1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * SMP initialisation and IPI support 4 * Based on arch/arm/kernel/smp.c 5 * 6 * Copyright (C) 2012 ARM Ltd. 7 */ 8 9 #include <linux/acpi.h> 10 #include <linux/arm_sdei.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/hotplug.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/interrupt.h> 18 #include <linux/cache.h> 19 #include <linux/profile.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/err.h> 23 #include <linux/cpu.h> 24 #include <linux/smp.h> 25 #include <linux/seq_file.h> 26 #include <linux/irq.h> 27 #include <linux/irqchip/arm-gic-v3.h> 28 #include <linux/percpu.h> 29 #include <linux/clockchips.h> 30 #include <linux/completion.h> 31 #include <linux/of.h> 32 #include <linux/irq_work.h> 33 #include <linux/kexec.h> 34 #include <linux/kvm_host.h> 35 36 #include <asm/alternative.h> 37 #include <asm/atomic.h> 38 #include <asm/cacheflush.h> 39 #include <asm/cpu.h> 40 #include <asm/cputype.h> 41 #include <asm/cpu_ops.h> 42 #include <asm/daifflags.h> 43 #include <asm/kvm_mmu.h> 44 #include <asm/mmu_context.h> 45 #include <asm/numa.h> 46 #include <asm/pgalloc.h> 47 #include <asm/processor.h> 48 #include <asm/smp_plat.h> 49 #include <asm/sections.h> 50 #include <asm/tlbflush.h> 51 #include <asm/ptrace.h> 52 #include <asm/virt.h> 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/ipi.h> 56 57 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number); 58 EXPORT_PER_CPU_SYMBOL(cpu_number); 59 60 /* 61 * as from 2.5, kernels no longer have an init_tasks structure 62 * so we need some other way of telling a new secondary core 63 * where to place its SVC stack 64 */ 65 struct secondary_data secondary_data; 66 /* Number of CPUs which aren't online, but looping in kernel text. */ 67 static int cpus_stuck_in_kernel; 68 69 enum ipi_msg_type { 70 IPI_RESCHEDULE, 71 IPI_CALL_FUNC, 72 IPI_CPU_STOP, 73 IPI_CPU_CRASH_STOP, 74 IPI_TIMER, 75 IPI_IRQ_WORK, 76 IPI_WAKEUP 77 }; 78 79 #ifdef CONFIG_HOTPLUG_CPU 80 static int op_cpu_kill(unsigned int cpu); 81 #else 82 static inline int op_cpu_kill(unsigned int cpu) 83 { 84 return -ENOSYS; 85 } 86 #endif 87 88 89 /* 90 * Boot a secondary CPU, and assign it the specified idle task. 91 * This also gives us the initial stack to use for this CPU. 92 */ 93 static int boot_secondary(unsigned int cpu, struct task_struct *idle) 94 { 95 const struct cpu_operations *ops = get_cpu_ops(cpu); 96 97 if (ops->cpu_boot) 98 return ops->cpu_boot(cpu); 99 100 return -EOPNOTSUPP; 101 } 102 103 static DECLARE_COMPLETION(cpu_running); 104 105 int __cpu_up(unsigned int cpu, struct task_struct *idle) 106 { 107 int ret; 108 long status; 109 110 /* 111 * We need to tell the secondary core where to find its stack and the 112 * page tables. 113 */ 114 secondary_data.task = idle; 115 secondary_data.stack = task_stack_page(idle) + THREAD_SIZE; 116 update_cpu_boot_status(CPU_MMU_OFF); 117 __flush_dcache_area(&secondary_data, sizeof(secondary_data)); 118 119 /* Now bring the CPU into our world */ 120 ret = boot_secondary(cpu, idle); 121 if (ret) { 122 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 123 return ret; 124 } 125 126 /* 127 * CPU was successfully started, wait for it to come online or 128 * time out. 129 */ 130 wait_for_completion_timeout(&cpu_running, 131 msecs_to_jiffies(5000)); 132 if (cpu_online(cpu)) 133 return 0; 134 135 pr_crit("CPU%u: failed to come online\n", cpu); 136 secondary_data.task = NULL; 137 