xref: /linux/arch/arm64/kernel/smp.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 /*
2  * SMP initialisation and IPI support
3  * Based on arch/arm/kernel/smp.c
4  *
5  * Copyright (C) 2012 ARM Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/acpi.h>
21 #include <linux/arm_sdei.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/spinlock.h>
25 #include <linux/sched/mm.h>
26 #include <linux/sched/hotplug.h>
27 #include <linux/sched/task_stack.h>
28 #include <linux/interrupt.h>
29 #include <linux/cache.h>
30 #include <linux/profile.h>
31 #include <linux/errno.h>
32 #include <linux/mm.h>
33 #include <linux/err.h>
34 #include <linux/cpu.h>
35 #include <linux/smp.h>
36 #include <linux/seq_file.h>
37 #include <linux/irq.h>
38 #include <linux/irqchip/arm-gic-v3.h>
39 #include <linux/percpu.h>
40 #include <linux/clockchips.h>
41 #include <linux/completion.h>
42 #include <linux/of.h>
43 #include <linux/irq_work.h>
44 #include <linux/kexec.h>
45 
46 #include <asm/alternative.h>
47 #include <asm/atomic.h>
48 #include <asm/cacheflush.h>
49 #include <asm/cpu.h>
50 #include <asm/cputype.h>
51 #include <asm/cpu_ops.h>
52 #include <asm/daifflags.h>
53 #include <asm/mmu_context.h>
54 #include <asm/numa.h>
55 #include <asm/pgtable.h>
56 #include <asm/pgalloc.h>
57 #include <asm/processor.h>
58 #include <asm/smp_plat.h>
59 #include <asm/sections.h>
60 #include <asm/tlbflush.h>
61 #include <asm/ptrace.h>
62 #include <asm/virt.h>
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/ipi.h>
66 
67 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
68 EXPORT_PER_CPU_SYMBOL(cpu_number);
69 
70 /*
71  * as from 2.5, kernels no longer have an init_tasks structure
72  * so we need some other way of telling a new secondary core
73  * where to place its SVC stack
74  */
75 struct secondary_data secondary_data;
76 /* Number of CPUs which aren't online, but looping in kernel text. */
77 int cpus_stuck_in_kernel;
78 
79 enum ipi_msg_type {
80 	IPI_RESCHEDULE,
81 	IPI_CALL_FUNC,
82 	IPI_CPU_STOP,
83 	IPI_CPU_CRASH_STOP,
84 	IPI_TIMER,
85 	IPI_IRQ_WORK,
86 	IPI_WAKEUP
87 };
88 
89 #ifdef CONFIG_HOTPLUG_CPU
90 static int op_cpu_kill(unsigned int cpu);
91 #else
92 static inline int op_cpu_kill(unsigned int cpu)
93 {
94 	return -ENOSYS;
95 }
96 #endif
97 
98 
99 /*
100  * Boot a secondary CPU, and assign it the specified idle task.
101  * This also gives us the initial stack to use for this CPU.
102  */
103 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
104 {
105 	if (cpu_ops[cpu]->cpu_boot)
106 		return cpu_ops[cpu]->cpu_boot(cpu);
107 
108 	return -EOPNOTSUPP;
109 }
110 
111 static DECLARE_COMPLETION(cpu_running);
112 
113 int __cpu_up(unsigned int cpu, struct task_struct *idle)
114 {
115 	int ret;
116 	long status;
117 
118 	/*
119 	 * We need to tell the secondary core where to find its stack and the
120 	 * page tables.
121 	 */
122 	secondary_data.task = idle;
123 	secondary_data.stack = task_stack_page(idle) + THREAD_SIZE;
124 	update_cpu_boot_status(CPU_MMU_OFF);
125 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
126 
127 	/*
128 	 * Now bring the CPU into our world.
129 	 */
130 	ret = boot_secondary(cpu, idle);
131 	if (ret == 0) {
132 		/*
133 		 * CPU was successfully started, wait for it to come online or
134 		 * time out.
