1 /* 2 * SMP initialisation and IPI support 3 * Based on arch/arm/kernel/smp.c 4 * 5 * Copyright (C) 2012 ARM Ltd. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/acpi.h> 21 #include <linux/delay.h> 22 #include <linux/init.h> 23 #include <linux/spinlock.h> 24 #include <linux/sched.h> 25 #include <linux/interrupt.h> 26 #include <linux/cache.h> 27 #include <linux/profile.h> 28 #include <linux/errno.h> 29 #include <linux/mm.h> 30 #include <linux/err.h> 31 #include <linux/cpu.h> 32 #include <linux/smp.h> 33 #include <linux/seq_file.h> 34 #include <linux/irq.h> 35 #include <linux/percpu.h> 36 #include <linux/clockchips.h> 37 #include <linux/completion.h> 38 #include <linux/of.h> 39 #include <linux/irq_work.h> 40 41 #include <asm/alternative.h> 42 #include <asm/atomic.h> 43 #include <asm/cacheflush.h> 44 #include <asm/cpu.h> 45 #include <asm/cputype.h> 46 #include <asm/cpu_ops.h> 47 #include <asm/mmu_context.h> 48 #include <asm/pgtable.h> 49 #include <asm/pgalloc.h> 50 #include <asm/processor.h> 51 #include <asm/smp_plat.h> 52 #include <asm/sections.h> 53 #include <asm/tlbflush.h> 54 #include <asm/ptrace.h> 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/ipi.h> 58 59 /* 60 * as from 2.5, kernels no longer have an init_tasks structure 61 * so we need some other way of telling a new secondary core 62 * where to place its SVC stack 63 */ 64 struct secondary_data secondary_data; 65 66 enum ipi_msg_type { 67 IPI_RESCHEDULE, 68 IPI_CALL_FUNC, 69 IPI_CPU_STOP, 70 IPI_TIMER, 71 IPI_IRQ_WORK, 72 }; 73 74 /* 75 * Boot a secondary CPU, and assign it the specified idle task. 76 * This also gives us the initial stack to use for this CPU. 77 */ 78 static int boot_secondary(unsigned int cpu, struct task_struct *idle) 79 { 80 if (cpu_ops[cpu]->cpu_boot) 81 return cpu_ops[cpu]->cpu_boot(cpu); 82 83 return -EOPNOTSUPP; 84 } 85 86 static DECLARE_COMPLETION(cpu_running); 87 88 int __cpu_up(unsigned int cpu, struct task_struct *idle) 89 { 90 int ret; 91 92 /* 93 * We need to tell the secondary core where to find its stack and the 94 * page tables. 95 */ 96 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 97 __flush_dcache_area(&secondary_data, sizeof(secondary_data)); 98 99 /* 100 * Now bring the CPU into our world. 101 */ 102 ret = boot_secondary(cpu, idle); 103 if (ret == 0) { 104 /* 105 * CPU was successfully started, wait for it to come online or 106 * time out. 107 */ 108 wait_for_completion_timeout(&cpu_running, 109 msecs_to_jiffies(1000)); 110 111 if (!cpu_online(cpu)) { 112 pr_crit("CPU%u: failed to come online\n", cpu); 113 ret = -EIO; 114 } 115 } else { 116 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 117 } 118 119 secondary_data.stack = NULL; 120 121 return ret; 122 } 123 124 static void smp_store_cpu_info(unsigned int cpuid) 125 { 126 store_cpu_topology(cpuid); 127 } 128 129 /* 130 * This is the secondary CPU boot entry. We're using this CPUs 131 * idle thread stack, but a set of temporary page tables. 132 */ 133 asmlinkage void secondary_start_kernel(void) 134 { 135 struct mm_struct *mm = &init_mm; 136 unsigned int cpu = smp_processor_id(); 137 138 /* 139 * All kernel threads share the same mm context; grab a 140 * reference and switch to it. 141 */ 142 atomic_inc(&mm->mm_count); 143 current->active_mm = mm; 144 cpumask_set_cpu(cpu, mm_cpumask(mm)); 145 146 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 147 printk("CPU%u: Booted secondary processor\n", cpu); 148 149 /* 150 * TTBR0 is only used for the identity mapping at this stage. Make it 151 * point to zero page to avoid speculatively fetching new entries. 152 */ 153 cpu_set_reserved_ttbr0(); 154 flush_tlb_all(); 155 cpu_set_default_tcr_t0sz(); 156 157 preempt_disable(); 158 trace_hardirqs_off(); 159 160 if (cpu_ops[cpu]->cpu_postboot) 161 cpu_ops[cpu]->cpu_postboot(); 162 163 /* 164 * Log the CPU info before it is marked online and might get read. 165 */ 166 cpuinfo_store_cpu(); 167 168 /* 169 * Enable GIC and timers. 