1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * SMP initialisation and IPI support 4 * Based on arch/arm/kernel/smp.c 5 * 6 * Copyright (C) 2012 ARM Ltd. 7 */ 8 9 #include <linux/acpi.h> 10 #include <linux/arm_sdei.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/hotplug.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/interrupt.h> 18 #include <linux/cache.h> 19 #include <linux/profile.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/err.h> 23 #include <linux/cpu.h> 24 #include <linux/smp.h> 25 #include <linux/seq_file.h> 26 #include <linux/irq.h> 27 #include <linux/irqchip/arm-gic-v3.h> 28 #include <linux/percpu.h> 29 #include <linux/clockchips.h> 30 #include <linux/completion.h> 31 #include <linux/of.h> 32 #include <linux/irq_work.h> 33 #include <linux/kernel_stat.h> 34 #include <linux/kexec.h> 35 #include <linux/kvm_host.h> 36 37 #include <asm/alternative.h> 38 #include <asm/atomic.h> 39 #include <asm/cacheflush.h> 40 #include <asm/cpu.h> 41 #include <asm/cputype.h> 42 #include <asm/cpu_ops.h> 43 #include <asm/daifflags.h> 44 #include <asm/kvm_mmu.h> 45 #include <asm/mmu_context.h> 46 #include <asm/numa.h> 47 #include <asm/processor.h> 48 #include <asm/smp_plat.h> 49 #include <asm/sections.h> 50 #include <asm/tlbflush.h> 51 #include <asm/ptrace.h> 52 #include <asm/virt.h> 53 54 #include <trace/events/ipi.h> 55 56 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number); 57 EXPORT_PER_CPU_SYMBOL(cpu_number); 58 59 /* 60 * as from 2.5, kernels no longer have an init_tasks structure 61 * so we need some other way of telling a new secondary core 62 * where to place its SVC stack 63 */ 64 struct secondary_data secondary_data; 65 /* Number of CPUs which aren't online, but looping in kernel text. */ 66 static int cpus_stuck_in_kernel; 67 68 enum ipi_msg_type { 69 IPI_RESCHEDULE, 70 IPI_CALL_FUNC, 71 IPI_CPU_STOP, 72 IPI_CPU_CRASH_STOP, 73 IPI_TIMER, 74 IPI_IRQ_WORK, 75 IPI_WAKEUP, 76 NR_IPI 77 }; 78 79 static int ipi_irq_base __read_mostly; 80 static int nr_ipi __read_mostly = NR_IPI; 81 static struct irq_desc *ipi_desc[NR_IPI] __read_mostly; 82 83 static void ipi_setup(int cpu); 84 85 #ifdef CONFIG_HOTPLUG_CPU 86 static void ipi_teardown(int cpu); 87 static int op_cpu_kill(unsigned int cpu); 88 #else 89 static inline int op_cpu_kill(unsigned int cpu) 90 { 91 return -ENOSYS; 92 } 93 #endif 94 95 96 /* 97 * Boot a secondary CPU, and assign it the specified idle task. 98 * This also gives us the initial stack to use for this CPU. 99 */ 100 static int boot_secondary(unsigned int cpu, struct task_struct *idle) 101 { 102 const struct cpu_operations *ops = get_cpu_ops(cpu); 103 104 if (ops->cpu_boot) 105 return ops->cpu_boot(cpu); 106 107 return -EOPNOTSUPP; 108 } 109 110 static DECLARE_COMPLETION(cpu_running); 111 112 int __cpu_up(unsigned int cpu, struct task_struct *idle) 113 { 114 int ret; 115 long status; 116 117 /* 118 * We need to tell the secondary core where to find its stack and the 119 * page tables. 