135 		 */
136 		wait_for_completion_timeout(&cpu_running,
137 					    msecs_to_jiffies(1000));
138 
139 		if (!cpu_online(cpu)) {
140 			pr_crit("CPU%u: failed to come online\n", cpu);
141 			ret = -EIO;
142 		}
143 	} else {
144 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
145 		return ret;
146 	}
147 
148 	secondary_data.task = NULL;
149 	secondary_data.stack = NULL;
150 	status = READ_ONCE(secondary_data.status);
151 	if (ret && status) {
152 
153 		if (status == CPU_MMU_OFF)
154 			status = READ_ONCE(__early_cpu_boot_status);
155 
156 		switch (status & CPU_BOOT_STATUS_MASK) {
157 		default:
158 			pr_err("CPU%u: failed in unknown state : 0x%lx\n",
159 					cpu, status);
160 			break;
161 		case CPU_KILL_ME:
162 			if (!op_cpu_kill(cpu)) {
163 				pr_crit("CPU%u: died during early boot\n", cpu);
164 				break;
165 			}
166 			/* Fall through */
167 			pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
168 		case CPU_STUCK_IN_KERNEL:
169 			pr_crit("CPU%u: is stuck in kernel\n", cpu);
170 			if (status & CPU_STUCK_REASON_52_BIT_VA)
171 				pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
172 			if (status & CPU_STUCK_REASON_NO_GRAN)
173 				pr_crit("CPU%u: does not support %luK granule \n", cpu, PAGE_SIZE / SZ_1K);
174 			cpus_stuck_in_kernel++;
175 			break;
176 		case CPU_PANIC_KERNEL:
177 			panic("CPU%u detected unsupported configuration\n", cpu);
178 		}
179 	}
180 
181 	return ret;
182 }
183 
184 static void init_gic_priority_masking(void)
185 {
186 	u32 cpuflags;
187 
188 	if (WARN_ON(!gic_enable_sre()))
189 		return;
190 
191 	cpuflags = read_sysreg(daif);
192 
193 	WARN_ON(!(cpuflags & PSR_I_BIT));
194 
195 	gic_write_pmr(GIC_PRIO_IRQOFF);
196 
197 	/* We can only unmask PSR.I if we can take aborts */
198 	if (!(cpuflags & PSR_A_BIT))
199 		write_sysreg(cpuflags & ~PSR_I_BIT, daif);
200 }
201 
202 /*
203  * This is the secondary CPU boot entry.  We're using this CPUs
204  * idle thread stack, but a set of temporary page tables.
205  */
206 asmlinkage notrace void secondary_start_kernel(void)
207 {
208 	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
209 	struct mm_struct *mm = &init_mm;
210 	unsigned int cpu;
211 
212 	cpu = task_cpu(current);
213 	set_my_cpu_offset(per_cpu_offset(cpu));
214 
215 	/*
216 	 * All kernel threads share the same mm context; grab a
217 	 * reference and switch to it.
218 	 */
219 	mmgrab(mm);
220 	current->active_mm = mm;
221 
222 	/*
223 	 * TTBR0 is only used for the identity mapping at this stage. Make it
224 	 * point to zero page to avoid speculatively fetching new entries.
225 	 */
226 	cpu_uninstall_idmap();
227 
228 	if (system_uses_irq_prio_masking())
229 		init_gic_priority_masking();
230 
231 	preempt_disable();
232 	trace_hardirqs_off();
233 
234 	/*
235 	 * If the system has established the capabilities, make sure
236 	 * this CPU ticks all of those. If it doesn't, the CPU will
237 	 * fail to come online.
238 	 */
239 	check_local_cpu_capabilities();
240 
241 	if (cpu_ops[cpu]->cpu_postboot)
242 		cpu_ops[cpu]->cpu_postboot();
243 
244 	/*
245 	 * Log the CPU info before it is marked online and might get read.
246 	 */
247 	cpuinfo_store_cpu();
248 
249 	/*
250 	 * Enable GIC and timers.
