xref: /linux/arch/arm64/kernel/smp.c (revision 324420bf91f60582bb481133db9547111768ef17)
1 /*
2  * SMP initialisation and IPI support
3  * Based on arch/arm/kernel/smp.c
4  *
5  * Copyright (C) 2012 ARM Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/acpi.h>
21 #include <linux/delay.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/cache.h>
27 #include <linux/profile.h>
28 #include <linux/errno.h>
29 #include <linux/mm.h>
30 #include <linux/err.h>
31 #include <linux/cpu.h>
32 #include <linux/smp.h>
33 #include <linux/seq_file.h>
34 #include <linux/irq.h>
35 #include <linux/percpu.h>
36 #include <linux/clockchips.h>
37 #include <linux/completion.h>
38 #include <linux/of.h>
39 #include <linux/irq_work.h>
40 
41 #include <asm/alternative.h>
42 #include <asm/atomic.h>
43 #include <asm/cacheflush.h>
44 #include <asm/cpu.h>
45 #include <asm/cputype.h>
46 #include <asm/cpu_ops.h>
47 #include <asm/mmu_context.h>
48 #include <asm/pgtable.h>
49 #include <asm/pgalloc.h>
50 #include <asm/processor.h>
51 #include <asm/smp_plat.h>
52 #include <asm/sections.h>
53 #include <asm/tlbflush.h>
54 #include <asm/ptrace.h>
55 #include <asm/virt.h>
56 
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/ipi.h>
59 
60 /*
61  * as from 2.5, kernels no longer have an init_tasks structure
62  * so we need some other way of telling a new secondary core
63  * where to place its SVC stack
64  */
65 struct secondary_data secondary_data;
66 
67 enum ipi_msg_type {
68 	IPI_RESCHEDULE,
69 	IPI_CALL_FUNC,
70 	IPI_CPU_STOP,
71 	IPI_TIMER,
72 	IPI_IRQ_WORK,
73 	IPI_WAKEUP
74 };
75 
76 /*
77  * Boot a secondary CPU, and assign it the specified idle task.
78  * This also gives us the initial stack to use for this CPU.
79  */
80 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
81 {
82 	if (cpu_ops[cpu]->cpu_boot)
83 		return cpu_ops[cpu]->cpu_boot(cpu);
84 
85 	return -EOPNOTSUPP;
86 }
87 
88 static DECLARE_COMPLETION(cpu_running);
89 
90 int __cpu_up(unsigned int cpu, struct task_struct *idle)
91 {
92 	int ret;
93 
94 	/*
95 	 * We need to tell the secondary core where to find its stack and the
96 	 * page tables.
97 	 */
98 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
99 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
100 
101 	/*
102 	 * Now bring the CPU into our world.
103 	 */
104 	ret = boot_secondary(cpu, idle);
105 	if (ret == 0) {
106 		/*
107 		 * CPU was successfully started, wait for it to come online or
108 		 * time out.
109 		 */
110 		wait_for_completion_timeout(&cpu_running,
111 					    msecs_to_jiffies(1000));
112 
113 		if (!cpu_online(cpu)) {
114 			pr_crit("CPU%u: failed to come online\n", cpu);
115 			ret = -EIO;
116 		}
117 	} else {
118 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
119 	}
120 
121 	secondary_data.stack = NULL;
122 
123 	return ret;
124 }
125 
126 static void smp_store_cpu_info(unsigned int cpuid)
127 {
128 	store_cpu_topology(cpuid);
129 }
130 
131 /*
132  * This is the secondary CPU boot entry.  We're using this CPUs
133  * idle thread stack, but a set of temporary page tables.
134  */
135 asmlinkage void secondary_start_kernel(void)
136 {
137 	struct mm_struct *mm = &init_mm;
138 	unsigned int cpu = smp_processor_id();
139 
140 	/*
141 	 * All kernel threads share the same mm context; grab a
142 	 * reference and switch to it.