120 */ 121 secondary_data.task = idle; 122 update_cpu_boot_status(CPU_MMU_OFF); 123 124 /* Now bring the CPU into our world */ 125 ret = boot_secondary(cpu, idle); 126 if (ret) { 127 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 128 return ret; 129 } 130 131 /* 132 * CPU was successfully started, wait for it to come online or 133 * time out. 134 */ 135 wait_for_completion_timeout(&cpu_running, 136 msecs_to_jiffies(5000)); 137 if (cpu_online(cpu)) 138 return 0; 139 140 pr_crit("CPU%u: failed to come online\n", cpu); 141 secondary_data.task = NULL; 142 status = READ_ONCE(secondary_data.status); 143 if (status == CPU_MMU_OFF) 144 status = READ_ONCE(__early_cpu_boot_status); 145 146 switch (status & CPU_BOOT_STATUS_MASK) { 147 default: 148 pr_err("CPU%u: failed in unknown state : 0x%lx\n", 149 cpu, status); 150 cpus_stuck_in_kernel++; 151 break; 152 case CPU_KILL_ME: 153 if (!op_cpu_kill(cpu)) { 154 pr_crit("CPU%u: died during early boot\n", cpu); 155 break; 156 } 157 pr_crit("CPU%u: may not have shut down cleanly\n", cpu); 158 fallthrough; 159 case CPU_STUCK_IN_KERNEL: 160 pr_crit("CPU%u: is stuck in kernel\n", cpu); 161 if (status & CPU_STUCK_REASON_52_BIT_VA) 162 pr_crit("CPU%u: does not support 52-bit VAs\n", cpu); 163 if (status & CPU_STUCK_REASON_NO_GRAN) { 164 pr_crit("CPU%u: does not support %luK granule\n", 165 cpu, PAGE_SIZE / SZ_1K); 166 } 167 cpus_stuck_in_kernel++; 168 break; 169 case CPU_PANIC_KERNEL: 170 panic("CPU%u detected unsupported configuration\n", cpu); 171 } 172 173 return -EIO; 174 } 175 176 static void init_gic_priority_masking(void) 177 { 178 u32 cpuflags; 179 180 if (WARN_ON(!gic_enable_sre())) 181 return; 182 183 cpuflags = read_sysreg(daif); 184 185 WARN_ON(!(cpuflags & PSR_I_BIT)); 186 WARN_ON(!(cpuflags & PSR_F_BIT)); 187 188 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET); 189 } 190 191 /* 192 * This is the secondary CPU boot entry. We're using this CPUs 193 * idle thread stack, but a set of temporary page tables. 194 */ 195 asmlinkage notrace void secondary_start_kernel(void) 196 { 197 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; 198 struct mm_struct *mm = &init_mm; 199 const struct cpu_operations *ops; 200 unsigned int cpu = smp_processor_id(); 201 202 /* 203 * All kernel threads share the same mm context; grab a 204 * reference and switch to it. 205 */ 206 mmgrab(mm); 207 current->active_mm = mm; 208 209 /* 210 * TTBR0 is only used for the identity mapping at this stage. Make it 211 * point to zero page to avoid speculatively fetching new entries. 212 */ 213 cpu_uninstall_idmap(); 214 215 if (system_uses_irq_prio_masking()) 216 init_gic_priority_masking(); 217 218 rcu_cpu_starting(cpu); 219 trace_hardirqs_off(); 220 221 /* 222 * If the system has established the capabilities, make sure 223 * this CPU ticks all of those. If it doesn't, the CPU will 224 * fail to come online. 225 */ 226 check_local_cpu_capabilities(); 227 228 ops = get_cpu_ops(cpu); 229 if (ops->cpu_postboot) 230 ops->cpu_postboot(); 231 232 /* 233 * Log the CPU info before it is marked online and might get read. 234 */ 235 cpuinfo_store_cpu(); 236 store_cpu_topology(cpu); 237 238 /* 239 * Enable GIC and timers. 240 */ 241 notify_cpu_starting(cpu); 242 243 ipi_setup(cpu); 244 245 numa_add_cpu(cpu); 246 247 /* 248 * OK, now it's safe to let the boot CPU continue. Wait for 249 * the CPU migration code to notice that the CPU is online 250 * before we continue. 251 */ 252 pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n", 253 cpu, (unsigned long)mpidr, 254 read_cpuid_id()); 255 update_cpu_boot_status(CPU_BOOT_SUCCESS); 256 set_cpu_online(cpu, true); 257 complete(&cpu_running); 258 259 local_daif_restore(DAIF_PROCCTX); 260 261 /* 262 * OK, it's off to the idle thread for us 263 */ 264 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 265 } 266 267 #ifdef CONFIG_HOTPLUG_CPU 268 static int op_cpu_disable(unsigned int cpu) 269 { 270 const struct cpu_operations *ops = get_cpu_ops(cpu); 271 272 /* 273 * If we don't have a cpu_die method, abort before we reach the point 274 * of no return. CPU0 may not have an cpu_ops, so test for it. 275 */ 276 if (!ops || !ops->cpu_die) 277 return -EOPNOTSUPP; 278 279 /* 280 * We may need to abort a hot unplug for some other mechanism-specific 281 * reason. 