1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * SMP initialisation and IPI support 4 * Based on arch/arm/kernel/smp.c 5 * 6 * Copyright (C) 2012 ARM Ltd. 7 */ 8 9 #include <linux/acpi.h> 10 #include <linux/arm_sdei.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/hotplug.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/interrupt.h> 18 #include <linux/cache.h> 19 #include <linux/profile.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/err.h> 23 #include <linux/cpu.h> 24 #include <linux/smp.h> 25 #include <linux/seq_file.h> 26 #include <linux/irq.h> 27 #include <linux/irqchip/arm-gic-v3.h> 28 #include <linux/percpu.h> 29 #include <linux/clockchips.h> 30 #include <linux/completion.h> 31 #include <linux/of.h> 32 #include <linux/irq_work.h> 33 #include <linux/kernel_stat.h> 34 #include <linux/kexec.h> 35 #include <linux/kgdb.h> 36 #include <linux/kvm_host.h> 37 #include <linux/nmi.h> 38 39 #include <asm/alternative.h> 40 #include <asm/atomic.h> 41 #include <asm/cacheflush.h> 42 #include <asm/cpu.h> 43 #include <asm/cputype.h> 44 #include <asm/cpu_ops.h> 45 #include <asm/daifflags.h> 46 #include <asm/kvm_mmu.h> 47 #include <asm/mmu_context.h> 48 #include <asm/numa.h> 49 #include <asm/processor.h> 50 #include <asm/smp_plat.h> 51 #include <asm/sections.h> 52 #include <asm/tlbflush.h> 53 #include <asm/ptrace.h> 54 #include <asm/virt.h> 55 56 #include <trace/events/ipi.h> 57 58 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number); 59 EXPORT_PER_CPU_SYMBOL(cpu_number); 60 61 /* 62 * as from 2.5, kernels no longer have an init_tasks structure 63 * so we need some other way of telling a new secondary core 64 * where to place its SVC stack 65 */ 66 struct secondary_data secondary_data; 67 /* Number of CPUs which aren't online, but looping in kernel text. */ 68 static int cpus_stuck_in_kernel; 69 70 enum ipi_msg_type { 71 IPI_RESCHEDULE, 72 IPI_CALL_FUNC, 73 IPI_CPU_STOP, 74 IPI_CPU_CRASH_STOP, 75 IPI_TIMER, 76 IPI_IRQ_WORK, 77 NR_IPI, 78 /* 79 * Any enum >= NR_IPI and < MAX_IPI is special and not tracable 80 * with trace_ipi_* 81 */ 82 IPI_CPU_BACKTRACE = NR_IPI, 83 IPI_KGDB_ROUNDUP, 84 MAX_IPI 85 }; 86 87 static int ipi_irq_base __ro_after_init; 88 static int nr_ipi __ro_after_init = NR_IPI; 89 static struct irq_desc *ipi_desc[MAX_IPI] __ro_after_init; 90 91 static void ipi_setup(int cpu); 92 93 #ifdef CONFIG_HOTPLUG_CPU 94 static void ipi_teardown(int cpu); 95 static int op_cpu_kill(unsigned int cpu); 96 #else 97 static inline int op_cpu_kill(unsigned int cpu) 98 { 99 return -ENOSYS; 100 } 101 #endif 102 103 104 /* 105 * Boot a secondary CPU, and assign it the specified idle task. 106 * This also gives us the initial stack to use for this CPU. 107 */ 108 static int boot_secondary(unsigned int cpu, struct task_struct *idle) 109 { 110 const struct cpu_operations *ops = get_cpu_ops(cpu); 111 112 if (ops->cpu_boot) 113 return ops->cpu_boot(cpu); 114 115 return -EOPNOTSUPP; 116 } 117 118 static DECLARE_COMPLETION(cpu_running); 119 120 int __cpu_up(unsigned int cpu, struct task_struct *idle) 121 { 122 int ret; 123 long status; 124 125 /* 126 * We need to tell the secondary core where to find its stack and the 127 * page tables. 128 */ 129 secondary_data.task = idle; 130 update_cpu_boot_status(CPU_MMU_OFF); 131 132 /* Now bring the CPU into our world */ 133 ret = boot_secondary(cpu, idle); 134 if (ret) { 135 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 136 return ret; 137 } 138 139 /* 140 * CPU was successfully started, wait for it to come online or 141 * time out. 142 */ 143 wait_for_completion_timeout(&cpu_running, 144 msecs_to_jiffies(5000)); 145 if (cpu_online(cpu)) 146 return 0; 147 148 pr_crit("CPU%u: failed to come online\n", cpu); 149 secondary_data.task = NULL; 150 status = READ_ONCE(secondary_data.status); 