1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * SMP initialisation and IPI support 4 * Based on arch/arm/kernel/smp.c 5 * 6 * Copyright (C) 2012 ARM Ltd. 7 */ 8 9 #include <linux/acpi.h> 10 #include <linux/arm_sdei.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/hotplug.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/interrupt.h> 18 #include <linux/cache.h> 19 #include <linux/profile.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/err.h> 23 #include <linux/cpu.h> 24 #include <linux/smp.h> 25 #include <linux/seq_file.h> 26 #include <linux/irq.h> 27 #include <linux/irqchip/arm-gic-v3.h> 28 #include <linux/percpu.h> 29 #include <linux/clockchips.h> 30 #include <linux/completion.h> 31 #include <linux/of.h> 32 #include <linux/irq_work.h> 33 #include <linux/kernel_stat.h> 34 #include <linux/kexec.h> 35 #include <linux/kgdb.h> 36 #include <linux/kvm_host.h> 37 #include <linux/nmi.h> 38 39 #include <asm/alternative.h> 40 #include <asm/atomic.h> 41 #include <asm/cacheflush.h> 42 #include <asm/cpu.h> 43 #include <asm/cputype.h> 44 #include <asm/cpu_ops.h> 45 #include <asm/daifflags.h> 46 #include <asm/kvm_mmu.h> 47 #include <asm/mmu_context.h> 48 #include <asm/numa.h> 49 #include <asm/processor.h> 50 #include <asm/smp_plat.h> 51 #include <asm/sections.h> 52 #include <asm/tlbflush.h> 53 #include <asm/ptrace.h> 54 #include <asm/virt.h> 55 56 #include <trace/events/ipi.h> 57 58 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number); 59 EXPORT_PER_CPU_SYMBOL(cpu_number); 60 61 /* 62 * as from 2.5, kernels no longer have an init_tasks structure 63 * so we need some other way of telling a new secondary core 64 * where to place its SVC stack 65 */ 66 struct secondary_data secondary_data; 67 /* Number of CPUs which aren't online, but looping in kernel text. */ 68 static int cpus_stuck_in_kernel; 69 70 enum ipi_msg_type { 71 IPI_RESCHEDULE, 72 IPI_CALL_FUNC, 73 IPI_CPU_STOP, 74 IPI_CPU_CRASH_STOP, 75 IPI_TIMER, 76 IPI_IRQ_WORK, 77 NR_IPI, 78 /* 79 * Any enum >= NR_IPI and < MAX_IPI is special and not tracable 80 * with trace_ipi_* 81 */ 82 IPI_CPU_BACKTRACE = NR_IPI, 83 IPI_KGDB_ROUNDUP, 84 MAX_IPI 85 }; 86 87 static int ipi_irq_base __ro_after_init; 88 static int nr_ipi __ro_after_init = NR_IPI; 89 static struct irq_desc *ipi_desc[MAX_IPI] __ro_after_init; 90 91 static void ipi_setup(int cpu); 92 93 #ifdef CONFIG_HOTPLUG_CPU 94 static void ipi_teardown(int cpu); 95 static int op_cpu_kill(unsigned int cpu); 96 #else 97 static inline int op_cpu_kill(unsigned int cpu) 98 { 99 return -ENOSYS; 100 } 101 #endif 102 103 104 /* 105 * Boot a secondary CPU, and assign it the specified idle task. 106 * This also gives us the initial stack to use for this CPU. 107 */ 108 static int boot_secondary(unsigned int cpu, struct task_struct *idle) 109 { 110 const struct cpu_operations *ops = get_cpu_ops(cpu); 111 112 if (ops->cpu_boot) 113 return ops->cpu_boot(cpu); 114 115 return -EOPNOTSUPP; 116 } 117 118 static DECLARE_COMPLETION(cpu_running); 119 120 int __cpu_up(unsigned int cpu, struct task_struct *idle) 121 { 122 int ret; 123 long status; 124 125 /* 126 * We need to tell the secondary core where to find its stack and the 127 * page tables. 128 */ 129 secondary_data.task = idle; 130 update_cpu_boot_status(CPU_MMU_OFF); 131 132 /* Now bring the CPU into our world */ 133 ret = boot_secondary(cpu, idle); 134 if (ret) { 135 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 136 return ret; 137 } 138 139 /* 140 * CPU was successfully started, wait for it to come online or 141 * time out. 142 */ 143 wait_for_completion_timeout(&cpu_running, 144 msecs_to_jiffies(5000)); 145 if (cpu_online(cpu)) 146 return 0; 147 148 pr_crit("CPU%u: failed to come online\n", cpu); 149 secondary_data.task = NULL; 150 status = READ_ONCE(secondary_data.status); 151 if (status == CPU_MMU_OFF) 152 status = READ_ONCE(__early_cpu_boot_status); 153 154 switch (status & CPU_BOOT_STATUS_MASK) { 155 default: 156 pr_err("CPU%u: failed in unknown state : 0x%lx\n", 157 cpu, status); 158 cpus_stuck_in_kernel++; 159 break; 160 case CPU_KILL_ME: 161 if (!op_cpu_kill(cpu)) { 162 pr_crit("CPU%u: died during early boot\n", cpu); 163 break; 164 } 165 pr_crit("CPU%u: may not have shut down cleanly\n", cpu); 166 fallthrough; 167 case CPU_STUCK_IN_KERNEL: 168 pr_crit("CPU%u: is stuck in kernel\n", cpu); 169 if (status & CPU_STUCK_REASON_52_BIT_VA) 170 pr_crit("CPU%u: does not support 52-bit VAs\n", cpu); 171 if (status & CPU_STUCK_REASON_NO_GRAN) { 172 pr_crit("CPU%u: does not support %luK granule\n", 173 cpu, PAGE_SIZE / SZ_1K); 174 } 175 cpus_stuck_in_kernel++; 176 break; 177 case CPU_PANIC_KERNEL: 178 panic("CPU%u detected unsupported configuration\n", cpu); 179 } 180 181 return -EIO; 182 } 183 184 static void init_gic_priority_masking(void) 185 { 186 u32 cpuflags; 187 188 if (WARN_ON(!gic_enable_sre())) 189 return; 190 191 cpuflags = read_sysreg(daif); 192 193 WARN_ON(!(cpuflags & PSR_I_BIT)); 194 WARN_ON(!(cpuflags & PSR_F_BIT)); 195 196 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET); 197 } 198 199 /* 200 * This is the secondary CPU boot entry. We're using this CPUs 201 * idle thread stack, but a set of temporary page tables. 202 */ 203 asmlinkage notrace void secondary_start_kernel(void) 204 { 205 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; 206 struct mm_struct *mm = &init_mm; 207 const struct cpu_operations *ops; 208 unsigned int cpu = smp_processor_id(); 209 210 /* 211 * All kernel threads share the same mm context; grab a 212 * reference and switch to it. 213 */ 214 mmgrab(mm); 215 current->active_mm = mm; 216 217 /* 218 * TTBR0 is only used for the identity mapping at this stage. Make it 219 * point to zero page to avoid speculatively fetching new entries. 220 */ 221 cpu_uninstall_idmap(); 222 223 if (system_uses_irq_prio_masking()) 224 init_gic_priority_masking(); 225 226 rcutree_report_cpu_starting(cpu); 227 trace_hardirqs_off(); 228 229 /* 230 * If the system has established the capabilities, make sure 231 * this CPU ticks all of those. If it doesn't, the CPU will 232 * fail to come online. 233 */ 234 check_local_cpu_capabilities(); 235 236 ops = get_cpu_ops(cpu); 237 if (ops->cpu_postboot) 238 ops->cpu_postboot(); 239 240 /* 241 * Log the CPU info before it is marked online and might get read. 242 */ 243 cpuinfo_store_cpu(); 244 store_cpu_topology(cpu); 245 246 /* 247 * Enable GIC and timers. 248 */ 249 notify_cpu_starting(cpu); 250 251 ipi_setup(cpu); 252 253 numa_add_cpu(cpu); 254 255 /* 256 * OK, now it's safe to let the boot CPU continue. Wait for 257 * the CPU migration code to notice that the CPU is online 258 * before we continue. 259 */ 260 pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n", 261 cpu, (unsigned long)mpidr, 262 read_cpuid_id()); 263 update_cpu_boot_status(CPU_BOOT_SUCCESS); 264 set_cpu_online(cpu, true); 265 complete(&cpu_running); 266 267 local_daif_restore(DAIF_PROCCTX); 268 269 /* 270 * OK, it's off to the idle thread for us 271 */ 272 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 273 } 274 275 #ifdef CONFIG_HOTPLUG_CPU 276 static int op_cpu_disable(unsigned int cpu) 277 { 278 const struct cpu_operations *ops = get_cpu_ops(cpu); 279 280 /* 281 * If we don't have a cpu_die method, abort before we reach the point 282 * of no return. CPU0 may not have an cpu_ops, so test for it. 283 */ 284 if (!ops || !ops->cpu_die) 285 return -EOPNOTSUPP; 286 287 /* 288 * We may need to abort a hot unplug for some other mechanism-specific 289 * reason. 