secondary_data.stack = NULL; 138 __flush_dcache_area(&secondary_data, sizeof(secondary_data)); 139 status = READ_ONCE(secondary_data.status); 140 if (status == CPU_MMU_OFF) 141 status = READ_ONCE(__early_cpu_boot_status); 142 143 switch (status & CPU_BOOT_STATUS_MASK) { 144 default: 145 pr_err("CPU%u: failed in unknown state : 0x%lx\n", 146 cpu, status); 147 cpus_stuck_in_kernel++; 148 break; 149 case CPU_KILL_ME: 150 if (!op_cpu_kill(cpu)) { 151 pr_crit("CPU%u: died during early boot\n", cpu); 152 break; 153 } 154 pr_crit("CPU%u: may not have shut down cleanly\n", cpu); 155 /* Fall through */ 156 case CPU_STUCK_IN_KERNEL: 157 pr_crit("CPU%u: is stuck in kernel\n", cpu); 158 if (status & CPU_STUCK_REASON_52_BIT_VA) 159 pr_crit("CPU%u: does not support 52-bit VAs\n", cpu); 160 if (status & CPU_STUCK_REASON_NO_GRAN) { 161 pr_crit("CPU%u: does not support %luK granule\n", 162 cpu, PAGE_SIZE / SZ_1K); 163 } 164 cpus_stuck_in_kernel++; 165 break; 166 case CPU_PANIC_KERNEL: 167 panic("CPU%u detected unsupported configuration\n", cpu); 168 } 169 170 return -EIO; 171 } 172 173 static void init_gic_priority_masking(void) 174 { 175 u32 cpuflags; 176 177 if (WARN_ON(!gic_enable_sre())) 178 return; 179 180 cpuflags = read_sysreg(daif); 181 182 WARN_ON(!(cpuflags & PSR_I_BIT)); 183 184 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET); 185 } 186 187 /* 188 * This is the secondary CPU boot entry. We're using this CPUs 189 * idle thread stack, but a set of temporary page tables. 190 */ 191 asmlinkage notrace void secondary_start_kernel(void) 192 { 193 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; 194 struct mm_struct *mm = &init_mm; 195 const struct cpu_operations *ops; 196 unsigned int cpu; 197 198 cpu = task_cpu(current); 199 set_my_cpu_offset(per_cpu_offset(cpu)); 200 201 /* 202 * All kernel threads share the same mm context; grab a 203 * reference and switch to it. 204 */ 205 mmgrab(mm); 206 current->active_mm = mm; 207 208 /* 209 * TTBR0 is only used for the identity mapping at this stage. Make it 210 * point to zero page to avoid speculatively fetching new entries. 211 */ 212 cpu_uninstall_idmap(); 213 214 if (system_uses_irq_prio_masking()) 215 init_gic_priority_masking(); 216 217 preempt_disable(); 218 trace_hardirqs_off(); 219 220 /* 221 * If the system has established the capabilities, make sure 222 * this CPU ticks all of those. If it doesn't, the CPU will 223 * fail to come online. 224 */ 225 check_local_cpu_capabilities(); 226 227 ops = get_cpu_ops(cpu); 228 if (ops->cpu_postboot) 229 ops->cpu_postboot(); 230 231 /* 232 * Log the CPU info before it is marked online and might get read. 233 */ 234 cpuinfo_store_cpu(); 235 236 /* 237 * Enable GIC and timers. 238 */ 239 notify_cpu_starting(cpu); 240 241 store_cpu_topology(cpu); 242 numa_add_cpu(cpu); 243 244 /* 245 * OK, now it's safe to let the boot CPU continue. Wait for 246 * the CPU migration code to notice that the CPU is online 247 * before we continue. 248 */ 249 pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n", 250 cpu, (unsigned long)mpidr, 251 read_cpuid_id()); 252 update_cpu_boot_status(CPU_BOOT_SUCCESS); 253 set_cpu_online(cpu, true); 254 complete(&cpu_running); 255 256 local_daif_restore(DAIF_PROCCTX); 257 258 /* 259 * OK, it's off to the idle thread for us 260 */ 261 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 262 } 263 264 #ifdef CONFIG_HOTPLUG_CPU 265 static int op_cpu_disable(unsigned int cpu) 266 { 267 const struct cpu_operations *ops = get_cpu_ops(cpu); 268 269 /* 270 * If we don't have a cpu_die method, abort before we reach the point 271 * of no return. CPU0 may not have an cpu_ops, so test for it. 272 */ 273 if (!ops || !ops->cpu_die) 274 return -EOPNOTSUPP; 275 276 /* 277 * We may need to abort a hot unplug for some other mechanism-specific 278 * reason. 