143 	 */
144 	atomic_inc(&mm->mm_count);
145 	current->active_mm = mm;
146 
147 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
148 
149 	/*
150 	 * TTBR0 is only used for the identity mapping at this stage. Make it
151 	 * point to zero page to avoid speculatively fetching new entries.
152 	 */
153 	cpu_uninstall_idmap();
154 
155 	preempt_disable();
156 	trace_hardirqs_off();
157 
158 	/*
159 	 * If the system has established the capabilities, make sure
160 	 * this CPU ticks all of those. If it doesn't, the CPU will
161 	 * fail to come online.
162 	 */
163 	verify_local_cpu_capabilities();
164 
165 	if (cpu_ops[cpu]->cpu_postboot)
166 		cpu_ops[cpu]->cpu_postboot();
167 
168 	/*
169 	 * Log the CPU info before it is marked online and might get read.
170 	 */
171 	cpuinfo_store_cpu();
172 
173 	/*
174 	 * Enable GIC and timers.
175 	 */
176 	notify_cpu_starting(cpu);
177 
178 	smp_store_cpu_info(cpu);
179 
180 	/*
181 	 * OK, now it's safe to let the boot CPU continue.  Wait for
182 	 * the CPU migration code to notice that the CPU is online
183 	 * before we continue.
184 	 */
185 	pr_info("CPU%u: Booted secondary processor [%08x]\n",
186 					 cpu, read_cpuid_id());
187 	set_cpu_online(cpu, true);
188 	complete(&cpu_running);
189 
190 	local_dbg_enable();
191 	local_irq_enable();
192 	local_async_enable();
193 
194 	/*
195 	 * OK, it's off to the idle thread for us
196 	 */
197 	cpu_startup_entry(CPUHP_ONLINE);
198 }
199 
200 #ifdef CONFIG_HOTPLUG_CPU
201 static int op_cpu_disable(unsigned int cpu)
202 {
203 	/*
204 	 * If we don't have a cpu_die method, abort before we reach the point
205 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
206 	 */
207 	if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die)
208 		return -EOPNOTSUPP;
209 
210 	/*
211 	 * We may need to abort a hot unplug for some other mechanism-specific
212 	 * reason.
213 	 */
214 	if (cpu_ops[cpu]->cpu_disable)
215 		return cpu_ops[cpu]->cpu_disable(cpu);
216 
217 	return 0;
218 }
219 
220 /*
221  * __cpu_disable runs on the processor to be shutdown.
222  */
223 int __cpu_disable(void)
224 {
225 	unsigned int cpu = smp_processor_id();
226 	int ret;
227 
228 	ret = op_cpu_disable(cpu);
229 	if (ret)
230 		return ret;
231 
232 	/*
233 	 * Take this CPU offline.  Once we clear this, we can't return,
234 	 * and we must not schedule until we're ready to give up the cpu.
235 	 */
236 	set_cpu_online(cpu, false);
237 
238 	/*
239 	 * OK - migrate IRQs away from this CPU
240 	 */
241 	irq_migrate_all_off_this_cpu();
242 
243 	return 0;
244 }
245 
246 static int op_cpu_kill(unsigned int cpu)
247 {
248 	/*
249 	 * If we have no means of synchronising with the dying CPU, then assume
250 	 * that it is really dead. We can only wait for an arbitrary length of
251 	 * time and hope that it's dead, so let's skip the wait and just hope.
252 	 */
253 	if (!cpu_ops[cpu]->cpu_kill)
254 		return 0;
255 
256 	return cpu_ops[cpu]->cpu_kill(cpu);
257 }
258 
259 /*
260  * called on the thread which is asking for a CPU to be shutdown -
261  * waits until shutdown has completed, or it is timed out.
262  */
263 void __cpu_die(unsigned int cpu)
264 {
265 	int err;
266 
267 	if (!cpu_wait_death(cpu, 5)) {
268 		pr_crit("CPU%u: cpu didn't die\n", cpu);
269 		return;
270 	}
271 	pr_notice("CPU%u: shutdown\n", cpu);
272 
273 	/*
274 	 * Now that the dying CPU is beyond the point of no return w.r.t.