251 	 */
252 	notify_cpu_starting(cpu);
253 
254 	store_cpu_topology(cpu);
255 	numa_add_cpu(cpu);
256 
257 	/*
258 	 * OK, now it's safe to let the boot CPU continue.  Wait for
259 	 * the CPU migration code to notice that the CPU is online
260 	 * before we continue.
261 	 */
262 	pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
263 					 cpu, (unsigned long)mpidr,
264 					 read_cpuid_id());
265 	update_cpu_boot_status(CPU_BOOT_SUCCESS);
266 	set_cpu_online(cpu, true);
267 	complete(&cpu_running);
268 
269 	local_daif_restore(DAIF_PROCCTX);
270 
271 	/*
272 	 * OK, it's off to the idle thread for us
273 	 */
274 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
275 }
276 
277 #ifdef CONFIG_HOTPLUG_CPU
278 static int op_cpu_disable(unsigned int cpu)
279 {
280 	/*
281 	 * If we don't have a cpu_die method, abort before we reach the point
282 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
283 	 */
284 	if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die)
285 		return -EOPNOTSUPP;
286 
287 	/*
288 	 * We may need to abort a hot unplug for some other mechanism-specific
289 	 * reason.
290 	 */
291 	if (cpu_ops[cpu]->cpu_disable)
292 		return cpu_ops[cpu]->cpu_disable(cpu);
293 
294 	return 0;
295 }
296 
297 /*
298  * __cpu_disable runs on the processor to be shutdown.
299  */
300 int __cpu_disable(void)
301 {
302 	unsigned int cpu = smp_processor_id();
303 	int ret;
304 
305 	ret = op_cpu_disable(cpu);
306 	if (ret)
307 		return ret;
308 
309 	remove_cpu_topology(cpu);
310 	numa_remove_cpu(cpu);
311 
312 	/*
313 	 * Take this CPU offline.  Once we clear this, we can't return,
314 	 * and we must not schedule until we're ready to give up the cpu.
315 	 */
316 	set_cpu_online(cpu, false);
317 
318 	/*
319 	 * OK - migrate IRQs away from this CPU
320 	 */
321 	irq_migrate_all_off_this_cpu();
322 
323 	return 0;
324 }
325 
326 static int op_cpu_kill(unsigned int cpu)
327 {
328 	/*
329 	 * If we have no means of synchronising with the dying CPU, then assume
330 	 * that it is really dead. We can only wait for an arbitrary length of
331 	 * time and hope that it's dead, so let's skip the wait and just hope.
332 	 */
333 	if (!cpu_ops[cpu]->cpu_kill)
334 		return 0;
335 
336 	return cpu_ops[cpu]->cpu_kill(cpu);
337 }
338 
339 /*
340  * called on the thread which is asking for a CPU to be shutdown -
341  * waits until shutdown has completed, or it is timed out.
342  */
343 void __cpu_die(unsigned int cpu)
344 {
345 	int err;
346 
347 	if (!cpu_wait_death(cpu, 5)) {
348 		pr_crit("CPU%u: cpu didn't die\n", cpu);
349 		return;
350 	}
351 	pr_notice("CPU%u: shutdown\n", cpu);
352 
353 	/*
354 	 * Now that the dying CPU is beyond the point of no return w.r.t.
355 	 * in-kernel synchronisation, try to get the firwmare to help us to
356 	 * verify that it has really left the kernel before we consider
357 	 * clobbering anything it might still be using.
358 	 */
359 	err = op_cpu_kill(cpu);
360 	if (err)
361 		pr_warn("CPU%d may not have shut down cleanly: %d\n",
362 			cpu, err);
363 }
364 
365 /*
366  * Called from the idle thread for the CPU which has been shutdown.
367  *
368  */
369 void cpu_die(void)
370 {
371 	unsigned int cpu = smp_processor_id();
372 
373 	idle_task_exit();
374 
375 	local_daif_mask();
376 
377 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
378 	(void)cpu_report_death();
379 
380 	/*
381 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
382 	 * mechanism must perform all required cache maintenance to ensure that
383 	 * no dirty lines are lost in the process of shutting down the CPU.