282 */ 283 if (ops->cpu_disable) 284 return ops->cpu_disable(cpu); 285 286 return 0; 287 } 288 289 /* 290 * __cpu_disable runs on the processor to be shutdown. 291 */ 292 int __cpu_disable(void) 293 { 294 unsigned int cpu = smp_processor_id(); 295 int ret; 296 297 ret = op_cpu_disable(cpu); 298 if (ret) 299 return ret; 300 301 remove_cpu_topology(cpu); 302 numa_remove_cpu(cpu); 303 304 /* 305 * Take this CPU offline. Once we clear this, we can't return, 306 * and we must not schedule until we're ready to give up the cpu. 307 */ 308 set_cpu_online(cpu, false); 309 ipi_teardown(cpu); 310 311 /* 312 * OK - migrate IRQs away from this CPU 313 */ 314 irq_migrate_all_off_this_cpu(); 315 316 return 0; 317 } 318 319 static int op_cpu_kill(unsigned int cpu) 320 { 321 const struct cpu_operations *ops = get_cpu_ops(cpu); 322 323 /* 324 * If we have no means of synchronising with the dying CPU, then assume 325 * that it is really dead. We can only wait for an arbitrary length of 326 * time and hope that it's dead, so let's skip the wait and just hope. 327 */ 328 if (!ops->cpu_kill) 329 return 0; 330 331 return ops->cpu_kill(cpu); 332 } 333 334 /* 335 * called on the thread which is asking for a CPU to be shutdown - 336 * waits until shutdown has completed, or it is timed out. 337 */ 338 void __cpu_die(unsigned int cpu) 339 { 340 int err; 341 342 if (!cpu_wait_death(cpu, 5)) { 343 pr_crit("CPU%u: cpu didn't die\n", cpu); 344 return; 345 } 346 pr_debug("CPU%u: shutdown\n", cpu); 347 348 /* 349 * Now that the dying CPU is beyond the point of no return w.r.t. 350 * in-kernel synchronisation, try to get the firwmare to help us to 351 * verify that it has really left the kernel before we consider 352 * clobbering anything it might still be using. 353 */ 354 err = op_cpu_kill(cpu); 355 if (err) 356 pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err); 357 } 358 359 /* 360 * Called from the idle thread for the CPU which has been shutdown. 361 * 362 */ 363 void __noreturn cpu_die(void) 364 { 365 unsigned int cpu = smp_processor_id(); 366 const struct cpu_operations *ops = get_cpu_ops(cpu); 367 368 idle_task_exit(); 369 370 local_daif_mask(); 371 372 /* Tell __cpu_die() that this CPU is now safe to dispose of */ 373 (void)cpu_report_death(); 374 375 /* 376 * Actually shutdown the CPU. This must never fail. The specific hotplug 377 * mechanism must perform all required cache maintenance to ensure that 378 * no dirty lines are lost in the process of shutting down the CPU. 379 */ 380 ops->cpu_die(cpu); 381 382 BUG(); 383 } 384 #endif 385 386 static void __cpu_try_die(int cpu) 387 { 388 #ifdef CONFIG_HOTPLUG_CPU 389 const struct cpu_operations *ops = get_cpu_ops(cpu); 390 391 if (ops && ops->cpu_die) 392 ops->cpu_die(cpu); 393 #endif 394 } 395 396 /* 397 * Kill the calling secondary CPU, early in bringup before it is turned 398 * online. 