xref: /linux/arch/arm64/kernel/smp.c (revision 6ef1ca2d14f2a78a83dfd40e34f53e8d5c1c0b4b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * SMP initialisation and IPI support
4  * Based on arch/arm/kernel/smp.c
5  *
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/arm_sdei.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/interrupt.h>
18 #include <linux/cache.h>
19 #include <linux/profile.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/cpu.h>
24 #include <linux/smp.h>
25 #include <linux/seq_file.h>
26 #include <linux/irq.h>
27 #include <linux/irqchip/arm-gic-v3.h>
28 #include <linux/percpu.h>
29 #include <linux/clockchips.h>
30 #include <linux/completion.h>
31 #include <linux/of.h>
32 #include <linux/irq_work.h>
33 #include <linux/kernel_stat.h>
34 #include <linux/kexec.h>
35 #include <linux/kgdb.h>
36 #include <linux/kvm_host.h>
37 #include <linux/nmi.h>
38 
39 #include <asm/alternative.h>
40 #include <asm/atomic.h>
41 #include <asm/cacheflush.h>
42 #include <asm/cpu.h>
43 #include <asm/cputype.h>
44 #include <asm/cpu_ops.h>
45 #include <asm/daifflags.h>
46 #include <asm/kvm_mmu.h>
47 #include <asm/mmu_context.h>
48 #include <asm/numa.h>
49 #include <asm/processor.h>
50 #include <asm/smp_plat.h>
51 #include <asm/sections.h>
52 #include <asm/tlbflush.h>
53 #include <asm/ptrace.h>
54 #include <asm/virt.h>
55 
56 #include <trace/events/ipi.h>
57 
58 /*
59  * as from 2.5, kernels no longer have an init_tasks structure
60  * so we need some other way of telling a new secondary core
61  * where to place its SVC stack
62  */
63 struct secondary_data secondary_data;
64 /* Number of CPUs which aren't online, but looping in kernel text. */
65 static int cpus_stuck_in_kernel;
66 
67 enum ipi_msg_type {
68 	IPI_RESCHEDULE,
69 	IPI_CALL_FUNC,
70 	IPI_CPU_STOP,
71 	IPI_CPU_CRASH_STOP,
72 	IPI_TIMER,
73 	IPI_IRQ_WORK,
74 	NR_IPI,
75 	/*
76 	 * Any enum >= NR_IPI and < MAX_IPI is special and not tracable
77 	 * with trace_ipi_*
78 	 */
79 	IPI_CPU_BACKTRACE = NR_IPI,
80 	IPI_KGDB_ROUNDUP,
81 	MAX_IPI
82 };
83 
84 static int ipi_irq_base __ro_after_init;
85 static int nr_ipi __ro_after_init = NR_IPI;
86 static struct irq_desc *ipi_desc[MAX_IPI] __ro_after_init;
87 
88 static void ipi_setup(int cpu);
89 
90 #ifdef CONFIG_HOTPLUG_CPU
91 static void ipi_teardown(int cpu);
92 static int op_cpu_kill(unsigned int cpu);
93 #else
94 static inline int op_cpu_kill(unsigned int cpu)
95 {
96 	return -ENOSYS;
97 }
98 #endif
99 
100 
101 /*
102  * Boot a secondary CPU, and assign it the specified idle task.
103  * This also gives us the initial stack to use for this CPU.
104  */
105 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
106 {
107 	const struct cpu_operations *ops = get_cpu_ops(cpu);
108 
109 	if (ops->cpu_boot)
110 		return ops->cpu_boot(cpu);
111 
112 	return -EOPNOTSUPP;
113 }
114 
115 static DECLARE_COMPLETION(cpu_running);
116 
117 int __cpu_up(unsigned int cpu, struct task_struct *idle)
118 {
119 	int ret;
120 	long status;
121 
122 	/*
123 	 * We need to tell the secondary core where to find its stack and the
124 	 * page tables.
125 	 */
126 	secondary_data.task = idle;
127 	update_cpu_boot_status(CPU_MMU_OFF);
128 
129 	/* Now bring the CPU into our world */
130 	ret = boot_secondary(cpu, idle);
131 	if (ret) {
132 		if (ret != -EPERM)
133 			pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
134 		return ret;
135 	}
136 
137 	/*
138 	 * CPU was successfully started, wait for it to come online or
139 	 * time out.