279 */ 280 if (ops->cpu_disable) 281 return ops->cpu_disable(cpu); 282 283 return 0; 284 } 285 286 /* 287 * __cpu_disable runs on the processor to be shutdown. 288 */ 289 int __cpu_disable(void) 290 { 291 unsigned int cpu = smp_processor_id(); 292 int ret; 293 294 ret = op_cpu_disable(cpu); 295 if (ret) 296 return ret; 297 298 remove_cpu_topology(cpu); 299 numa_remove_cpu(cpu); 300 301 /* 302 * Take this CPU offline. Once we clear this, we can't return, 303 * and we must not schedule until we're ready to give up the cpu. 304 */ 305 set_cpu_online(cpu, false); 306 307 /* 308 * OK - migrate IRQs away from this CPU 309 */ 310 irq_migrate_all_off_this_cpu(); 311 312 return 0; 313 } 314 315 static int op_cpu_kill(unsigned int cpu) 316 { 317 const struct cpu_operations *ops = get_cpu_ops(cpu); 318 319 /* 320 * If we have no means of synchronising with the dying CPU, then assume 321 * that it is really dead. We can only wait for an arbitrary length of 322 * time and hope that it's dead, so let's skip the wait and just hope. 323 */ 324 if (!ops->cpu_kill) 325 return 0; 326 327 return ops->cpu_kill(cpu); 328 } 329 330 /* 331 * called on the thread which is asking for a CPU to be shutdown - 332 * waits until shutdown has completed, or it is timed out. 333 */ 334 void __cpu_die(unsigned int cpu) 335 { 336 int err; 337 338 if (!cpu_wait_death(cpu, 5)) { 339 pr_crit("CPU%u: cpu didn't die\n", cpu); 340 return; 341 } 342 pr_notice("CPU%u: shutdown\n", cpu); 343 344 /* 345 * Now that the dying CPU is beyond the point of no return w.r.t. 346 * in-kernel synchronisation, try to get the firwmare to help us to 347 * verify that it has really left the kernel before we consider 348 * clobbering anything it might still be using. 349 */ 350 err = op_cpu_kill(cpu); 351 if (err) 352 pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err); 353 } 354 355 /* 356 * Called from the idle thread for the CPU which has been shutdown. 357 * 358 */ 359 void cpu_die(void) 360 { 361 unsigned int cpu = smp_processor_id(); 362 const struct cpu_operations *ops = get_cpu_ops(cpu); 363 364 idle_task_exit(); 365 366 local_daif_mask(); 367 368 /* Tell __cpu_die() that this CPU is now safe to dispose of */ 369 (void)cpu_report_death(); 370 371 /* 372 * Actually shutdown the CPU. This must never fail. The specific hotplug 373 * mechanism must perform all required cache maintenance to ensure that 374 * no dirty lines are lost in the process of shutting down the CPU. 375 */ 376 ops->cpu_die(cpu); 377 378 BUG(); 379 } 380 #endif 381 382 static void __cpu_try_die(int cpu) 383 { 384 #ifdef CONFIG_HOTPLUG_CPU 385 const struct cpu_operations *ops = get_cpu_ops(cpu); 386 387 if (ops && ops->cpu_die) 388 ops->cpu_die(cpu); 389 #endif 390 } 391 392 /* 393 * Kill the calling secondary CPU, early in bringup before it is turned 394 * online. 