384 	 */
385 	cpu_ops[cpu]->cpu_die(cpu);
386 
387 	BUG();
388 }
389 #endif
390 
391 /*
392  * Kill the calling secondary CPU, early in bringup before it is turned
393  * online.
394  */
395 void cpu_die_early(void)
396 {
397 	int cpu = smp_processor_id();
398 
399 	pr_crit("CPU%d: will not boot\n", cpu);
400 
401 	/* Mark this CPU absent */
402 	set_cpu_present(cpu, 0);
403 
404 #ifdef CONFIG_HOTPLUG_CPU
405 	update_cpu_boot_status(CPU_KILL_ME);
406 	/* Check if we can park ourselves */
407 	if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
408 		cpu_ops[cpu]->cpu_die(cpu);
409 #endif
410 	update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
411 
412 	cpu_park_loop();
413 }
414 
415 static void __init hyp_mode_check(void)
416 {
417 	if (is_hyp_mode_available())
418 		pr_info("CPU: All CPU(s) started at EL2\n");
419 	else if (is_hyp_mode_mismatched())
420 		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
421 			   "CPU: CPUs started in inconsistent modes");
422 	else
423 		pr_info("CPU: All CPU(s) started at EL1\n");
424 }
425 
426 void __init smp_cpus_done(unsigned int max_cpus)
427 {
428 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
429 	setup_cpu_features();
430 	hyp_mode_check();
431 	apply_alternatives_all();
432 	mark_linear_text_alias_ro();
433 }
434 
435 void __init smp_prepare_boot_cpu(void)
436 {
437 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
438 	/*
439 	 * Initialise the static keys early as they may be enabled by the
440 	 * cpufeature code.
441 	 */
442 	jump_label_init();
443 	cpuinfo_store_boot_cpu();
444 
445 	/*
446 	 * We now know enough about the boot CPU to apply the
447 	 * alternatives that cannot wait until interrupt handling
448 	 * and/or scheduling is enabled.
449 	 */
450 	apply_boot_alternatives();
451 
452 	/* Conditionally switch to GIC PMR for interrupt masking */
453 	if (system_uses_irq_prio_masking())
454 		init_gic_priority_masking();
455 }
456 
457 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
458 {
459 	const __be32 *cell;
460 	u64 hwid;
461 
462 	/*
463 	 * A cpu node with missing "reg" property is
464 	 * considered invalid to build a cpu_logical_map
465 	 * entry.
466 	 */
467 	cell = of_get_property(dn, "reg", NULL);
468 	if (!cell) {
469 		pr_err("%pOF: missing reg property\n", dn);
470 		return INVALID_HWID;
471 	}
472 
473 	hwid = of_read_number(cell, of_n_addr_cells(dn));
474 	/*
475 	 * Non affinity bits must be set to 0 in the DT
476 	 */
477 	if (hwid & ~MPIDR_HWID_BITMASK) {
478 		pr_err("%pOF: invalid reg property\n", dn);
479 		return INVALID_HWID;
480 	}
481 	return hwid;
482 }
483 
484 /*
485  * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
486  * entries and check for duplicates. If any is found just ignore the
487  * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
488  * matching valid MPIDR values.