140 	 */
141 	wait_for_completion_timeout(&cpu_running,
142 				    msecs_to_jiffies(5000));
143 	if (cpu_online(cpu))
144 		return 0;
145 
146 	pr_crit("CPU%u: failed to come online\n", cpu);
147 	secondary_data.task = NULL;
148 	status = READ_ONCE(secondary_data.status);
149 	if (status == CPU_MMU_OFF)
150 		status = READ_ONCE(__early_cpu_boot_status);
151 
152 	switch (status & CPU_BOOT_STATUS_MASK) {
153 	default:
154 		pr_err("CPU%u: failed in unknown state : 0x%lx\n",
155 		       cpu, status);
156 		cpus_stuck_in_kernel++;
157 		break;
158 	case CPU_KILL_ME:
159 		if (!op_cpu_kill(cpu)) {
160 			pr_crit("CPU%u: died during early boot\n", cpu);
161 			break;
162 		}
163 		pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
164 		fallthrough;
165 	case CPU_STUCK_IN_KERNEL:
166 		pr_crit("CPU%u: is stuck in kernel\n", cpu);
167 		if (status & CPU_STUCK_REASON_52_BIT_VA)
168 			pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
169 		if (status & CPU_STUCK_REASON_NO_GRAN) {
170 			pr_crit("CPU%u: does not support %luK granule\n",
171 				cpu, PAGE_SIZE / SZ_1K);
172 		}
173 		cpus_stuck_in_kernel++;
174 		break;
175 	case CPU_PANIC_KERNEL:
176 		panic("CPU%u detected unsupported configuration\n", cpu);
177 	}
178 
179 	return -EIO;
180 }
181 
182 static void init_gic_priority_masking(void)
183 {
184 	u32 cpuflags;
185 
186 	if (WARN_ON(!gic_enable_sre()))
187 		return;
188 
189 	cpuflags = read_sysreg(daif);
190 
191 	WARN_ON(!(cpuflags & PSR_I_BIT));
192 	WARN_ON(!(cpuflags & PSR_F_BIT));
193 
194 	gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
195 }
196 
197 /*
198  * This is the secondary CPU boot entry.  We're using this CPUs
199  * idle thread stack, but a set of temporary page tables.
200  */
201 asmlinkage notrace void secondary_start_kernel(void)
202 {
203 	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
204 	struct mm_struct *mm = &init_mm;
205 	const struct cpu_operations *ops;
206 	unsigned int cpu = smp_processor_id();
207 
208 	/*
209 	 * All kernel threads share the same mm context; grab a
210 	 * reference and switch to it.
211 	 */
212 	mmgrab(mm);
213 	current->active_mm = mm;
214 
215 	/*
216 	 * TTBR0 is only used for the identity mapping at this stage. Make it
217 	 * point to zero page to avoid speculatively fetching new entries.
218 	 */
219 	cpu_uninstall_idmap();
220 
221 	if (system_uses_irq_prio_masking())
222 		init_gic_priority_masking();
223 
224 	rcutree_report_cpu_starting(cpu);
225 	trace_hardirqs_off();
226 
227 	/*
228 	 * If the system has established the capabilities, make sure
229 	 * this CPU ticks all of those. If it doesn't, the CPU will
230 	 * fail to come online.
231 	 */
232 	check_local_cpu_capabilities();
233 
234 	ops = get_cpu_ops(cpu);
235 	if (ops->cpu_postboot)
236 		ops->cpu_postboot();
237 
238 	/*
239 	 * Log the CPU info before it is marked online and might get read.
240 	 */
241 	cpuinfo_store_cpu();
242 	store_cpu_topology(cpu);
243 
244 	/*
245 	 * Enable GIC and timers.
246 	 */
247 	notify_cpu_starting(cpu);
248 
249 	ipi_setup(cpu);
250 
251 	numa_add_cpu(cpu);
252 
253 	/*
254 	 * OK, now it's safe to let the boot CPU continue.  Wait for
255 	 * the CPU migration code to notice that the CPU is online
256 	 * before we continue.
257 	 */
258 	pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
259 					 cpu, (unsigned long)mpidr,
260 					 read_cpuid_id());
261 	update_cpu_boot_status(CPU_BOOT_SUCCESS);
262 	set_cpu_online(cpu, true);
263 	complete(&cpu_running);
264 
265 	/*
266 	 * Secondary CPUs enter the kernel with all DAIF exceptions masked.
267 	 *
268 	 * As with setup_arch() we must unmask Debug and SError exceptions, and
269 	 * as the root irqchip has already been detected and initialized we can
270 	 * unmask IRQ and FIQ at the same time.
271 	 */
272 	local_daif_restore(DAIF_PROCCTX);
273 
274 	/*
275 	 * OK, it's off to the idle thread for us
276 	 */
277 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
278 }
279 
280 #ifdef CONFIG_HOTPLUG_CPU
281 static int op_cpu_disable(unsigned int cpu)
282 {
283 	const struct cpu_operations *ops = get_cpu_ops(cpu);
284 
285 	/*
286 	 * If we don't have a cpu_die method, abort before we reach the point
287 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
288 	 */
289 	if (!ops || !ops->cpu_die)
290 		return -EOPNOTSUPP;
291 
292 	/*
293 	 * We may need to abort a hot unplug for some other mechanism-specific
294 	 * reason.
295 	 */
296 	if (ops->cpu_disable)
297 		return ops->cpu_disable(cpu);
298 
299 	return 0;
300 }
301 
302 /*
303  * __cpu_disable runs on the processor to be shutdown.