395 */ 396 void cpu_die_early(void) 397 { 398 int cpu = smp_processor_id(); 399 400 pr_crit("CPU%d: will not boot\n", cpu); 401 402 /* Mark this CPU absent */ 403 set_cpu_present(cpu, 0); 404 405 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) { 406 update_cpu_boot_status(CPU_KILL_ME); 407 __cpu_try_die(cpu); 408 } 409 410 update_cpu_boot_status(CPU_STUCK_IN_KERNEL); 411 412 cpu_park_loop(); 413 } 414 415 static void __init hyp_mode_check(void) 416 { 417 if (is_hyp_mode_available()) 418 pr_info("CPU: All CPU(s) started at EL2\n"); 419 else if (is_hyp_mode_mismatched()) 420 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC, 421 "CPU: CPUs started in inconsistent modes"); 422 else 423 pr_info("CPU: All CPU(s) started at EL1\n"); 424 if (IS_ENABLED(CONFIG_KVM)) 425 kvm_compute_layout(); 426 } 427 428 void __init smp_cpus_done(unsigned int max_cpus) 429 { 430 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus()); 431 setup_cpu_features(); 432 hyp_mode_check(); 433 apply_alternatives_all(); 434 mark_linear_text_alias_ro(); 435 } 436 437 void __init smp_prepare_boot_cpu(void) 438 { 439 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 440 cpuinfo_store_boot_cpu(); 441 442 /* 443 * We now know enough about the boot CPU to apply the 444 * alternatives that cannot wait until interrupt handling 445 * and/or scheduling is enabled. 446 */ 447 apply_boot_alternatives(); 448 449 /* Conditionally switch to GIC PMR for interrupt masking */ 450 if (system_uses_irq_prio_masking()) 451 init_gic_priority_masking(); 452 } 453 454 static u64 __init of_get_cpu_mpidr(struct device_node *dn) 455 { 456 const __be32 *cell; 457 u64 hwid; 458 459 /* 460 * A cpu node with missing "reg" property is 461 * considered invalid to build a cpu_logical_map 462 * entry. 463 */ 464 cell = of_get_property(dn, "reg", NULL); 465 if (!cell) { 466 pr_err("%pOF: missing reg property\n", dn); 467 return INVALID_HWID; 468 } 469 470 hwid = of_read_number(cell, of_n_addr_cells(dn)); 471 /* 472 * Non affinity bits must be set to 0 in the DT 473 */ 474 if (hwid & ~MPIDR_HWID_BITMASK) { 475 pr_err("%pOF: invalid reg property\n", dn); 476 return INVALID_HWID; 477 } 478 return hwid; 479 } 480 481 /* 482 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized 483 * entries and check for duplicates. If any is found just ignore the 484 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid 485 * matching valid MPIDR values. 486 */ 487 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid) 488 { 489 unsigned int i; 490 491 for (i = 1; (i < cpu) && (i < NR_CPUS); i++) 492 if (cpu_logical_map(i) == hwid) 493 return true; 494 return false; 495 } 496 497 /* 498 * Initialize cpu operations for a logical cpu and 499 * set it in the possible mask on success 500 */ 501 static int __init smp_cpu_setup(int cpu) 502 { 503 const struct cpu_operations *ops; 504 505 if (init_cpu_ops(cpu)) 506 return -ENODEV; 507 508 ops = get_cpu_ops(cpu); 509 if (ops->cpu_init(cpu)) 510 return -ENODEV; 511 512 set_cpu_possible(cpu, true); 513 514 return 0; 515 } 516 517 static bool bootcpu_valid __initdata; 518 static unsigned int cpu_count = 1; 519 520 #ifdef CONFIG_ACPI 521 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS]; 522 523 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu) 524 { 525 return &cpu_madt_gicc[cpu]; 526 } 527 528 /* 529 * acpi_map_gic_cpu_interface - parse processor MADT entry 530 * 531 * Carry out sanity checks on MADT processor entry and initialize 532 * cpu_logical_map on success 533 */ 534 static void __init 535 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor) 536 { 537 u64 hwid = processor->arm_mpidr; 538 539 if (!