489  */
490 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
491 {
492 	unsigned int i;
493 
494 	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
495 		if (cpu_logical_map(i) == hwid)
496 			return true;
497 	return false;
498 }
499 
500 /*
501  * Initialize cpu operations for a logical cpu and
502  * set it in the possible mask on success
503  */
504 static int __init smp_cpu_setup(int cpu)
505 {
506 	if (cpu_read_ops(cpu))
507 		return -ENODEV;
508 
509 	if (cpu_ops[cpu]->cpu_init(cpu))
510 		return -ENODEV;
511 
512 	set_cpu_possible(cpu, true);
513 
514 	return 0;
515 }
516 
517 static bool bootcpu_valid __initdata;
518 static unsigned int cpu_count = 1;
519 
520 #ifdef CONFIG_ACPI
521 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
522 
523 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
524 {
525 	return &cpu_madt_gicc[cpu];
526 }
527 
528 /*
529  * acpi_map_gic_cpu_interface - parse processor MADT entry
530  *
531  * Carry out sanity checks on MADT processor entry and initialize
532  * cpu_logical_map on success
533  */
534 static void __init
535 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
536 {
537 	u64 hwid = processor->arm_mpidr;
538 
539 	if (!(processor->flags & ACPI_MADT_ENABLED)) {
540 		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
541 		return;
542 	}
543 
544 	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
545 		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
546 		return;
547 	}
548 
549 	if (is_mpidr_duplicate(cpu_count, hwid)) {
550 		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
551 		return;
552 	}
553 
554 	/* Check if GICC structure of boot CPU is available in the MADT */
555 	if (cpu_logical_map(0) == hwid) {
556 		if (bootcpu_valid) {
557 			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
558 			       hwid);
559 			return;
560 		}
561 		bootcpu_valid = true;
562 		cpu_madt_gicc[0] = *processor;
563 		return;
564 	}
565 
566 	if (cpu_count >= NR_CPUS)
567 		return;
568 
569 	/* map the logical cpu id to cpu MPIDR */
570 	cpu_logical_map(cpu_count) = hwid;
571 
572 	cpu_madt_gicc[cpu_count] = *processor;
573 
574 	/*
575 	 * Set-up the ACPI parking protocol cpu entries
576 	 * while initializing the cpu_logical_map to
577 	 * avoid parsing MADT entries multiple times for
578 	 * nothing (ie a valid cpu_logical_map entry should
579 	 * contain a valid parking protocol data set to
580 	 * initialize the cpu if the parking protocol is
581 	 * the only available enable method).
582 	 */
583 	acpi_set_mailbox_entry(cpu_count, processor);
584 
585 	cpu_count++;
586 }
587 
588 static int __init
589 acpi_parse_gic_cpu_interface(struct acpi_subtable_header *header,
590 			     const unsigned long end)
591 {
592 	struct acpi_madt_generic_interrupt *processor;
593 
594 	processor = (struct acpi_madt_generic_interrupt *)header;
595 	if (BAD_MADT_GICC_ENTRY(processor, end))
596 		return -EINVAL;
597 
598 	acpi_table_print_madt_entry(header);
599 
600 	acpi_map_gic_cpu_interface(processor);
601 
602 	return 0;
603 }
604 
605 static void __init acpi_parse_and_init_cpus(void)
606 {
607 	int i;
608 
609 	/*
610 	 * do a walk of MADT to determine how many CPUs
611 	 * we have including disabled CPUs, and get information
612 	 * we need for SMP init.
613 	 */
614 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
615 				      acpi_parse_gic_cpu_interface, 0);
616 
617 	/*
618 	 * In ACPI, SMP and CPU NUMA information is provided in separate
619 	 * static tables, namely the MADT and the SRAT.
620 	 *
621 	 * Thus, it is simpler to first create the cpu logical map through
622 	 * an MADT walk and then map the logical cpus to their node ids
623 	 * as separate steps.
624 	 */
625 	acpi_map_cpus_to_nodes();
626 
627 	for (i = 0; i < nr_cpu_ids; i++)
628 		early_map_cpu_to_node(i, acpi_numa_get_nid(i));
629 }
630 #else
631 #define acpi_parse_and_init_cpus(...)	do { } while (0)
632 #endif
633 
634 /*
635  * Enumerate the possible CPU set from the device tree and build the
636  * cpu logical map array containing MPIDR values related to logical
637  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
638  */
639 static void __init of_parse_and_init_cpus(void)
640 {
641 	struct device_node *dn;
642 
643 	for_each_of_cpu_node(dn) {
644 		u64 hwid = of_get_cpu_mpidr(dn);
645 
646 		if (hwid == INVALID_HWID)
647 			goto next;
648 
649 		if (is_mpidr_duplicate(cpu_count, hwid)) {
650 			pr_err("%pOF: duplicate cpu reg properties in the DT\n",
651 				dn);
652 			goto next;
653 		}
654 
655 		/*
656 		 * The numbering scheme requires that the boot CPU
657 		 * must be assigned logical id 0. Record it so that
658 		 * the logical map built from DT is validated and can
659 		 * be used.