304  */
305 int __cpu_disable(void)
306 {
307 	unsigned int cpu = smp_processor_id();
308 	int ret;
309 
310 	ret = op_cpu_disable(cpu);
311 	if (ret)
312 		return ret;
313 
314 	remove_cpu_topology(cpu);
315 	numa_remove_cpu(cpu);
316 
317 	/*
318 	 * Take this CPU offline.  Once we clear this, we can't return,
319 	 * and we must not schedule until we're ready to give up the cpu.
320 	 */
321 	set_cpu_online(cpu, false);
322 	ipi_teardown(cpu);
323 
324 	/*
325 	 * OK - migrate IRQs away from this CPU
326 	 */
327 	irq_migrate_all_off_this_cpu();
328 
329 	return 0;
330 }
331 
332 static int op_cpu_kill(unsigned int cpu)
333 {
334 	const struct cpu_operations *ops = get_cpu_ops(cpu);
335 
336 	/*
337 	 * If we have no means of synchronising with the dying CPU, then assume
338 	 * that it is really dead. We can only wait for an arbitrary length of
339 	 * time and hope that it's dead, so let's skip the wait and just hope.
340 	 */
341 	if (!ops->cpu_kill)
342 		return 0;
343 
344 	return ops->cpu_kill(cpu);
345 }
346 
347 /*
348  * Called on the thread which is asking for a CPU to be shutdown after the
349  * shutdown completed.
350  */
351 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
352 {
353 	int err;
354 
355 	pr_debug("CPU%u: shutdown\n", cpu);
356 
357 	/*
358 	 * Now that the dying CPU is beyond the point of no return w.r.t.
359 	 * in-kernel synchronisation, try to get the firwmare to help us to
360 	 * verify that it has really left the kernel before we consider
361 	 * clobbering anything it might still be using.
362 	 */
363 	err = op_cpu_kill(cpu);
364 	if (err)
365 		pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err);
366 }
367 
368 /*
369  * Called from the idle thread for the CPU which has been shutdown.
370  *
371  */
372 void __noreturn cpu_die(void)
373 {
374 	unsigned int cpu = smp_processor_id();
375 	const struct cpu_operations *ops = get_cpu_ops(cpu);
376 
377 	idle_task_exit();
378 
379 	local_daif_mask();
380 
381 	/* Tell cpuhp_bp_sync_dead() that this CPU is now safe to dispose of */
382 	cpuhp_ap_report_dead();
383 
384 	/*
385 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
386 	 * mechanism must perform all required cache maintenance to ensure that
387 	 * no dirty lines are lost in the process of shutting down the CPU.
388 	 */
389 	ops->cpu_die(cpu);
390 
391 	BUG();
392 }
393 #endif
394 
395 static void __cpu_try_die(int cpu)
396 {
397 #ifdef CONFIG_HOTPLUG_CPU
398 	const struct cpu_operations *ops = get_cpu_ops(cpu);
399 
400 	if (ops && ops->cpu_die)
401 		ops->cpu_die(cpu);
402 #endif
403 }
404 
405 /*
406  * Kill the calling secondary CPU, early in bringup before it is turned
407  * online.
408  */
409 void __noreturn cpu_die_early(void)
410 {
411 	int cpu = smp_processor_id();
412 
413 	pr_crit("CPU%d: will not boot\n", cpu);
414 
415 	/* Mark this CPU absent */
416 	set_cpu_present(cpu, 0);
417 	rcutree_report_cpu_dead();
418 
419 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
420 		update_cpu_boot_status(CPU_KILL_ME);
421 		__cpu_try_die(cpu);
422 	}
423 
424 	update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
425 
426 	cpu_park_loop();
427 }
428 
429 static void __init hyp_mode_check(void)
430 {
431 	if (is_hyp_mode_available())
432 		pr_info("CPU: All CPU(s) started at EL2\n");
433 	else if (is_hyp_mode_mismatched())
434 		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
435 			   "CPU: CPUs started in inconsistent modes");
436 	else
437 		pr_info("CPU: All CPU(s) started at EL1\n");
438 	if (IS_ENABLED(CONFIG_KVM) && !is_kernel_in_hyp_mode()) {
439 		kvm_compute_layout();
440 		kvm_apply_hyp_relocations();
441 	}
442 }
443 
444 void __init smp_cpus_done(unsigned int max_cpus)
445 {
446 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
447 	hyp_mode_check();
448 	setup_system_features();
449 	setup_user_features();
450 	mark_linear_text_alias_ro();
451 }
452 
453 void __init smp_prepare_boot_cpu(void)
454 {
455 	/*
456 	 * The runtime per-cpu areas have been allocated by
457 	 * setup_per_cpu_areas(), and CPU0's boot time per-cpu area will be
458 	 * freed shortly, so we must move over to the runtime per-cpu area.