151 if (status == CPU_MMU_OFF) 152 status = READ_ONCE(__early_cpu_boot_status); 153 154 switch (status & CPU_BOOT_STATUS_MASK) { 155 default: 156 pr_err("CPU%u: failed in unknown state : 0x%lx\n", 157 cpu, status); 158 cpus_stuck_in_kernel++; 159 break; 160 case CPU_KILL_ME: 161 if (!op_cpu_kill(cpu)) { 162 pr_crit("CPU%u: died during early boot\n", cpu); 163 break; 164 } 165 pr_crit("CPU%u: may not have shut down cleanly\n", cpu); 166 fallthrough; 167 case CPU_STUCK_IN_KERNEL: 168 pr_crit("CPU%u: is stuck in kernel\n", cpu); 169 if (status & CPU_STUCK_REASON_52_BIT_VA) 170 pr_crit("CPU%u: does not support 52-bit VAs\n", cpu); 171 if (status & CPU_STUCK_REASON_NO_GRAN) { 172 pr_crit("CPU%u: does not support %luK granule\n", 173 cpu, PAGE_SIZE / SZ_1K); 174 } 175 cpus_stuck_in_kernel++; 176 break; 177 case CPU_PANIC_KERNEL: 178 panic("CPU%u detected unsupported configuration\n", cpu); 179 } 180 181 return -EIO; 182 } 183 184 static void init_gic_priority_masking(void) 185 { 186 u32 cpuflags; 187 188 if (WARN_ON(!gic_enable_sre())) 189 return; 190 191 cpuflags = read_sysreg(daif); 192 193 WARN_ON(!(cpuflags & PSR_I_BIT)); 194 WARN_ON(!(cpuflags & PSR_F_BIT)); 195 196 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET); 197 } 198 199 /* 200 * This is the secondary CPU boot entry. We're using this CPUs 201 * idle thread stack, but a set of temporary page tables. 202 */ 203 asmlinkage notrace void secondary_start_kernel(void) 204 { 205 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; 206 struct mm_struct *mm = &init_mm; 207 const struct cpu_operations *ops; 208 unsigned int cpu = smp_processor_id(); 209 210 /* 211 * All kernel threads share the same mm context; grab a 212 * reference and switch to it. 213 */ 214 mmgrab(mm); 215 current->active_mm = mm; 216 217 /* 218 * TTBR0 is only used for the identity mapping at this stage. Make it 219 * point to zero page to avoid speculatively fetching new entries. 220 */ 221 cpu_uninstall_idmap(); 222 223 if (system_uses_irq_prio_masking()) 224 init_gic_priority_masking(); 225 226 rcutree_report_cpu_starting(cpu); 227 trace_hardirqs_off(); 228 229 /* 230 * If the system has established the capabilities, make sure 231 * this CPU ticks all of those. If it doesn't, the CPU will 232 * fail to come online. 233 */ 234 check_local_cpu_capabilities(); 235 236 ops = get_cpu_ops(cpu); 237 if (ops->cpu_postboot) 238 ops->cpu_postboot(); 239 240 /* 241 * Log the CPU info before it is marked online and might get read. 242 */ 243 cpuinfo_store_cpu(); 244 store_cpu_topology(cpu); 245 246 /* 247 * Enable GIC and timers. 248 */ 249 notify_cpu_starting(cpu); 250 251 ipi_setup(cpu); 252 253 numa_add_cpu(cpu); 254 255 /* 256 * OK, now it's safe to let the boot CPU continue. Wait for 257 * the CPU migration code to notice that the CPU is online 258 * before we continue. 259 */ 260 pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n", 261 cpu, (unsigned long)mpidr, 262 read_cpuid_id()); 263 update_cpu_boot_status(CPU_BOOT_SUCCESS); 264 set_cpu_online(cpu, true); 265 complete(&cpu_running); 266 267 /* 268 * Secondary CPUs enter the kernel with all DAIF exceptions masked. 269 * 270 * As with setup_arch() we must unmask Debug and SError exceptions, and 271 * as the root irqchip has already been detected and initialized we can 272 * unmask IRQ and FIQ at the same time. 273 */ 274 local_daif_restore(DAIF_PROCCTX); 275 276 /* 277 * OK, it's off to the idle thread for us 278 */ 279 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 280 } 281 282 #ifdef CONFIG_HOTPLUG_CPU 283 static int op_cpu_disable(unsigned int cpu) 284 { 285 const struct cpu_operations *ops = get_cpu_ops(cpu); 286 287 /* 288 * If we don't have a cpu_die method, abort before we reach the point 289 * of no return. CPU0 may not have an cpu_ops, so test for it. 290 */ 291 if (!ops || !ops->cpu_die) 292 return -EOPNOTSUPP; 293 294 /* 295 * We may need to abort a hot unplug for some other mechanism-specific 296 * reason. 