xref: /linux/arch/arm64/kernel/signal.c (revision 8faabc041a001140564f718dabe37753e88b37fa)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/signal.c
4  *
5  * Copyright (C) 1995-2009 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/cache.h>
10 #include <linux/compat.h>
11 #include <linux/errno.h>
12 #include <linux/kernel.h>
13 #include <linux/signal.h>
14 #include <linux/freezer.h>
15 #include <linux/stddef.h>
16 #include <linux/uaccess.h>
17 #include <linux/sizes.h>
18 #include <linux/string.h>
19 #include <linux/ratelimit.h>
20 #include <linux/rseq.h>
21 #include <linux/syscalls.h>
22 #include <linux/pkeys.h>
23 
24 #include <asm/daifflags.h>
25 #include <asm/debug-monitors.h>
26 #include <asm/elf.h>
27 #include <asm/exception.h>
28 #include <asm/cacheflush.h>
29 #include <asm/gcs.h>
30 #include <asm/ucontext.h>
31 #include <asm/unistd.h>
32 #include <asm/fpsimd.h>
33 #include <asm/ptrace.h>
34 #include <asm/syscall.h>
35 #include <asm/signal32.h>
36 #include <asm/traps.h>
37 #include <asm/vdso.h>
38 
39 #ifdef CONFIG_ARM64_GCS
40 #define GCS_SIGNAL_CAP(addr) (((unsigned long)addr) & GCS_CAP_ADDR_MASK)
41 
42 static bool gcs_signal_cap_valid(u64 addr, u64 val)
43 {
44 	return val == GCS_SIGNAL_CAP(addr);
45 }
46 #endif
47 
48 /*
49  * Do a signal return; undo the signal stack. These are aligned to 128-bit.
50  */
51 struct rt_sigframe {
52 	struct siginfo info;
53 	struct ucontext uc;
54 };
55 
56 struct rt_sigframe_user_layout {
57 	struct rt_sigframe __user *sigframe;
58 	struct frame_record __user *next_frame;
59 
60 	unsigned long size;	/* size of allocated sigframe data */
61 	unsigned long limit;	/* largest allowed size */
62 
63 	unsigned long fpsimd_offset;
64 	unsigned long esr_offset;
65 	unsigned long gcs_offset;
66 	unsigned long sve_offset;
67 	unsigned long tpidr2_offset;
68 	unsigned long za_offset;
69 	unsigned long zt_offset;
70 	unsigned long fpmr_offset;
71 	unsigned long poe_offset;
72 	unsigned long extra_offset;
73 	unsigned long end_offset;
74 };
75 
76 /*
77  * Holds any EL0-controlled state that influences unprivileged memory accesses.
78  * This includes both accesses done in userspace and uaccess done in the kernel.
79  *
80  * This state needs to be carefully managed to ensure that it doesn't cause
81  * uaccess to fail when setting up the signal frame, and the signal handler
82  * itself also expects a well-defined state when entered.
83  */
84 struct user_access_state {
85 	u64 por_el0;
86 };
87 
88 #define TERMINATOR_SIZE round_up(sizeof(struct _aarch64_ctx), 16)
89 #define EXTRA_CONTEXT_SIZE round_up(sizeof(struct extra_context), 16)
90 
91 /*
92  * Save the user access state into ua_state and reset it to disable any
93  * restrictions.
94  */
95 static void save_reset_user_access_state(struct user_access_state *ua_state)
96 {
97 	if (system_supports_poe()) {
98 		u64 por_enable_all = 0;
99 
100 		for (int pkey = 0; pkey < arch_max_pkey(); pkey++)
101 			por_enable_all |= POE_RXW << (pkey * POR_BITS_PER_PKEY);
102 
103 		ua_state->por_el0 = read_sysreg_s(SYS_POR_EL0);
104 		write_sysreg_s(por_enable_all, SYS_POR_EL0);
105 		/* Ensure that any subsequent uaccess observes the updated value */
106 		isb();
107 	}
108 }
109 
110 /*
111  * Set the user access state for invoking the signal handler.
112  *
113  * No uaccess should be done after that function is called.
114  */
115 static void set_handler_user_access_state(void)
116 {
117 	if (system_supports_poe())
118 		write_sysreg_s(POR_EL0_INIT, SYS_POR_EL0);
119 }
120 
121 /*
122  * Restore the user access state to the values saved in ua_state.
123  *
124  * No uaccess should be done after that function is called.