399 */ 400 void __noreturn cpu_die_early(void) 401 { 402 int cpu = smp_processor_id(); 403 404 pr_crit("CPU%d: will not boot\n", cpu); 405 406 /* Mark this CPU absent */ 407 set_cpu_present(cpu, 0); 408 rcu_report_dead(cpu); 409 410 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) { 411 update_cpu_boot_status(CPU_KILL_ME); 412 __cpu_try_die(cpu); 413 } 414 415 update_cpu_boot_status(CPU_STUCK_IN_KERNEL); 416 417 cpu_park_loop(); 418 } 419 420 static void __init hyp_mode_check(void) 421 { 422 if (is_hyp_mode_available()) 423 pr_info("CPU: All CPU(s) started at EL2\n"); 424 else if (is_hyp_mode_mismatched()) 425 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC, 426 "CPU: CPUs started in inconsistent modes"); 427 else 428 pr_info("CPU: All CPU(s) started at EL1\n"); 429 if (IS_ENABLED(CONFIG_KVM) && !is_kernel_in_hyp_mode()) { 430 kvm_compute_layout(); 431 kvm_apply_hyp_relocations(); 432 } 433 } 434 435 void __init smp_cpus_done(unsigned int max_cpus) 436 { 437 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus()); 438 setup_cpu_features(); 439 hyp_mode_check(); 440 apply_alternatives_all(); 441 mark_linear_text_alias_ro(); 442 } 443 444 void __init smp_prepare_boot_cpu(void) 445 { 446 /* 447 * The runtime per-cpu areas have been allocated by 448 * setup_per_cpu_areas(), and CPU0's boot time per-cpu area will be 449 * freed shortly, so we must move over to the runtime per-cpu area. 450 */ 451 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 452 cpuinfo_store_boot_cpu(); 453 454 /* 455 * We now know enough about the boot CPU to apply the 456 * alternatives that cannot wait until interrupt handling 457 * and/or scheduling is enabled. 458 */ 459 apply_boot_alternatives(); 460 461 /* Conditionally switch to GIC PMR for interrupt masking */ 462 if (system_uses_irq_prio_masking()) 463 init_gic_priority_masking(); 464 465 kasan_init_hw_tags(); 466 } 467 468 /* 469 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized 470 * entries and check for duplicates. If any is found just ignore the 471 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid 472 * matching valid MPIDR values. 473 */ 474 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid) 475 { 476 unsigned int i; 477 478 for (i = 1; (i < cpu) && (i < NR_CPUS); i++) 479 if (cpu_logical_map(i) == hwid) 480 return true; 481 return false; 482 } 483 484 /* 485 * Initialize cpu operations for a logical cpu and 486 * set it in the possible mask on success 487 */ 488 static int __init smp_cpu_setup(int cpu) 489 { 490 const struct cpu_operations *ops; 491 492 if (init_cpu_ops(cpu)) 493 return -ENODEV; 494 495 ops = get_cpu_ops(cpu); 496 if (ops->cpu_init(cpu)) 497 return -ENODEV; 498 499 set_cpu_possible(cpu, true); 500 501 return 0; 502 } 503 504 static bool bootcpu_valid __initdata; 505 static unsigned int cpu_count = 1; 506 507 #ifdef CONFIG_ACPI 508 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS]; 509 510 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu) 511 { 512 return &cpu_madt_gicc[cpu]; 513 } 514 EXPORT_SYMBOL_GPL(acpi_cpu_get_madt_gicc); 515 516 /* 517 * acpi_map_gic_cpu_interface - parse processor MADT entry 518 * 519 * Carry out sanity checks on MADT processor entry and initialize 520 * cpu_logical_map on success 521 */ 522 static void __init 523 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor) 524 { 525 u64 hwid = processor->arm_mpidr; 526 527 if (!