xref: /linux/arch/arm64/kernel/smp.c (revision 81ee0eb6c0fe34490ed92667538197d9295e899e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * SMP initialisation and IPI support
4  * Based on arch/arm/kernel/smp.c
5  *
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/arm_sdei.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/interrupt.h>
18 #include <linux/cache.h>
19 #include <linux/profile.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/cpu.h>
24 #include <linux/smp.h>
25 #include <linux/seq_file.h>
26 #include <linux/irq.h>
27 #include <linux/irqchip/arm-gic-v3.h>
28 #include <linux/percpu.h>
29 #include <linux/clockchips.h>
30 #include <linux/completion.h>
31 #include <linux/of.h>
32 #include <linux/irq_work.h>
33 #include <linux/kernel_stat.h>
34 #include <linux/kexec.h>
35 #include <linux/kvm_host.h>
36 
37 #include <asm/alternative.h>
38 #include <asm/atomic.h>
39 #include <asm/cacheflush.h>
40 #include <asm/cpu.h>
41 #include <asm/cputype.h>
42 #include <asm/cpu_ops.h>
43 #include <asm/daifflags.h>
44 #include <asm/kvm_mmu.h>
45 #include <asm/mmu_context.h>
46 #include <asm/numa.h>
47 #include <asm/processor.h>
48 #include <asm/smp_plat.h>
49 #include <asm/sections.h>
50 #include <asm/tlbflush.h>
51 #include <asm/ptrace.h>
52 #include <asm/virt.h>
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ipi.h>
56 
57 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
58 EXPORT_PER_CPU_SYMBOL(cpu_number);
59 
60 /*
61  * as from 2.5, kernels no longer have an init_tasks structure
62  * so we need some other way of telling a new secondary core
63  * where to place its SVC stack
64  */
65 struct secondary_data secondary_data;
66 /* Number of CPUs which aren't online, but looping in kernel text. */
67 static int cpus_stuck_in_kernel;
68 
69 enum ipi_msg_type {
70 	IPI_RESCHEDULE,
71 	IPI_CALL_FUNC,
72 	IPI_CPU_STOP,
73 	IPI_CPU_CRASH_STOP,
74 	IPI_TIMER,
75 	IPI_IRQ_WORK,
76 	IPI_WAKEUP,
77 	NR_IPI
78 };
79 
80 static int ipi_irq_base __read_mostly;
81 static int nr_ipi __read_mostly = NR_IPI;
82 static struct irq_desc *ipi_desc[NR_IPI] __read_mostly;
83 
84 static void ipi_setup(int cpu);
85 
86 #ifdef CONFIG_HOTPLUG_CPU
87 static void ipi_teardown(int cpu);
88 static int op_cpu_kill(unsigned int cpu);
89 #else
90 static inline int op_cpu_kill(unsigned int cpu)
91 {
92 	return -ENOSYS;
93 }
94 #endif
95 
96 
97 /*
98  * Boot a secondary CPU, and assign it the specified idle task.
99  * This also gives us the initial stack to use for this CPU.
100  */
101 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
102 {
103 	const struct cpu_operations *ops = get_cpu_ops(cpu);
104 
105 	if (ops->cpu_boot)
106 		return ops->cpu_boot(cpu);
107 
108 	return -EOPNOTSUPP;
109 }
110 
111 static DECLARE_COMPLETION(cpu_running);
112 
113 int __cpu_up(unsigned int cpu, struct task_struct *idle)
114 {
115 	int ret;
116 	long status;
117 
118 	/*
119 	 * We need to tell the secondary core where to find its stack and the
120 	 * page tables.
121 	 */
122 	secondary_data.task = idle;
123 	update_cpu_boot_status(CPU_MMU_OFF);
124 
125 	/* Now bring the CPU into our world */
126 	ret = boot_secondary(cpu, idle);
127 	if (ret) {
128 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
129 		return ret;
130 	}
131 
132 	/*
133 	 * CPU was successfully started, wait for it to come online or
134 	 * time out.
