xref: /linux/arch/arm64/kernel/smp.c (revision 0df2c90eba60791148cee1823c0bf5fc66e3465c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * SMP initialisation and IPI support
4  * Based on arch/arm/kernel/smp.c
5  *
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/arm_sdei.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/interrupt.h>
18 #include <linux/cache.h>
19 #include <linux/profile.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/cpu.h>
24 #include <linux/smp.h>
25 #include <linux/seq_file.h>
26 #include <linux/irq.h>
27 #include <linux/irqchip/arm-gic-v3.h>
28 #include <linux/percpu.h>
29 #include <linux/clockchips.h>
30 #include <linux/completion.h>
31 #include <linux/of.h>
32 #include <linux/irq_work.h>
33 #include <linux/kexec.h>
34 
35 #include <asm/alternative.h>
36 #include <asm/atomic.h>
37 #include <asm/cacheflush.h>
38 #include <asm/cpu.h>
39 #include <asm/cputype.h>
40 #include <asm/cpu_ops.h>
41 #include <asm/daifflags.h>
42 #include <asm/mmu_context.h>
43 #include <asm/numa.h>
44 #include <asm/pgtable.h>
45 #include <asm/pgalloc.h>
46 #include <asm/processor.h>
47 #include <asm/smp_plat.h>
48 #include <asm/sections.h>
49 #include <asm/tlbflush.h>
50 #include <asm/ptrace.h>
51 #include <asm/virt.h>
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/ipi.h>
55 
56 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
57 EXPORT_PER_CPU_SYMBOL(cpu_number);
58 
59 /*
60  * as from 2.5, kernels no longer have an init_tasks structure
61  * so we need some other way of telling a new secondary core
62  * where to place its SVC stack
63  */
64 struct secondary_data secondary_data;
65 /* Number of CPUs which aren't online, but looping in kernel text. */
66 int cpus_stuck_in_kernel;
67 
68 enum ipi_msg_type {
69 	IPI_RESCHEDULE,
70 	IPI_CALL_FUNC,
71 	IPI_CPU_STOP,
72 	IPI_CPU_CRASH_STOP,
73 	IPI_TIMER,
74 	IPI_IRQ_WORK,
75 	IPI_WAKEUP
76 };
77 
78 #ifdef CONFIG_HOTPLUG_CPU
79 static int op_cpu_kill(unsigned int cpu);
80 #else
81 static inline int op_cpu_kill(unsigned int cpu)
82 {
83 	return -ENOSYS;
84 }
85 #endif
86 
87 
88 /*
89  * Boot a secondary CPU, and assign it the specified idle task.
90  * This also gives us the initial stack to use for this CPU.
91  */
92 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
93 {
94 	if (cpu_ops[cpu]->cpu_boot)
95 		return cpu_ops[cpu]->cpu_boot(cpu);
96 
97 	return -EOPNOTSUPP;
98 }
99 
100 static DECLARE_COMPLETION(cpu_running);
101 
102 int __cpu_up(unsigned int cpu, struct task_struct *idle)
103 {
104 	int ret;
105 	long status;
106 
107 	/*
108 	 * We need to tell the secondary core where to find its stack and the
109 	 * page tables.
110 	 */
111 	secondary_data.task = idle;
112 	secondary_data.stack = task_stack_page(idle) + THREAD_SIZE;
113 	update_cpu_boot_status(CPU_MMU_OFF);
114 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
115 
116 	/*
117 	 * Now bring the CPU into our world.
118 	 */
119 	ret = boot_secondary(cpu, idle);
120 	if (ret == 0) {
121 		/*
122 		 * CPU was successfully started, wait for it to come online or
123 		 * time out.