459 	 */
460 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
461 
462 	cpuinfo_store_boot_cpu();
463 	setup_boot_cpu_features();
464 
465 	/* Conditionally switch to GIC PMR for interrupt masking */
466 	if (system_uses_irq_prio_masking())
467 		init_gic_priority_masking();
468 
469 	kasan_init_hw_tags();
470 	/* Init percpu seeds for random tags after cpus are set up. */
471 	kasan_init_sw_tags();
472 }
473 
474 /*
475  * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
476  * entries and check for duplicates. If any is found just ignore the
477  * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
478  * matching valid MPIDR values.
479  */
480 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
481 {
482 	unsigned int i;
483 
484 	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
485 		if (cpu_logical_map(i) == hwid)
486 			return true;
487 	return false;
488 }
489 
490 /*
491  * Initialize cpu operations for a logical cpu and
492  * set it in the possible mask on success
493  */
494 static int __init smp_cpu_setup(int cpu)
495 {
496 	const struct cpu_operations *ops;
497 
498 	if (init_cpu_ops(cpu))
499 		return -ENODEV;
500 
501 	ops = get_cpu_ops(cpu);
502 	if (ops->cpu_init(cpu))
503 		return -ENODEV;
504 
505 	set_cpu_possible(cpu, true);
506 
507 	return 0;
508 }
509 
510 static bool bootcpu_valid __initdata;
511 static unsigned int cpu_count = 1;
512 
513 int arch_register_cpu(int cpu)
514 {
515 	acpi_handle acpi_handle = acpi_get_processor_handle(cpu);
516 	struct cpu *c = &per_cpu(cpu_devices, cpu);
517 
518 	if (!acpi_disabled && !acpi_handle &&
519 	    IS_ENABLED(CONFIG_ACPI_HOTPLUG_CPU))
520 		return -EPROBE_DEFER;
521 
522 #ifdef CONFIG_ACPI_HOTPLUG_CPU
523 	/* For now block anything that looks like physical CPU Hotplug */
524 	if (invalid_logical_cpuid(cpu) || !cpu_present(cpu)) {
525 		pr_err_once("Changing CPU present bit is not supported\n");
526 		return -ENODEV;
527 	}
528 #endif
529 
530 	/*
531 	 * Availability of the acpi handle is sufficient to establish
532 	 * that _STA has aleady been checked. No need to recheck here.
533 	 */
534 	c->hotpluggable = arch_cpu_is_hotpluggable(cpu);
535 
536 	return register_cpu(c, cpu);
537 }
538 
539 #ifdef CONFIG_ACPI_HOTPLUG_CPU
540 void arch_unregister_cpu(int cpu)
541 {
542 	acpi_handle acpi_handle = acpi_get_processor_handle(cpu);
543 	struct cpu *c = &per_cpu(cpu_devices, cpu);
544 	acpi_status status;
545 	unsigned long long sta;
546 
547 	if (!acpi_handle) {
548 		pr_err_once("Removing a CPU without associated ACPI handle\n");
549 		return;
550 	}
551 
552 	status = acpi_evaluate_integer(acpi_handle, "_STA", NULL, &sta);
553 	if (ACPI_FAILURE(status))
554 		return;
555 
556 	/* For now do not allow anything that looks like physical CPU HP */
557 	if (cpu_present(cpu) && !(sta & ACPI_STA_DEVICE_PRESENT)) {
558 		pr_err_once("Changing CPU present bit is not supported\n");
559 		return;
560 	}
561 
562 	unregister_cpu(c);
563 }
564 #endif /* CONFIG_ACPI_HOTPLUG_CPU */
565 
566 #ifdef CONFIG_ACPI
567 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
568 
569 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
570 {
571 	return &cpu_madt_gicc[cpu];
572 }
573 EXPORT_SYMBOL_GPL(acpi_cpu_get_madt_gicc);
574 
575 /*
576  * acpi_map_gic_cpu_interface - parse processor MADT entry
577  *
578  * Carry out sanity checks on MADT processor entry and initialize
579  * cpu_logical_map on success
580  */
581 static void __init
582 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
583 {
584 	u64 hwid = processor->arm_mpidr;
585 
586 	if (!(processor->flags &
587 	      (ACPI_MADT_ENABLED | ACPI_MADT_GICC_ONLINE_CAPABLE))) {
588 		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
589 		return;
590 	}
591 
592 	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
593 		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
594 		return;
595 	}
596 
597 	if (is_mpidr_duplicate(cpu_count, hwid)) {
598 		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
599 		return;
600 	}
601 
602 	/* Check if GICC structure of boot CPU is available in the MADT */
603 	if (cpu_logical_map(0) == hwid) {
604 		if (bootcpu_valid) {
605 			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
606 			       hwid);
607 			return;
608 		}
609 		bootcpu_valid = true;
610 		cpu_madt_gicc[0] = *processor;
611 		return;
612 	}
613 
614 	if (cpu_count >= NR_CPUS)
615 		return;
616 
617 	/* map the logical cpu id to cpu MPIDR */
618 	set_cpu_logical_map(cpu_count, hwid);
619 
620 	cpu_madt_gicc[cpu_count] = *processor;
621 
622 	/*
623 	 * Set-up the ACPI parking protocol cpu entries
624 	 * while initializing the cpu_logical_map to
625 	 * avoid parsing MADT entries multiple times for
626 	 * nothing (ie a valid cpu_logical_map entry should
627 	 * contain a valid parking protocol data set to
628 	 * initialize the cpu if the parking protocol is
629 	 * the only available enable method).