297 */ 298 if (ops->cpu_disable) 299 return ops->cpu_disable(cpu); 300 301 return 0; 302 } 303 304 /* 305 * __cpu_disable runs on the processor to be shutdown. 306 */ 307 int __cpu_disable(void) 308 { 309 unsigned int cpu = smp_processor_id(); 310 int ret; 311 312 ret = op_cpu_disable(cpu); 313 if (ret) 314 return ret; 315 316 remove_cpu_topology(cpu); 317 numa_remove_cpu(cpu); 318 319 /* 320 * Take this CPU offline. Once we clear this, we can't return, 321 * and we must not schedule until we're ready to give up the cpu. 322 */ 323 set_cpu_online(cpu, false); 324 ipi_teardown(cpu); 325 326 /* 327 * OK - migrate IRQs away from this CPU 328 */ 329 irq_migrate_all_off_this_cpu(); 330 331 return 0; 332 } 333 334 static int op_cpu_kill(unsigned int cpu) 335 { 336 const struct cpu_operations *ops = get_cpu_ops(cpu); 337 338 /* 339 * If we have no means of synchronising with the dying CPU, then assume 340 * that it is really dead. We can only wait for an arbitrary length of 341 * time and hope that it's dead, so let's skip the wait and just hope. 342 */ 343 if (!ops->cpu_kill) 344 return 0; 345 346 return ops->cpu_kill(cpu); 347 } 348 349 /* 350 * Called on the thread which is asking for a CPU to be shutdown after the 351 * shutdown completed. 352 */ 353 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) 354 { 355 int err; 356 357 pr_debug("CPU%u: shutdown\n", cpu); 358 359 /* 360 * Now that the dying CPU is beyond the point of no return w.r.t. 361 * in-kernel synchronisation, try to get the firwmare to help us to 362 * verify that it has really left the kernel before we consider 363 * clobbering anything it might still be using. 364 */ 365 err = op_cpu_kill(cpu); 366 if (err) 367 pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err); 368 } 369 370 /* 371 * Called from the idle thread for the CPU which has been shutdown. 372 * 373 */ 374 void __noreturn cpu_die(void) 375 { 376 unsigned int cpu = smp_processor_id(); 377 const struct cpu_operations *ops = get_cpu_ops(cpu); 378 379 idle_task_exit(); 380 381 local_daif_mask(); 382 383 /* Tell cpuhp_bp_sync_dead() that this CPU is now safe to dispose of */ 384 cpuhp_ap_report_dead(); 385 386 /* 387 * Actually shutdown the CPU. This must never fail. The specific hotplug 388 * mechanism must perform all required cache maintenance to ensure that 389 * no dirty lines are lost in the process of shutting down the CPU. 390 */ 391 ops->cpu_die(cpu); 392 393 BUG(); 394 } 395 #endif 396 397 static void __cpu_try_die(int cpu) 398 { 399 #ifdef CONFIG_HOTPLUG_CPU 400 const struct cpu_operations *ops = get_cpu_ops(cpu); 401 402 if (ops && ops->cpu_die) 403 ops->cpu_die(cpu); 404 #endif 405 } 406 407 /* 408 * Kill the calling secondary CPU, early in bringup before it is turned 409 * online. 410 */ 411 void __noreturn cpu_die_early(void) 412 { 413 int cpu = smp_processor_id(); 414 415 pr_crit("CPU%d: will not boot\n", cpu); 416 417 /* Mark this CPU absent */ 418 set_cpu_present(cpu, 0); 419 rcutree_report_cpu_dead(); 420 421 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) { 422 update_cpu_boot_status(CPU_KILL_ME); 423 __cpu_try_die(cpu); 424 } 425 426 update_cpu_boot_status(CPU_STUCK_IN_KERNEL); 427 428 cpu_park_loop(); 429 } 430 431 static void __init hyp_mode_check(void) 432 { 433 if (is_hyp_mode_available()) 434 pr_info("CPU: All CPU(s) started at EL2\n"); 435 else if (is_hyp_mode_mismatched()) 436 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC, 437 "CPU: CPUs started in inconsistent modes"); 438 else 439 pr_info("CPU: All CPU(s) started at EL1\n"); 440 if (IS_ENABLED(CONFIG_KVM) && !is_kernel_in_hyp_mode()) { 441 kvm_compute_layout(); 442 kvm_apply_hyp_relocations(); 443 } 444 } 445 446 void __init smp_cpus_done(unsigned int max_cpus) 447 { 448 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus()); 449 hyp_mode_check(); 450 setup_system_features(); 451 setup_user_features(); 452 mark_linear_text_alias_ro(); 453 } 454 455 void __init smp_prepare_boot_cpu(void) 456 { 457 /* 458 * The runtime per-cpu areas have been allocated by 459 * setup_per_cpu_areas(), and CPU0's boot time per-cpu area will be 460 * freed shortly, so we must move over to the runtime per-cpu area. 461 */ 462 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 463 464 cpuinfo_store_boot_cpu(); 465 setup_boot_cpu_features(); 466 467 /* Conditionally switch to GIC PMR for interrupt masking */ 468 if (system_uses_irq_prio_masking()) 469 init_gic_priority_masking(); 470 471 kasan_init_hw_tags(); 472 } 473 474 /* 475 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized 476 * entries and check for duplicates. If any is found just ignore the 477 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid 478 * matching valid MPIDR values. 479 */ 480 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid) 481 { 482 unsigned int i; 483 484 for (i = 1; (i < cpu) && (i < NR_CPUS); i++) 485 if (cpu_logical_map(i) == hwid) 486 return true; 487 return false; 488 } 489 490 /* 491 * Initialize cpu operations for a logical cpu and 492 * set it in the possible mask on success 493 */ 494 static int __init smp_cpu_setup(int cpu) 495 { 496 const struct cpu_operations *ops; 497 498 if (init_cpu_ops(cpu)) 499 return -ENODEV; 500 501 ops = get_cpu_ops(cpu); 502 if (ops->cpu_init(cpu)) 503 return -ENODEV; 504 505 set_cpu_possible(cpu, true); 506 507 return 0; 508 } 509 510 static bool bootcpu_valid __initdata; 511 static unsigned int cpu_count = 1; 512 513 #ifdef CONFIG_ACPI 514 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS]; 515 516 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu) 517 { 518 return &cpu_madt_gicc[cpu]; 519 } 520 EXPORT_SYMBOL_GPL(acpi_cpu_get_madt_gicc); 521 522 /* 523 * acpi_map_gic_cpu_interface - parse processor MADT entry 524 * 525 * Carry out sanity checks on MADT processor entry and initialize 526 * cpu_logical_map on success 527 */ 528 static void __init 529 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor) 530 { 531 u64 hwid = processor->arm_mpidr; 532 533 if (!acpi_gicc_is_usable(processor)) { 534 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid); 535 return; 536 } 537 538 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) { 539 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid); 540 return; 541 } 542 543 if (is_mpidr_duplicate(cpu_count, hwid)) { 544 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid); 545 return; 546 } 547 548 /* Check if GICC structure of boot CPU is available in the MADT */ 549 if (cpu_logical_map(0) == hwid) { 550 if (bootcpu_valid) { 551 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n", 552 hwid); 553 return; 554 } 555 bootcpu_valid = true; 556 cpu_madt_gicc[0] = *processor; 557 return; 558 } 559 560 if (cpu_count >= NR_CPUS) 561 return; 562 563 /* map the logical cpu id to cpu MPIDR */ 564 set_cpu_logical_map(cpu_count, hwid); 565 566 cpu_madt_gicc[cpu_count] = *processor; 567 568 /* 569 * Set-up the ACPI parking protocol cpu entries 570 * while initializing the cpu_logical_map to 571 * avoid parsing MADT entries multiple times for 572 * nothing (ie a valid cpu_logical_map entry should 573 * contain a valid parking protocol data set to 574 * initialize the cpu if the parking protocol is 575 * the only available enable method). 