124 		 */
125 		wait_for_completion_timeout(&cpu_running,
126 					    msecs_to_jiffies(5000));
127 
128 		if (!cpu_online(cpu)) {
129 			pr_crit("CPU%u: failed to come online\n", cpu);
130 			ret = -EIO;
131 		}
132 	} else {
133 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
134 		return ret;
135 	}
136 
137 	secondary_data.task = NULL;
138 	secondary_data.stack = NULL;
139 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
140 	status = READ_ONCE(secondary_data.status);
141 	if (ret && status) {
142 
143 		if (status == CPU_MMU_OFF)
144 			status = READ_ONCE(__early_cpu_boot_status);
145 
146 		switch (status & CPU_BOOT_STATUS_MASK) {
147 		default:
148 			pr_err("CPU%u: failed in unknown state : 0x%lx\n",
149 					cpu, status);
150 			cpus_stuck_in_kernel++;
151 			break;
152 		case CPU_KILL_ME:
153 			if (!op_cpu_kill(cpu)) {
154 				pr_crit("CPU%u: died during early boot\n", cpu);
155 				break;
156 			}
157 			pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
158 			/* Fall through */
159 		case CPU_STUCK_IN_KERNEL:
160 			pr_crit("CPU%u: is stuck in kernel\n", cpu);
161 			if (status & CPU_STUCK_REASON_52_BIT_VA)
162 				pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
163 			if (status & CPU_STUCK_REASON_NO_GRAN)
164 				pr_crit("CPU%u: does not support %luK granule \n", cpu, PAGE_SIZE / SZ_1K);
165 			cpus_stuck_in_kernel++;
166 			break;
167 		case CPU_PANIC_KERNEL:
168 			panic("CPU%u detected unsupported configuration\n", cpu);
169 		}
170 	}
171 
172 	return ret;
173 }
174 
175 static void init_gic_priority_masking(void)
176 {
177 	u32 cpuflags;
178 
179 	if (WARN_ON(!gic_enable_sre()))
180 		return;
181 
182 	cpuflags = read_sysreg(daif);
183 
184 	WARN_ON(!(cpuflags & PSR_I_BIT));
185 
186 	gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
187 }
188 
189 /*
190  * This is the secondary CPU boot entry.  We're using this CPUs
191  * idle thread stack, but a set of temporary page tables.
192  */
193 asmlinkage notrace void secondary_start_kernel(void)
194 {
195 	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
196 	struct mm_struct *mm = &init_mm;
197 	unsigned int cpu;
198 
199 	cpu = task_cpu(current);
200 	set_my_cpu_offset(per_cpu_offset(cpu));
201 
202 	/*
203 	 * All kernel threads share the same mm context; grab a
204 	 * reference and switch to it.
205 	 */
206 	mmgrab(mm);
207 	current->active_mm = mm;
208 
209 	/*
210 	 * TTBR0 is only used for the identity mapping at this stage. Make it
211 	 * point to zero page to avoid speculatively fetching new entries.
212 	 */
213 	cpu_uninstall_idmap();
214 
215 	if (system_uses_irq_prio_masking())
216 		init_gic_priority_masking();
217 
218 	preempt_disable();
219 	trace_hardirqs_off();
220 
221 	/*
222 	 * If the system has established the capabilities, make sure
223 	 * this CPU ticks all of those. If it doesn't, the CPU will
224 	 * fail to come online.
225 	 */
226 	check_local_cpu_capabilities();
227 
228 	if (cpu_ops[cpu]->cpu_postboot)
229 		cpu_ops[cpu]->cpu_postboot();
230 
231 	/*
232 	 * Log the CPU info before it is marked online and might get read.
233 	 */
234 	cpuinfo_store_cpu();
235 
236 	/*
237 	 * Enable GIC and timers.
238 	 */
239 	notify_cpu_starting(cpu);
240 
241 	store_cpu_topology(cpu);
242 	numa_add_cpu(cpu);
243 
244 	/*
245 	 * OK, now it's safe to let the boot CPU continue.  Wait for
246 	 * the CPU migration code to notice that the CPU is online
247 	 * before we continue.