(processor->flags & ACPI_MADT_ENABLED)) { 540 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid); 541 return; 542 } 543 544 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) { 545 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid); 546 return; 547 } 548 549 if (is_mpidr_duplicate(cpu_count, hwid)) { 550 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid); 551 return; 552 } 553 554 /* Check if GICC structure of boot CPU is available in the MADT */ 555 if (cpu_logical_map(0) == hwid) { 556 if (bootcpu_valid) { 557 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n", 558 hwid); 559 return; 560 } 561 bootcpu_valid = true; 562 cpu_madt_gicc[0] = *processor; 563 return; 564 } 565 566 if (cpu_count >= NR_CPUS) 567 return; 568 569 /* map the logical cpu id to cpu MPIDR */ 570 cpu_logical_map(cpu_count) = hwid; 571 572 cpu_madt_gicc[cpu_count] = *processor; 573 574 /* 575 * Set-up the ACPI parking protocol cpu entries 576 * while initializing the cpu_logical_map to 577 * avoid parsing MADT entries multiple times for 578 * nothing (ie a valid cpu_logical_map entry should 579 * contain a valid parking protocol data set to 580 * initialize the cpu if the parking protocol is 581 * the only available enable method). 582 */ 583 acpi_set_mailbox_entry(cpu_count, processor); 584 585 cpu_count++; 586 } 587 588 static int __init 589 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header, 590 const unsigned long end) 591 { 592 struct acpi_madt_generic_interrupt *processor; 593 594 processor = (struct acpi_madt_generic_interrupt *)header; 595 if (BAD_MADT_GICC_ENTRY(processor, end)) 596 return -EINVAL; 597 598 acpi_table_print_madt_entry(&header->common); 599 600 acpi_map_gic_cpu_interface(processor); 601 602 return 0; 603 } 604 605 static void __init acpi_parse_and_init_cpus(void) 606 { 607 int i; 608 609 /* 610 * do a walk of MADT to determine how many CPUs 611 * we have including disabled CPUs, and get information 612 * we need for SMP init. 613 */ 614 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, 615 acpi_parse_gic_cpu_interface, 0); 616 617 /* 618 * In ACPI, SMP and CPU NUMA information is provided in separate 619 * static tables, namely the MADT and the SRAT. 620 * 621 * Thus, it is simpler to first create the cpu logical map through 622 * an MADT walk and then map the logical cpus to their node ids 623 * as separate steps. 624 */ 625 acpi_map_cpus_to_nodes(); 626 627 for (i = 0; i < nr_cpu_ids; i++) 628 early_map_cpu_to_node(i, acpi_numa_get_nid(i)); 629 } 630 #else 631 #define acpi_parse_and_init_cpus(...) do { } while (0) 632 #endif 633 634 /* 635 * Enumerate the possible CPU set from the device tree and build the 636 * cpu logical map array containing MPIDR values related to logical 637 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 638 */ 639 static void __init of_parse_and_init_cpus(void) 640 { 641 struct device_node *dn; 642 643 for_each_of_cpu_node(dn) { 644 u64 hwid = of_get_cpu_mpidr(dn); 645 646 if (hwid == INVALID_HWID) 647 goto next; 648 649 if (is_mpidr_duplicate(cpu_count, hwid)) { 650 pr_err("%pOF: duplicate cpu reg properties in the DT\n", 651 dn); 652 goto next; 653 } 654 655 /* 656 * The numbering scheme requires that the boot CPU 657 * must be assigned logical id 0. Record it so that 658 * the logical map built from DT is validated and can 659 * be used. 660 */ 661 if (hwid == cpu_logical_map(0)) { 662 if (bootcpu_valid) { 663 pr_err("%pOF: duplicate boot cpu reg property in DT\n", 664 dn); 665 goto next; 666 } 667 668 bootcpu_valid = true; 669 early_map_cpu_to_node(0, of_node_to_nid(dn)); 670 671 /* 672 * cpu_logical_map has already been 673 * initialized and the boot cpu doesn't need 674 * the enable-method so continue without 675 * incrementing cpu. 676 */ 677 continue; 678 } 679 680 if (cpu_count >= NR_CPUS) 681 goto next; 682 683 pr_debug("cpu logical map 0x%llx\n", hwid); 684 cpu_logical_map(cpu_count) = hwid; 685 686 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn)); 687 next: 688 cpu_count++; 689 } 690 } 691 692 /* 693 * Enumerate the possible CPU set from the device tree or ACPI and build the 694 * cpu logical map array containing MPIDR values related to logical 695 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 696 */ 697 void __init smp_init_cpus(void) 698 { 699 int i; 700 701 if (acpi_disabled) 702 of_parse_and_init_cpus(); 703 else 704 acpi_parse_and_init_cpus(); 705 706 if (cpu_count > nr_cpu_ids) 707 pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n", 708 cpu_count, nr_cpu_ids); 709 710 if (!bootcpu_valid) { 711 pr_err("missing boot CPU MPIDR, not enabling secondaries\n"); 712 return; 713 } 714 715 /* 716 * We need to set the cpu_logical_map entries before enabling 717 * the cpus so that cpu processor description entries (DT cpu nodes 718 * and ACPI MADT entries) can be retrieved by matching the cpu hwid 719 * with entries in cpu_logical_map while initializing the cpus. 720 * If the cpu set-up fails, invalidate the cpu_logical_map entry. 721 */ 722 for (i = 1; i < nr_cpu_ids; i++) { 723 if (cpu_logical_map(i) != INVALID_HWID) { 724 if (smp_cpu_setup(i)) 725 cpu_logical_map(i) = INVALID_HWID; 726 } 727 } 728 } 729 730 void __init smp_prepare_cpus(unsigned int max_cpus) 731 { 732 const struct cpu_operations *ops; 733 int err; 734 unsigned int cpu; 735 unsigned int this_cpu; 736 737 init_cpu_topology(); 738 739 this_cpu = smp_processor_id(); 740 store_cpu_topology(this_cpu); 741 numa_store_cpu_info(this_cpu); 742 numa_add_cpu(this_cpu); 743 744 /* 745 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set 746 * secondary CPUs present. 747 */ 748 if (max_cpus == 0) 749 return; 750 751 /* 752 * Initialise the present map (which describes the set of CPUs 753 * actually populated at the present time) and release the 754 * secondaries from the bootloader. 755 */ 756 for_each_possible_cpu(cpu) { 757 758 per_cpu(cpu_number, cpu) = cpu; 759 760 if (cpu == smp_processor_id()) 761 continue; 762 763 ops = get_cpu_ops(cpu); 764 if (!ops) 765 continue; 766 767 err = ops->cpu_prepare(cpu); 768 if (err) 769 continue; 770 771 set_cpu_present(cpu, true); 772 numa_store_cpu_info(cpu); 773 } 774 } 775 776 void (*__smp_cross_call)(const struct cpumask *, unsigned int); 777 778 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 779 { 780 __smp_cross_call = fn; 781 } 782 783 static const char *ipi_types[NR_IPI] __tracepoint_string = { 784 #define S(x,s) [x] = s 785 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 786 S(IPI_CALL_FUNC, "Function call interrupts"), 787 S(IPI_CPU_STOP, "CPU stop interrupts"), 788 S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"), 789 S(IPI_TIMER, "Timer broadcast interrupts"), 790 S(IPI_IRQ_WORK, "IRQ work interrupts"), 791 S(IPI_WAKEUP, "CPU wake-up interrupts"), 792 }; 793 794 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 795 { 796 trace_ipi_raise(target, ipi_types[ipinr]); 797 __smp_cross_call(target, ipinr); 798 } 799 800 void