_madt_gicc);
520 
521 /*
522  * acpi_map_gic_cpu_interface - parse processor MADT entry
523  *
524  * Carry out sanity checks on MADT processor entry and initialize
525  * cpu_logical_map on success
526  */
527 static void __init
528 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
529 {
530 	u64 hwid = processor->arm_mpidr;
531 
532 	if (!acpi_gicc_is_usable(processor)) {
533 		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
534 		return;
535 	}
536 
537 	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
538 		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
539 		return;
540 	}
541 
542 	if (is_mpidr_duplicate(cpu_count, hwid)) {
543 		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
544 		return;
545 	}
546 
547 	/* Check if GICC structure of boot CPU is available in the MADT */
548 	if (cpu_logical_map(0) == hwid) {
549 		if (bootcpu_valid) {
550 			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
551 			       hwid);
552 			return;
553 		}
554 		bootcpu_valid = true;
555 		cpu_madt_gicc[0] = *processor;
556 		return;
557 	}
558 
559 	if (cpu_count >= NR_CPUS)
560 		return;
561 
562 	/* map the logical cpu id to cpu MPIDR */
563 	set_cpu_logical_map(cpu_count, hwid);
564 
565 	cpu_madt_gicc[cpu_count] = *processor;
566 
567 	/*
568 	 * Set-up the ACPI parking protocol cpu entries
569 	 * while initializing the cpu_logical_map to
570 	 * avoid parsing MADT entries multiple times for
571 	 * nothing (ie a valid cpu_logical_map entry should
572 	 * contain a valid parking protocol data set to
573 	 * initialize the cpu if the parking protocol is
574 	 * the only available enable method).
575 	 */
576 	acpi_set_mailbox_entry(cpu_count, processor);
577 
578 	cpu_count++;
579 }
580 
581 static int __init
582 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header,
583 			     const unsigned long end)
584 {
585 	struct acpi_madt_generic_interrupt *processor;
586 
587 	processor = (struct acpi_madt_generic_interrupt *)header;
588 	if (BAD_MADT_GICC_ENTRY(processor, end))
589 		return -EINVAL;
590 
591 	acpi_table_print_madt_entry(&header->common);
592 
593 	acpi_map_gic_cpu_interface(processor);
594 
595 	return 0;
596 }
597 
598 static void __init acpi_parse_and_init_cpus(void)
599 {
600 	int i;
601 
602 	/*
603 	 * do a walk of MADT to determine how many CPUs
604 	 * we have including disabled CPUs, and get information
605 	 * we need for SMP init.
606 	 */
607 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
608 				      acpi_parse_gic_cpu_interface, 0);
609 
610 	/*
611 	 * In ACPI, SMP and CPU NUMA information is provided in separate
612 	 * static tables, namely the MADT and the SRAT.
613 	 *
614 	 * Thus, it is simpler to first create the cpu logical map through
615 	 * an MADT walk and then map the logical cpus to their node ids
616 	 * as separate steps.
617 	 */
618 	acpi_map_cpus_to_nodes();
619 
620 	for (i = 0; i < nr_cpu_ids; i++)
621 		early_map_cpu_to_node(i, acpi_numa_get_nid(i));
622 }
623 #else
624 #define acpi_parse_and_init_cpus(...)	do { } while (0)
625 #endif
626 
627 /*
628  * Enumerate the possible CPU set from the device tree and build the
629  * cpu logical map array containing MPIDR values related to logical
630  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
631  */
632 static void __init of_parse_and_init_cpus(void)
633 {
634 	struct device_node *dn;
635 
636 	for_each_of_cpu_node(dn) {
637 		u64 hwid = of_get_cpu_hwid(dn, 0);
638 
639 		if (hwid & ~MPIDR_HWID_BITMASK)
640 			goto next;
641 
642 		if (is_mpidr_duplicate(cpu_count, hwid)) {
643 			pr_err("%pOF: duplicate cpu reg properties in the DT\n",
644 				dn);
645 			goto next;
646 		}
647 
648 		/*
649 		 * The numbering scheme requires that the boot CPU
650 		 * must be assigned logical id 0. Record it so that
651 		 * the logical map built from DT is validated and can
652 		 * be used.