135 	 */
136 	wait_for_completion_timeout(&cpu_running,
137 				    msecs_to_jiffies(5000));
138 	if (cpu_online(cpu))
139 		return 0;
140 
141 	pr_crit("CPU%u: failed to come online\n", cpu);
142 	secondary_data.task = NULL;
143 	status = READ_ONCE(secondary_data.status);
144 	if (status == CPU_MMU_OFF)
145 		status = READ_ONCE(__early_cpu_boot_status);
146 
147 	switch (status & CPU_BOOT_STATUS_MASK) {
148 	default:
149 		pr_err("CPU%u: failed in unknown state : 0x%lx\n",
150 		       cpu, status);
151 		cpus_stuck_in_kernel++;
152 		break;
153 	case CPU_KILL_ME:
154 		if (!op_cpu_kill(cpu)) {
155 			pr_crit("CPU%u: died during early boot\n", cpu);
156 			break;
157 		}
158 		pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
159 		fallthrough;
160 	case CPU_STUCK_IN_KERNEL:
161 		pr_crit("CPU%u: is stuck in kernel\n", cpu);
162 		if (status & CPU_STUCK_REASON_52_BIT_VA)
163 			pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
164 		if (status & CPU_STUCK_REASON_NO_GRAN) {
165 			pr_crit("CPU%u: does not support %luK granule\n",
166 				cpu, PAGE_SIZE / SZ_1K);
167 		}
168 		cpus_stuck_in_kernel++;
169 		break;
170 	case CPU_PANIC_KERNEL:
171 		panic("CPU%u detected unsupported configuration\n", cpu);
172 	}
173 
174 	return -EIO;
175 }
176 
177 static void init_gic_priority_masking(void)
178 {
179 	u32 cpuflags;
180 
181 	if (WARN_ON(!gic_enable_sre()))
182 		return;
183 
184 	cpuflags = read_sysreg(daif);
185 
186 	WARN_ON(!(cpuflags & PSR_I_BIT));
187 	WARN_ON(!(cpuflags & PSR_F_BIT));
188 
189 	gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
190 }
191 
192 /*
193  * This is the secondary CPU boot entry.  We're using this CPUs
194  * idle thread stack, but a set of temporary page tables.
195  */
196 asmlinkage notrace void secondary_start_kernel(void)
197 {
198 	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
199 	struct mm_struct *mm = &init_mm;
200 	const struct cpu_operations *ops;
201 	unsigned int cpu = smp_processor_id();
202 
203 	/*
204 	 * All kernel threads share the same mm context; grab a
205 	 * reference and switch to it.
206 	 */
207 	mmgrab(mm);
208 	current->active_mm = mm;
209 
210 	/*
211 	 * TTBR0 is only used for the identity mapping at this stage. Make it
212 	 * point to zero page to avoid speculatively fetching new entries.
213 	 */
214 	cpu_uninstall_idmap();
215 
216 	if (system_uses_irq_prio_masking())
217 		init_gic_priority_masking();
218 
219 	rcu_cpu_starting(cpu);
220 	trace_hardirqs_off();
221 
222 	/*
223 	 * If the system has established the capabilities, make sure
224 	 * this CPU ticks all of those. If it doesn't, the CPU will
225 	 * fail to come online.
226 	 */
227 	check_local_cpu_capabilities();
228 
229 	ops = get_cpu_ops(cpu);
230 	if (ops->cpu_postboot)
231 		ops->cpu_postboot();
232 
233 	/*
234 	 * Log the CPU info before it is marked online and might get read.
235 	 */
236 	cpuinfo_store_cpu();
237 	store_cpu_topology(cpu);
238 
239 	/*
240 	 * Enable GIC and timers.
241 	 */
242 	notify_cpu_starting(cpu);
243 
244 	ipi_setup(cpu);
245 
246 	numa_add_cpu(cpu);
247 
248 	/*
249 	 * OK, now it's safe to let the boot CPU continue.  Wait for
250 	 * the CPU migration code to notice that the CPU is online
251 	 * before we continue.