630 	 */
631 	acpi_set_mailbox_entry(cpu_count, processor);
632 
633 	cpu_count++;
634 }
635 
636 static int __init
637 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header,
638 			     const unsigned long end)
639 {
640 	struct acpi_madt_generic_interrupt *processor;
641 
642 	processor = (struct acpi_madt_generic_interrupt *)header;
643 	if (BAD_MADT_GICC_ENTRY(processor, end))
644 		return -EINVAL;
645 
646 	acpi_table_print_madt_entry(&header->common);
647 
648 	acpi_map_gic_cpu_interface(processor);
649 
650 	return 0;
651 }
652 
653 static void __init acpi_parse_and_init_cpus(void)
654 {
655 	int i;
656 
657 	/*
658 	 * do a walk of MADT to determine how many CPUs
659 	 * we have including disabled CPUs, and get information
660 	 * we need for SMP init.
661 	 */
662 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
663 				      acpi_parse_gic_cpu_interface, 0);
664 
665 	/*
666 	 * In ACPI, SMP and CPU NUMA information is provided in separate
667 	 * static tables, namely the MADT and the SRAT.
668 	 *
669 	 * Thus, it is simpler to first create the cpu logical map through
670 	 * an MADT walk and then map the logical cpus to their node ids
671 	 * as separate steps.
672 	 */
673 	acpi_map_cpus_to_nodes();
674 
675 	for (i = 0; i < nr_cpu_ids; i++)
676 		early_map_cpu_to_node(i, acpi_numa_get_nid(i));
677 }
678 #else
679 #define acpi_parse_and_init_cpus(...)	do { } while (0)
680 #endif
681 
682 /*
683  * Enumerate the possible CPU set from the device tree and build the
684  * cpu logical map array containing MPIDR values related to logical
685  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
686  */
687 static void __init of_parse_and_init_cpus(void)
688 {
689 	struct device_node *dn;
690 
691 	for_each_of_cpu_node(dn) {
692 		u64 hwid = of_get_cpu_hwid(dn, 0);
693 
694 		if (hwid & ~MPIDR_HWID_BITMASK)
695 			goto next;
696 
697 		if (is_mpidr_duplicate(cpu_count, hwid)) {
698 			pr_err("%pOF: duplicate cpu reg properties in the DT\n",
699 				dn);
700 			goto next;
701 		}
702 
703 		/*
704 		 * The numbering scheme requires that the boot CPU
705 		 * must be assigned logical id 0. Record it so that
706 		 * the logical map built from DT is validated and can
707 		 * be used.
708 		 */
709 		if (hwid == cpu_logical_map(0)) {
710 			if (bootcpu_valid) {
711 				pr_err("%pOF: duplicate boot cpu reg property in DT\n",
712 					dn);
713 				goto next;
714 			}
715 
716 			bootcpu_valid = true;
717 			early_map_cpu_to_node(0, of_node_to_nid(dn));
718 
719 			/*
720 			 * cpu_logical_map has already been
721 			 * initialized and the boot cpu doesn't need
722 			 * the enable-method so continue without
723 			 * incrementing cpu.
724 			 */
725 			continue;
726 		}
727 
728 		if (cpu_count >= NR_CPUS)
729 			goto next;
730 
731 		pr_debug("cpu logical map 0x%llx\n", hwid);
732 		set_cpu_logical_map(cpu_count, hwid);
733 
734 		early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
735 next:
736 		cpu_count++;
737 	}
738 }
739 
740 /*
741  * Enumerate the possible CPU set from the device tree or ACPI and build the
742  * cpu logical map array containing MPIDR values related to logical
743  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
744  */
745 void __init smp_init_cpus(void)
746 {
747 	int i;
748 
749 	if (acpi_disabled)
750 		of_parse_and_init_cpus();
751 	else
752 		acpi_parse_and_init_cpus();
753 
754 	if (cpu_count > nr_cpu_ids)
755 		pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
756 			cpu_count, nr_cpu_ids);
757 
758 	if (!bootcpu_valid) {
759 		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
760 		return;
761 	}
762 
763 	/*
764 	 * We need to set the cpu_logical_map entries before enabling
765 	 * the cpus so that cpu processor description entries (DT cpu nodes
766 	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
767 	 * with entries in cpu_logical_map while initializing the cpus.