show_ipi_list(struct seq_file *p, int prec) 801 { 802 unsigned int cpu, i; 803 804 for (i = 0; i < NR_IPI; i++) { 805 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, 806 prec >= 4 ? " " : ""); 807 for_each_online_cpu(cpu) 808 seq_printf(p, "%10u ", 809 __get_irq_stat(cpu, ipi_irqs[i])); 810 seq_printf(p, " %s\n", ipi_types[i]); 811 } 812 } 813 814 u64 smp_irq_stat_cpu(unsigned int cpu) 815 { 816 u64 sum = 0; 817 int i; 818 819 for (i = 0; i < NR_IPI; i++) 820 sum += __get_irq_stat(cpu, ipi_irqs[i]); 821 822 return sum; 823 } 824 825 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 826 { 827 smp_cross_call(mask, IPI_CALL_FUNC); 828 } 829 830 void arch_send_call_function_single_ipi(int cpu) 831 { 832 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); 833 } 834 835 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 836 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 837 { 838 smp_cross_call(mask, IPI_WAKEUP); 839 } 840 #endif 841 842 #ifdef CONFIG_IRQ_WORK 843 void arch_irq_work_raise(void) 844 { 845 if (__smp_cross_call) 846 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 847 } 848 #endif 849 850 static void local_cpu_stop(void) 851 { 852 set_cpu_online(smp_processor_id(), false); 853 854 local_daif_mask(); 855 sdei_mask_local_cpu(); 856 cpu_park_loop(); 857 } 858 859 /* 860 * We need to implement panic_smp_self_stop() for parallel panic() calls, so 861 * that cpu_online_mask gets correctly updated and smp_send_stop() can skip 862 * CPUs that have already stopped themselves. 863 */ 864 void panic_smp_self_stop(void) 865 { 866 local_cpu_stop(); 867 } 868 869 #ifdef CONFIG_KEXEC_CORE 870 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0); 871 #endif 872 873 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs) 874 { 875 #ifdef CONFIG_KEXEC_CORE 876 crash_save_cpu(regs, cpu); 877 878 atomic_dec(&waiting_for_crash_ipi); 879 880 local_irq_disable(); 881 sdei_mask_local_cpu(); 882 883 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 884 __cpu_try_die(cpu); 885 886 /* just in case */ 887 cpu_park_loop(); 888 #endif 889 } 890 891 /* 892 * Main handler for inter-processor interrupts 893 */ 894 void handle_IPI(int ipinr, struct pt_regs *regs) 895 { 896 unsigned int cpu = smp_processor_id(); 897 struct pt_regs *old_regs = set_irq_regs(regs); 898 899 if ((unsigned)ipinr < NR_IPI) { 900 trace_ipi_entry_rcuidle(ipi_types[ipinr]); 901 __inc_irq_stat(cpu, ipi_irqs[ipinr]); 902 } 903 904 switch (ipinr) { 905 case IPI_RESCHEDULE: 906 scheduler_ipi(); 907 break; 908 909 case IPI_CALL_FUNC: 910 irq_enter(); 911 generic_smp_call_function_interrupt(); 912 irq_exit(); 913 break; 914 915 case IPI_CPU_STOP: 916 irq_enter(); 917 local_cpu_stop(); 918 irq_exit(); 919 break; 920 921 case IPI_CPU_CRASH_STOP: 922 if (IS_ENABLED(CONFIG_KEXEC_CORE)) { 923 irq_enter(); 924 ipi_cpu_crash_stop(cpu, regs); 925 926 unreachable(); 927 } 928 break; 929 930 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 931 case IPI_TIMER: 932 irq_enter(); 933 tick_receive_broadcast(); 934 irq_exit(); 935 break; 936 #endif 937 938 #ifdef CONFIG_IRQ_WORK 939 case IPI_IRQ_WORK: 940 irq_enter(); 941 irq_work_run(); 942 irq_exit(); 943 break; 944 #endif 945 946 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 947 case IPI_WAKEUP: 948 WARN_ONCE(!acpi_parking_protocol_valid(cpu), 949 "CPU%u: Wake-up IPI outside the ACPI parking protocol\n", 950 cpu); 951 break; 952 #endif 953 954 default: 955 