660 		 */
661 		if (hwid == cpu_logical_map(0)) {
662 			if (bootcpu_valid) {
663 				pr_err("%pOF: duplicate boot cpu reg property in DT\n",
664 					dn);
665 				goto next;
666 			}
667 
668 			bootcpu_valid = true;
669 			early_map_cpu_to_node(0, of_node_to_nid(dn));
670 
671 			/*
672 			 * cpu_logical_map has already been
673 			 * initialized and the boot cpu doesn't need
674 			 * the enable-method so continue without
675 			 * incrementing cpu.
676 			 */
677 			continue;
678 		}
679 
680 		if (cpu_count >= NR_CPUS)
681 			goto next;
682 
683 		pr_debug("cpu logical map 0x%llx\n", hwid);
684 		cpu_logical_map(cpu_count) = hwid;
685 
686 		early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
687 next:
688 		cpu_count++;
689 	}
690 }
691 
692 /*
693  * Enumerate the possible CPU set from the device tree or ACPI and build the
694  * cpu logical map array containing MPIDR values related to logical
695  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
696  */
697 void __init smp_init_cpus(void)
698 {
699 	int i;
700 
701 	if (acpi_disabled)
702 		of_parse_and_init_cpus();
703 	else
704 		acpi_parse_and_init_cpus();
705 
706 	if (cpu_count > nr_cpu_ids)
707 		pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
708 			cpu_count, nr_cpu_ids);
709 
710 	if (!bootcpu_valid) {
711 		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
712 		return;
713 	}
714 
715 	/*
716 	 * We need to set the cpu_logical_map entries before enabling
717 	 * the cpus so that cpu processor description entries (DT cpu nodes
718 	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
719 	 * with entries in cpu_logical_map while initializing the cpus.
720 	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
721 	 */
722 	for (i = 1; i < nr_cpu_ids; i++) {
723 		if (cpu_logical_map(i) != INVALID_HWID) {
724 			if (smp_cpu_setup(i))
725 				cpu_logical_map(i) = INVALID_HWID;
726 		}
727 	}
728 }
729 
730 void __init smp_prepare_cpus(unsigned int max_cpus)
731 {
732 	int err;
733 	unsigned int cpu;
734 	unsigned int this_cpu;
735 
736 	init_cpu_topology();
737 
738 	this_cpu = smp_processor_id();
739 	store_cpu_topology(this_cpu);
740 	numa_store_cpu_info(this_cpu);
741 	numa_add_cpu(this_cpu);
742 
743 	/*
744 	 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
745 	 * secondary CPUs present.
746 	 */
747 	if (max_cpus == 0)
748 		return;
749 
750 	/*
751 	 * Initialise the present map (which describes the set of CPUs
752 	 * actually populated at the present time) and release the
753 	 * secondaries from the bootloader.