170 */ 171 notify_cpu_starting(cpu); 172 173 smp_store_cpu_info(cpu); 174 175 /* 176 * OK, now it's safe to let the boot CPU continue. Wait for 177 * the CPU migration code to notice that the CPU is online 178 * before we continue. 179 */ 180 set_cpu_online(cpu, true); 181 complete(&cpu_running); 182 183 local_dbg_enable(); 184 local_irq_enable(); 185 local_async_enable(); 186 187 /* 188 * OK, it's off to the idle thread for us 189 */ 190 cpu_startup_entry(CPUHP_ONLINE); 191 } 192 193 #ifdef CONFIG_HOTPLUG_CPU 194 static int op_cpu_disable(unsigned int cpu) 195 { 196 /* 197 * If we don't have a cpu_die method, abort before we reach the point 198 * of no return. CPU0 may not have an cpu_ops, so test for it. 199 */ 200 if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die) 201 return -EOPNOTSUPP; 202 203 /* 204 * We may need to abort a hot unplug for some other mechanism-specific 205 * reason. 206 */ 207 if (cpu_ops[cpu]->cpu_disable) 208 return cpu_ops[cpu]->cpu_disable(cpu); 209 210 return 0; 211 } 212 213 /* 214 * __cpu_disable runs on the processor to be shutdown. 215 */ 216 int __cpu_disable(void) 217 { 218 unsigned int cpu = smp_processor_id(); 219 int ret; 220 221 ret = op_cpu_disable(cpu); 222 if (ret) 223 return ret; 224 225 /* 226 * Take this CPU offline. Once we clear this, we can't return, 227 * and we must not schedule until we're ready to give up the cpu. 228 */ 229 set_cpu_online(cpu, false); 230 231 /* 232 * OK - migrate IRQs away from this CPU 233 */ 234 migrate_irqs(); 235 236 /* 237 * Remove this CPU from the vm mask set of all processes. 238 */ 239 clear_tasks_mm_cpumask(cpu); 240 241 return 0; 242 } 243 244 static int op_cpu_kill(unsigned int cpu) 245 { 246 /* 247 * If we have no means of synchronising with the dying CPU, then assume 248 * that it is really dead. We can only wait for an arbitrary length of 249 * time and hope that it's dead, so let's skip the wait and just hope. 250 */ 251 if (!cpu_ops[cpu]->cpu_kill) 252 return 0; 253 254 return cpu_ops[cpu]->cpu_kill(cpu); 255 } 256 257 /* 258 * called on the thread which is asking for a CPU to be shutdown - 259 * waits until shutdown has completed, or it is timed out. 260 */ 261 void __cpu_die(unsigned int cpu) 262 { 263 int err; 264 265 if (!cpu_wait_death(cpu, 5)) { 266 pr_crit("CPU%u: cpu didn't die\n", cpu); 267 return; 268 } 269 pr_notice("CPU%u: shutdown\n", cpu); 270 271 /* 272 * Now that the dying CPU is beyond the point of no return w.r.t. 273 * in-kernel synchronisation, try to get the firwmare to help us to 274 * verify that it has really left the kernel before we consider 275 * clobbering anything it might still be using. 276 */ 277 err = op_cpu_kill(cpu); 278 if (err) 279 pr_warn("CPU%d may not have shut down cleanly: %d\n", 280 cpu, err); 281 } 282 283 /* 284 * Called from the idle thread for the CPU which has been shutdown. 285 * 286 * Note that we disable IRQs here, but do not re-enable them 287 * before returning to the caller. This is also the behaviour 288 * of the other hotplug-cpu capable cores, so presumably coming 289 * out of idle fixes this. 290 */ 291 void cpu_die(void) 292 { 293 unsigned int cpu = smp_processor_id(); 294 295 idle_task_exit(); 296 297 local_irq_disable(); 298 299 /* Tell __cpu_die() that this CPU is now safe to dispose of */ 300 (void)cpu_report_death(); 301 302 /* 303 * Actually shutdown the CPU. This must never fail. The specific hotplug 304 * mechanism must perform all required cache maintenance to ensure that 305 * no dirty lines are lost in the process of shutting down the CPU. 306 */ 307 cpu_ops[cpu]->cpu_die(cpu); 308 309 BUG(); 310 } 311 #endif 312 313 void __init smp_cpus_done(unsigned int max_cpus) 314 { 315 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus()); 316 do_post_cpus_up_work(); 317 } 318 319 void __init smp_prepare_boot_cpu(void) 320 { 321 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 322 } 323 324 static u64 __init of_get_cpu_mpidr(struct device_node *dn) 325 { 326 const __be32 *cell; 327 u64 hwid; 328 329 /* 330 * A cpu node with missing "reg" property is 331 * considered invalid to build a cpu_logical_map 332 * entry. 