248 	 */
249 	pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
250 					 cpu, (unsigned long)mpidr,
251 					 read_cpuid_id());
252 	update_cpu_boot_status(CPU_BOOT_SUCCESS);
253 	set_cpu_online(cpu, true);
254 	complete(&cpu_running);
255 
256 	local_daif_restore(DAIF_PROCCTX);
257 
258 	/*
259 	 * OK, it's off to the idle thread for us
260 	 */
261 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
262 }
263 
264 #ifdef CONFIG_HOTPLUG_CPU
265 static int op_cpu_disable(unsigned int cpu)
266 {
267 	/*
268 	 * If we don't have a cpu_die method, abort before we reach the point
269 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
270 	 */
271 	if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die)
272 		return -EOPNOTSUPP;
273 
274 	/*
275 	 * We may need to abort a hot unplug for some other mechanism-specific
276 	 * reason.
277 	 */
278 	if (cpu_ops[cpu]->cpu_disable)
279 		return cpu_ops[cpu]->cpu_disable(cpu);
280 
281 	return 0;
282 }
283 
284 /*
285  * __cpu_disable runs on the processor to be shutdown.
286  */
287 int __cpu_disable(void)
288 {
289 	unsigned int cpu = smp_processor_id();
290 	int ret;
291 
292 	ret = op_cpu_disable(cpu);
293 	if (ret)
294 		return ret;
295 
296 	remove_cpu_topology(cpu);
297 	numa_remove_cpu(cpu);
298 
299 	/*
300 	 * Take this CPU offline.  Once we clear this, we can't return,
301 	 * and we must not schedule until we're ready to give up the cpu.
302 	 */
303 	set_cpu_online(cpu, false);
304 
305 	/*
306 	 * OK - migrate IRQs away from this CPU
307 	 */
308 	irq_migrate_all_off_this_cpu();
309 
310 	return 0;
311 }
312 
313 static int op_cpu_kill(unsigned int cpu)
314 {
315 	/*
316 	 * If we have no means of synchronising with the dying CPU, then assume
317 	 * that it is really dead. We can only wait for an arbitrary length of
318 	 * time and hope that it's dead, so let's skip the wait and just hope.
319 	 */
320 	if (!cpu_ops[cpu]->cpu_kill)
321 		return 0;
322 
323 	return cpu_ops[cpu]->cpu_kill(cpu);
324 }
325 
326 /*
327  * called on the thread which is asking for a CPU to be shutdown -
328  * waits until shutdown has completed, or it is timed out.
329  */
330 void __cpu_die(unsigned int cpu)
331 {
332 	int err;
333 
334 	if (!cpu_wait_death(cpu, 5)) {
335 		pr_crit("CPU%u: cpu didn't die\n", cpu);
336 		return;
337 	}
338 	pr_notice("CPU%u: shutdown\n", cpu);
339 
340 	/*
341 	 * Now that the dying CPU is beyond the point of no return w.r.t.
342 	 * in-kernel synchronisation, try to get the firwmare to help us to
343 	 * verify that it has really left the kernel before we consider
344 	 * clobbering anything it might still be using.
345 	 */
346 	err = op_cpu_kill(cpu);
347 	if (err)
348 		pr_warn("CPU%d may not have shut down cleanly: %d\n",
349 			cpu, err);
350 }
351 
352 /*
353  * Called from the idle thread for the CPU which has been shutdown.
354  *
355  */
356 void cpu_die(void)
357 {
358 	unsigned int cpu = smp_processor_id();
359 
360 	idle_task_exit();
361 
362 	local_daif_mask();
363 
364 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
365 	(void)cpu_report_death();
366 
367 	/*
368 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
369 	 * mechanism must perform all required cache maintenance to ensure that
370 	 * no dirty lines are lost in the process of shutting down the CPU.
371 	 */
372 	cpu_ops[cpu]->cpu_die(cpu);
373 
374 	BUG();
375 }
376 #endif
377 
378 /*
379  * Kill the calling secondary CPU, early in bringup before it is turned
380  * online.