290 */ 291 if (ops->cpu_disable) 292 return ops->cpu_disable(cpu); 293 294 return 0; 295 } 296 297 /* 298 * __cpu_disable runs on the processor to be shutdown. 299 */ 300 int __cpu_disable(void) 301 { 302 unsigned int cpu = smp_processor_id(); 303 int ret; 304 305 ret = op_cpu_disable(cpu); 306 if (ret) 307 return ret; 308 309 remove_cpu_topology(cpu); 310 numa_remove_cpu(cpu); 311 312 /* 313 * Take this CPU offline. Once we clear this, we can't return, 314 * and we must not schedule until we're ready to give up the cpu. 315 */ 316 set_cpu_online(cpu, false); 317 ipi_teardown(cpu); 318 319 /* 320 * OK - migrate IRQs away from this CPU 321 */ 322 irq_migrate_all_off_this_cpu(); 323 324 return 0; 325 } 326 327 static int op_cpu_kill(unsigned int cpu) 328 { 329 const struct cpu_operations *ops = get_cpu_ops(cpu); 330 331 /* 332 * If we have no means of synchronising with the dying CPU, then assume 333 * that it is really dead. We can only wait for an arbitrary length of 334 * time and hope that it's dead, so let's skip the wait and just hope. 335 */ 336 if (!ops->cpu_kill) 337 return 0; 338 339 return ops->cpu_kill(cpu); 340 } 341 342 /* 343 * Called on the thread which is asking for a CPU to be shutdown after the 344 * shutdown completed. 345 */ 346 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) 347 { 348 int err; 349 350 pr_debug("CPU%u: shutdown\n", cpu); 351 352 /* 353 * Now that the dying CPU is beyond the point of no return w.r.t. 354 * in-kernel synchronisation, try to get the firwmare to help us to 355 * verify that it has really left the kernel before we consider 356 * clobbering anything it might still be using. 357 */ 358 err = op_cpu_kill(cpu); 359 if (err) 360 pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err); 361 } 362 363 /* 364 * Called from the idle thread for the CPU which has been shutdown. 365 * 366 */ 367 void __noreturn cpu_die(void) 368 { 369 unsigned int cpu = smp_processor_id(); 370 const struct cpu_operations *ops = get_cpu_ops(cpu); 371 372 idle_task_exit(); 373 374 local_daif_mask(); 375 376 /* Tell cpuhp_bp_sync_dead() that this CPU is now safe to dispose of */ 377 cpuhp_ap_report_dead(); 378 379 /* 380 * Actually shutdown the CPU. This must never fail. The specific hotplug 381 * mechanism must perform all required cache maintenance to ensure that 382 * no dirty lines are lost in the process of shutting down the CPU. 383 */ 384 ops->cpu_die(cpu); 385 386 BUG(); 387 } 388 #endif 389 390 static void __cpu_try_die(int cpu) 391 { 392 #ifdef CONFIG_HOTPLUG_CPU 393 const struct cpu_operations *ops = get_cpu_ops(cpu); 394 395 if (ops && ops->cpu_die) 396 ops->cpu_die(cpu); 397 #endif 398 } 399 400 /* 401 * Kill the calling secondary CPU, early in bringup before it is turned 402 * online. 403 */ 404 void __noreturn cpu_die_early(void) 405 { 406 int cpu = smp_processor_id(); 407 408 pr_crit("CPU%d: will not boot\n", cpu); 409 410 /* Mark this CPU absent */ 411 set_cpu_present(cpu, 0); 412 rcutree_report_cpu_dead(); 413 414 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) { 415 update_cpu_boot_status(CPU_KILL_ME); 416 __cpu_try_die(cpu); 417 } 418 419 update_cpu_boot_status(CPU_STUCK_IN_KERNEL); 420 421 cpu_park_loop(); 422 } 423 424 static void __init hyp_mode_check(void) 425 { 426 if (is_hyp_mode_available()) 427 pr_info("CPU: All CPU(s) started at EL2\n"); 428 else if (is_hyp_mode_mismatched()) 429 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC, 430 "CPU: CPUs started in inconsistent modes"); 431 else 432 pr_info("CPU: All CPU(s) started at EL1\n"); 433 if (IS_ENABLED(CONFIG_KVM) && !is_kernel_in_hyp_mode()) { 434 kvm_compute_layout(); 435 kvm_apply_hyp_relocations(); 436 } 437 } 438 439 void __init smp_cpus_done(unsigned int max_cpus) 440 { 441 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus()); 442 