333 */ 334 cell = of_get_property(dn, "reg", NULL); 335 if (!cell) { 336 pr_err("%s: missing reg property\n", dn->full_name); 337 return INVALID_HWID; 338 } 339 340 hwid = of_read_number(cell, of_n_addr_cells(dn)); 341 /* 342 * Non affinity bits must be set to 0 in the DT 343 */ 344 if (hwid & ~MPIDR_HWID_BITMASK) { 345 pr_err("%s: invalid reg property\n", dn->full_name); 346 return INVALID_HWID; 347 } 348 return hwid; 349 } 350 351 /* 352 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized 353 * entries and check for duplicates. If any is found just ignore the 354 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid 355 * matching valid MPIDR values. 356 */ 357 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid) 358 { 359 unsigned int i; 360 361 for (i = 1; (i < cpu) && (i < NR_CPUS); i++) 362 if (cpu_logical_map(i) == hwid) 363 return true; 364 return false; 365 } 366 367 /* 368 * Initialize cpu operations for a logical cpu and 369 * set it in the possible mask on success 370 */ 371 static int __init smp_cpu_setup(int cpu) 372 { 373 if (cpu_read_ops(cpu)) 374 return -ENODEV; 375 376 if (cpu_ops[cpu]->cpu_init(cpu)) 377 return -ENODEV; 378 379 set_cpu_possible(cpu, true); 380 381 return 0; 382 } 383 384 static bool bootcpu_valid __initdata; 385 static unsigned int cpu_count = 1; 386 387 #ifdef CONFIG_ACPI 388 /* 389 * acpi_map_gic_cpu_interface - parse processor MADT entry 390 * 391 * Carry out sanity checks on MADT processor entry and initialize 392 * cpu_logical_map on success 393 */ 394 static void __init 395 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor) 396 { 397 u64 hwid = processor->arm_mpidr; 398 399 if (!(processor->flags & ACPI_MADT_ENABLED)) { 400 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid); 401 return; 402 } 403 404 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) { 405 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid); 406 return; 407 } 408 409 if (is_mpidr_duplicate(cpu_count, hwid)) { 410 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid); 411 return; 412 } 413 414 /* Check if GICC structure of boot CPU is available in the MADT */ 415 if (cpu_logical_map(0) == hwid) { 416 if (bootcpu_valid) { 417 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n", 418 hwid); 419 return; 420 } 421 bootcpu_valid = true; 422 return; 423 } 424 425 if (cpu_count >= NR_CPUS) 426 return; 427 428 /* map the logical cpu id to cpu MPIDR */ 429 cpu_logical_map(cpu_count) = hwid; 430 431 cpu_count++; 432 } 433 434 static int __init 435 acpi_parse_gic_cpu_interface(struct acpi_subtable_header *header, 436 const unsigned long end) 437 { 438 struct acpi_madt_generic_interrupt *processor; 439 440 processor = (struct acpi_madt_generic_interrupt *)header; 441 if (BAD_MADT_ENTRY(processor, end)) 442 return -EINVAL; 443 444 acpi_table_print_madt_entry(header); 445 446 acpi_map_gic_cpu_interface(processor); 447 448 return 0; 449 } 450 #else 451 #define acpi_table_parse_madt(...) do { } while (0) 452 #endif 453 454 /* 455 * Enumerate the possible CPU set from the device tree and build the 456 * cpu logical map array containing MPIDR values related to logical 457 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 458 */ 459 void __init of_parse_and_init_cpus(void) 460 { 461 struct device_node *dn = NULL; 462 463 while ((dn = of_find_node_by_type(dn, "cpu"))) { 464 u64 hwid = of_get_cpu_mpidr(dn); 465 466 if (hwid == INVALID_HWID) 467 goto next; 468 469 if (is_mpidr_duplicate(cpu_count, hwid)) { 470 pr_err("%s: duplicate cpu reg properties in the DT\n", 471 dn->full_name); 472 goto next; 473 } 474 475 /* 476 * The numbering scheme requires that the boot CPU 477 * must be assigned logical id 0. Record it so that 478 * the logical map built from DT is validated and can 479 * be used. 480 */ 481 if (hwid == cpu_logical_map(0)) { 482 if (bootcpu_valid) { 483 pr_err("%s: duplicate boot cpu reg property in DT\n", 484 dn->full_name); 485 goto next; 486 } 487 488 bootcpu_valid = true; 489 490 /* 491 * cpu_logical_map has already been 492 * initialized and the boot cpu doesn't need 493 * the enable-method so continue without 494 * incrementing cpu. 495 */ 496 continue; 497 } 498 499 if (cpu_count >= NR_CPUS) 500 goto next; 501 502 pr_debug("cpu logical map 0x%llx\n", hwid); 503 cpu_logical_map(cpu_count) = hwid; 504 next: 505 cpu_count++; 506 } 507 } 508 509 /* 510 * Enumerate the possible CPU set from the device tree or ACPI and build the 511 * cpu logical map array containing MPIDR values related to logical 512 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 513 */ 514 void __init smp_init_cpus(void) 515 { 516 int i; 517 518 if (acpi_disabled) 519 of_parse_and_init_cpus(); 520 else 521 /* 522 * do a walk of MADT to determine how many CPUs 523 * we have including disabled CPUs, and get information 524 * we need for SMP init 525 */ 526 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, 527 acpi_parse_gic_cpu_interface, 0); 528 529 if (cpu_count > NR_CPUS) 530 pr_warn("no. of cores (%d) greater than configured maximum of %d - clipping\n", 531 cpu_count, NR_CPUS); 532 533 if (!bootcpu_valid) { 534 pr_err("missing boot CPU MPIDR, not enabling secondaries\n"); 535 return; 536 } 537 538 /* 539 * We need to set the cpu_logical_map entries before enabling 540 * the cpus so that cpu processor description entries (DT cpu nodes 541 * and ACPI MADT entries) can be retrieved by matching the cpu hwid 542 * with entries in cpu_logical_map while initializing the cpus. 543 * If the cpu set-up fails, invalidate the cpu_logical_map entry. 544 */ 545 for (i = 1; i < NR_CPUS; i++) { 546 if (cpu_logical_map(i) != INVALID_HWID) { 547 if (smp_cpu_setup(i)) 548 cpu_logical_map(i) = INVALID_HWID; 549 } 550 } 551 } 552 553 void __init smp_prepare_cpus(unsigned int max_cpus) 554 { 555 int err; 556 unsigned int cpu, ncores = num_possible_cpus(); 557 558 init_cpu_topology(); 559 560 smp_store_cpu_info(smp_processor_id()); 561 562 /* 563 * are we trying to boot more cores than exist? 564 */ 565 if (max_cpus > ncores) 566 max_cpus = ncores; 567 568 /* Don't bother if we're effectively UP */ 569 if (max_cpus <= 1) 570 return; 571 572 /* 573 * Initialise the present map (which describes the set of CPUs 574 * actually populated at the present time) and release the 575 * secondaries from the bootloader. 576 * 577 * Make sure we online at most (max_cpus - 1) additional CPUs. 578 */ 579 max_cpus--; 580 for_each_possible_cpu(cpu) { 581 if (max_cpus == 0) 582 break; 583 584 if (cpu == smp_processor_id()) 585 continue; 586 587 if (!cpu_ops[cpu]) 588 continue; 589 590 err = cpu_ops[cpu]->cpu_prepare(cpu); 591 if (err) 592 continue; 593 594 set_cpu_present(cpu, true); 595 max_cpus--; 596 } 597 } 598 599 void (*__smp_cross_call)(const struct cpumask *, unsigned int); 600 601 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 602 { 603 __smp_cross_call = fn; 604 } 605 606 static const char *ipi_types[NR_IPI] __tracepoint_string = { 607 #define S(x,s) [x] = s 608 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 609 S(IPI_CALL_FUNC, "Function call interrupts"), 610 S(IPI_CPU_STOP, "CPU stop