768 	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
769 	 */
770 	for (i = 1; i < nr_cpu_ids; i++) {
771 		if (cpu_logical_map(i) != INVALID_HWID) {
772 			if (smp_cpu_setup(i))
773 				set_cpu_logical_map(i, INVALID_HWID);
774 		}
775 	}
776 }
777 
778 void __init smp_prepare_cpus(unsigned int max_cpus)
779 {
780 	const struct cpu_operations *ops;
781 	int err;
782 	unsigned int cpu;
783 	unsigned int this_cpu;
784 
785 	init_cpu_topology();
786 
787 	this_cpu = smp_processor_id();
788 	store_cpu_topology(this_cpu);
789 	numa_store_cpu_info(this_cpu);
790 	numa_add_cpu(this_cpu);
791 
792 	/*
793 	 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
794 	 * secondary CPUs present.
795 	 */
796 	if (max_cpus == 0)
797 		return;
798 
799 	/*
800 	 * Initialise the present map (which describes the set of CPUs
801 	 * actually populated at the present time) and release the
802 	 * secondaries from the bootloader.
803 	 */
804 	for_each_possible_cpu(cpu) {
805 
806 		if (cpu == smp_processor_id())
807 			continue;
808 
809 		ops = get_cpu_ops(cpu);
810 		if (!ops)
811 			continue;
812 
813 		err = ops->cpu_prepare(cpu);
814 		if (err)
815 			continue;
816 
817 		set_cpu_present(cpu, true);
818 		numa_store_cpu_info(cpu);
819 	}
820 }
821 
822 static const char *ipi_types[MAX_IPI] __tracepoint_string = {
823 	[IPI_RESCHEDULE]	= "Rescheduling interrupts",
824 	[IPI_CALL_FUNC]		= "Function call interrupts",
825 	[IPI_CPU_STOP]		= "CPU stop interrupts",
826 	[IPI_CPU_CRASH_STOP]	= "CPU stop (for crash dump) interrupts",
827 	[IPI_TIMER]		= "Timer broadcast interrupts",
828 	[IPI_IRQ_WORK]		= "IRQ work interrupts",
829 	[IPI_CPU_BACKTRACE]	= "CPU backtrace interrupts",
830 	[IPI_KGDB_ROUNDUP]	= "KGDB roundup interrupts",
831 };
832 
833 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr);
834 
835 unsigned long irq_err_count;
836 
837 int arch_show_interrupts(struct seq_file *p, int prec)
838 {
839 	unsigned int cpu, i;
840 
841 	for (i = 0; i < MAX_IPI; i++) {
842 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
843 			   prec >= 4 ? " " : "");
844 		for_each_online_cpu(cpu)
845 			seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu));
846 		seq_printf(p, "      %s\n", ipi_types[i]);
847 	}
848 
849 	seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count);
850 	return 0;
851 }
852 
853 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
854 {
855 	smp_cross_call(mask, IPI_CALL_FUNC);
856 }
857 
858 void arch_send_call_function_single_ipi(int cpu)
859 {
860 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
861 }
862 
863 #ifdef CONFIG_IRQ_WORK
864 void arch_irq_work_raise(void)
865 {
866 	smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
867 }
868 #endif
869 
870 static void __noreturn local_cpu_stop(void)
871 {
872 	set_cpu_online(smp_processor_id(), false);
873 
874 	local_daif_mask();
875 	sdei_mask_local_cpu();
876 	cpu_park_loop();
877 }
878 
879 /*
880  * We need to implement panic_smp_self_stop() for parallel panic() calls, so
881  * that cpu_online_mask gets correctly updated and smp_send_stop() can skip
882  * CPUs that have already stopped themselves.
883  */
884 void __noreturn panic_smp_self_stop(void)
885 {
886 	local_cpu_stop();
887 }
888 
889 #ifdef CONFIG_KEXEC_CORE
890 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
891 #endif
892 
893 static void __noreturn ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
894 {
895 #ifdef CONFIG_KEXEC_CORE
896 	crash_save_cpu(regs, cpu);
897 
898 	atomic_dec(&waiting_for_crash_ipi);
899 
900 	local_irq_disable();
901 	sdei_mask_local_cpu();
902 
903 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
904 		__cpu_try_die(cpu);
905 
906 	/* just in case */
907 	cpu_park_loop();
908 #else
909 	BUG();
910 #endif
911 }
912 
913 static void arm64_backtrace_ipi(cpumask_t *mask)
914 {
915 	__ipi_send_mask(ipi_desc[IPI_CPU_BACKTRACE], mask);
916 }
917 
918 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, int exclude_cpu)
919 {
920 	/*
921 	 * NOTE: though nmi_trigger_cpumask_backtrace() has "nmi_" in the name,
922 	 * nothing about it truly needs to be implemented using an NMI, it's
923 	 * just that it's _allowed_ to work with NMIs. If ipi_should_be_nmi()
924 	 * returned false our backtrace attempt will just use a regular IPI.