653 		 */
654 		if (hwid == cpu_logical_map(0)) {
655 			if (bootcpu_valid) {
656 				pr_err("%pOF: duplicate boot cpu reg property in DT\n",
657 					dn);
658 				goto next;
659 			}
660 
661 			bootcpu_valid = true;
662 			early_map_cpu_to_node(0, of_node_to_nid(dn));
663 
664 			/*
665 			 * cpu_logical_map has already been
666 			 * initialized and the boot cpu doesn't need
667 			 * the enable-method so continue without
668 			 * incrementing cpu.
669 			 */
670 			continue;
671 		}
672 
673 		if (cpu_count >= NR_CPUS)
674 			goto next;
675 
676 		pr_debug("cpu logical map 0x%llx\n", hwid);
677 		set_cpu_logical_map(cpu_count, hwid);
678 
679 		early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
680 next:
681 		cpu_count++;
682 	}
683 }
684 
685 /*
686  * Enumerate the possible CPU set from the device tree or ACPI and build the
687  * cpu logical map array containing MPIDR values related to logical
688  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
689  */
690 void __init smp_init_cpus(void)
691 {
692 	int i;
693 
694 	if (acpi_disabled)
695 		of_parse_and_init_cpus();
696 	else
697 		acpi_parse_and_init_cpus();
698 
699 	if (cpu_count > nr_cpu_ids)
700 		pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
701 			cpu_count, nr_cpu_ids);
702 
703 	if (!bootcpu_valid) {
704 		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
705 		return;
706 	}
707 
708 	/*
709 	 * We need to set the cpu_logical_map entries before enabling
710 	 * the cpus so that cpu processor description entries (DT cpu nodes
711 	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
712 	 * with entries in cpu_logical_map while initializing the cpus.
713 	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
714 	 */
715 	for (i = 1; i < nr_cpu_ids; i++) {
716 		if (cpu_logical_map(i) != INVALID_HWID) {
717 			if (smp_cpu_setup(i))
718 				set_cpu_logical_map(i, INVALID_HWID);
719 		}
720 	}
721 }
722 
723 void __init smp_prepare_cpus(unsigned int max_cpus)
724 {
725 	const struct cpu_operations *ops;
726 	int err;
727 	unsigned int cpu;
728 	unsigned int this_cpu;
729 
730 	init_cpu_topology();
731 
732 	this_cpu = smp_processor_id();
733 	store_cpu_topology(this_cpu);
734 	numa_store_cpu_info(this_cpu);
735 	numa_add_cpu(this_cpu);
736 
737 	/*
738 	 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
739 	 * secondary CPUs present.
740 	 */
741 	if (max_cpus == 0)
742 		return;
743 
744 	/*
745 	 * Initialise the present map (which describes the set of CPUs
746 	 * actually populated at the present time) and release the
747 	 * secondaries from the bootloader.
748 	 */
749 	for_each_possible_cpu(cpu) {
750 
751 		per_cpu(cpu_number, cpu) = cpu;
752 
753 		if (cpu == smp_processor_id())
754 			continue;
755 
756 		ops = get_cpu_ops(cpu);
757 		if (!ops)
758 			continue;
759 
760 		err = ops->cpu_prepare(cpu);
761 		if (err)
762 			continue;
763 
764 		set_cpu_present(cpu, true);
765 		numa_store_cpu_info(cpu);
766 	}
767 }
768 
769 static const char *ipi_types[NR_IPI] __tracepoint_string = {
770 	[IPI_RESCHEDULE]	= "Rescheduling interrupts",
771 	[IPI_CALL_FUNC]		= "Function call interrupts",
772 	[IPI_CPU_STOP]		= "CPU stop interrupts",
773 	[IPI_CPU_CRASH_STOP]	= "CPU stop (for crash dump) interrupts",
774 	[IPI_TIMER]		= "Timer broadcast interrupts",
775 	[IPI_IRQ_WORK]		= "IRQ work interrupts",
776 };
777 
778 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr);
779 
780 unsigned long irq_err_count;
781 
782 int arch_show_interrupts(struct seq_file *p, int prec)
783 {
784 	unsigned int cpu, i;
785 
786 	for (i = 0; i < NR_IPI; i++) {
787 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
788 			   prec >= 4 ? " " : "");
789 		for_each_online_cpu(cpu)
790 			seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu));
791 		seq_printf(p, "      %s\n", ipi_types[i]);
792 	}
793 
794 	seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count);
795 	return 0;
796 }
797 
798 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
799 {
800 	smp_cross_call(mask, IPI_CALL_FUNC);
801 }
802 
803 void arch_send_call_function_single_ipi(int cpu)
804 {
805 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
806 }
807 
808 #ifdef CONFIG_IRQ_WORK
809 void arch_irq_work_raise(void)
810 {
811 	smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
812 }
813 #endif
814 
815 static void __noreturn local_cpu_stop(void)
816 {
817 	set_cpu_online(smp_processor_id(), false);
818 
819 	local_daif_mask();
820 	sdei_mask_local_cpu();
821 	cpu_park_loop();
822 }
823 
824 /*
825  * We need to implement panic_smp_self_stop() for parallel panic() calls, so
826  * that cpu_online_mask gets correctly updated and smp_send_stop() can skip
827  * CPUs that have already stopped themselves.