275 	 * in-kernel synchronisation, try to get the firwmare to help us to
276 	 * verify that it has really left the kernel before we consider
277 	 * clobbering anything it might still be using.
278 	 */
279 	err = op_cpu_kill(cpu);
280 	if (err)
281 		pr_warn("CPU%d may not have shut down cleanly: %d\n",
282 			cpu, err);
283 }
284 
285 /*
286  * Called from the idle thread for the CPU which has been shutdown.
287  *
288  * Note that we disable IRQs here, but do not re-enable them
289  * before returning to the caller. This is also the behaviour
290  * of the other hotplug-cpu capable cores, so presumably coming
291  * out of idle fixes this.
292  */
293 void cpu_die(void)
294 {
295 	unsigned int cpu = smp_processor_id();
296 
297 	idle_task_exit();
298 
299 	local_irq_disable();
300 
301 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
302 	(void)cpu_report_death();
303 
304 	/*
305 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
306 	 * mechanism must perform all required cache maintenance to ensure that
307 	 * no dirty lines are lost in the process of shutting down the CPU.
308 	 */
309 	cpu_ops[cpu]->cpu_die(cpu);
310 
311 	BUG();
312 }
313 #endif
314 
315 static void __init hyp_mode_check(void)
316 {
317 	if (is_hyp_mode_available())
318 		pr_info("CPU: All CPU(s) started at EL2\n");
319 	else if (is_hyp_mode_mismatched())
320 		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
321 			   "CPU: CPUs started in inconsistent modes");
322 	else
323 		pr_info("CPU: All CPU(s) started at EL1\n");
324 }
325 
326 void __init smp_cpus_done(unsigned int max_cpus)
327 {
328 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
329 	setup_cpu_features();
330 	hyp_mode_check();
331 	apply_alternatives_all();
332 }
333 
334 void __init smp_prepare_boot_cpu(void)
335 {
336 	cpuinfo_store_boot_cpu();
337 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
338 }
339 
340 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
341 {
342 	const __be32 *cell;
343 	u64 hwid;
344 
345 	/*
346 	 * A cpu node with missing "reg" property is
347 	 * considered invalid to build a cpu_logical_map
348 	 * entry.
349 	 */
350 	cell = of_get_property(dn, "reg", NULL);
351 	if (!cell) {
352 		pr_err("%s: missing reg property\n", dn->full_name);
353 		return INVALID_HWID;
354 	}
355 
356 	hwid = of_read_number(cell, of_n_addr_cells(dn));
357 	/*
358 	 * Non affinity bits must be set to 0 in the DT
359 	 */
360 	if (hwid & ~MPIDR_HWID_BITMASK) {
361 		pr_err("%s: invalid reg property\n", dn->full_name);
362 		return INVALID_HWID;
363 	}
364 	return hwid;
365 }
366 
367 /*
368  * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
369  * entries and check for duplicates. If any is found just ignore the
370  * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
371  * matching valid MPIDR values.