252 	 */
253 	pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
254 					 cpu, (unsigned long)mpidr,
255 					 read_cpuid_id());
256 	update_cpu_boot_status(CPU_BOOT_SUCCESS);
257 	set_cpu_online(cpu, true);
258 	complete(&cpu_running);
259 
260 	local_daif_restore(DAIF_PROCCTX);
261 
262 	/*
263 	 * OK, it's off to the idle thread for us
264 	 */
265 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
266 }
267 
268 #ifdef CONFIG_HOTPLUG_CPU
269 static int op_cpu_disable(unsigned int cpu)
270 {
271 	const struct cpu_operations *ops = get_cpu_ops(cpu);
272 
273 	/*
274 	 * If we don't have a cpu_die method, abort before we reach the point
275 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
276 	 */
277 	if (!ops || !ops->cpu_die)
278 		return -EOPNOTSUPP;
279 
280 	/*
281 	 * We may need to abort a hot unplug for some other mechanism-specific
282 	 * reason.
283 	 */
284 	if (ops->cpu_disable)
285 		return ops->cpu_disable(cpu);
286 
287 	return 0;
288 }
289 
290 /*
291  * __cpu_disable runs on the processor to be shutdown.
292  */
293 int __cpu_disable(void)
294 {
295 	unsigned int cpu = smp_processor_id();
296 	int ret;
297 
298 	ret = op_cpu_disable(cpu);
299 	if (ret)
300 		return ret;
301 
302 	remove_cpu_topology(cpu);
303 	numa_remove_cpu(cpu);
304 
305 	/*
306 	 * Take this CPU offline.  Once we clear this, we can't return,
307 	 * and we must not schedule until we're ready to give up the cpu.
308 	 */
309 	set_cpu_online(cpu, false);
310 	ipi_teardown(cpu);
311 
312 	/*
313 	 * OK - migrate IRQs away from this CPU
314 	 */
315 	irq_migrate_all_off_this_cpu();
316 
317 	return 0;
318 }
319 
320 static int op_cpu_kill(unsigned int cpu)
321 {
322 	const struct cpu_operations *ops = get_cpu_ops(cpu);
323 
324 	/*
325 	 * If we have no means of synchronising with the dying CPU, then assume
326 	 * that it is really dead. We can only wait for an arbitrary length of
327 	 * time and hope that it's dead, so let's skip the wait and just hope.
328 	 */
329 	if (!ops->cpu_kill)
330 		return 0;
331 
332 	return ops->cpu_kill(cpu);
333 }
334 
335 /*
336  * called on the thread which is asking for a CPU to be shutdown -
337  * waits until shutdown has completed, or it is timed out.
338  */
339 void __cpu_die(unsigned int cpu)
340 {
341 	int err;
342 
343 	if (!cpu_wait_death(cpu, 5)) {
344 		pr_crit("CPU%u: cpu didn't die\n", cpu);
345 		return;
346 	}
347 	pr_debug("CPU%u: shutdown\n", cpu);
348 
349 	/*
350 	 * Now that the dying CPU is beyond the point of no return w.r.t.
351 	 * in-kernel synchronisation, try to get the firwmare to help us to
352 	 * verify that it has really left the kernel before we consider
353 	 * clobbering anything it might still be using.
354 	 */
355 	err = op_cpu_kill(cpu);
356 	if (err)
357 		pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err);
358 }
359 
360 /*
361  * Called from the idle thread for the CPU which has been shutdown.
362  *
363  */
364 void cpu_die(void)
365 {
366 	unsigned int cpu = smp_processor_id();
367 	const struct cpu_operations *ops = get_cpu_ops(cpu);
368 
369 	idle_task_exit();
370 
371 	local_daif_mask();
372 
373 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
374 	(void)cpu_report_death();
375 
376 	/*
377 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
378 	 * mechanism must perform all required cache maintenance to ensure that
379 	 * no dirty lines are lost in the process of shutting down the CPU.
380 	 */
381 	ops->cpu_die(cpu);
382 
383 	BUG();
384 }
385 #endif
386 
387 static void __cpu_try_die(int cpu)
388 {
389 #ifdef CONFIG_HOTPLUG_CPU
390 	const struct cpu_operations *ops = get_cpu_ops(cpu);
391 
392 	if (ops && ops->cpu_die)
393 		ops->cpu_die(cpu);
394 #endif
395 }
396 
397 /*
398  * Kill the calling secondary CPU, early in bringup before it is turned
399  * online.