828  */
829 void __noreturn panic_smp_self_stop(void)
830 {
831 	local_cpu_stop();
832 }
833 
834 #ifdef CONFIG_KEXEC_CORE
835 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
836 #endif
837 
838 static void __noreturn ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
839 {
840 #ifdef CONFIG_KEXEC_CORE
841 	crash_save_cpu(regs, cpu);
842 
843 	atomic_dec(&waiting_for_crash_ipi);
844 
845 	local_irq_disable();
846 	sdei_mask_local_cpu();
847 
848 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
849 		__cpu_try_die(cpu);
850 
851 	/* just in case */
852 	cpu_park_loop();
853 #else
854 	BUG();
855 #endif
856 }
857 
858 static void arm64_backtrace_ipi(cpumask_t *mask)
859 {
860 	__ipi_send_mask(ipi_desc[IPI_CPU_BACKTRACE], mask);
861 }
862 
863 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, int exclude_cpu)
864 {
865 	/*
866 	 * NOTE: though nmi_trigger_cpumask_backtrace() has "nmi_" in the name,
867 	 * nothing about it truly needs to be implemented using an NMI, it's
868 	 * just that it's _allowed_ to work with NMIs. If ipi_should_be_nmi()
869 	 * returned false our backtrace attempt will just use a regular IPI.
870 	 */
871 	nmi_trigger_cpumask_backtrace(mask, exclude_cpu, arm64_backtrace_ipi);
872 }
873 
874 #ifdef CONFIG_KGDB
875 void kgdb_roundup_cpus(void)
876 {
877 	int this_cpu = raw_smp_processor_id();
878 	int cpu;
879 
880 	for_each_online_cpu(cpu) {
881 		/* No need to roundup ourselves */
882 		if (cpu == this_cpu)
883 			continue;
884 
885 		__ipi_send_single(ipi_desc[IPI_KGDB_ROUNDUP], cpu);
886 	}
887 }
888 #endif
889 
890 /*
891  * Main handler for inter-processor interrupts
892  */
893 static void do_handle_IPI(int ipinr)
894 {
895 	unsigned int cpu = smp_processor_id();
896 
897 	if ((unsigned)ipinr < NR_IPI)
898 		trace_ipi_entry(ipi_types[ipinr]);
899 
900 	switch (ipinr) {
901 	case IPI_RESCHEDULE:
902 		scheduler_ipi();
903 		break;
904 
905 	case IPI_CALL_FUNC:
906 		generic_smp_call_function_interrupt();
907 		break;
908 
909 	case IPI_CPU_STOP:
910 		local_cpu_stop();
911 		break;
912 
913 	case IPI_CPU_CRASH_STOP:
914 		if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
915 			ipi_cpu_crash_stop(cpu, get_irq_regs());
916 
917 			unreachable();
918 		}
919 		break;
920 
921 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
922 	case IPI_TIMER:
923 		tick_receive_broadcast();
924 		break;
925 #endif
926 
927 #ifdef CONFIG_IRQ_WORK
928 	case IPI_IRQ_WORK:
929 		irq_work_run();
930 		break;
931 #endif
932 
933 	case IPI_CPU_BACKTRACE:
934 		/*
935 		 * NOTE: in some cases this _won't_ be NMI context. See the
936 		 * comment in arch_trigger_cpumask_backtrace().