372  */
373 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
374 {
375 	unsigned int i;
376 
377 	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
378 		if (cpu_logical_map(i) == hwid)
379 			return true;
380 	return false;
381 }
382 
383 /*
384  * Initialize cpu operations for a logical cpu and
385  * set it in the possible mask on success
386  */
387 static int __init smp_cpu_setup(int cpu)
388 {
389 	if (cpu_read_ops(cpu))
390 		return -ENODEV;
391 
392 	if (cpu_ops[cpu]->cpu_init(cpu))
393 		return -ENODEV;
394 
395 	set_cpu_possible(cpu, true);
396 
397 	return 0;
398 }
399 
400 static bool bootcpu_valid __initdata;
401 static unsigned int cpu_count = 1;
402 
403 #ifdef CONFIG_ACPI
404 /*
405  * acpi_map_gic_cpu_interface - parse processor MADT entry
406  *
407  * Carry out sanity checks on MADT processor entry and initialize
408  * cpu_logical_map on success
409  */
410 static void __init
411 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
412 {
413 	u64 hwid = processor->arm_mpidr;
414 
415 	if (!(processor->flags & ACPI_MADT_ENABLED)) {
416 		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
417 		return;
418 	}
419 
420 	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
421 		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
422 		return;
423 	}
424 
425 	if (is_mpidr_duplicate(cpu_count, hwid)) {
426 		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
427 		return;
428 	}
429 
430 	/* Check if GICC structure of boot CPU is available in the MADT */
431 	if (cpu_logical_map(0) == hwid) {
432 		if (bootcpu_valid) {
433 			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
434 			       hwid);
435 			return;
436 		}
437 		bootcpu_valid = true;
438 		return;
439 	}
440 
441 	if (cpu_count >= NR_CPUS)
442 		return;
443 
444 	/* map the logical cpu id to cpu MPIDR */
445 	cpu_logical_map(cpu_count) = hwid;
446 
447 	/*
448 	 * Set-up the ACPI parking protocol cpu entries
449 	 * while initializing the cpu_logical_map to
450 	 * avoid parsing MADT entries multiple times for
451 	 * nothing (ie a valid cpu_logical_map entry should
452 	 * contain a valid parking protocol data set to
453 	 * initialize the cpu if the parking protocol is
454 	 * the only available enable method).
455 	 */
456 	acpi_set_mailbox_entry(cpu_count, processor);
457 
458 	cpu_count++;
459 }
460 
461 static int __init
462 acpi_parse_gic_cpu_interface(struct acpi_subtable_header *header,
463 			     const unsigned long end)
464 {
465 	struct acpi_madt_generic_interrupt *processor;
466 
467 	processor = (struct acpi_madt_generic_interrupt *)header;
468 	if (BAD_MADT_GICC_ENTRY(processor, end))
469 		return -EINVAL;
470 
471 	acpi_table_print_madt_entry(header);
472 
473 	acpi_map_gic_cpu_interface(processor);
474 
475 	return 0;
476 }
477 #else
478 #define acpi_table_parse_madt(...)	do { } while (0)
479 #endif
480 
481 /*
482  * Enumerate the possible CPU set from the device tree and build the
483  * cpu logical map array containing MPIDR values related to logical
484  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
485  */
486 static void __init of_parse_and_init_cpus(void)
487 {
488 	struct device_node *dn = NULL;
489 
490 	while ((dn = of_find_node_by_type(dn, "cpu"))) {
491 		u64 hwid = of_get_cpu_mpidr(dn);
492 
493 		if (hwid == INVALID_HWID)
494 			goto next;
495 
496 		if (is_mpidr_duplicate(cpu_count, hwid)) {
497 			pr_err("%s: duplicate cpu reg properties in the DT\n",
498 				dn->full_name);
499 			goto next;
500 		}
501 
502 		/*
503 		 * The numbering scheme requires that the boot CPU
504 		 * must be assigned logical id 0. Record it so that
505 		 * the logical map built from DT is validated and can
506 		 * be used.
507 		 */
508 		if (hwid == cpu_logical_map(0)) {
509 			if (bootcpu_valid) {
510 				pr_err("%s: duplicate boot cpu reg property in DT\n",
511 					dn->full_name);
512 				goto next;
513 			}
514 
515 			bootcpu_valid = true;
516 
517 			/*
518 			 * cpu_logical_map has already been
519 			 * initialized and the boot cpu doesn't need
520 			 * the enable-method so continue without
521 			 * incrementing cpu.