setup_system_features(); 443 hyp_mode_check(); 444 apply_alternatives_all(); 445 setup_user_features(); 446 mark_linear_text_alias_ro(); 447 } 448 449 void __init smp_prepare_boot_cpu(void) 450 { 451 /* 452 * The runtime per-cpu areas have been allocated by 453 * setup_per_cpu_areas(), and CPU0's boot time per-cpu area will be 454 * freed shortly, so we must move over to the runtime per-cpu area. 455 */ 456 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 457 cpuinfo_store_boot_cpu(); 458 459 /* 460 * We now know enough about the boot CPU to apply the 461 * alternatives that cannot wait until interrupt handling 462 * and/or scheduling is enabled. 463 */ 464 apply_boot_alternatives(); 465 466 /* Conditionally switch to GIC PMR for interrupt masking */ 467 if (system_uses_irq_prio_masking()) 468 init_gic_priority_masking(); 469 470 kasan_init_hw_tags(); 471 } 472 473 /* 474 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized 475 * entries and check for duplicates. If any is found just ignore the 476 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid 477 * matching valid MPIDR values. 478 */ 479 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid) 480 { 481 unsigned int i; 482 483 for (i = 1; (i < cpu) && (i < NR_CPUS); i++) 484 if (cpu_logical_map(i) == hwid) 485 return true; 486 return false; 487 } 488 489 /* 490 * Initialize cpu operations for a logical cpu and 491 * set it in the possible mask on success 492 */ 493 static int __init smp_cpu_setup(int cpu) 494 { 495 const struct cpu_operations *ops; 496 497 if (init_cpu_ops(cpu)) 498 return -ENODEV; 499 500 ops = get_cpu_ops(cpu); 501 if (ops->cpu_init(cpu)) 502 return -ENODEV; 503 504 set_cpu_possible(cpu, true); 505 506 return 0; 507 } 508 509 static bool bootcpu_valid __initdata; 510 static unsigned int cpu_count = 1; 511 512 #ifdef CONFIG_ACPI 513 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS]; 514 515 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu) 516 { 517 return &cpu_madt_gicc[cpu]; 518 } 519 EXPORT_SYMBOL_GPL(acpi_cpu_get_madt_gicc); 520 521 /* 522 * acpi_map_gic_cpu_interface - parse processor MADT entry 523 * 524 * Carry out sanity checks on MADT processor entry and initialize 525 * cpu_logical_map on success 526 */ 527 static void __init 528 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor) 529 { 530 u64 hwid = processor->arm_mpidr; 531 532 if (!acpi_gicc_is_usable(processor)) { 533 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid); 534 return; 535 } 536 537 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) { 538 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid); 539 return; 540 } 541 542 if (is_mpidr_duplicate(cpu_count, hwid)) { 543 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid); 544 return; 545 } 546 547 /* Check if GICC structure of boot CPU is available in the MADT */ 548 if (cpu_logical_map(0) == hwid) { 549 if (bootcpu_valid) { 550 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n", 551 hwid); 552 return; 553 } 554 bootcpu_valid = true; 555 cpu_madt_gicc[0] = *processor; 556 return; 557 } 558 559 if (cpu_count >= NR_CPUS) 560 return; 561 562 /* map the logical cpu id to cpu MPIDR */ 563 set_cpu_logical_map(cpu_count, hwid); 564 565 cpu_madt_gicc[cpu_count] = *processor; 566 567 /* 568 * Set-up the ACPI parking protocol cpu entries 569 * while initializing the cpu_logical_map to 570 * avoid parsing MADT entries multiple times for 571 * nothing (ie a valid cpu_logical_map entry should 572 * contain a valid parking protocol data set to 573 * initialize the cpu if the parking protocol is 574 * the only available enable method). 