400  */
401 void cpu_die_early(void)
402 {
403 	int cpu = smp_processor_id();
404 
405 	pr_crit("CPU%d: will not boot\n", cpu);
406 
407 	/* Mark this CPU absent */
408 	set_cpu_present(cpu, 0);
409 	rcu_report_dead(cpu);
410 
411 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
412 		update_cpu_boot_status(CPU_KILL_ME);
413 		__cpu_try_die(cpu);
414 	}
415 
416 	update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
417 
418 	cpu_park_loop();
419 }
420 
421 static void __init hyp_mode_check(void)
422 {
423 	if (is_hyp_mode_available())
424 		pr_info("CPU: All CPU(s) started at EL2\n");
425 	else if (is_hyp_mode_mismatched())
426 		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
427 			   "CPU: CPUs started in inconsistent modes");
428 	else
429 		pr_info("CPU: All CPU(s) started at EL1\n");
430 	if (IS_ENABLED(CONFIG_KVM) && !is_kernel_in_hyp_mode()) {
431 		kvm_compute_layout();
432 		kvm_apply_hyp_relocations();
433 	}
434 }
435 
436 void __init smp_cpus_done(unsigned int max_cpus)
437 {
438 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
439 	setup_cpu_features();
440 	hyp_mode_check();
441 	apply_alternatives_all();
442 	mark_linear_text_alias_ro();
443 }
444 
445 void __init smp_prepare_boot_cpu(void)
446 {
447 	/*
448 	 * The runtime per-cpu areas have been allocated by
449 	 * setup_per_cpu_areas(), and CPU0's boot time per-cpu area will be
450 	 * freed shortly, so we must move over to the runtime per-cpu area.
451 	 */
452 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
453 	cpuinfo_store_boot_cpu();
454 
455 	/*
456 	 * We now know enough about the boot CPU to apply the
457 	 * alternatives that cannot wait until interrupt handling
458 	 * and/or scheduling is enabled.
459 	 */
460 	apply_boot_alternatives();
461 
462 	/* Conditionally switch to GIC PMR for interrupt masking */
463 	if (system_uses_irq_prio_masking())
464 		init_gic_priority_masking();
465 
466 	kasan_init_hw_tags();
467 }
468 
469 /*
470  * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
471  * entries and check for duplicates. If any is found just ignore the
472  * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
473  * matching valid MPIDR values.
474  */
475 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
476 {
477 	unsigned int i;
478 
479 	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
480 		if (cpu_logical_map(i) == hwid)
481 			return true;
482 	return false;
483 }
484 
485 /*
486  * Initialize cpu operations for a logical cpu and
487  * set it in the possible mask on success
488  */
489 static int __init smp_cpu_setup(int cpu)
490 {
491 	const struct cpu_operations *ops;
492 
493 	if (init_cpu_ops(cpu))
494 		return -ENODEV;
495 
496 	ops = get_cpu_ops(cpu);
497 	if (ops->cpu_init(cpu))
498 		return -ENODEV;
499 
500 	set_cpu_possible(cpu, true);
501 
502 	return 0;
503 }
504 
505 static bool bootcpu_valid __initdata;
506 static unsigned int cpu_count = 1;
507 
508 #ifdef CONFIG_ACPI
509 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
510 
511 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
512 {
513 	return &cpu_madt_gicc[cpu];
514 }
515 
516 /*
517  * acpi_map_gic_cpu_interface - parse processor MADT entry
518  *
519  * Carry out sanity checks on MADT processor entry and initialize
520  * cpu_logical_map on success
521  */
522 static void __init
523 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
524 {
525 	u64 hwid = processor->arm_mpidr;
526 
527 	if (!(processor->flags & ACPI_MADT_ENABLED)) {
528 		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
529 		return;
530 	}
531 
532 	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
533 		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
534 		return;
535 	}
536 
537 	if (is_mpidr_duplicate(cpu_count, hwid)) {
538 		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
539 		return;
540 	}
541 
542 	/* Check if GICC structure of boot CPU is available in the MADT */
543 	if (cpu_logical_map(0) == hwid) {
544 		if (bootcpu_valid) {
545 			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
546 			       hwid);
547 			return;
548 		}
549 		bootcpu_valid = true;
550 		cpu_madt_gicc[0] = *processor;
551 		return;
552 	}
553 
554 	if (cpu_count >= NR_CPUS)
555 		return;
556 
557 	/* map the logical cpu id to cpu MPIDR */
558 	set_cpu_logical_map(cpu_count, hwid);
559 
560 	cpu_madt_gicc[cpu_count] = *processor;
561 
562 	/*
563 	 * Set-up the ACPI parking protocol cpu entries
564 	 * while initializing the cpu_logical_map to
565 	 * avoid parsing MADT entries multiple times for
566 	 * nothing (ie a valid cpu_logical_map entry should
567 	 * contain a valid parking protocol data set to
568 	 * initialize the cpu if the parking protocol is
569 	 * the only available enable method).