522 			 */
523 			continue;
524 		}
525 
526 		if (cpu_count >= NR_CPUS)
527 			goto next;
528 
529 		pr_debug("cpu logical map 0x%llx\n", hwid);
530 		cpu_logical_map(cpu_count) = hwid;
531 next:
532 		cpu_count++;
533 	}
534 }
535 
536 /*
537  * Enumerate the possible CPU set from the device tree or ACPI and build the
538  * cpu logical map array containing MPIDR values related to logical
539  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
540  */
541 void __init smp_init_cpus(void)
542 {
543 	int i;
544 
545 	if (acpi_disabled)
546 		of_parse_and_init_cpus();
547 	else
548 		/*
549 		 * do a walk of MADT to determine how many CPUs
550 		 * we have including disabled CPUs, and get information
551 		 * we need for SMP init
552 		 */
553 		acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
554 				      acpi_parse_gic_cpu_interface, 0);
555 
556 	if (cpu_count > NR_CPUS)
557 		pr_warn("no. of cores (%d) greater than configured maximum of %d - clipping\n",
558 			cpu_count, NR_CPUS);
559 
560 	if (!bootcpu_valid) {
561 		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
562 		return;
563 	}
564 
565 	/*
566 	 * We need to set the cpu_logical_map entries before enabling
567 	 * the cpus so that cpu processor description entries (DT cpu nodes
568 	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
569 	 * with entries in cpu_logical_map while initializing the cpus.
570 	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
571 	 */
572 	for (i = 1; i < NR_CPUS; i++) {
573 		if (cpu_logical_map(i) != INVALID_HWID) {
574 			if (smp_cpu_setup(i))
575 				cpu_logical_map(i) = INVALID_HWID;
576 		}
577 	}
578 }
579 
580 void __init smp_prepare_cpus(unsigned int max_cpus)
581 {
582 	int err;
583 	unsigned int cpu, ncores = num_possible_cpus();
584 
585 	init_cpu_topology();
586 
587 	smp_store_cpu_info(smp_processor_id());
588 
589 	/*
590 	 * are we trying to boot more cores than exist?
591 	 */
592 	if (max_cpus > ncores)
593 		max_cpus = ncores;
594 
595 	/* Don't bother if we're effectively UP */
596 	if (max_cpus <= 1)
597 		return;
598 
599 	/*
600 	 * Initialise the present map (which describes the set of CPUs
601 	 * actually populated at the present time) and release the
602 	 * secondaries from the bootloader.
603 	 *
604 	 * Make sure we online at most (max_cpus - 1) additional CPUs.
605 	 */
606 	max_cpus--;
607 	for_each_possible_cpu(cpu) {
608 		if (max_cpus == 0)
609 			break;
610 
611 		if (cpu == smp_processor_id())
612 			continue;
613 
614 		if (!cpu_ops[cpu])
615 			continue;
616 
617 		err = cpu_ops[cpu]->cpu_prepare(cpu);
618 		if (err)
619 			continue;
620 
621 		set_cpu_present(cpu, true);
622 		max_cpus--;
623 	}
624 }
625 
626 void (*__smp_cross_call)(const struct cpumask *, unsigned int);
627 
628 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
629 {
630 	__smp_cross_call = fn;
631 }
632 
633 static const char *ipi_types[NR_IPI] __tracepoint_string = {
634 #define S(x,s)	[x] = s
635 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
636 	S(IPI_CALL_FUNC, "Function call interrupts"),
637 	S(IPI_CPU_STOP, "CPU stop interrupts"),
638 	S(IPI_TIMER, "Timer broadcast interrupts"),
639 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
640 	S(IPI_WAKEUP, "CPU wake-up interrupts"),
641 };
642 
643 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
644 {
645 	trace_ipi_raise(target, ipi_types[ipinr]);
646 	__smp_cross_call(target, ipinr);
647 }
648 
649 void show_ipi_list(struct seq_file *p, int prec)
650 {
651 	unsigned int cpu, i;
652 
653 	for (i = 0; i < NR_IPI; i++) {
654 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
655 			   prec >= 4 ? " " : "");
656 		for_each_online_cpu(cpu)
657 			seq_printf(p, "%10u ",
658 				   __get_irq_stat(cpu, ipi_irqs[i]));
659 		seq_printf(p, "      %s\n", ipi_types[i]);