937 		 */
938 		nmi_cpu_backtrace(get_irq_regs());
939 		break;
940 
941 	case IPI_KGDB_ROUNDUP:
942 		kgdb_nmicallback(cpu, get_irq_regs());
943 		break;
944 
945 	default:
946 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
947 		break;
948 	}
949 
950 	if ((unsigned)ipinr < NR_IPI)
951 		trace_ipi_exit(ipi_types[ipinr]);
952 }
953 
954 static irqreturn_t ipi_handler(int irq, void *data)
955 {
956 	do_handle_IPI(irq - ipi_irq_base);
957 	return IRQ_HANDLED;
958 }
959 
960 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
961 {
962 	trace_ipi_raise(target, ipi_types[ipinr]);
963 	__ipi_send_mask(ipi_desc[ipinr], target);
964 }
965 
966 static bool ipi_should_be_nmi(enum ipi_msg_type ipi)
967 {
968 	if (!system_uses_irq_prio_masking())
969 		return false;
970 
971 	switch (ipi) {
972 	case IPI_CPU_STOP:
973 	case IPI_CPU_CRASH_STOP:
974 	case IPI_CPU_BACKTRACE:
975 	case IPI_KGDB_ROUNDUP:
976 		return true;
977 	default:
978 		return false;
979 	}
980 }
981 
982 static void ipi_setup(int cpu)
983 {
984 	int i;
985 
986 	if (WARN_ON_ONCE(!ipi_irq_base))
987 		return;
988 
989 	for (i = 0; i < nr_ipi; i++) {
990 		if (ipi_should_be_nmi(i)) {
991 			prepare_percpu_nmi(ipi_irq_base + i);
992 			enable_percpu_nmi(ipi_irq_base + i, 0);
993 		} else {
994 			enable_percpu_irq(ipi_irq_base + i, 0);
995 		}
996 	}
997 }
998 
999 #ifdef CONFIG_HOTPLUG_CPU
1000 static void ipi_teardown(int cpu)
1001 {
1002 	int i;
1003 
1004 	if (WARN_ON_ONCE(!ipi_irq_base))
1005 		return;
1006 
1007 	for (i = 0; i < nr_ipi; i++) {
1008 		if (ipi_should_be_nmi(i)) {
1009 			disable_percpu_nmi(ipi_irq_base + i);
1010 			teardown_percpu_nmi(ipi_irq_base + i);
1011 		} else {
1012 			disable_percpu_irq(ipi_irq_base + i);
1013 		}
1014 	}
1015 }
1016 #endif
1017 
1018 void __init set_smp_ipi_range(int ipi_base, int n)
1019 {
1020 	int i;
1021 
1022 	WARN_ON(n < MAX_IPI);
1023 	nr_ipi = min(n, MAX_IPI);
1024 
1025 	for (i = 0; i < nr_ipi; i++) {
1026 		int err;
1027 
1028 		if (ipi_should_be_nmi(i)) {
1029 			err = request_percpu_nmi(ipi_base + i, ipi_handler,
1030 						 "IPI", &cpu_number);
1031 			WARN(err, "Could not request IPI %d as NMI, err=%d\n",
1032 			     i, err);
1033 		} else {
1034 			err = request_percpu_irq(ipi_base + i, ipi_handler,
1035 						 "IPI", &cpu_number);
1036 			WARN(err, "Could not request IPI %d as IRQ, err=%d\n",
1037 			     i, err);
1038 		}
1039 
1040 		ipi_desc[i] = irq_to_desc(ipi_base + i);
1041 		irq_set_status_flags(ipi_base + i, IRQ_HIDDEN);
1042 	}
1043 
1044 	ipi_irq_base = ipi_base;
1045 
1046 	/* Setup the boot CPU immediately */
1047 	ipi_setup(smp_processor_id());
1048 }
1049 
1050 void arch_smp_send_reschedule(int cpu)
1051 {
1052 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
1053 }
1054 
1055 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
1056 void arch_send_wakeup_ipi(unsigned int cpu)
1057 {
1058 	/*
1059 	 * We use a scheduler IPI to wake the CPU as this avoids the need for a
1060 	 * dedicated IPI and we can safely handle spurious scheduler IPIs.