125  */
126 static void restore_user_access_state(const struct user_access_state *ua_state)
127 {
128 	if (system_supports_poe())
129 		write_sysreg_s(ua_state->por_el0, SYS_POR_EL0);
130 }
131 
132 static void init_user_layout(struct rt_sigframe_user_layout *user)
133 {
134 	const size_t reserved_size =
135 		sizeof(user->sigframe->uc.uc_mcontext.__reserved);
136 
137 	memset(user, 0, sizeof(*user));
138 	user->size = offsetof(struct rt_sigframe, uc.uc_mcontext.__reserved);
139 
140 	user->limit = user->size + reserved_size;
141 
142 	user->limit -= TERMINATOR_SIZE;
143 	user->limit -= EXTRA_CONTEXT_SIZE;
144 	/* Reserve space for extension and terminator ^ */
145 }
146 
147 static size_t sigframe_size(struct rt_sigframe_user_layout const *user)
148 {
149 	return round_up(max(user->size, sizeof(struct rt_sigframe)), 16);
150 }
151 
152 /*
153  * Sanity limit on the approximate maximum size of signal frame we'll
154  * try to generate.  Stack alignment padding and the frame record are
155  * not taken into account.  This limit is not a guarantee and is
156  * NOT ABI.
157  */
158 #define SIGFRAME_MAXSZ SZ_256K
159 
160 static int __sigframe_alloc(struct rt_sigframe_user_layout *user,
161 			    unsigned long *offset, size_t size, bool extend)
162 {
163 	size_t padded_size = round_up(size, 16);
164 
165 	if (padded_size > user->limit - user->size &&
166 	    !user->extra_offset &&
167 	    extend) {
168 		int ret;
169 
170 		user->limit += EXTRA_CONTEXT_SIZE;
171 		ret = __sigframe_alloc(user, &user->extra_offset,
172 				       sizeof(struct extra_context), false);
173 		if (ret) {
174 			user->limit -= EXTRA_CONTEXT_SIZE;
175 			return ret;
176 		}
177 
178 		/* Reserve space for the __reserved[] terminator */
179 		user->size += TERMINATOR_SIZE;
180 
181 		/*
182 		 * Allow expansion up to SIGFRAME_MAXSZ, ensuring space for
183 		 * the terminator:
184 		 */
185 		user->limit = SIGFRAME_MAXSZ - TERMINATOR_SIZE;
186 	}
187 
188 	/* Still not enough space?  Bad luck! */
189 	if (padded_size > user->limit - user->size)
190 		return -ENOMEM;
191 
192 	*offset = user->size;
193 	user->size += padded_size;
194 
195 	return 0;
196 }
197 
198 /*
199  * Allocate space for an optional record of <size> bytes in the user
200  * signal frame.  The offset from the signal frame base address to the
201  * allocated block is assigned to *offset.
202  */
203 static int sigframe_alloc(struct rt_sigframe_user_layout *user,
204 			  unsigned long *offset, size_t size)
205 {
206 	return __sigframe_alloc(user, offset, size, true);
207 }
208 
209 /* Allocate the null terminator record and prevent further allocations */
210 static int sigframe_alloc_end(struct rt_sigframe_user_layout *user)
211 {
212 	int ret;
213 
214 	/* Un-reserve the space reserved for the terminator: */
215 	user->limit += TERMINATOR_SIZE;
216 
217 	ret = sigframe_alloc(user, &user->end_offset,
218 			     sizeof(struct _aarch64_ctx));
219 	if (ret)
220 		return ret;
221 
222 	/* Prevent further allocation: */
223 	user->limit = user->size;
224 	return 0;
225 }
226 
227 static void __user *apply_user_offset(
228 	struct rt_sigframe_user_layout const *user, unsigned long offset)
229 {
230 	char __user *base = (char __user *)user->sigframe;
231 
232 	return base + offset;
233 }
234 
235 struct user_ctxs {
236 	struct fpsimd_context __user *fpsimd;
237 	u32 fpsimd_size;
238 	struct sve_context __user *sve;
239 	u32 sve_size;
240 	struct tpidr2_context __user *tpidr2;
241 	u32 tpidr2_size;
242 	struct za_context __user *za;
243 	u32 za_size;
244 	struct zt_context __user *zt;
245 	u32 zt_size;
246 	struct fpmr_context __user *fpmr;
247 	u32 fpmr_size;
248 	struct poe_context __user *poe;
249 	u32 poe_size;
250 	struct gcs_context __user *gcs;
251 	u32 gcs_size;
252 };
253 
254 static int preserve_fpsimd_context(struct fpsimd_context __user *ctx)
255 {
256 	struct user_fpsimd_state const *fpsimd =