575 */ 576 acpi_set_mailbox_entry(cpu_count, processor); 577 578 cpu_count++; 579 } 580 581 static int __init 582 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header, 583 const unsigned long end) 584 { 585 struct acpi_madt_generic_interrupt *processor; 586 587 processor = (struct acpi_madt_generic_interrupt *)header; 588 if (BAD_MADT_GICC_ENTRY(processor, end)) 589 return -EINVAL; 590 591 acpi_table_print_madt_entry(&header->common); 592 593 acpi_map_gic_cpu_interface(processor); 594 595 return 0; 596 } 597 598 static void __init acpi_parse_and_init_cpus(void) 599 { 600 int i; 601 602 /* 603 * do a walk of MADT to determine how many CPUs 604 * we have including disabled CPUs, and get information 605 * we need for SMP init. 606 */ 607 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, 608 acpi_parse_gic_cpu_interface, 0); 609 610 /* 611 * In ACPI, SMP and CPU NUMA information is provided in separate 612 * static tables, namely the MADT and the SRAT. 613 * 614 * Thus, it is simpler to first create the cpu logical map through 615 * an MADT walk and then map the logical cpus to their node ids 616 * as separate steps. 617 */ 618 acpi_map_cpus_to_nodes(); 619 620 for (i = 0; i < nr_cpu_ids; i++) 621 early_map_cpu_to_node(i, acpi_numa_get_nid(i)); 622 } 623 #else 624 #define acpi_parse_and_init_cpus(...) do { } while (0) 625 #endif 626 627 /* 628 * Enumerate the possible CPU set from the device tree and build the 629 * cpu logical map array containing MPIDR values related to logical 630 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 631 */ 632 static void __init of_parse_and_init_cpus(void) 633 { 634 struct device_node *dn; 635 636 for_each_of_cpu_node(dn) { 637 u64 hwid = of_get_cpu_hwid(dn, 0); 638 639 if (hwid & ~MPIDR_HWID_BITMASK) 640 goto next; 641 642 if (is_mpidr_duplicate(cpu_count, hwid)) { 643 pr_err("%pOF: duplicate cpu reg properties in the DT\n", 644 dn); 645 goto next; 646 } 647 648 /* 649 * The numbering scheme requires that the boot CPU 650 * must be assigned logical id 0. Record it so that 651 * the logical map built from DT is validated and can 652 * be used. 653 */ 654 if (hwid == cpu_logical_map(0)) { 655 if (bootcpu_valid) { 656 pr_err("%pOF: duplicate boot cpu reg property in DT\n", 657 dn); 658 goto next; 659 } 660 661 bootcpu_valid = true; 662 early_map_cpu_to_node(0, of_node_to_nid(dn)); 663 664 /* 665 * cpu_logical_map has already been 666 * initialized and the boot cpu doesn't need 667 * the enable-method so continue without 668 * incrementing cpu. 669 */ 670 continue; 671 } 672 673 if (cpu_count >= NR_CPUS) 674 goto next; 675 676 pr_debug("cpu logical map 0x%llx\n", hwid); 677 set_cpu_logical_map(cpu_count, hwid); 678 679 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn)); 680 next: 681 cpu_count++; 682 } 683 } 684 685 /* 686 * Enumerate the possible CPU set from the device tree or ACPI and build the 687 * cpu logical map array containing MPIDR values related to logical 688 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 689 */ 690 void __init smp_init_cpus(void) 691 { 692 int i; 693 694 if (acpi_disabled) 695 of_parse_and_init_cpus(); 696 else 697 acpi_parse_and_init_cpus(); 698 699 if (cpu_count > nr_cpu_ids) 700 pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n", 701 cpu_count, nr_cpu_ids); 702 703 if (!bootcpu_valid) { 704 pr_err("missing boot CPU MPIDR, not enabling secondaries\n"); 705 return; 706 } 707 708 /* 709 * We need to set the cpu_logical_map entries before enabling 710 * the cpus so that cpu processor description entries (DT cpu nodes 711 * and ACPI MADT entries) can be retrieved by matching the cpu hwid 712 * with entries in cpu_logical_map while initializing the cpus. 713 * If the cpu set-up fails, invalidate the cpu_logical_map entry. 