(processor->flags & ACPI_MADT_ENABLED)) { 528 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid); 529 return; 530 } 531 532 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) { 533 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid); 534 return; 535 } 536 537 if (is_mpidr_duplicate(cpu_count, hwid)) { 538 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid); 539 return; 540 } 541 542 /* Check if GICC structure of boot CPU is available in the MADT */ 543 if (cpu_logical_map(0) == hwid) { 544 if (bootcpu_valid) { 545 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n", 546 hwid); 547 return; 548 } 549 bootcpu_valid = true; 550 cpu_madt_gicc[0] = *processor; 551 return; 552 } 553 554 if (cpu_count >= NR_CPUS) 555 return; 556 557 /* map the logical cpu id to cpu MPIDR */ 558 set_cpu_logical_map(cpu_count, hwid); 559 560 cpu_madt_gicc[cpu_count] = *processor; 561 562 /* 563 * Set-up the ACPI parking protocol cpu entries 564 * while initializing the cpu_logical_map to 565 * avoid parsing MADT entries multiple times for 566 * nothing (ie a valid cpu_logical_map entry should 567 * contain a valid parking protocol data set to 568 * initialize the cpu if the parking protocol is 569 * the only available enable method). 570 */ 571 acpi_set_mailbox_entry(cpu_count, processor); 572 573 cpu_count++; 574 } 575 576 static int __init 577 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header, 578 const unsigned long end) 579 { 580 struct acpi_madt_generic_interrupt *processor; 581 582 processor = (struct acpi_madt_generic_interrupt *)header; 583 if (BAD_MADT_GICC_ENTRY(processor, end)) 584 return -EINVAL; 585 586 acpi_table_print_madt_entry(&header->common); 587 588 acpi_map_gic_cpu_interface(processor); 589 590 return 0; 591 } 592 593 static void __init acpi_parse_and_init_cpus(void) 594 { 595 int i; 596 597 /* 598 * do a walk of MADT to determine how many CPUs 599 * we have including disabled CPUs, and get information 600 * we need for SMP init. 601 */ 602 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, 603 acpi_parse_gic_cpu_interface, 0); 604 605 /* 606 * In ACPI, SMP and CPU NUMA information is provided in separate 607 * static tables, namely the MADT and the SRAT. 608 * 609 * Thus, it is simpler to first create the cpu logical map through 610 * an MADT walk and then map the logical cpus to their node ids 611 * as separate steps. 612 */ 613 acpi_map_cpus_to_nodes(); 614 615 for (i = 0; i < nr_cpu_ids; i++) 616 early_map_cpu_to_node(i, acpi_numa_get_nid(i)); 617 } 618 #else 619 #define acpi_parse_and_init_cpus(...) do { } while (0) 620 #endif 621 622 /* 623 * Enumerate the possible CPU set from the device tree and build the 624 * cpu logical map array containing MPIDR values related to logical 625 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 626 */ 627 static void __init of_parse_and_init_cpus(void) 628 { 629 struct device_node *dn; 630 631 for_each_of_cpu_node(dn) { 632 u64 hwid = of_get_cpu_hwid(dn, 0); 633 634 if (hwid & ~MPIDR_HWID_BITMASK) 635 goto next; 636 637 if (is_mpidr_duplicate(cpu_count, hwid)) { 638 pr_err("%pOF: duplicate cpu reg properties in the DT\n", 639 dn); 640 goto next; 641 } 642 643 /* 644 * The numbering scheme requires that the boot CPU 645 * must be assigned logical id 0. Record it so that 646 * the logical map built from DT is validated and can 647 * be used. 648 */ 649 if (hwid == cpu_logical_map(0)) { 650 if (bootcpu_valid) { 651 pr_err("%pOF: duplicate boot cpu reg property in DT\n", 652 dn); 653 goto next; 654 } 655 656 bootcpu_valid = true; 657 early_map_cpu_to_node(0, of_node_to_nid(dn)); 658 659 /* 660 * cpu_logical_map has already been 661 * initialized and the boot cpu doesn't need 662 * the enable-method so continue without 663 * incrementing cpu. 664 */ 665 continue; 666 } 667 668 if (cpu_count >= NR_CPUS) 669 goto next; 670 671 pr_debug("cpu logical map 0x%llx\n", hwid); 672 set_cpu_logical_map(cpu_count, hwid); 673 674 