754 	 */
755 	for_each_possible_cpu(cpu) {
756 
757 		per_cpu(cpu_number, cpu) = cpu;
758 
759 		if (cpu == smp_processor_id())
760 			continue;
761 
762 		if (!cpu_ops[cpu])
763 			continue;
764 
765 		err = cpu_ops[cpu]->cpu_prepare(cpu);
766 		if (err)
767 			continue;
768 
769 		set_cpu_present(cpu, true);
770 		numa_store_cpu_info(cpu);
771 	}
772 }
773 
774 void (*__smp_cross_call)(const struct cpumask *, unsigned int);
775 
776 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
777 {
778 	__smp_cross_call = fn;
779 }
780 
781 static const char *ipi_types[NR_IPI] __tracepoint_string = {
782 #define S(x,s)	[x] = s
783 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
784 	S(IPI_CALL_FUNC, "Function call interrupts"),
785 	S(IPI_CPU_STOP, "CPU stop interrupts"),
786 	S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"),
787 	S(IPI_TIMER, "Timer broadcast interrupts"),
788 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
789 	S(IPI_WAKEUP, "CPU wake-up interrupts"),
790 };
791 
792 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
793 {
794 	trace_ipi_raise(target, ipi_types[ipinr]);
795 	__smp_cross_call(target, ipinr);
796 }
797 
798 void show_ipi_list(struct seq_file *p, int prec)
799 {
800 	unsigned int cpu, i;
801 
802 	for (i = 0; i < NR_IPI; i++) {
803 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
804 			   prec >= 4 ? " " : "");
805 		for_each_online_cpu(cpu)
806 			seq_printf(p, "%10u ",
807 				   __get_irq_stat(cpu, ipi_irqs[i]));
808 		seq_printf(p, "      %s\n", ipi_types[i]);
809 	}
810 }
811 
812 u64 smp_irq_stat_cpu(unsigned int cpu)
813 {
814 	u64 sum = 0;
815 	int i;
816 
817 	for (i = 0; i < NR_IPI; i++)
818 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
819 
820 	return sum;
821 }
822 
823 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
824 {
825 	smp_cross_call(mask, IPI_CALL_FUNC);
826 }
827 
828 void arch_send_call_function_single_ipi(int cpu)
829 {
830 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
831 }
832 
833 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
834 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
835 {
836 	smp_cross_call(mask, IPI_WAKEUP);
837 }
838 #endif
839 
840 #ifdef CONFIG_IRQ_WORK
841 void arch_irq_work_raise(void)
842 {
843 	if (__smp_cross_call)
844 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
845 }
846 #endif
847 
848 /*
849  * ipi_cpu_stop - handle IPI from smp_send_stop()
850  */
851 static void ipi_cpu_stop(unsigned int cpu)
852 {
853 	set_cpu_online(cpu, false);
854 
855 	local_daif_mask();
856 	sdei_mask_local_cpu();
857 
858 	while (1)
859 		cpu_relax();
860 }
861 
862 #ifdef CONFIG_KEXEC_CORE
863 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
864 #endif
865 
866 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
867 {
868 #ifdef CONFIG_KEXEC_CORE
869 	crash_save_cpu(regs, cpu);
870 
871 	atomic_dec(&waiting_for_crash_ipi);
872 
873 	local_irq_disable();
874 	sdei_mask_local_cpu();
875 
876 #ifdef CONFIG_HOTPLUG_CPU
877 	if (cpu_ops[cpu]->cpu_die)
878 		cpu_ops[cpu]->cpu_die(cpu);
879 #endif
880 
881 	/* just in case */
882 	cpu_park_loop();
883 #endif
884 }
885 
886 /*
887  * Main handler for inter-processor interrupts
888  */
889 void handle_IPI(int ipinr, struct pt_regs *regs)
890 {
891 	unsigned int cpu = smp_processor_id();
892 	struct pt_regs *old_regs = set_irq_regs(regs);
893 
894 	if ((unsigned)ipinr < NR_IPI) {
895 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
896 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
897 	}
898 
899 	switch (ipinr) {
900 	case IPI_RESCHEDULE:
901 		scheduler_ipi();
902 		break;
903 
904 	case IPI_CALL_FUNC:
905 		irq_enter();
906 		generic_smp_call_function_interrupt();
907 		irq_exit();
908 		break;
909 
910 	case IPI_CPU_STOP:
911 		irq_enter();
912 		ipi_cpu_stop(cpu);