660 	}
661 }
662 
663 u64 smp_irq_stat_cpu(unsigned int cpu)
664 {
665 	u64 sum = 0;
666 	int i;
667 
668 	for (i = 0; i < NR_IPI; i++)
669 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
670 
671 	return sum;
672 }
673 
674 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
675 {
676 	smp_cross_call(mask, IPI_CALL_FUNC);
677 }
678 
679 void arch_send_call_function_single_ipi(int cpu)
680 {
681 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
682 }
683 
684 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
685 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
686 {
687 	smp_cross_call(mask, IPI_WAKEUP);
688 }
689 #endif
690 
691 #ifdef CONFIG_IRQ_WORK
692 void arch_irq_work_raise(void)
693 {
694 	if (__smp_cross_call)
695 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
696 }
697 #endif
698 
699 static DEFINE_RAW_SPINLOCK(stop_lock);
700 
701 /*
702  * ipi_cpu_stop - handle IPI from smp_send_stop()
703  */
704 static void ipi_cpu_stop(unsigned int cpu)
705 {
706 	if (system_state == SYSTEM_BOOTING ||
707 	    system_state == SYSTEM_RUNNING) {
708 		raw_spin_lock(&stop_lock);
709 		pr_crit("CPU%u: stopping\n", cpu);
710 		dump_stack();
711 		raw_spin_unlock(&stop_lock);
712 	}
713 
714 	set_cpu_online(cpu, false);
715 
716 	local_irq_disable();
717 
718 	while (1)
719 		cpu_relax();
720 }
721 
722 /*
723  * Main handler for inter-processor interrupts
724  */
725 void handle_IPI(int ipinr, struct pt_regs *regs)
726 {
727 	unsigned int cpu = smp_processor_id();
728 	struct pt_regs *old_regs = set_irq_regs(regs);
729 
730 	if ((unsigned)ipinr < NR_IPI) {
731 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
732 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
733 	}
734 
735 	switch (ipinr) {
736 	case IPI_RESCHEDULE:
737 		scheduler_ipi();
738 		break;
739 
740 	case IPI_CALL_FUNC:
741 		irq_enter();
742 		generic_smp_call_function_interrupt();
743 		irq_exit();
744 		break;
745 
746 	case IPI_CPU_STOP:
747 		irq_enter();
748 		ipi_cpu_stop(cpu);
749 		irq_exit();
750 		break;
751 
752 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
753 	case IPI_TIMER:
754 		irq_enter();
755 		tick_receive_broadcast();
756 		irq_exit();
757 		break;
758 #endif
759 
760 #ifdef CONFIG_IRQ_WORK
761 	case IPI_IRQ_WORK:
762 		irq_enter();
763 		irq_work_run();
764 		irq_exit();
765 		break;
766 #endif
767 
768 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
769 	case IPI_WAKEUP:
770 		WARN_ONCE(!acpi_parking_protocol_valid(cpu),
771 			  "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
772 			  cpu);
773 		break;
774 #endif
775 
776 	default:
777 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
778 		break;
779 	}
780 
781 	if ((unsigned)ipinr < NR_IPI)
782 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
783 	set_irq_regs(old_regs);
784 }
785 
786 void smp_send_reschedule(int cpu)
787 {
788 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
789 }
790 
791 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
792 void tick_broadcast(const struct cpumask *mask)
793 {
794 	smp_cross_call(mask, IPI_TIMER);
795 }
796 #endif
797 
798 void smp_send_stop(void)
799 {
800 	unsigned long timeout;
801 
802 	if (num_online_cpus() > 1) {
803 		cpumask_t mask;
804 
805 		cpumask_copy(&mask, cpu_online_mask);
806 		cpumask_clear_cpu(smp_processor_id(), &mask);
807 
808 		smp_cross_call(&mask, IPI_CPU_STOP);
809 	}
810 
811 	/* Wait up to one second for other CPUs to stop */
812 	timeout = USEC_PER_SEC;
813 	while (num_online_cpus() > 1 && timeout--)
814 		udelay(1);
815 
816 	if (num_online_cpus() > 1)
817 		pr_warning("SMP: failed to stop secondary CPUs\n");
818 }
819 
820 /*
821  * not supported here
822  */
823 int setup_profiling_timer(unsigned int multiplier)
824 {
825 	return -EINVAL;
826 }
827