381  */
382 void cpu_die_early(void)
383 {
384 	int cpu = smp_processor_id();
385 
386 	pr_crit("CPU%d: will not boot\n", cpu);
387 
388 	/* Mark this CPU absent */
389 	set_cpu_present(cpu, 0);
390 
391 #ifdef CONFIG_HOTPLUG_CPU
392 	update_cpu_boot_status(CPU_KILL_ME);
393 	/* Check if we can park ourselves */
394 	if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
395 		cpu_ops[cpu]->cpu_die(cpu);
396 #endif
397 	update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
398 
399 	cpu_park_loop();
400 }
401 
402 static void __init hyp_mode_check(void)
403 {
404 	if (is_hyp_mode_available())
405 		pr_info("CPU: All CPU(s) started at EL2\n");
406 	else if (is_hyp_mode_mismatched())
407 		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
408 			   "CPU: CPUs started in inconsistent modes");
409 	else
410 		pr_info("CPU: All CPU(s) started at EL1\n");
411 }
412 
413 void __init smp_cpus_done(unsigned int max_cpus)
414 {
415 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
416 	setup_cpu_features();
417 	hyp_mode_check();
418 	apply_alternatives_all();
419 	mark_linear_text_alias_ro();
420 }
421 
422 void __init smp_prepare_boot_cpu(void)
423 {
424 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
425 	cpuinfo_store_boot_cpu();
426 
427 	/*
428 	 * We now know enough about the boot CPU to apply the
429 	 * alternatives that cannot wait until interrupt handling
430 	 * and/or scheduling is enabled.
431 	 */
432 	apply_boot_alternatives();
433 
434 	/* Conditionally switch to GIC PMR for interrupt masking */
435 	if (system_uses_irq_prio_masking())
436 		init_gic_priority_masking();
437 }
438 
439 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
440 {
441 	const __be32 *cell;
442 	u64 hwid;
443 
444 	/*
445 	 * A cpu node with missing "reg" property is
446 	 * considered invalid to build a cpu_logical_map
447 	 * entry.
448 	 */
449 	cell = of_get_property(dn, "reg", NULL);
450 	if (!cell) {
451 		pr_err("%pOF: missing reg property\n", dn);
452 		return INVALID_HWID;
453 	}
454 
455 	hwid = of_read_number(cell, of_n_addr_cells(dn));
456 	/*
457 	 * Non affinity bits must be set to 0 in the DT
458 	 */
459 	if (hwid & ~MPIDR_HWID_BITMASK) {
460 		pr_err("%pOF: invalid reg property\n", dn);
461 		return INVALID_HWID;
462 	}
463 	return hwid;
464 }
465 
466 /*
467  * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
468  * entries and check for duplicates. If any is found just ignore the
469  * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
470  * matching valid MPIDR values.
471  */
472 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
473 {
474 	unsigned int i;
475 
476 	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
477 		if (cpu_logical_map(i) == hwid)
478 			return true;
479 	return false;
480 }
481 
482 /*
483  * Initialize cpu operations for a logical cpu and
484  * set it in the possible mask on success
485  */
486 static int __init smp_cpu_setup(int cpu)
487 {
488 	if (cpu_read_ops(cpu))
489 		return -ENODEV;
490 
491 	if (cpu_ops[cpu]->cpu_init(cpu))
492 		return -ENODEV;
493 
494 	set_cpu_possible(cpu, true);
495 
496 	return 0;
497 }
498 
499 static bool bootcpu_valid __initdata;
500 static unsigned int cpu_count = 1;
501 
502 #ifdef CONFIG_ACPI
503 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
504 
505 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
506 {
507 	return &cpu_madt_gicc[cpu];
508 }
509 
510 /*
511  * acpi_map_gic_cpu_interface - parse processor MADT entry
512  *
513  * Carry out sanity checks on MADT processor entry and initialize
514  * cpu_logical_map on success
515  */
516 static void __init