570 	 */
571 	acpi_set_mailbox_entry(cpu_count, processor);
572 
573 	cpu_count++;
574 }
575 
576 static int __init
577 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header,
578 			     const unsigned long end)
579 {
580 	struct acpi_madt_generic_interrupt *processor;
581 
582 	processor = (struct acpi_madt_generic_interrupt *)header;
583 	if (BAD_MADT_GICC_ENTRY(processor, end))
584 		return -EINVAL;
585 
586 	acpi_table_print_madt_entry(&header->common);
587 
588 	acpi_map_gic_cpu_interface(processor);
589 
590 	return 0;
591 }
592 
593 static void __init acpi_parse_and_init_cpus(void)
594 {
595 	int i;
596 
597 	/*
598 	 * do a walk of MADT to determine how many CPUs
599 	 * we have including disabled CPUs, and get information
600 	 * we need for SMP init.
601 	 */
602 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
603 				      acpi_parse_gic_cpu_interface, 0);
604 
605 	/*
606 	 * In ACPI, SMP and CPU NUMA information is provided in separate
607 	 * static tables, namely the MADT and the SRAT.
608 	 *
609 	 * Thus, it is simpler to first create the cpu logical map through
610 	 * an MADT walk and then map the logical cpus to their node ids
611 	 * as separate steps.
612 	 */
613 	acpi_map_cpus_to_nodes();
614 
615 	for (i = 0; i < nr_cpu_ids; i++)
616 		early_map_cpu_to_node(i, acpi_numa_get_nid(i));
617 }
618 #else
619 #define acpi_parse_and_init_cpus(...)	do { } while (0)
620 #endif
621 
622 /*
623  * Enumerate the possible CPU set from the device tree and build the
624  * cpu logical map array containing MPIDR values related to logical
625  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
626  */
627 static void __init of_parse_and_init_cpus(void)
628 {
629 	struct device_node *dn;
630 
631 	for_each_of_cpu_node(dn) {
632 		u64 hwid = of_get_cpu_hwid(dn, 0);
633 
634 		if (hwid & ~MPIDR_HWID_BITMASK)
635 			goto next;
636 
637 		if (is_mpidr_duplicate(cpu_count, hwid)) {
638 			pr_err("%pOF: duplicate cpu reg properties in the DT\n",
639 				dn);
640 			goto next;
641 		}
642 
643 		/*
644 		 * The numbering scheme requires that the boot CPU
645 		 * must be assigned logical id 0. Record it so that
646 		 * the logical map built from DT is validated and can
647 		 * be used.
648 		 */
649 		if (hwid == cpu_logical_map(0)) {
650 			if (bootcpu_valid) {
651 				pr_err("%pOF: duplicate boot cpu reg property in DT\n",
652 					dn);
653 				goto next;
654 			}
655 
656 			bootcpu_valid = true;
657 			early_map_cpu_to_node(0, of_node_to_nid(dn));
658 
659 			/*
660 			 * cpu_logical_map has already been
661 			 * initialized and the boot cpu doesn't need
662 			 * the enable-method so continue without
663 			 * incrementing cpu.