257 		&current->thread.uw.fpsimd_state;
258 	int err;
259 
260 	/* copy the FP and status/control registers */
261 	err = __copy_to_user(ctx->vregs, fpsimd->vregs, sizeof(fpsimd->vregs));
262 	__put_user_error(fpsimd->fpsr, &ctx->fpsr, err);
263 	__put_user_error(fpsimd->fpcr, &ctx->fpcr, err);
264 
265 	/* copy the magic/size information */
266 	__put_user_error(FPSIMD_MAGIC, &ctx->head.magic, err);
267 	__put_user_error(sizeof(struct fpsimd_context), &ctx->head.size, err);
268 
269 	return err ? -EFAULT : 0;
270 }
271 
272 static int restore_fpsimd_context(struct user_ctxs *user)
273 {
274 	struct user_fpsimd_state fpsimd;
275 	int err = 0;
276 
277 	/* check the size information */
278 	if (user->fpsimd_size != sizeof(struct fpsimd_context))
279 		return -EINVAL;
280 
281 	/* copy the FP and status/control registers */
282 	err = __copy_from_user(fpsimd.vregs, &(user->fpsimd->vregs),
283 			       sizeof(fpsimd.vregs));
284 	__get_user_error(fpsimd.fpsr, &(user->fpsimd->fpsr), err);
285 	__get_user_error(fpsimd.fpcr, &(user->fpsimd->fpcr), err);
286 
287 	clear_thread_flag(TIF_SVE);
288 	current->thread.fp_type = FP_STATE_FPSIMD;
289 
290 	/* load the hardware registers from the fpsimd_state structure */
291 	if (!err)
292 		fpsimd_update_current_state(&fpsimd);
293 
294 	return err ? -EFAULT : 0;
295 }
296 
297 static int preserve_fpmr_context(struct fpmr_context __user *ctx)
298 {
299 	int err = 0;
300 
301 	current->thread.uw.fpmr = read_sysreg_s(SYS_FPMR);
302 
303 	__put_user_error(FPMR_MAGIC, &ctx->head.magic, err);
304 	__put_user_error(sizeof(*ctx), &ctx->head.size, err);
305 	__put_user_error(current->thread.uw.fpmr, &ctx->fpmr, err);
306 
307 	return err;
308 }
309 
310 static int restore_fpmr_context(struct user_ctxs *user)
311 {
312 	u64 fpmr;
313 	int err = 0;
314 
315 	if (user->fpmr_size != sizeof(*user->fpmr))
316 		return -EINVAL;
317 
318 	__get_user_error(fpmr, &user->fpmr->fpmr, err);
319 	if (!err)
320 		write_sysreg_s(fpmr, SYS_FPMR);
321 
322 	return err;
323 }
324 
325 static int preserve_poe_context(struct poe_context __user *ctx,
326 				const struct user_access_state *ua_state)
327 {
328 	int err = 0;
329 
330 	__put_user_error(POE_MAGIC, &ctx->head.magic, err);
331 	__put_user_error(sizeof(*ctx), &ctx->head.size, err);
332 	__put_user_error(ua_state->por_el0, &ctx->por_el0, err);
333 
334 	return err;
335 }
336 
337 static int restore_poe_context(struct user_ctxs *user,
338 			       struct user_access_state *ua_state)
339 {
340 	u64 por_el0;
341 	int err = 0;
342 
343 	if (user->poe_size != sizeof(*user->poe))
344 		return -EINVAL;
345 
346 	__get_user_error(por_el0, &(user->poe->por_el0), err);
347 	if (!err)
348 		ua_state->por_el0 = por_el0;
349 
350 	return err;
351 }
352 
353 #ifdef CONFIG_ARM64_SVE
354 
355 static int preserve_sve_context(struct sve_context __user *ctx)
356 {
357 	int err = 0;
358 	u16 reserved[ARRAY_SIZE(ctx->__reserved)];
359 	u16 flags = 0;
360 	unsigned int vl = task_get_sve_vl(current);
361 	unsigned int vq = 0;
362 
363 	if (thread_sm_enabled(&current->thread)) {
364 		vl = task_get_sme_vl(current);
365 		vq = sve_vq_from_vl(vl);
366 		flags |= SVE_SIG_FLAG_SM;
367 	} else if (current->thread.fp_type == FP_STATE_SVE) {
368 		vq = sve_vq_from_vl(vl);
369 	}
370 
371 	memset(reserved, 0, sizeof(reserved));
372 
373 	__put_user_error(SVE_MAGIC, &ctx->head.magic, err);
374 	__put_user_error(round_up(SVE_SIG_CONTEXT_SIZE(vq), 16),
375 			 &ctx->head.size, err);
376 	__put_user_error(vl, &ctx->vl, err);
377 	__put_user_error(flags, &ctx->flags, err);
378 	BUILD_BUG_ON(sizeof(ctx->__reserved) != sizeof(reserved));
379 	err |= __copy_to_user(&ctx->__reserved, reserved, sizeof(reserved));
380 
381 	if (vq) {
382 		/*
383 		 * This assumes that the SVE state has already been saved to
384 		 * the task struct by calling the function
385 		 * fpsimd_signal_preserve_current_state().