576 */ 577 acpi_set_mailbox_entry(cpu_count, processor); 578 579 cpu_count++; 580 } 581 582 static int __init 583 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header, 584 const unsigned long end) 585 { 586 struct acpi_madt_generic_interrupt *processor; 587 588 processor = (struct acpi_madt_generic_interrupt *)header; 589 if (BAD_MADT_GICC_ENTRY(processor, end)) 590 return -EINVAL; 591 592 acpi_table_print_madt_entry(&header->common); 593 594 acpi_map_gic_cpu_interface(processor); 595 596 return 0; 597 } 598 599 static void __init acpi_parse_and_init_cpus(void) 600 { 601 int i; 602 603 /* 604 * do a walk of MADT to determine how many CPUs 605 * we have including disabled CPUs, and get information 606 * we need for SMP init. 607 */ 608 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, 609 acpi_parse_gic_cpu_interface, 0); 610 611 /* 612 * In ACPI, SMP and CPU NUMA information is provided in separate 613 * static tables, namely the MADT and the SRAT. 614 * 615 * Thus, it is simpler to first create the cpu logical map through 616 * an MADT walk and then map the logical cpus to their node ids 617 * as separate steps. 618 */ 619 acpi_map_cpus_to_nodes(); 620 621 for (i = 0; i < nr_cpu_ids; i++) 622 early_map_cpu_to_node(i, acpi_numa_get_nid(i)); 623 } 624 #else 625 #define acpi_parse_and_init_cpus(...) do { } while (0) 626 #endif 627 628 /* 629 * Enumerate the possible CPU set from the device tree and build the 630 * cpu logical map array containing MPIDR values related to logical 631 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 632 */ 633 static void __init of_parse_and_init_cpus(void) 634 { 635 struct device_node *dn; 636 637 for_each_of_cpu_node(dn) { 638 u64 hwid = of_get_cpu_hwid(dn, 0); 639 640 if (hwid & ~MPIDR_HWID_BITMASK) 641 goto next; 642 643 if (is_mpidr_duplicate(cpu_count, hwid)) { 644 pr_err("%pOF: duplicate cpu reg properties in the DT\n", 645 dn); 646 goto next; 647 } 648 649 /* 650 * The numbering scheme requires that the boot CPU 651 * must be assigned logical id 0. Record it so that 652 * the logical map built from DT is validated and can 653 * be used. 654 */ 655 if (hwid == cpu_logical_map(0)) { 656 if (bootcpu_valid) { 657 pr_err("%pOF: duplicate boot cpu reg property in DT\n", 658 dn); 659 goto next; 660 } 661 662 bootcpu_valid = true; 663 early_map_cpu_to_node(0, of_node_to_nid(dn)); 664 665 /* 666 * cpu_logical_map has already been 667 * initialized and the boot cpu doesn't need 668 * the enable-method so continue without 669 * incrementing cpu. 670 */ 671 continue; 672 } 673 674 if (cpu_count >= NR_CPUS) 675 goto next; 676 677 pr_debug("cpu logical map 0x%llx\n", hwid); 678 set_cpu_logical_map(cpu_count, hwid); 679 680 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn)); 681 next: 682 cpu_count++; 683 } 684 } 685 686 /* 687 * Enumerate the possible CPU set from the device tree or ACPI and build the 688 * cpu logical map array containing MPIDR values related to logical 689 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 690 */ 691 void __init smp_init_cpus(void) 692 { 693 int i; 694 695 if (acpi_disabled) 696 of_parse_and_init_cpus(); 697 else 698 acpi_parse_and_init_cpus(); 699 700 if (cpu_count > nr_cpu_ids) 701 pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n", 702 cpu_count, nr_cpu_ids); 703 704 if (!bootcpu_valid) { 705 pr_err("missing boot CPU MPIDR, not enabling secondaries\n"); 706 return; 707 } 708 709 /* 710 * We need to set the cpu_logical_map entries before enabling 711 * the cpus so that cpu processor description entries (DT cpu nodes 712 * and ACPI MADT entries) can be retrieved by matching the cpu hwid 713 * with entries in cpu_logical_map while initializing the cpus. 714 * If the cpu set-up fails, invalidate the cpu_logical_map entry. 