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn)); 675 next: 676 cpu_count++; 677 } 678 } 679 680 /* 681 * Enumerate the possible CPU set from the device tree or ACPI and build the 682 * cpu logical map array containing MPIDR values related to logical 683 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 684 */ 685 void __init smp_init_cpus(void) 686 { 687 int i; 688 689 if (acpi_disabled) 690 of_parse_and_init_cpus(); 691 else 692 acpi_parse_and_init_cpus(); 693 694 if (cpu_count > nr_cpu_ids) 695 pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n", 696 cpu_count, nr_cpu_ids); 697 698 if (!bootcpu_valid) { 699 pr_err("missing boot CPU MPIDR, not enabling secondaries\n"); 700 return; 701 } 702 703 /* 704 * We need to set the cpu_logical_map entries before enabling 705 * the cpus so that cpu processor description entries (DT cpu nodes 706 * and ACPI MADT entries) can be retrieved by matching the cpu hwid 707 * with entries in cpu_logical_map while initializing the cpus. 708 * If the cpu set-up fails, invalidate the cpu_logical_map entry. 709 */ 710 for (i = 1; i < nr_cpu_ids; i++) { 711 if (cpu_logical_map(i) != INVALID_HWID) { 712 if (smp_cpu_setup(i)) 713 set_cpu_logical_map(i, INVALID_HWID); 714 } 715 } 716 } 717 718 void __init smp_prepare_cpus(unsigned int max_cpus) 719 { 720 const struct cpu_operations *ops; 721 int err; 722 unsigned int cpu; 723 unsigned int this_cpu; 724 725 init_cpu_topology(); 726 727 this_cpu = smp_processor_id(); 728 store_cpu_topology(this_cpu); 729 numa_store_cpu_info(this_cpu); 730 numa_add_cpu(this_cpu); 731 732 /* 733 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set 734 * secondary CPUs present. 735 */ 736 if (max_cpus == 0) 737 return; 738 739 /* 740 * Initialise the present map (which describes the set of CPUs 741 * actually populated at the present time) and release the 742 * secondaries from the bootloader. 743 */ 744 for_each_possible_cpu(cpu) { 745 746 per_cpu(cpu_number, cpu) = cpu; 747 748 if (cpu == smp_processor_id()) 749 continue; 750 751 ops = get_cpu_ops(cpu); 752 if (!ops) 753 continue; 754 755 err = ops->cpu_prepare(cpu); 756 if (err) 757 continue; 758 759 set_cpu_present(cpu, true); 760 numa_store_cpu_info(cpu); 761 } 762 } 763 764 static const char *ipi_types[NR_IPI] __tracepoint_string = { 765 [IPI_RESCHEDULE] = "Rescheduling interrupts", 766 [IPI_CALL_FUNC] = "Function call interrupts", 767 [IPI_CPU_STOP] = "CPU stop interrupts", 768 [IPI_CPU_CRASH_STOP] = "CPU stop (for crash dump) interrupts", 769 [IPI_TIMER] = "Timer broadcast interrupts", 770 [IPI_IRQ_WORK] = "IRQ work interrupts", 771 [IPI_WAKEUP] = "CPU wake-up interrupts", 772 }; 773 774 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr); 775 776 unsigned long irq_err_count; 777 778 int arch_show_interrupts(struct seq_file *p, int prec) 779 { 780 unsigned int cpu, i; 781 782 for (i = 0; i < NR_IPI; i++) { 783 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, 784 prec >= 4 ? " " : ""); 785 for_each_online_cpu(cpu) 786 seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu)); 787 seq_printf(p, " %s\n", ipi_types[i]); 788 } 789 790 seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count); 791 return 0; 792 } 793 794 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 795 { 796 smp_cross_call(mask, IPI_CALL_FUNC); 797 } 798 799 void arch_send_call_function_single_ipi(int cpu) 800 { 801 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); 802 } 803 804 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 