925 	 */
926 	nmi_trigger_cpumask_backtrace(mask, exclude_cpu, arm64_backtrace_ipi);
927 }
928 
929 #ifdef CONFIG_KGDB
930 void kgdb_roundup_cpus(void)
931 {
932 	int this_cpu = raw_smp_processor_id();
933 	int cpu;
934 
935 	for_each_online_cpu(cpu) {
936 		/* No need to roundup ourselves */
937 		if (cpu == this_cpu)
938 			continue;
939 
940 		__ipi_send_single(ipi_desc[IPI_KGDB_ROUNDUP], cpu);
941 	}
942 }
943 #endif
944 
945 /*
946  * Main handler for inter-processor interrupts
947  */
948 static void do_handle_IPI(int ipinr)
949 {
950 	unsigned int cpu = smp_processor_id();
951 
952 	if ((unsigned)ipinr < NR_IPI)
953 		trace_ipi_entry(ipi_types[ipinr]);
954 
955 	switch (ipinr) {
956 	case IPI_RESCHEDULE:
957 		scheduler_ipi();
958 		break;
959 
960 	case IPI_CALL_FUNC:
961 		generic_smp_call_function_interrupt();
962 		break;
963 
964 	case IPI_CPU_STOP:
965 		local_cpu_stop();
966 		break;
967 
968 	case IPI_CPU_CRASH_STOP:
969 		if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
970 			ipi_cpu_crash_stop(cpu, get_irq_regs());
971 
972 			unreachable();
973 		}
974 		break;
975 
976 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
977 	case IPI_TIMER:
978 		tick_receive_broadcast();
979 		break;
980 #endif
981 
982 #ifdef CONFIG_IRQ_WORK
983 	case IPI_IRQ_WORK:
984 		irq_work_run();
985 		break;
986 #endif
987 
988 	case IPI_CPU_BACKTRACE:
989 		/*
990 		 * NOTE: in some cases this _won't_ be NMI context. See the
991 		 * comment in arch_trigger_cpumask_backtrace().
992 		 */
993 		nmi_cpu_backtrace(get_irq_regs());
994 		break;
995 
996 	case IPI_KGDB_ROUNDUP:
997 		kgdb_nmicallback(cpu, get_irq_regs());
998 		break;
999 
1000 	default:
1001 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
1002 		break;
1003 	}
1004 
1005 	if ((unsigned)ipinr < NR_IPI)
1006 		trace_ipi_exit(ipi_types[ipinr]);
1007 }
1008 
1009 static irqreturn_t ipi_handler(int irq, void *data)
1010 {
1011 	do_handle_IPI(irq - ipi_irq_base);
1012 	return IRQ_HANDLED;
1013 }
1014 
1015 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
1016 {
1017 	trace_ipi_raise(target, ipi_types[ipinr]);
1018 	__ipi_send_mask(ipi_desc[ipinr], target);
1019 }
1020 
1021 static bool ipi_should_be_nmi(enum ipi_msg_type ipi)
1022 {
1023 	if (!system_uses_irq_prio_masking())
1024 		return false;
1025 
1026 	switch (ipi) {
1027 	case IPI_CPU_STOP:
1028 	case IPI_CPU_CRASH_STOP:
1029 	case IPI_CPU_BACKTRACE:
1030 	case IPI_KGDB_ROUNDUP:
1031 		return true;
1032 	default:
1033 		return false;
1034 	}
1035 }
1036 
1037 static void ipi_setup(int cpu)
1038 {
1039 	int i;
1040 
1041 	if (WARN_ON_ONCE(!ipi_irq_base))
1042 		return;
1043 
1044 	for (i = 0; i < nr_ipi; i++) {
1045 		if (ipi_should_be_nmi(i)) {
1046 			prepare_percpu_nmi(ipi_irq_base + i);
1047 			enable_percpu_nmi(ipi_irq_base + i, 0);
1048 		} else {
1049 			enable_percpu_irq(ipi_irq_base + i, 0);
1050 		}
1051 	}
1052 }
1053 
1054 #ifdef CONFIG_HOTPLUG_CPU
1055 static void ipi_teardown(int cpu)
1056 {
1057 	int i;
1058 
1059 	if (WARN_ON_ONCE(!ipi_irq_base))
1060 		return;
1061 
1062 	for (i = 0; i < nr_ipi; i++) {
1063 		if (ipi_should_be_nmi(i)) {
1064 			disable_percpu_nmi(ipi_irq_base + i);
1065 			teardown_percpu_nmi(ipi_irq_base + i);
1066 		} else {
1067 			disable_percpu_irq(ipi_irq_base + i);
1068 		}
1069 	}
1070 }
1071 #endif
1072 
1073 void __init set_smp_ipi_range(int ipi_base, int n)
1074 {
1075 	int i;
1076 
1077 	WARN_ON(n < MAX_IPI);
1078 	nr_ipi = min(n, MAX_IPI);
1079 
1080 	for (i = 0; i < nr_ipi; i++) {
1081 		int err;
1082 
1083 		if (ipi_should_be_nmi(i)) {
1084 			err = request_percpu_nmi(ipi_base + i, ipi_handler,
1085 						 "IPI", &irq_stat);
1086 			WARN(err, "Could not request IPI %d as NMI, err=%d\n",
1087 			     i, err);
1088 		} else {
1089 			err = request_percpu_irq(ipi_base + i, ipi_handler,
1090 						 "IPI", &irq_stat);
1091 			WARN(err, "Could not request IPI %d as IRQ, err=%d\n",
1092 			     i, err);
1093 		}
1094 
1095 		ipi_desc[i] = irq_to_desc(ipi_base + i);
1096 		irq_set_status_flags(ipi_base + i, IRQ_HIDDEN);
1097 	}
1098 
1099 	ipi_irq_base = ipi_base;
1100 
1101 	/* Setup the boot CPU immediately */
1102 	ipi_setup(smp_processor_id());
1103 }
1104 
1105 void arch_smp_send_reschedule(int cpu)
1106 {
1107 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
1108 }
1109 
1110 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
1111 void arch_send_wakeup_ipi(unsigned int cpu)
1112 {
1113 	/*
1114 	 * We use a scheduler IPI to wake the CPU as this avoids the need for a
1115 	 * dedicated IPI and we can safely handle spurious scheduler IPIs.