714 */ 715 for (i = 1; i < nr_cpu_ids; i++) { 716 if (cpu_logical_map(i) != INVALID_HWID) { 717 if (smp_cpu_setup(i)) 718 set_cpu_logical_map(i, INVALID_HWID); 719 } 720 } 721 } 722 723 void __init smp_prepare_cpus(unsigned int max_cpus) 724 { 725 const struct cpu_operations *ops; 726 int err; 727 unsigned int cpu; 728 unsigned int this_cpu; 729 730 init_cpu_topology(); 731 732 this_cpu = smp_processor_id(); 733 store_cpu_topology(this_cpu); 734 numa_store_cpu_info(this_cpu); 735 numa_add_cpu(this_cpu); 736 737 /* 738 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set 739 * secondary CPUs present. 740 */ 741 if (max_cpus == 0) 742 return; 743 744 /* 745 * Initialise the present map (which describes the set of CPUs 746 * actually populated at the present time) and release the 747 * secondaries from the bootloader. 748 */ 749 for_each_possible_cpu(cpu) { 750 751 per_cpu(cpu_number, cpu) = cpu; 752 753 if (cpu == smp_processor_id()) 754 continue; 755 756 ops = get_cpu_ops(cpu); 757 if (!ops) 758 continue; 759 760 err = ops->cpu_prepare(cpu); 761 if (err) 762 continue; 763 764 set_cpu_present(cpu, true); 765 numa_store_cpu_info(cpu); 766 } 767 } 768 769 static const char *ipi_types[NR_IPI] __tracepoint_string = { 770 [IPI_RESCHEDULE] = "Rescheduling interrupts", 771 [IPI_CALL_FUNC] = "Function call interrupts", 772 [IPI_CPU_STOP] = "CPU stop interrupts", 773 [IPI_CPU_CRASH_STOP] = "CPU stop (for crash dump) interrupts", 774 [IPI_TIMER] = "Timer broadcast interrupts", 775 [IPI_IRQ_WORK] = "IRQ work interrupts", 776 }; 777 778 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr); 779 780 unsigned long irq_err_count; 781 782 int arch_show_interrupts(struct seq_file *p, int prec) 783 { 784 unsigned int cpu, i; 785 786 for (i = 0; i < NR_IPI; i++) { 787 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, 788 prec >= 4 ? " " : ""); 789 for_each_online_cpu(cpu) 790 seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu)); 791 seq_printf(p, " %s\n", ipi_types[i]); 792 } 793 794 seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count); 795 return 0; 796 } 797 798 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 799 { 800 smp_cross_call(mask, IPI_CALL_FUNC); 801 } 802 803 void arch_send_call_function_single_ipi(int cpu) 804 { 805 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); 806 } 807 808 #ifdef CONFIG_IRQ_WORK 809 void arch_irq_work_raise(void) 810 { 811 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 812 } 813 #endif 814 815 static void __noreturn local_cpu_stop(void) 816 { 817 set_cpu_online(smp_processor_id(), false); 818 819 local_daif_mask(); 820 sdei_mask_local_cpu(); 821 cpu_park_loop(); 822 } 823 824 /* 825 * We need to implement panic_smp_self_stop() for parallel panic() calls, so 826 * that cpu_online_mask gets correctly updated and smp_send_stop() can skip 827 * CPUs that have already stopped themselves. 828 */ 829 void __noreturn panic_smp_self_stop(void) 830 { 831 local_cpu_stop(); 832 } 833 834 #ifdef CONFIG_KEXEC_CORE 835 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0); 836 #endif 837 838 static void __noreturn ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs) 839 { 840 #ifdef CONFIG_KEXEC_CORE 841 crash_save_cpu(regs, cpu); 842 843 atomic_dec(&waiting_for_crash_ipi); 844 845 local_irq_disable(); 846 sdei_mask_local_cpu(); 847 848 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 849 __cpu_try_die(cpu); 850 851 /* just in case */ 852 cpu_park_loop(); 853 #else 854 BUG(); 855 #endif 856 } 857 858 static void arm64_backtrace_ipi(cpumask_t *mask) 859 { 860 __ipi_send_mask(ipi_desc[IPI_CPU_BACKTRACE], mask); 861 } 862 863 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, int exclude_cpu) 864 { 865 /* 866 * NOTE: though nmi_trigger_cpumask_backtrace() has "nmi_" in the name, 867 * nothing about it truly needs to be implemented using an NMI, it's 868 * just that it's _allowed_ to work with NMIs. If