805 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 806 { 807 smp_cross_call(mask, IPI_WAKEUP); 808 } 809 #endif 810 811 #ifdef CONFIG_IRQ_WORK 812 void arch_irq_work_raise(void) 813 { 814 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 815 } 816 #endif 817 818 static void __noreturn local_cpu_stop(void) 819 { 820 set_cpu_online(smp_processor_id(), false); 821 822 local_daif_mask(); 823 sdei_mask_local_cpu(); 824 cpu_park_loop(); 825 } 826 827 /* 828 * We need to implement panic_smp_self_stop() for parallel panic() calls, so 829 * that cpu_online_mask gets correctly updated and smp_send_stop() can skip 830 * CPUs that have already stopped themselves. 831 */ 832 void __noreturn panic_smp_self_stop(void) 833 { 834 local_cpu_stop(); 835 } 836 837 #ifdef CONFIG_KEXEC_CORE 838 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0); 839 #endif 840 841 static void __noreturn ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs) 842 { 843 #ifdef CONFIG_KEXEC_CORE 844 crash_save_cpu(regs, cpu); 845 846 atomic_dec(&waiting_for_crash_ipi); 847 848 local_irq_disable(); 849 sdei_mask_local_cpu(); 850 851 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 852 __cpu_try_die(cpu); 853 854 /* just in case */ 855 cpu_park_loop(); 856 #else 857 BUG(); 858 #endif 859 } 860 861 /* 862 * Main handler for inter-processor interrupts 863 */ 864 static void do_handle_IPI(int ipinr) 865 { 866 unsigned int cpu = smp_processor_id(); 867 868 if ((unsigned)ipinr < NR_IPI) 869 trace_ipi_entry(ipi_types[ipinr]); 870 871 switch (ipinr) { 872 case IPI_RESCHEDULE: 873 scheduler_ipi(); 874 break; 875 876 case IPI_CALL_FUNC: 877 generic_smp_call_function_interrupt(); 878 break; 879 880 case IPI_CPU_STOP: 881 local_cpu_stop(); 882 break; 883 884 case IPI_CPU_CRASH_STOP: 885 if (IS_ENABLED(CONFIG_KEXEC_CORE)) { 886 ipi_cpu_crash_stop(cpu, get_irq_regs()); 887 888 unreachable(); 889 } 890 break; 891 892 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 893 case IPI_TIMER: 894 tick_receive_broadcast(); 895 break; 896 #endif 897 898 #ifdef CONFIG_IRQ_WORK 899 case IPI_IRQ_WORK: 900 irq_work_run(); 901 break; 902 #endif 903 904 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 905 case IPI_WAKEUP: 906 WARN_ONCE(!acpi_parking_protocol_valid(cpu), 907 "CPU%u: Wake-up IPI outside the ACPI parking protocol\n", 908 cpu); 909 break; 910 #endif 911 912 default: 913 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr); 914 break; 915 } 916 917 if ((unsigned)ipinr < NR_IPI) 918 trace_ipi_exit(ipi_types[ipinr]); 919 } 920 921 static irqreturn_t ipi_handler(int irq, void *data) 922 { 923 do_handle_IPI(irq - ipi_irq_base); 924 return IRQ_HANDLED; 925 } 926 927 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 928 { 929 trace_ipi_raise(target, ipi_types[ipinr]); 930 __ipi_send_mask(ipi_desc[ipinr], target); 931 } 932 933 static void ipi_setup(int cpu) 934 { 935 int i; 936 937 if (WARN_ON_ONCE(!ipi_irq_base)) 938 return; 939 940 for (i = 0; i < nr_ipi; i++) 941 enable_percpu_irq(ipi_irq_base + i, 0); 942 } 943 944 #ifdef CONFIG_HOTPLUG_CPU 945 static void ipi_teardown(int cpu) 946 { 947 int i; 948 949 if (WARN_ON_ONCE(!ipi_irq_base)) 950 return; 951 952 for (i = 0; i < nr_ipi; i++) 953 disable_percpu_irq(ipi_irq_base + i); 954 } 955 #endif 956 957 void __init set_smp_ipi_range(int ipi_base, int n) 958 { 959 int i; 960 961 WARN_ON(n < NR_IPI); 962 nr_ipi = min(n, NR_IPI); 963 964 for (i = 0; i < nr_ipi; i++) { 965 int err; 966 967 err = request_percpu_irq(ipi_base + i, ipi_handler, 968 "IPI", &cpu_number); 969 WARN_ON(err); 970 971 ipi_desc[i] = irq_to_desc(ipi_base + i); 972 irq_set_status_flags(ipi_base + i, IRQ_HIDDEN); 973 } 974 975 ipi_irq_base = ipi_base; 976 977 /* Setup the boot CPU immediately */ 978 ipi_setup(smp_processor_id()); 979 } 980 981 void arch_smp_send_reschedule(int cpu) 982 { 983 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 984 } 985 986 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 987 void tick_broadcast(const struct cpumask *mask) 988 { 989 smp_cross_call(mask, IPI_TIMER); 990 } 991 #endif 992 993 /* 994 * The number of CPUs online, not counting this CPU (which may not be 995 * fully online and so not counted in num_online_cpus()). 996 */ 997 static inline unsigned int num_other_online_cpus(void) 998 { 999 unsigned int this_cpu_online = cpu_online(smp_processor_id()); 1000 1001 return num_online_cpus() - this_cpu_online; 1002 } 1003 1004 void smp_send_stop(void) 1005 { 1006 unsigned long timeout; 1007 1008 if (num_other_online_cpus()) { 1009 cpumask_t mask; 1010 1011 cpumask_copy(&mask, cpu_online_mask); 1012 cpumask_clear_cpu(smp_processor_id(), &mask); 1013 1014 if (system_state <= SYSTEM_RUNNING) 1015 pr_crit("SMP: stopping secondary CPUs\n"); 1016 smp_cross_call(&mask, IPI_CPU_STOP); 1017 } 1018 1019 /* Wait up to one second for other CPUs to stop */ 1020 timeout = USEC_PER_SEC; 1021 while (num_other_online_cpus() && timeout--) 1022 udelay(1); 1023 1024 if (num_other_online_cpus()) 1025 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n", 1026 cpumask_pr_args(cpu_online_mask)); 1027 1028 sdei_mask_local_cpu(); 1029 } 1030 1031 #ifdef CONFIG_KEXEC_CORE 1032 void crash_smp_send_stop(void) 1033 { 1034 static int cpus_stopped; 1035 cpumask_t mask; 1036 unsigned long timeout; 1037 1038 /* 1039 * This function can be called twice in panic path, but obviously 1040 * we execute this only once. 1041 */ 1042 if (cpus_stopped) 1043 return; 1044 1045 cpus_stopped = 1; 1046 1047 /* 1048 * If this cpu is the only one alive at this point in time, online or 1049 * not, there are no stop messages to be sent around, so just back out. 1050 */ 1051 if (num_other_online_cpus() == 0) { 1052 sdei_mask_local_cpu(); 1053 return; 1054 } 1055 1056 cpumask_copy(&mask, cpu_online_mask); 1057 cpumask_clear_cpu(smp_processor_id(), &mask); 1058 1059 atomic_set(&waiting_for_crash_ipi, num_other_online_cpus()); 1060 1061 pr_crit("SMP: stopping secondary CPUs\n"); 1062 smp_cross_call(&mask, IPI_CPU_CRASH_STOP); 1063 1064 /* Wait up to one second for other CPUs to stop */ 1065 timeout = USEC_PER_SEC; 1066 while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--) 1067 udelay(1); 1068 1069 if (atomic_read(&waiting_for_crash_ipi) > 0) 1070 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n", 1071 cpumask_pr_args(&mask)); 1072 1073 sdei_mask_local_cpu(); 1074 } 1075 1076 bool smp_crash_stop_failed(void) 1077 { 1078 return (atomic_read(&waiting_for_crash_ipi) > 0); 1079 } 1080 #endif 1081 1082 static bool have_cpu_die(void) 1083 { 1084 #ifdef CONFIG_HOTPLUG_CPU 1085 int any_cpu = raw_smp_processor_id(); 1086 const struct cpu_operations *ops = get_cpu_ops(any_cpu); 1087 1088 if (ops && ops->cpu_die) 1089 return true; 1090 #endif 1091 return false; 1092 } 1093 1094 bool cpus_are_stuck_in_kernel(void) 1095 { 1096 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die()); 1097 1098 return !!cpus_stuck_in_kernel || smp_spin_tables || 1099 is_protected_kvm_enabled(); 1100 } 1101