664 			 */
665 			continue;
666 		}
667 
668 		if (cpu_count >= NR_CPUS)
669 			goto next;
670 
671 		pr_debug("cpu logical map 0x%llx\n", hwid);
672 		set_cpu_logical_map(cpu_count, hwid);
673 
674 		early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
675 next:
676 		cpu_count++;
677 	}
678 }
679 
680 /*
681  * Enumerate the possible CPU set from the device tree or ACPI and build the
682  * cpu logical map array containing MPIDR values related to logical
683  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
684  */
685 void __init smp_init_cpus(void)
686 {
687 	int i;
688 
689 	if (acpi_disabled)
690 		of_parse_and_init_cpus();
691 	else
692 		acpi_parse_and_init_cpus();
693 
694 	if (cpu_count > nr_cpu_ids)
695 		pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
696 			cpu_count, nr_cpu_ids);
697 
698 	if (!bootcpu_valid) {
699 		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
700 		return;
701 	}
702 
703 	/*
704 	 * We need to set the cpu_logical_map entries before enabling
705 	 * the cpus so that cpu processor description entries (DT cpu nodes
706 	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
707 	 * with entries in cpu_logical_map while initializing the cpus.
708 	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
709 	 */
710 	for (i = 1; i < nr_cpu_ids; i++) {
711 		if (cpu_logical_map(i) != INVALID_HWID) {
712 			if (smp_cpu_setup(i))
713 				set_cpu_logical_map(i, INVALID_HWID);
714 		}
715 	}
716 }
717 
718 void __init smp_prepare_cpus(unsigned int max_cpus)
719 {
720 	const struct cpu_operations *ops;
721 	int err;
722 	unsigned int cpu;
723 	unsigned int this_cpu;
724 
725 	init_cpu_topology();
726 
727 	this_cpu = smp_processor_id();
728 	store_cpu_topology(this_cpu);
729 	numa_store_cpu_info(this_cpu);
730 	numa_add_cpu(this_cpu);
731 
732 	/*
733 	 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
734 	 * secondary CPUs present.
735 	 */
736 	if (max_cpus == 0)
737 		return;
738 
739 	/*
740 	 * Initialise the present map (which describes the set of CPUs
741 	 * actually populated at the present time) and release the
742 	 * secondaries from the bootloader.
743 	 */
744 	for_each_possible_cpu(cpu) {
745 
746 		per_cpu(cpu_number, cpu) = cpu;
747 
748 		if (cpu == smp_processor_id())
749 			continue;
750 
751 		ops = get_cpu_ops(cpu);
752 		if (!ops)
753 			continue;
754 
755 		err = ops->cpu_prepare(cpu);
756 		if (err)
757 			continue;
758 
759 		set_cpu_present(cpu, true);
760 		numa_store_cpu_info(cpu);
761 	}
762 }
763 
764 static const char *ipi_types[NR_IPI] __tracepoint_string = {
765 	[IPI_RESCHEDULE]	= "Rescheduling interrupts",
766 	[IPI_CALL_FUNC]		= "Function call interrupts",
767 	[IPI_CPU_STOP]		= "CPU stop interrupts",
768 	[IPI_CPU_CRASH_STOP]	= "CPU stop (for crash dump) interrupts",
769 	[IPI_TIMER]		= "Timer broadcast interrupts",
770 	[IPI_IRQ_WORK]		= "IRQ work interrupts",
771 	[IPI_WAKEUP]		= "CPU wake-up interrupts",
772 };
773 
774 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr);
775 
776 unsigned long irq_err_count;
777 
778 int arch_show_interrupts(struct seq_file *p, int prec)
779 {
780 	unsigned int cpu, i;
781 
782 	for (i = 0; i < NR_IPI; i++) {
783 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
784 			   prec >= 4 ? " " : "");
785 		for_each_online_cpu(cpu)
786 			seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu));
787 		seq_printf(p, "      %s\n", ipi_types[i]);
788 	}
789 
790 	seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count);
791 	return 0;
792 }
793 
794 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
795 {
796 	smp_cross_call(mask, IPI_CALL_FUNC);
797 }
798 
799 void arch_send_call_function_single_ipi(int cpu)
800 {
801 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
802 }
803 
804 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
805 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
806 {
807 	smp_cross_call(mask, IPI_WAKEUP);
808 }
809 #endif
810 
811 #ifdef CONFIG_IRQ_WORK
812 void arch_irq_work_raise(void)
813 {
814 	smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
815 }
816 #endif
817 
818 static void local_cpu_stop(void)
819 {
820 	set_cpu_online(smp_processor_id(), false);
821 
822 	local_daif_mask();
823 	sdei_mask_local_cpu();
824 	cpu_park_loop();
825 }
826 
827 /*
828  * We need to implement panic_smp_self_stop() for parallel panic() calls, so
829  * that cpu_online_mask gets correctly updated and smp_send_stop() can skip
830  * CPUs that have already stopped themselves.