1061 	 */
1062 	smp_send_reschedule(cpu);
1063 }
1064 #endif
1065 
1066 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
1067 void tick_broadcast(const struct cpumask *mask)
1068 {
1069 	smp_cross_call(mask, IPI_TIMER);
1070 }
1071 #endif
1072 
1073 /*
1074  * The number of CPUs online, not counting this CPU (which may not be
1075  * fully online and so not counted in num_online_cpus()).
1076  */
1077 static inline unsigned int num_other_online_cpus(void)
1078 {
1079 	unsigned int this_cpu_online = cpu_online(smp_processor_id());
1080 
1081 	return num_online_cpus() - this_cpu_online;
1082 }
1083 
1084 void smp_send_stop(void)
1085 {
1086 	unsigned long timeout;
1087 
1088 	if (num_other_online_cpus()) {
1089 		cpumask_t mask;
1090 
1091 		cpumask_copy(&mask, cpu_online_mask);
1092 		cpumask_clear_cpu(smp_processor_id(), &mask);
1093 
1094 		if (system_state <= SYSTEM_RUNNING)
1095 			pr_crit("SMP: stopping secondary CPUs\n");
1096 		smp_cross_call(&mask, IPI_CPU_STOP);
1097 	}
1098 
1099 	/* Wait up to one second for other CPUs to stop */
1100 	timeout = USEC_PER_SEC;
1101 	while (num_other_online_cpus() && timeout--)
1102 		udelay(1);
1103 
1104 	if (num_other_online_cpus())
1105 		pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1106 			cpumask_pr_args(cpu_online_mask));
1107 
1108 	sdei_mask_local_cpu();
1109 }
1110 
1111 #ifdef CONFIG_KEXEC_CORE
1112 void crash_smp_send_stop(void)
1113 {
1114 	static int cpus_stopped;
1115 	cpumask_t mask;
1116 	unsigned long timeout;
1117 
1118 	/*
1119 	 * This function can be called twice in panic path, but obviously
1120 	 * we execute this only once.
1121 	 */
1122 	if (cpus_stopped)
1123 		return;
1124 
1125 	cpus_stopped = 1;
1126 
1127 	/*
1128 	 * If this cpu is the only one alive at this point in time, online or
1129 	 * not, there are no stop messages to be sent around, so just back out.
1130 	 */
1131 	if (num_other_online_cpus() == 0)
1132 		goto skip_ipi;
1133 
1134 	cpumask_copy(&mask, cpu_online_mask);
1135 	cpumask_clear_cpu(smp_processor_id(), &mask);
1136 
1137 	atomic_set(&waiting_for_crash_ipi, num_other_online_cpus());
1138 
1139 	pr_crit("SMP: stopping secondary CPUs\n");
1140 	smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
1141 
1142 	/* Wait up to one second for other CPUs to stop */
1143 	timeout = USEC_PER_SEC;
1144 	while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
1145 		udelay(1);
1146 
1147 	if (atomic_read(&waiting_for_crash_ipi) > 0)
1148 		pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1149 			cpumask_pr_args(&mask));
1150 
1151 skip_ipi:
1152 	sdei_mask_local_cpu();
1153 	sdei_handler_abort();
1154 }
1155 
1156 bool smp_crash_stop_failed(void)
1157 {
1158 	return (atomic_read(&waiting_for_crash_ipi) > 0);
1159 }
1160 #endif
1161 
1162 static bool have_cpu_die(void)
1163 {
1164 #ifdef CONFIG_HOTPLUG_CPU
1165 	int any_cpu = raw_smp_processor_id();
1166 	const struct cpu_operations *ops = get_cpu_ops(any_cpu);
1167 
1168 	if (ops && ops->cpu_die)
1169 		return true;
1170 #endif
1171 	return false;
1172 }
1173 
1174 bool cpus_are_stuck_in_kernel(void)
1175 {
1176 	bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1177 
1178 	return !!cpus_stuck_in_kernel || smp_spin_tables ||
1179 		is_protected_kvm_enabled();
1180 }
1181