517 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
518 {
519 	u64 hwid = processor->arm_mpidr;
520 
521 	if (!(processor->flags & ACPI_MADT_ENABLED)) {
522 		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
523 		return;
524 	}
525 
526 	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
527 		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
528 		return;
529 	}
530 
531 	if (is_mpidr_duplicate(cpu_count, hwid)) {
532 		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
533 		return;
534 	}
535 
536 	/* Check if GICC structure of boot CPU is available in the MADT */
537 	if (cpu_logical_map(0) == hwid) {
538 		if (bootcpu_valid) {
539 			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
540 			       hwid);
541 			return;
542 		}
543 		bootcpu_valid = true;
544 		cpu_madt_gicc[0] = *processor;
545 		return;
546 	}
547 
548 	if (cpu_count >= NR_CPUS)
549 		return;
550 
551 	/* map the logical cpu id to cpu MPIDR */
552 	cpu_logical_map(cpu_count) = hwid;
553 
554 	cpu_madt_gicc[cpu_count] = *processor;
555 
556 	/*
557 	 * Set-up the ACPI parking protocol cpu entries
558 	 * while initializing the cpu_logical_map to
559 	 * avoid parsing MADT entries multiple times for
560 	 * nothing (ie a valid cpu_logical_map entry should
561 	 * contain a valid parking protocol data set to
562 	 * initialize the cpu if the parking protocol is
563 	 * the only available enable method).
564 	 */
565 	acpi_set_mailbox_entry(cpu_count, processor);
566 
567 	cpu_count++;
568 }
569 
570 static int __init
571 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header,
572 			     const unsigned long end)
573 {
574 	struct acpi_madt_generic_interrupt *processor;
575 
576 	processor = (struct acpi_madt_generic_interrupt *)header;
577 	if (BAD_MADT_GICC_ENTRY(processor, end))
578 		return -EINVAL;
579 
580 	acpi_table_print_madt_entry(&header->common);
581 
582 	acpi_map_gic_cpu_interface(processor);
583 
584 	return 0;
585 }
586 
587 static void __init acpi_parse_and_init_cpus(void)
588 {
589 	int i;
590 
591 	/*
592 	 * do a walk of MADT to determine how many CPUs
593 	 * we have including disabled CPUs, and get information
594 	 * we need for SMP init.
595 	 */
596 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
597 				      acpi_parse_gic_cpu_interface, 0);
598 
599 	/*
600 	 * In ACPI, SMP and CPU NUMA information is provided in separate
601 	 * static tables, namely the MADT and the SRAT.
602 	 *
603 	 * Thus, it is simpler to first create the cpu logical map through
604 	 * an MADT walk and then map the logical cpus to their node ids
605 	 * as separate steps.
606 	 */
607 	acpi_map_cpus_to_nodes();
608 
609 	for (i = 0; i < nr_cpu_ids; i++)
610 		early_map_cpu_to_node(i, acpi_numa_get_nid(i));
611 }
612 #else
613 #define acpi_parse_and_init_cpus(...)	do { } while (0)
614 #endif
615 
616 /*
617  * Enumerate the possible CPU set from the device tree and build the
618  * cpu logical map array containing MPIDR values related to logical
619  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
620  */
621 static void __init of_parse_and_init_cpus(void)
622 {
623 	struct device_node *dn;
624 
625 	for_each_of_cpu_node(dn) {
626 		u64 hwid = of_get_cpu_mpidr(dn);
627 
628 		if (hwid == INVALID_HWID)
629 			goto next;
630 
631 		if (is_mpidr_duplicate(cpu_count, hwid)) {
632 			pr_err("%pOF: duplicate cpu reg properties in the DT\n",
633 				dn);
634 			goto next;
635 		}
636 
637 		/*
638 		 * The numbering scheme requires that the boot CPU
639 		 * must be assigned logical id 0. Record it so that
640 		 * the logical map built from DT is validated and can
641 		 * be used.