interrupts"), 611 S(IPI_TIMER, "Timer broadcast interrupts"), 612 S(IPI_IRQ_WORK, "IRQ work interrupts"), 613 }; 614 615 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 616 { 617 trace_ipi_raise(target, ipi_types[ipinr]); 618 __smp_cross_call(target, ipinr); 619 } 620 621 void show_ipi_list(struct seq_file *p, int prec) 622 { 623 unsigned int cpu, i; 624 625 for (i = 0; i < NR_IPI; i++) { 626 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, 627 prec >= 4 ? " " : ""); 628 for_each_online_cpu(cpu) 629 seq_printf(p, "%10u ", 630 __get_irq_stat(cpu, ipi_irqs[i])); 631 seq_printf(p, " %s\n", ipi_types[i]); 632 } 633 } 634 635 u64 smp_irq_stat_cpu(unsigned int cpu) 636 { 637 u64 sum = 0; 638 int i; 639 640 for (i = 0; i < NR_IPI; i++) 641 sum += __get_irq_stat(cpu, ipi_irqs[i]); 642 643 return sum; 644 } 645 646 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 647 { 648 smp_cross_call(mask, IPI_CALL_FUNC); 649 } 650 651 void arch_send_call_function_single_ipi(int cpu) 652 { 653 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); 654 } 655 656 #ifdef CONFIG_IRQ_WORK 657 void arch_irq_work_raise(void) 658 { 659 if (__smp_cross_call) 660 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 661 } 662 #endif 663 664 static DEFINE_RAW_SPINLOCK(stop_lock); 665 666 /* 667 * ipi_cpu_stop - handle IPI from smp_send_stop() 668 */ 669 static void ipi_cpu_stop(unsigned int cpu) 670 { 671 if (system_state == SYSTEM_BOOTING || 672 system_state == SYSTEM_RUNNING) { 673 raw_spin_lock(&stop_lock); 674 pr_crit("CPU%u: stopping\n", cpu); 675 dump_stack(); 676 raw_spin_unlock(&stop_lock); 677 } 678 679 set_cpu_online(cpu, false); 680 681 local_irq_disable(); 682 683 while (1) 684 cpu_relax(); 685 } 686 687 /* 688 * Main handler for inter-processor interrupts 689 */ 690 void handle_IPI(int ipinr, struct pt_regs *regs) 691 { 692 unsigned int cpu = smp_processor_id(); 693 struct pt_regs *old_regs = set_irq_regs(regs); 694 695 if ((unsigned)ipinr < NR_IPI) { 696 trace_ipi_entry_rcuidle(ipi_types[ipinr]); 697 __inc_irq_stat(cpu, ipi_irqs[ipinr]); 698 } 699 700 switch (ipinr) { 701 case IPI_RESCHEDULE: 702 scheduler_ipi(); 703 break; 704 705 case IPI_CALL_FUNC: 706 irq_enter(); 707 generic_smp_call_function_interrupt(); 708 irq_exit(); 709 break; 710 711 case IPI_CPU_STOP: 712 irq_enter(); 713 ipi_cpu_stop(cpu); 714 irq_exit(); 715 break; 716 717 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 718 case IPI_TIMER: 719 irq_enter(); 720 tick_receive_broadcast(); 721 irq_exit(); 722 break; 723 #endif 724 725 #ifdef CONFIG_IRQ_WORK 726 case IPI_IRQ_WORK: 727 irq_enter(); 728 irq_work_run(); 729 irq_exit(); 730 break; 731 #endif 732 733 default: 734 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr); 735 break; 736 } 737 738 if ((unsigned)ipinr < NR_IPI) 739 trace_ipi_exit_rcuidle(ipi_types[ipinr]); 740 set_irq_regs(old_regs); 741 } 742 743 void smp_send_reschedule(int cpu) 744 { 745 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 746 } 747 748 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 749 void tick_broadcast(const struct cpumask *mask) 750 { 751 smp_cross_call(mask, IPI_TIMER); 752 } 753 #endif 754 755 void smp_send_stop(void) 756 { 757 unsigned long timeout; 758 759 if (num_online_cpus() > 1) { 760 cpumask_t mask; 761 762 cpumask_copy(&mask, cpu_online_mask); 763 cpumask_clear_cpu(smp_processor_id(), &mask); 764 765 smp_cross_call(&mask, IPI_CPU_STOP); 766 } 767 768 /* Wait up to one second for other CPUs to stop */ 769 timeout = USEC_PER_SEC; 770 while (num_online_cpus() > 1 && timeout--) 771 udelay(1); 772 773 if (num_online_cpus() > 1) 774 pr_warning("SMP: failed to stop secondary CPUs\n"); 775 } 776 777 /* 778 * not supported here 779 */ 780 int setup_profiling_timer(unsigned int multiplier) 781 { 782 return -EINVAL; 783 } 784