715 */ 716 for (i = 1; i < nr_cpu_ids; i++) { 717 if (cpu_logical_map(i) != INVALID_HWID) { 718 if (smp_cpu_setup(i)) 719 set_cpu_logical_map(i, INVALID_HWID); 720 } 721 } 722 } 723 724 void __init smp_prepare_cpus(unsigned int max_cpus) 725 { 726 const struct cpu_operations *ops; 727 int err; 728 unsigned int cpu; 729 unsigned int this_cpu; 730 731 init_cpu_topology(); 732 733 this_cpu = smp_processor_id(); 734 store_cpu_topology(this_cpu); 735 numa_store_cpu_info(this_cpu); 736 numa_add_cpu(this_cpu); 737 738 /* 739 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set 740 * secondary CPUs present. 741 */ 742 if (max_cpus == 0) 743 return; 744 745 /* 746 * Initialise the present map (which describes the set of CPUs 747 * actually populated at the present time) and release the 748 * secondaries from the bootloader. 749 */ 750 for_each_possible_cpu(cpu) { 751 752 per_cpu(cpu_number, cpu) = cpu; 753 754 if (cpu == smp_processor_id()) 755 continue; 756 757 ops = get_cpu_ops(cpu); 758 if (!ops) 759 continue; 760 761 err = ops->cpu_prepare(cpu); 762 if (err) 763 continue; 764 765 set_cpu_present(cpu, true); 766 numa_store_cpu_info(cpu); 767 } 768 } 769 770 static const char *ipi_types[NR_IPI] __tracepoint_string = { 771 [IPI_RESCHEDULE] = "Rescheduling interrupts", 772 [IPI_CALL_FUNC] = "Function call interrupts", 773 [IPI_CPU_STOP] = "CPU stop interrupts", 774 [IPI_CPU_CRASH_STOP] = "CPU stop (for crash dump) interrupts", 775 [IPI_TIMER] = "Timer broadcast interrupts", 776 [IPI_IRQ_WORK] = "IRQ work interrupts", 777 }; 778 779 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr); 780 781 unsigned long irq_err_count; 782 783 int arch_show_interrupts(struct seq_file *p, int prec) 784 { 785 unsigned int cpu, i; 786 787 for (i = 0; i < NR_IPI; i++) { 788 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, 789 prec >= 4 ? " " : ""); 790 for_each_online_cpu(cpu) 791 seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu)); 792 seq_printf(p, " %s\n", ipi_types[i]); 793 } 794 795 seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count); 796 return 0; 797 } 798 799 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 800 { 801 smp_cross_call(mask, IPI_CALL_FUNC); 802 } 803 804 void arch_send_call_function_single_ipi(int cpu) 805 { 806 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); 807 } 808 809 #ifdef CONFIG_IRQ_WORK 810 void arch_irq_work_raise(void) 811 { 812 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 813 } 814 #endif 815 816 static void __noreturn local_cpu_stop(void) 817 { 818 set_cpu_online(smp_processor_id(), false); 819 820 local_daif_mask(); 821 sdei_mask_local_cpu(); 822 cpu_park_loop(); 823 } 824 825 /* 826 * We need to implement panic_smp_self_stop() for parallel panic() calls, so 827 * that cpu_online_mask gets correctly updated and smp_send_stop() can skip 828 * CPUs that have already stopped themselves. 829 */ 830 void __noreturn panic_smp_self_stop(void) 831 { 832 local_cpu_stop(); 833 } 834 835 #ifdef CONFIG_KEXEC_CORE 836 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0); 837 #endif 838 839 static void __noreturn ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs) 840 { 841 #ifdef CONFIG_KEXEC_CORE 842 crash_save_cpu(regs, cpu); 843 844 atomic_dec(&waiting_for_crash_ipi); 845 846 local_irq_disable(); 847 sdei_mask_local_cpu(); 848 849 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 850 __cpu_try_die(cpu); 851 852 /* just in case */ 853 cpu_park_loop(); 854 #else 855 BUG(); 856 #endif 857 } 858 859 static void arm64_backtrace_ipi(cpumask_t *mask) 860 { 861 __ipi_send_mask(ipi_desc[IPI_CPU_BACKTRACE], mask); 862 } 863 864 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, int exclude_cpu) 865 { 866 /* 867 * NOTE: though nmi_trigger_cpumask_backtrace() has "nmi_" in the name, 868 * nothing about it truly needs to be implemented using an NMI, it's 869 * just that it's _allowed_ to work with NMIs. If ipi_should_be_nmi() 870 * returned false our backtrace attempt will just use a regular IPI. 871 */ 872 nmi_trigger_cpumask_backtrace(mask, exclude_cpu, arm64_backtrace_ipi); 873 } 874 875 #ifdef CONFIG_KGDB 876 void kgdb_roundup_cpus(void) 877 { 878 int this_cpu = raw_smp_processor_id(); 879 int cpu; 880 881 for_each_online_cpu(cpu) { 882 /* No need to roundup ourselves */ 883 if (cpu == this_cpu) 884 continue; 885 886 __ipi_send_single(ipi_desc[IPI_KGDB_ROUNDUP], cpu); 887 } 888 } 889 #endif 890 891 /* 892 * Main handler for inter-processor interrupts 893 */ 894 static void do_handle_IPI(int ipinr) 895 { 896 unsigned int cpu = smp_processor_id(); 897 898 if ((unsigned)ipinr < NR_IPI) 899 trace_ipi_entry(ipi_types[ipinr]); 900 901 switch (ipinr) { 902 case IPI_RESCHEDULE: 903 scheduler_ipi(); 904 break; 905 906 case IPI_CALL_FUNC: 907 generic_smp_call_function_interrupt(); 908 break; 909 910 case IPI_CPU_STOP: 911 local_cpu_stop(); 912 break; 913 914 case IPI_CPU_CRASH_STOP: 915 if (IS_ENABLED(CONFIG_KEXEC_CORE)) { 916 ipi_cpu_crash_stop(cpu, get_irq_regs()); 917 918 unreachable(); 919 } 920 break; 921 922 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 923 case IPI_TIMER: 924 tick_receive_broadcast(); 925 break; 926 #endif 927 928 #ifdef CONFIG_IRQ_WORK 929 case IPI_IRQ_WORK: 930 irq_work_run(); 931 break; 932 #endif 933 934 case IPI_CPU_BACKTRACE: 935 /* 936 * NOTE: in some cases this _won't_ be NMI context. See the 937 * comment in arch_trigger_cpumask_backtrace(). 938 */ 939 nmi_cpu_backtrace(get_irq_regs()); 940 break; 941 942 case IPI_KGDB_ROUNDUP: 943 kgdb_nmicallback(cpu, get_irq_regs()); 944 break; 945 946 default: 947 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr); 948 break; 949 } 950 951 if ((unsigned)ipinr < NR_IPI) 952 trace_ipi_exit(ipi_types[ipinr]); 953 } 954 955 static irqreturn_t ipi_handler(int irq, void *data) 956 { 957 do_handle_IPI(irq - ipi_irq_base); 958 return IRQ_HANDLED; 959 } 960 961 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 962 { 963 trace_ipi_raise(target, ipi_types[ipinr]); 964 __ipi_send_mask(ipi_desc[ipinr], target); 965 } 966 967 static bool ipi_should_be_nmi(enum ipi_msg_type ipi) 968 { 969 if (!system_uses_irq_prio_masking()) 970 return false; 971 972 switch (ipi) { 973 case IPI_CPU_STOP: 974 case IPI_CPU_CRASH_STOP: 975 case IPI_CPU_BACKTRACE: 976 case IPI_KGDB_ROUNDUP: 977 return true; 978 default: 979 return false; 980 } 981 } 982 983 static void ipi_setup(int cpu) 984 { 985 int i; 986 987 if (WARN_ON_ONCE(!ipi_irq_base)) 988 return; 989 990 for (i = 0; i < nr_ipi; i++) { 991 if (ipi_should_be_nmi(i)) { 992 prepare_percpu_nmi(ipi_irq_base + i); 993 enable_percpu_nmi(ipi_irq_base + i, 0); 994 } else { 995 enable_percpu_irq(ipi_irq_base + i, 0); 996 } 997 } 998 } 999 1000 #ifdef CONFIG_HOTPLUG_CPU 1001 static void ipi_teardown(int cpu) 1002 { 1003 int i; 1004 1005 if (WARN_ON_ONCE(!ipi_irq_base)) 1006 return; 1007 1008 for (i = 0; i < nr_ipi; i++) { 1009 if (ipi_should_be_nmi(i)) { 1010 disable_percpu_nmi(ipi_irq_base + i); 1011 teardown_percpu_nmi(ipi_irq_base + i); 1012 } else { 1013 disable_percpu_irq(ipi_irq_base + i); 1014 } 1015 } 1016 } 1017 #endif 1018 1019 void __init set_smp_ipi_range(int ipi_base, int n) 1020 { 1021 int i; 1022 1023 WARN_ON(n < MAX_IPI); 1024 nr_ipi = min(n, MAX_IPI); 1025 1026 for (i = 0; i < nr_ipi; i++) { 1027 int err; 1028 1029 if (ipi_should_be_nmi(i)) { 1030 err = request_percpu_nmi(ipi_base + i, ipi_handler, 1031 "IPI", &cpu_number); 1032 WARN(err, "Could not request IPI %d as NMI, err=%d\n", 1033 i, err); 1034 } else { 1035 err = request_percpu_irq(ipi_base + i, ipi_handler, 1036 "IPI", &cpu_number); 1037 WARN(err, "Could not request IPI %d as IRQ, err=%d\n", 1038 i, err); 1039 } 1040 1041 