642 		 */
643 		if (hwid == cpu_logical_map(0)) {
644 			if (bootcpu_valid) {
645 				pr_err("%pOF: duplicate boot cpu reg property in DT\n",
646 					dn);
647 				goto next;
648 			}
649 
650 			bootcpu_valid = true;
651 			early_map_cpu_to_node(0, of_node_to_nid(dn));
652 
653 			/*
654 			 * cpu_logical_map has already been
655 			 * initialized and the boot cpu doesn't need
656 			 * the enable-method so continue without
657 			 * incrementing cpu.
658 			 */
659 			continue;
660 		}
661 
662 		if (cpu_count >= NR_CPUS)
663 			goto next;
664 
665 		pr_debug("cpu logical map 0x%llx\n", hwid);
666 		cpu_logical_map(cpu_count) = hwid;
667 
668 		early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
669 next:
670 		cpu_count++;
671 	}
672 }
673 
674 /*
675  * Enumerate the possible CPU set from the device tree or ACPI and build the
676  * cpu logical map array containing MPIDR values related to logical
677  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
678  */
679 void __init smp_init_cpus(void)
680 {
681 	int i;
682 
683 	if (acpi_disabled)
684 		of_parse_and_init_cpus();
685 	else
686 		acpi_parse_and_init_cpus();
687 
688 	if (cpu_count > nr_cpu_ids)
689 		pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
690 			cpu_count, nr_cpu_ids);
691 
692 	if (!bootcpu_valid) {
693 		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
694 		return;
695 	}
696 
697 	/*
698 	 * We need to set the cpu_logical_map entries before enabling
699 	 * the cpus so that cpu processor description entries (DT cpu nodes
700 	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
701 	 * with entries in cpu_logical_map while initializing the cpus.
702 	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
703 	 */
704 	for (i = 1; i < nr_cpu_ids; i++) {
705 		if (cpu_logical_map(i) != INVALID_HWID) {
706 			if (smp_cpu_setup(i))
707 				cpu_logical_map(i) = INVALID_HWID;
708 		}
709 	}
710 }
711 
712 void __init smp_prepare_cpus(unsigned int max_cpus)
713 {
714 	int err;
715 	unsigned int cpu;
716 	unsigned int this_cpu;
717 
718 	init_cpu_topology();
719 
720 	this_cpu = smp_processor_id();
721 	store_cpu_topology(this_cpu);
722 	numa_store_cpu_info(this_cpu);
723 	numa_add_cpu(this_cpu);
724 
725 	/*
726 	 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
727 	 * secondary CPUs present.
728 	 */
729 	if (max_cpus == 0)
730 		return;
731 
732 	/*
733 	 * Initialise the present map (which describes the set of CPUs
734 	 * actually populated at the present time) and release the
735 	 * secondaries from the bootloader.
736 	 */
737 	for_each_possible_cpu(cpu) {
738 
739 		per_cpu(cpu_number, cpu) = cpu;
740 
741 		if (cpu == smp_processor_id())
742 			continue;
743 
744 		if (!cpu_ops[cpu])
745 			continue;
746 
747 		err = cpu_ops[cpu]->cpu_prepare(cpu);
748 		if (err)
749 			continue;
750 
751 		set_cpu_present(cpu, true);
752 		numa_store_cpu_info(cpu);
753 	}
754 }
755 
756 void (*__smp_cross_call)(const struct cpumask *, unsigned int);
757 
758 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
759 {
760 	__smp_cross_call = fn;
761 }
762 
763 static const char *ipi_types[NR_IPI] __tracepoint_string = {
764 #define S(x,s)	[x] = s
765 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
766 	S(IPI_CALL_FUNC, "Function call interrupts"),
767 	S(IPI_CPU_STOP, "CPU stop interrupts"),
768 	S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"),
769 	S(IPI_TIMER, "Timer broadcast interrupts"),