831  */
832 void panic_smp_self_stop(void)
833 {
834 	local_cpu_stop();
835 }
836 
837 #ifdef CONFIG_KEXEC_CORE
838 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
839 #endif
840 
841 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
842 {
843 #ifdef CONFIG_KEXEC_CORE
844 	crash_save_cpu(regs, cpu);
845 
846 	atomic_dec(&waiting_for_crash_ipi);
847 
848 	local_irq_disable();
849 	sdei_mask_local_cpu();
850 
851 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
852 		__cpu_try_die(cpu);
853 
854 	/* just in case */
855 	cpu_park_loop();
856 #endif
857 }
858 
859 /*
860  * Main handler for inter-processor interrupts
861  */
862 static void do_handle_IPI(int ipinr)
863 {
864 	unsigned int cpu = smp_processor_id();
865 
866 	if ((unsigned)ipinr < NR_IPI)
867 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
868 
869 	switch (ipinr) {
870 	case IPI_RESCHEDULE:
871 		scheduler_ipi();
872 		break;
873 
874 	case IPI_CALL_FUNC:
875 		generic_smp_call_function_interrupt();
876 		break;
877 
878 	case IPI_CPU_STOP:
879 		local_cpu_stop();
880 		break;
881 
882 	case IPI_CPU_CRASH_STOP:
883 		if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
884 			ipi_cpu_crash_stop(cpu, get_irq_regs());
885 
886 			unreachable();
887 		}
888 		break;
889 
890 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
891 	case IPI_TIMER:
892 		tick_receive_broadcast();
893 		break;
894 #endif
895 
896 #ifdef CONFIG_IRQ_WORK
897 	case IPI_IRQ_WORK:
898 		irq_work_run();
899 		break;
900 #endif
901 
902 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
903 	case IPI_WAKEUP:
904 		WARN_ONCE(!acpi_parking_protocol_valid(cpu),
905 			  "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
906 			  cpu);
907 		break;
908 #endif
909 
910 	default:
911 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
912 		break;
913 	}
914 
915 	if ((unsigned)ipinr < NR_IPI)
916 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
917 }
918 
919 static irqreturn_t ipi_handler(int irq, void *data)
920 {
921 	do_handle_IPI(irq - ipi_irq_base);
922 	return IRQ_HANDLED;
923 }
924 
925 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
926 {
927 	trace_ipi_raise(target, ipi_types[ipinr]);
928 	__ipi_send_mask(ipi_desc[ipinr], target);
929 }
930 
931 static void ipi_setup(int cpu)
932 {
933 	int i;
934 
935 	if (WARN_ON_ONCE(!ipi_irq_base))
936 		return;
937 
938 	for (i = 0; i < nr_ipi; i++)
939 		enable_percpu_irq(ipi_irq_base + i, 0);
940 }
941 
942 #ifdef CONFIG_HOTPLUG_CPU
943 static void ipi_teardown(int cpu)
944 {
945 	int i;
946 
947 	if (WARN_ON_ONCE(!ipi_irq_base))
948 		return;
949 
950 	for (i = 0; i < nr_ipi; i++)
951 		disable_percpu_irq(ipi_irq_base + i);
952 }
953 #endif
954 
955 void __init set_smp_ipi_range(int ipi_base, int n)
956 {
957 	int i;
958 
959 	WARN_ON(n < NR_IPI);
960 	nr_ipi = min(n, NR_IPI);
961 
962 	for (i = 0; i < nr_ipi; i++) {
963 		int err;
964 
965 		err = request_percpu_irq(ipi_base + i, ipi_handler,
966 					 "IPI", &cpu_number);
967 		WARN_ON(err);
968 
969 		ipi_desc[i] = irq_to_desc(ipi_base + i);
970 		irq_set_status_flags(ipi_base + i, IRQ_HIDDEN);
971 	}
972 
973 	ipi_irq_base = ipi_base;
974 
975 	/* Setup the boot CPU immediately */
976 	ipi_setup(smp_processor_id());
977 }
978 
979 void smp_send_reschedule(int cpu)
980 {
981 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
982 }
983 
984 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
985 void tick_broadcast(const struct cpumask *mask)
986 {
987 	smp_cross_call(mask, IPI_TIMER);
988 }
989 #endif
990 
991 /*
992  * The number of CPUs online, not counting this CPU (which may not be
993  * fully online and so not counted in num_online_cpus()).