913 		irq_exit();
914 		break;
915 
916 	case IPI_CPU_CRASH_STOP:
917 		if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
918 			irq_enter();
919 			ipi_cpu_crash_stop(cpu, regs);
920 
921 			unreachable();
922 		}
923 		break;
924 
925 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
926 	case IPI_TIMER:
927 		irq_enter();
928 		tick_receive_broadcast();
929 		irq_exit();
930 		break;
931 #endif
932 
933 #ifdef CONFIG_IRQ_WORK
934 	case IPI_IRQ_WORK:
935 		irq_enter();
936 		irq_work_run();
937 		irq_exit();
938 		break;
939 #endif
940 
941 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
942 	case IPI_WAKEUP:
943 		WARN_ONCE(!acpi_parking_protocol_valid(cpu),
944 			  "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
945 			  cpu);
946 		break;
947 #endif
948 
949 	default:
950 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
951 		break;
952 	}
953 
954 	if ((unsigned)ipinr < NR_IPI)
955 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
956 	set_irq_regs(old_regs);
957 }
958 
959 void smp_send_reschedule(int cpu)
960 {
961 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
962 }
963 
964 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
965 void tick_broadcast(const struct cpumask *mask)
966 {
967 	smp_cross_call(mask, IPI_TIMER);
968 }
969 #endif
970 
971 void smp_send_stop(void)
972 {
973 	unsigned long timeout;
974 
975 	if (num_online_cpus() > 1) {
976 		cpumask_t mask;
977 
978 		cpumask_copy(&mask, cpu_online_mask);
979 		cpumask_clear_cpu(smp_processor_id(), &mask);
980 
981 		if (system_state <= SYSTEM_RUNNING)
982 			pr_crit("SMP: stopping secondary CPUs\n");
983 		smp_cross_call(&mask, IPI_CPU_STOP);
984 	}
985 
986 	/* Wait up to one second for other CPUs to stop */
987 	timeout = USEC_PER_SEC;
988 	while (num_online_cpus() > 1 && timeout--)
989 		udelay(1);
990 
991 	if (num_online_cpus() > 1)
992 		pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
993 			   cpumask_pr_args(cpu_online_mask));
994 
995 	sdei_mask_local_cpu();
996 }
997 
998 #ifdef CONFIG_KEXEC_CORE
999 void crash_smp_send_stop(void)
1000 {
1001 	static int cpus_stopped;
1002 	cpumask_t mask;
1003 	unsigned long timeout;
1004 
1005 	/*
1006 	 * This function can be called twice in panic path, but obviously
1007 	 * we execute this only once.
1008 	 */
1009 	if (cpus_stopped)
1010 		return;
1011 
1012 	cpus_stopped = 1;
1013 
1014 	if (num_online_cpus() == 1) {
1015 		sdei_mask_local_cpu();
1016 		return;
1017 	}
1018 
1019 	cpumask_copy(&mask, cpu_online_mask);
1020 	cpumask_clear_cpu(smp_processor_id(), &mask);
1021 
1022 	atomic_set(&waiting_for_crash_ipi, num_online_cpus() - 1);
1023 
1024 	pr_crit("SMP: stopping secondary CPUs\n");
1025 	smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
1026 
1027 	/* Wait up to one second for other CPUs to stop */
1028 	timeout = USEC_PER_SEC;
1029 	while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
1030 		udelay(1);
1031 
1032 	if (atomic_read(&waiting_for_crash_ipi) > 0)
1033 		pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
1034 			   cpumask_pr_args(&mask));
1035 
1036 	sdei_mask_local_cpu();
1037 }
1038 
1039 bool smp_crash_stop_failed(void)
1040 {
1041 	return (atomic_read(&waiting_for_crash_ipi) > 0);
1042 }
1043 #endif
1044 
1045 /*
1046  * not supported here
1047  */
1048 int setup_profiling_timer(unsigned int multiplier)
1049 {
1050 	return -EINVAL;
1051 }
1052 
1053 static bool have_cpu_die(void)
1054 {
1055 #ifdef CONFIG_HOTPLUG_CPU
1056 	int any_cpu = raw_smp_processor_id();
1057 
1058 	if (cpu_ops[any_cpu] && cpu_ops[any_cpu]->cpu_die)
1059 		return true;
1060 #endif
1061 	return false;
1062 }
1063 
1064 bool cpus_are_stuck_in_kernel(void)
1065 {
1066 	bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1067 
1068 	return !!cpus_stuck_in_kernel || smp_spin_tables;
1069 }
1070