ipi_should_be_nmi() 869 * returned false our backtrace attempt will just use a regular IPI. 870 */ 871 nmi_trigger_cpumask_backtrace(mask, exclude_cpu, arm64_backtrace_ipi); 872 } 873 874 #ifdef CONFIG_KGDB 875 void kgdb_roundup_cpus(void) 876 { 877 int this_cpu = raw_smp_processor_id(); 878 int cpu; 879 880 for_each_online_cpu(cpu) { 881 /* No need to roundup ourselves */ 882 if (cpu == this_cpu) 883 continue; 884 885 __ipi_send_single(ipi_desc[IPI_KGDB_ROUNDUP], cpu); 886 } 887 } 888 #endif 889 890 /* 891 * Main handler for inter-processor interrupts 892 */ 893 static void do_handle_IPI(int ipinr) 894 { 895 unsigned int cpu = smp_processor_id(); 896 897 if ((unsigned)ipinr < NR_IPI) 898 trace_ipi_entry(ipi_types[ipinr]); 899 900 switch (ipinr) { 901 case IPI_RESCHEDULE: 902 scheduler_ipi(); 903 break; 904 905 case IPI_CALL_FUNC: 906 generic_smp_call_function_interrupt(); 907 break; 908 909 case IPI_CPU_STOP: 910 local_cpu_stop(); 911 break; 912 913 case IPI_CPU_CRASH_STOP: 914 if (IS_ENABLED(CONFIG_KEXEC_CORE)) { 915 ipi_cpu_crash_stop(cpu, get_irq_regs()); 916 917 unreachable(); 918 } 919 break; 920 921 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 922 case IPI_TIMER: 923 tick_receive_broadcast(); 924 break; 925 #endif 926 927 #ifdef CONFIG_IRQ_WORK 928 case IPI_IRQ_WORK: 929 irq_work_run(); 930 break; 931 #endif 932 933 case IPI_CPU_BACKTRACE: 934 /* 935 * NOTE: in some cases this _won't_ be NMI context. See the 936 * comment in arch_trigger_cpumask_backtrace(). 937 */ 938 nmi_cpu_backtrace(get_irq_regs()); 939 break; 940 941 case IPI_KGDB_ROUNDUP: 942 kgdb_nmicallback(cpu, get_irq_regs()); 943 break; 944 945 default: 946 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr); 947 break; 948 } 949 950 if ((unsigned)ipinr < NR_IPI) 951 trace_ipi_exit(ipi_types[ipinr]); 952 } 953 954 static irqreturn_t ipi_handler(int irq, void *data) 955 { 956 do_handle_IPI(irq - ipi_irq_base); 957 return IRQ_HANDLED; 958 } 959 960 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 961 { 962 trace_ipi_raise(target, ipi_types[ipinr]); 963 __ipi_send_mask(ipi_desc[ipinr], target); 964 } 965 966 static bool ipi_should_be_nmi(enum ipi_msg_type ipi) 967 { 968 if (!system_uses_irq_prio_masking()) 969 return false; 970 971 switch (ipi) { 972 case IPI_CPU_STOP: 973 case IPI_CPU_CRASH_STOP: 974 case IPI_CPU_BACKTRACE: 975 case IPI_KGDB_ROUNDUP: 976 return true; 977 default: 978 return false; 979 } 980 } 981 982 static void ipi_setup(int cpu) 983 { 984 int i; 985 986 if (WARN_ON_ONCE(!ipi_irq_base)) 987 return; 988 989 for (i = 0; i < nr_ipi; i++) { 990 if (ipi_should_be_nmi(i)) { 991 prepare_percpu_nmi(ipi_irq_base + i); 992 enable_percpu_nmi(ipi_irq_base + i, 0); 993 } else { 994 enable_percpu_irq(ipi_irq_base + i, 0); 995 } 996 } 997 } 998 999 #ifdef CONFIG_HOTPLUG_CPU 1000 static void ipi_teardown(int cpu) 1001 { 1002 int i; 1003 1004 if (WARN_ON_ONCE(!ipi_irq_base)) 1005 return; 1006 1007 for (i = 0; i < nr_ipi; i++) { 1008 if (ipi_should_be_nmi(i)) { 1009 disable_percpu_nmi(ipi_irq_base + i); 1010 teardown_percpu_nmi(ipi_irq_base + i); 1011 } else { 1012 disable_percpu_irq(ipi_irq_base + i); 1013 } 1014 } 1015 } 1016 #endif 1017 1018 void __init set_smp_ipi_range(int ipi_base, int n) 1019 { 1020 int i; 1021 1022 WARN_ON(n < MAX_IPI); 1023 nr_ipi = min(n, MAX_IPI); 1024 1025 for (i = 0; i < nr_ipi; i++) { 1026 int err; 1027 1028 if (ipi_should_be_nmi(i)) { 1029 err = request_percpu_nmi(ipi_base + i, ipi_handler, 1030 "IPI", &cpu_number); 1031 WARN(err, "Could not request IPI %d as NMI, err=%d\n", 1032 i, err); 1033 } else { 1034 err = request_percpu_irq(ipi_base + i, ipi_handler, 1035 "IPI", &cpu_number); 1036 WARN(err, "Could not request IPI %d as IRQ, err=%d\n", 1037 i, err); 1038 } 1039 1040 ipi_desc[i] = irq_to_desc(ipi_base + i); 1041 irq_set_status_flags(ipi_base + i, IRQ_HIDDEN); 1042 } 1043 1044 ipi_irq_base = ipi_base; 1045 1046 /* Setup the boot CPU immediately */ 1047 ipi_setup(smp_processor_id()); 1048 } 1049 1050 void arch_smp_send_reschedule(int cpu) 1051 { 1052 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 1053 } 1054 1055 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 1056 void arch_send_wakeup_ipi(unsigned int cpu) 1057 { 1058 /* 1059 * We use a scheduler IPI to wake the CPU as this avoids the need for a 1060 * dedicated IPI and we can safely handle spurious scheduler IPIs. 1061 */ 1062 smp_send_reschedule(cpu); 1063 } 1064 #endif 1065 1066 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 1067 void tick_broadcast(const struct cpumask *mask) 1068 { 1069 smp_cross_call(mask, IPI_TIMER); 1070 } 1071 #endif 1072 1073 /* 1074 * The number of CPUs online, not counting this CPU (which may not be 1075 * fully online and so not counted in num_online_cpus()). 1076 */ 1077 static inline unsigned int num_other_online_cpus(void) 1078 { 1079 unsigned int this_cpu_online = cpu_online(smp_processor_id()); 1080 1081 return num_online_cpus() - this_cpu_online; 1082 } 1083 1084 void smp_send_stop(void) 1085 { 1086 unsigned long timeout; 1087 1088 if (num_other_online_cpus()) { 1089 cpumask_t mask; 1090 1091 cpumask_copy(&mask, cpu_online_mask); 1092 cpumask_clear_cpu(smp_processor_id(), &mask); 1093 1094 if (system_state <= SYSTEM_RUNNING) 1095 pr_crit("SMP: stopping secondary CPUs\n"); 1096 smp_cross_call(&mask, IPI_CPU_STOP); 1097 } 1098 1099 /* Wait up to one second for other CPUs to stop */ 1100 timeout = USEC_PER_SEC; 1101 while (num_other_online_cpus() && timeout--) 1102 udelay(1); 1103 1104 if (num_other_online_cpus()) 1105 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n", 1106 cpumask_pr_args(cpu_online_mask)); 1107 1108 sdei_mask_local_cpu(); 1109 } 1110 1111 #ifdef CONFIG_KEXEC_CORE 1112 void crash_smp_send_stop(void) 1113 { 1114 static int cpus_stopped; 1115 cpumask_t mask; 1116 unsigned long timeout; 1117 1118 /* 1119 * This function can be called twice in panic path, but obviously 1120 * we execute this only once. 1121 */ 1122 if (cpus_stopped) 1123 return; 1124 1125 cpus_stopped = 1; 1126 1127 /* 1128 * If this cpu is the only one alive at this point in time, online or 1129 * not, there are no stop messages to be sent around, so just back out. 1130 */ 1131 if (num_other_online_cpus() == 0) 1132 goto skip_ipi; 1133 1134 cpumask_copy(&mask, cpu_online_mask); 1135 cpumask_clear_cpu(smp_processor_id(), &mask); 1136 1137 atomic_set(&waiting_for_crash_ipi, num_other_online_cpus()); 1138 1139 pr_crit("SMP: stopping secondary CPUs\n"); 1140 smp_cross_call(&mask, IPI_CPU_CRASH_STOP); 1141 1142 /* Wait up to one second for other CPUs to stop */ 1143 timeout = USEC_PER_SEC; 1144 while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--) 1145 udelay(1); 1146 1147 if (atomic_read(&waiting_for_crash_ipi) > 0) 1148 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n", 1149 cpumask_pr_args(&mask)); 1150 1151 skip_ipi: 1152 sdei_mask_local_cpu(); 1153 sdei_handler_abort(); 1154 } 1155 1156 bool smp_crash_stop_failed(void) 1157 { 1158 return (atomic_read(&waiting_for_crash_ipi) > 0); 1159 } 1160 #endif 1161 1162 static bool have_cpu_die(void) 1163 { 1164 #ifdef CONFIG_HOTPLUG_CPU 1165 int any_cpu = raw_smp_processor_id(); 1166 const struct cpu_operations *ops = get_cpu_ops(any_cpu); 1167 1168 if (ops && ops->cpu_die) 1169 return true; 1170 #endif 1171 return false; 1172 } 1173 1174 bool cpus_are_stuck_in_kernel(void) 1175 { 1176 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die()); 1177 1178 return !!cpus_stuck_in_kernel || smp_spin_tables || 1179 is_protected_kvm_enabled(); 1180 } 1181