1116 	 */
1117 	smp_send_reschedule(cpu);
1118 }
1119 #endif
1120 
1121 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
1122 void tick_broadcast(const struct cpumask *mask)
1123 {
1124 	smp_cross_call(mask, IPI_TIMER);
1125 }
1126 #endif
1127 
1128 /*
1129  * The number of CPUs online, not counting this CPU (which may not be
1130  * fully online and so not counted in num_online_cpus()).
1131  */
1132 static inline unsigned int num_other_online_cpus(void)
1133 {
1134 	unsigned int this_cpu_online = cpu_online(smp_processor_id());
1135 
1136 	return num_online_cpus() - this_cpu_online;
1137 }
1138 
1139 void smp_send_stop(void)
1140 {
1141 	unsigned long timeout;
1142 
1143 	if (num_other_online_cpus()) {
1144 		cpumask_t mask;
1145 
1146 		cpumask_copy(&mask, cpu_online_mask);
1147 		cpumask_clear_cpu(smp_processor_id(), &mask);
1148 
1149 		if (system_state <= SYSTEM_RUNNING)
1150 			pr_crit("SMP: stopping secondary CPUs\n");
1151 		smp_cross_call(&mask, IPI_CPU_STOP);
1152 	}
1153 
1154 	/* Wait up to one second for other CPUs to stop */
1155 	timeout = USEC_PER_SEC;
1156 	while (num_other_online_cpus() && timeout--)
1157 		udelay(1);
1158 
1159 	if (num_other_online_cpus())
1160 		pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1161 			cpumask_pr_args(cpu_online_mask));
1162 
1163 	sdei_mask_local_cpu();
1164 }
1165 
1166 #ifdef CONFIG_KEXEC_CORE
1167 void crash_smp_send_stop(void)
1168 {
1169 	static int cpus_stopped;
1170 	cpumask_t mask;
1171 	unsigned long timeout;
1172 
1173 	/*
1174 	 * This function can be called twice in panic path, but obviously
1175 	 * we execute this only once.
1176 	 */
1177 	if (cpus_stopped)
1178 		return;
1179 
1180 	cpus_stopped = 1;
1181 
1182 	/*
1183 	 * If this cpu is the only one alive at this point in time, online or
1184 	 * not, there are no stop messages to be sent around, so just back out.
1185 	 */
1186 	if (num_other_online_cpus() == 0)
1187 		goto skip_ipi;
1188 
1189 	cpumask_copy(&mask, cpu_online_mask);
1190 	cpumask_clear_cpu(smp_processor_id(), &mask);
1191 
1192 	atomic_set(&waiting_for_crash_ipi, num_other_online_cpus());
1193 
1194 	pr_crit("SMP: stopping secondary CPUs\n");
1195 	smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
1196 
1197 	/* Wait up to one second for other CPUs to stop */
1198 	timeout = USEC_PER_SEC;
1199 	while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
1200 		udelay(1);
1201 
1202 	if (atomic_read(&waiting_for_crash_ipi) > 0)
1203 		pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1204 			cpumask_pr_args(&mask));
1205 
1206 skip_ipi:
1207 	sdei_mask_local_cpu();
1208 	sdei_handler_abort();
1209 }
1210 
1211 bool smp_crash_stop_failed(void)
1212 {
1213 	return (atomic_read(&waiting_for_crash_ipi) > 0);
1214 }
1215 #endif
1216 
1217 static bool have_cpu_die(void)
1218 {
1219 #ifdef CONFIG_HOTPLUG_CPU
1220 	int any_cpu = raw_smp_processor_id();
1221 	const struct cpu_operations *ops = get_cpu_ops(any_cpu);
1222 
1223 	if (ops && ops->cpu_die)
1224 		return true;
1225 #endif
1226 	return false;
1227 }
1228 
1229 bool cpus_are_stuck_in_kernel(void)
1230 {
1231 	bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1232 
1233 	return !!cpus_stuck_in_kernel || smp_spin_tables ||
1234 		is_protected_kvm_enabled();
1235 }
1236