770 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
771 	S(IPI_WAKEUP, "CPU wake-up interrupts"),
772 };
773 
774 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
775 {
776 	trace_ipi_raise(target, ipi_types[ipinr]);
777 	__smp_cross_call(target, ipinr);
778 }
779 
780 void show_ipi_list(struct seq_file *p, int prec)
781 {
782 	unsigned int cpu, i;
783 
784 	for (i = 0; i < NR_IPI; i++) {
785 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
786 			   prec >= 4 ? " " : "");
787 		for_each_online_cpu(cpu)
788 			seq_printf(p, "%10u ",
789 				   __get_irq_stat(cpu, ipi_irqs[i]));
790 		seq_printf(p, "      %s\n", ipi_types[i]);
791 	}
792 }
793 
794 u64 smp_irq_stat_cpu(unsigned int cpu)
795 {
796 	u64 sum = 0;
797 	int i;
798 
799 	for (i = 0; i < NR_IPI; i++)
800 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
801 
802 	return sum;
803 }
804 
805 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
806 {
807 	smp_cross_call(mask, IPI_CALL_FUNC);
808 }
809 
810 void arch_send_call_function_single_ipi(int cpu)
811 {
812 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
813 }
814 
815 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
816 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
817 {
818 	smp_cross_call(mask, IPI_WAKEUP);
819 }
820 #endif
821 
822 #ifdef CONFIG_IRQ_WORK
823 void arch_irq_work_raise(void)
824 {
825 	if (__smp_cross_call)
826 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
827 }
828 #endif
829 
830 static void local_cpu_stop(void)
831 {
832 	set_cpu_online(smp_processor_id(), false);
833 
834 	local_daif_mask();
835 	sdei_mask_local_cpu();
836 	cpu_park_loop();
837 }
838 
839 /*
840  * We need to implement panic_smp_self_stop() for parallel panic() calls, so
841  * that cpu_online_mask gets correctly updated and smp_send_stop() can skip
842  * CPUs that have already stopped themselves.
843  */
844 void panic_smp_self_stop(void)
845 {
846 	local_cpu_stop();
847 }
848 
849 #ifdef CONFIG_KEXEC_CORE
850 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
851 #endif
852 
853 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
854 {
855 #ifdef CONFIG_KEXEC_CORE
856 	crash_save_cpu(regs, cpu);
857 
858 	atomic_dec(&waiting_for_crash_ipi);
859 
860 	local_irq_disable();
861 	sdei_mask_local_cpu();
862 
863 #ifdef CONFIG_HOTPLUG_CPU
864 	if (cpu_ops[cpu]->cpu_die)
865 		cpu_ops[cpu]->cpu_die(cpu);
866 #endif
867 
868 	/* just in case */
869 	cpu_park_loop();
870 #endif
871 }
872 
873 /*
874  * Main handler for inter-processor interrupts
875  */
876 void handle_IPI(int ipinr, struct pt_regs *regs)
877 {
878 	unsigned int cpu = smp_processor_id();
879 	struct pt_regs *old_regs = set_irq_regs(regs);
880 
881 	if ((unsigned)ipinr < NR_IPI) {
882 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
883 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
884 	}
885 
886 	switch (ipinr) {
887 	case IPI_RESCHEDULE:
888 		scheduler_ipi();
889 		break;
890 
891 	case IPI_CALL_FUNC:
892 		irq_enter();
893 		generic_smp_call_function_interrupt();
894 		irq_exit();
895 		break;
896 
897 	case IPI_CPU_STOP:
898 		irq_enter();
899 		local_cpu_stop();
900 		irq_exit();
901 		break;
902 
903 	case IPI_CPU_CRASH_STOP:
904 		if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
905 			irq_enter();
906 			ipi_cpu_crash_stop(cpu, regs);
907 
908 			unreachable();
909 		}
910 		break;
911 
912 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
913 	case IPI_TIMER:
914 		irq_enter();