994  */
995 static inline unsigned int num_other_online_cpus(void)
996 {
997 	unsigned int this_cpu_online = cpu_online(smp_processor_id());
998 
999 	return num_online_cpus() - this_cpu_online;
1000 }
1001 
1002 void smp_send_stop(void)
1003 {
1004 	unsigned long timeout;
1005 
1006 	if (num_other_online_cpus()) {
1007 		cpumask_t mask;
1008 
1009 		cpumask_copy(&mask, cpu_online_mask);
1010 		cpumask_clear_cpu(smp_processor_id(), &mask);
1011 
1012 		if (system_state <= SYSTEM_RUNNING)
1013 			pr_crit("SMP: stopping secondary CPUs\n");
1014 		smp_cross_call(&mask, IPI_CPU_STOP);
1015 	}
1016 
1017 	/* Wait up to one second for other CPUs to stop */
1018 	timeout = USEC_PER_SEC;
1019 	while (num_other_online_cpus() && timeout--)
1020 		udelay(1);
1021 
1022 	if (num_other_online_cpus())
1023 		pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1024 			cpumask_pr_args(cpu_online_mask));
1025 
1026 	sdei_mask_local_cpu();
1027 }
1028 
1029 #ifdef CONFIG_KEXEC_CORE
1030 void crash_smp_send_stop(void)
1031 {
1032 	static int cpus_stopped;
1033 	cpumask_t mask;
1034 	unsigned long timeout;
1035 
1036 	/*
1037 	 * This function can be called twice in panic path, but obviously
1038 	 * we execute this only once.
1039 	 */
1040 	if (cpus_stopped)
1041 		return;
1042 
1043 	cpus_stopped = 1;
1044 
1045 	/*
1046 	 * If this cpu is the only one alive at this point in time, online or
1047 	 * not, there are no stop messages to be sent around, so just back out.
1048 	 */
1049 	if (num_other_online_cpus() == 0) {
1050 		sdei_mask_local_cpu();
1051 		return;
1052 	}
1053 
1054 	cpumask_copy(&mask, cpu_online_mask);
1055 	cpumask_clear_cpu(smp_processor_id(), &mask);
1056 
1057 	atomic_set(&waiting_for_crash_ipi, num_other_online_cpus());
1058 
1059 	pr_crit("SMP: stopping secondary CPUs\n");
1060 	smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
1061 
1062 	/* Wait up to one second for other CPUs to stop */
1063 	timeout = USEC_PER_SEC;
1064 	while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
1065 		udelay(1);
1066 
1067 	if (atomic_read(&waiting_for_crash_ipi) > 0)
1068 		pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1069 			cpumask_pr_args(&mask));
1070 
1071 	sdei_mask_local_cpu();
1072 }
1073 
1074 bool smp_crash_stop_failed(void)
1075 {
1076 	return (atomic_read(&waiting_for_crash_ipi) > 0);
1077 }
1078 #endif
1079 
1080 /*
1081  * not supported here
1082  */
1083 int setup_profiling_timer(unsigned int multiplier)
1084 {
1085 	return -EINVAL;
1086 }
1087 
1088 static bool have_cpu_die(void)
1089 {
1090 #ifdef CONFIG_HOTPLUG_CPU
1091 	int any_cpu = raw_smp_processor_id();
1092 	const struct cpu_operations *ops = get_cpu_ops(any_cpu);
1093 
1094 	if (ops && ops->cpu_die)
1095 		return true;
1096 #endif
1097 	return false;
1098 }
1099 
1100 bool cpus_are_stuck_in_kernel(void)
1101 {
1102 	bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1103 
1104 	return !!cpus_stuck_in_kernel || smp_spin_tables ||
1105 		is_protected_kvm_enabled();
1106 }
1107