ipi_desc[i] = irq_to_desc(ipi_base + i); 1042 irq_set_status_flags(ipi_base + i, IRQ_HIDDEN); 1043 } 1044 1045 ipi_irq_base = ipi_base; 1046 1047 /* Setup the boot CPU immediately */ 1048 ipi_setup(smp_processor_id()); 1049 } 1050 1051 void arch_smp_send_reschedule(int cpu) 1052 { 1053 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 1054 } 1055 1056 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 1057 void arch_send_wakeup_ipi(unsigned int cpu) 1058 { 1059 /* 1060 * We use a scheduler IPI to wake the CPU as this avoids the need for a 1061 * dedicated IPI and we can safely handle spurious scheduler IPIs. 1062 */ 1063 smp_send_reschedule(cpu); 1064 } 1065 #endif 1066 1067 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 1068 void tick_broadcast(const struct cpumask *mask) 1069 { 1070 smp_cross_call(mask, IPI_TIMER); 1071 } 1072 #endif 1073 1074 /* 1075 * The number of CPUs online, not counting this CPU (which may not be 1076 * fully online and so not counted in num_online_cpus()). 1077 */ 1078 static inline unsigned int num_other_online_cpus(void) 1079 { 1080 unsigned int this_cpu_online = cpu_online(smp_processor_id()); 1081 1082 return num_online_cpus() - this_cpu_online; 1083 } 1084 1085 void smp_send_stop(void) 1086 { 1087 unsigned long timeout; 1088 1089 if (num_other_online_cpus()) { 1090 cpumask_t mask; 1091 1092 cpumask_copy(&mask, cpu_online_mask); 1093 cpumask_clear_cpu(smp_processor_id(), &mask); 1094 1095 if (system_state <= SYSTEM_RUNNING) 1096 pr_crit("SMP: stopping secondary CPUs\n"); 1097 smp_cross_call(&mask, IPI_CPU_STOP); 1098 } 1099 1100 /* Wait up to one second for other CPUs to stop */ 1101 timeout = USEC_PER_SEC; 1102 while (num_other_online_cpus() && timeout--) 1103 udelay(1); 1104 1105 if (num_other_online_cpus()) 1106 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n", 1107 cpumask_pr_args(cpu_online_mask)); 1108 1109 sdei_mask_local_cpu(); 1110 } 1111 1112 #ifdef CONFIG_KEXEC_CORE 1113 void crash_smp_send_stop(void) 1114 { 1115 static int cpus_stopped; 1116 cpumask_t mask; 1117 unsigned long timeout; 1118 1119 /* 1120 * This function can be called twice in panic path, but obviously 1121 * we execute this only once. 1122 */ 1123 if (cpus_stopped) 1124 return; 1125 1126 cpus_stopped = 1; 1127 1128 /* 1129 * If this cpu is the only one alive at this point in time, online or 1130 * not, there are no stop messages to be sent around, so just back out. 1131 */ 1132 if (num_other_online_cpus() == 0) 1133 goto skip_ipi; 1134 1135 cpumask_copy(&mask, cpu_online_mask); 1136 cpumask_clear_cpu(smp_processor_id(), &mask); 1137 1138 atomic_set(&waiting_for_crash_ipi, num_other_online_cpus()); 1139 1140 pr_crit("SMP: stopping secondary CPUs\n"); 1141 smp_cross_call(&mask, IPI_CPU_CRASH_STOP); 1142 1143 /* Wait up to one second for other CPUs to stop */ 1144 timeout = USEC_PER_SEC; 1145 while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--) 1146 udelay(1); 1147 1148 if (atomic_read(&waiting_for_crash_ipi) > 0) 1149 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n", 1150 cpumask_pr_args(&mask)); 1151 1152 skip_ipi: 1153 sdei_mask_local_cpu(); 1154 sdei_handler_abort(); 1155 } 1156 1157 bool smp_crash_stop_failed(void) 1158 { 1159 return (atomic_read(&waiting_for_crash_ipi) > 0); 1160 } 1161 #endif 1162 1163 static bool have_cpu_die(void) 1164 { 1165 #ifdef CONFIG_HOTPLUG_CPU 1166 int any_cpu = raw_smp_processor_id(); 1167 const struct cpu_operations *ops = get_cpu_ops(any_cpu); 1168 1169 if (ops && ops->cpu_die) 1170 return true; 1171 #endif 1172 return false; 1173 } 1174 1175 bool cpus_are_stuck_in_kernel(void) 1176 { 1177 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die()); 1178 1179 return !!cpus_stuck_in_kernel || smp_spin_tables || 1180 is_protected_kvm_enabled(); 1181 } 1182