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr); 956 break; 957 } 958 959 if ((unsigned)ipinr < NR_IPI) 960 trace_ipi_exit_rcuidle(ipi_types[ipinr]); 961 set_irq_regs(old_regs); 962 } 963 964 void smp_send_reschedule(int cpu) 965 { 966 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 967 } 968 969 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 970 void tick_broadcast(const struct cpumask *mask) 971 { 972 smp_cross_call(mask, IPI_TIMER); 973 } 974 #endif 975 976 /* 977 * The number of CPUs online, not counting this CPU (which may not be 978 * fully online and so not counted in num_online_cpus()). 979 */ 980 static inline unsigned int num_other_online_cpus(void) 981 { 982 unsigned int this_cpu_online = cpu_online(smp_processor_id()); 983 984 return num_online_cpus() - this_cpu_online; 985 } 986 987 void smp_send_stop(void) 988 { 989 unsigned long timeout; 990 991 if (num_other_online_cpus()) { 992 cpumask_t mask; 993 994 cpumask_copy(&mask, cpu_online_mask); 995 cpumask_clear_cpu(smp_processor_id(), &mask); 996 997 if (system_state <= SYSTEM_RUNNING) 998 pr_crit("SMP: stopping secondary CPUs\n"); 999 smp_cross_call(&mask, IPI_CPU_STOP); 1000 } 1001 1002 /* Wait up to one second for other CPUs to stop */ 1003 timeout = USEC_PER_SEC; 1004 while (num_other_online_cpus() && timeout--) 1005 udelay(1); 1006 1007 if (num_other_online_cpus()) 1008 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n", 1009 cpumask_pr_args(cpu_online_mask)); 1010 1011 sdei_mask_local_cpu(); 1012 } 1013 1014 #ifdef CONFIG_KEXEC_CORE 1015 void crash_smp_send_stop(void) 1016 { 1017 static int cpus_stopped; 1018 cpumask_t mask; 1019 unsigned long timeout; 1020 1021 /* 1022 * This function can be called twice in panic path, but obviously 1023 * we execute this only once. 1024 */ 1025 if (cpus_stopped) 1026 return; 1027 1028 cpus_stopped = 1; 1029 1030 /* 1031 * If this cpu is the only one alive at this point in time, online or 1032 * not, there are no stop messages to be sent around, so just back out. 1033 */ 1034 if (num_other_online_cpus() == 0) { 1035 sdei_mask_local_cpu(); 1036 return; 1037 } 1038 1039 cpumask_copy(&mask, cpu_online_mask); 1040 cpumask_clear_cpu(smp_processor_id(), &mask); 1041 1042 atomic_set(&waiting_for_crash_ipi, num_other_online_cpus()); 1043 1044 pr_crit("SMP: stopping secondary CPUs\n"); 1045 smp_cross_call(&mask, IPI_CPU_CRASH_STOP); 1046 1047 /* Wait up to one second for other CPUs to stop */ 1048 timeout = USEC_PER_SEC; 1049 while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--) 1050 udelay(1); 1051 1052 if (atomic_read(&waiting_for_crash_ipi) > 0) 1053 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n", 1054 cpumask_pr_args(&mask)); 1055 1056 sdei_mask_local_cpu(); 1057 } 1058 1059 bool smp_crash_stop_failed(void) 1060 { 1061 return (atomic_read(&waiting_for_crash_ipi) > 0); 1062 } 1063 #endif 1064 1065 /* 1066 * not supported here 1067 */ 1068 int setup_profiling_timer(unsigned int multiplier) 1069 { 1070 return -EINVAL; 1071 } 1072 1073 static bool have_cpu_die(void) 1074 { 1075 #ifdef CONFIG_HOTPLUG_CPU 1076 int any_cpu = raw_smp_processor_id(); 1077 const struct cpu_operations *ops = get_cpu_ops(any_cpu); 1078 1079 if (ops && ops->cpu_die) 1080 return true; 1081 #endif 1082 return false; 1083 } 1084 1085 bool cpus_are_stuck_in_kernel(void) 1086 { 1087 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die()); 1088 1089 return !!cpus_stuck_in_kernel || smp_spin_tables; 1090 } 1091