915 		tick_receive_broadcast();
916 		irq_exit();
917 		break;
918 #endif
919 
920 #ifdef CONFIG_IRQ_WORK
921 	case IPI_IRQ_WORK:
922 		irq_enter();
923 		irq_work_run();
924 		irq_exit();
925 		break;
926 #endif
927 
928 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
929 	case IPI_WAKEUP:
930 		WARN_ONCE(!acpi_parking_protocol_valid(cpu),
931 			  "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
932 			  cpu);
933 		break;
934 #endif
935 
936 	default:
937 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
938 		break;
939 	}
940 
941 	if ((unsigned)ipinr < NR_IPI)
942 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
943 	set_irq_regs(old_regs);
944 }
945 
946 void smp_send_reschedule(int cpu)
947 {
948 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
949 }
950 
951 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
952 void tick_broadcast(const struct cpumask *mask)
953 {
954 	smp_cross_call(mask, IPI_TIMER);
955 }
956 #endif
957 
958 void smp_send_stop(void)
959 {
960 	unsigned long timeout;
961 
962 	if (num_online_cpus() > 1) {
963 		cpumask_t mask;
964 
965 		cpumask_copy(&mask, cpu_online_mask);
966 		cpumask_clear_cpu(smp_processor_id(), &mask);
967 
968 		if (system_state <= SYSTEM_RUNNING)
969 			pr_crit("SMP: stopping secondary CPUs\n");
970 		smp_cross_call(&mask, IPI_CPU_STOP);
971 	}
972 
973 	/* Wait up to one second for other CPUs to stop */
974 	timeout = USEC_PER_SEC;
975 	while (num_online_cpus() > 1 && timeout--)
976 		udelay(1);
977 
978 	if (num_online_cpus() > 1)
979 		pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
980 			   cpumask_pr_args(cpu_online_mask));
981 
982 	sdei_mask_local_cpu();
983 }
984 
985 #ifdef CONFIG_KEXEC_CORE
986 void crash_smp_send_stop(void)
987 {
988 	static int cpus_stopped;
989 	cpumask_t mask;
990 	unsigned long timeout;
991 
992 	/*
993 	 * This function can be called twice in panic path, but obviously
994 	 * we execute this only once.
995 	 */
996 	if (cpus_stopped)
997 		return;
998 
999 	cpus_stopped = 1;
1000 
1001 	if (num_online_cpus() == 1) {
1002 		sdei_mask_local_cpu();
1003 		return;
1004 	}
1005 
1006 	cpumask_copy(&mask, cpu_online_mask);
1007 	cpumask_clear_cpu(smp_processor_id(), &mask);
1008 
1009 	atomic_set(&waiting_for_crash_ipi, num_online_cpus() - 1);
1010 
1011 	pr_crit("SMP: stopping secondary CPUs\n");
1012 	smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
1013 
1014 	/* Wait up to one second for other CPUs to stop */
1015 	timeout = USEC_PER_SEC;
1016 	while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
1017 		udelay(1);
1018 
1019 	if (atomic_read(&waiting_for_crash_ipi) > 0)
1020 		pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
1021 			   cpumask_pr_args(&mask));
1022 
1023 	sdei_mask_local_cpu();
1024 }
1025 
1026 bool smp_crash_stop_failed(void)
1027 {
1028 	return (atomic_read(&waiting_for_crash_ipi) > 0);
1029 }
1030 #endif
1031 
1032 /*
1033  * not supported here
1034  */
1035 int setup_profiling_timer(unsigned int multiplier)
1036 {
1037 	return -EINVAL;
1038 }
1039 
1040 static bool have_cpu_die(void)
1041 {
1042 #ifdef CONFIG_HOTPLUG_CPU
1043 	int any_cpu = raw_smp_processor_id();
1044 
1045 	if (cpu_ops[any_cpu] && cpu_ops[any_cpu]->cpu_die)
1046 		return true;
1047 #endif
1048 	return false;
1049 }
1050 
1051 bool cpus_are_stuck_in_kernel(void)
1052 {
1053 	bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1054 
1055 	return !!cpus_stuck_in_kernel || smp_spin_tables;
1056 }
1057