386 		 */
387 		err |= __copy_to_user((char __user *)ctx + SVE_SIG_REGS_OFFSET,
388 				      current->thread.sve_state,
389 				      SVE_SIG_REGS_SIZE(vq));
390 	}
391 
392 	return err ? -EFAULT : 0;
393 }
394 
395 static int restore_sve_fpsimd_context(struct user_ctxs *user)
396 {
397 	int err = 0;
398 	unsigned int vl, vq;
399 	struct user_fpsimd_state fpsimd;
400 	u16 user_vl, flags;
401 
402 	if (user->sve_size < sizeof(*user->sve))
403 		return -EINVAL;
404 
405 	__get_user_error(user_vl, &(user->sve->vl), err);
406 	__get_user_error(flags, &(user->sve->flags), err);
407 	if (err)
408 		return err;
409 
410 	if (flags & SVE_SIG_FLAG_SM) {
411 		if (!system_supports_sme())
412 			return -EINVAL;
413 
414 		vl = task_get_sme_vl(current);
415 	} else {
416 		/*
417 		 * A SME only system use SVE for streaming mode so can
418 		 * have a SVE formatted context with a zero VL and no
419 		 * payload data.
420 		 */
421 		if (!system_supports_sve() && !system_supports_sme())
422 			return -EINVAL;
423 
424 		vl = task_get_sve_vl(current);
425 	}
426 
427 	if (user_vl != vl)
428 		return -EINVAL;
429 
430 	if (user->sve_size == sizeof(*user->sve)) {
431 		clear_thread_flag(TIF_SVE);
432 		current->thread.svcr &= ~SVCR_SM_MASK;
433 		current->thread.fp_type = FP_STATE_FPSIMD;
434 		goto fpsimd_only;
435 	}
436 
437 	vq = sve_vq_from_vl(vl);
438 
439 	if (user->sve_size < SVE_SIG_CONTEXT_SIZE(vq))
440 		return -EINVAL;
441 
442 	/*
443 	 * Careful: we are about __copy_from_user() directly into
444 	 * thread.sve_state with preemption enabled, so protection is
445 	 * needed to prevent a racing context switch from writing stale
446 	 * registers back over the new data.
447 	 */
448 
449 	fpsimd_flush_task_state(current);
450 	/* From now, fpsimd_thread_switch() won't touch thread.sve_state */
451 
452 	sve_alloc(current, true);
453 	if (!current->thread.sve_state) {
454 		clear_thread_flag(TIF_SVE);
455 		return -ENOMEM;
456 	}
457 
458 	err = __copy_from_user(current->thread.sve_state,
459 			       (char __user const *)user->sve +
460 					SVE_SIG_REGS_OFFSET,
461 			       SVE_SIG_REGS_SIZE(vq));
462 	if (err)
463 		return -EFAULT;
464 
465 	if (flags & SVE_SIG_FLAG_SM)
466 		current->thread.svcr |= SVCR_SM_MASK;
467 	else
468 		set_thread_flag(TIF_SVE);
469 	current->thread.fp_type = FP_STATE_SVE;
470 
471 fpsimd_only:
472 	/* copy the FP and status/control registers */
473 	/* restore_sigframe() already checked that user->fpsimd != NULL. */
474 	err = __copy_from_user(fpsimd.vregs, user->fpsimd->vregs,
475 			       sizeof(fpsimd.vregs));
476 	__get_user_error(fpsimd.fpsr, &user->fpsimd->fpsr, err);
477 	__get_user_error(fpsimd.fpcr, &user->fpsimd->fpcr, err);
478 
479 	/* load the hardware registers from the fpsimd_state structure */
480 	if (!err)
481 		fpsimd_update_current_state(&fpsimd);
482 
483 	return err ? -EFAULT : 0;
484 }
485 
486 #else /* ! CONFIG_ARM64_SVE */
487 
488 static int restore_sve_fpsimd_context(struct user_ctxs *user)
489 {
490 	WARN_ON_ONCE(1);
491 	return -EINVAL;
492 }
493 
494 /* Turn any non-optimised out attempts to use this into a link error: */
495 extern int preserve_sve_context(void __user *ctx);
496 
497 #endif /* ! CONFIG_ARM64_SVE */
498 
499 #ifdef CONFIG_ARM64_SME
500 
501 static int preserve_tpidr2_context(struct tpidr2_context __user *ctx)
502 {
503 	int err = 0;
504 
505 	current->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
506 
507 	__put_user_error(TPIDR2_MAGIC, &ctx->head.magic, err);
508 	__put_user_error(sizeof(*ctx), &ctx->head.size, err);
509 	__put_user_error(current->thread.tpidr2_el0, &ctx->tpidr2, err);
510 
511 	return err;
512 }
513 
514 static int restore_tpidr2_context(struct user_ctxs *user)
515 {
516 	u64 tpidr2_el0;
517 	int err = 0;
518 
519 	if (user->tpidr2_size != sizeof(*user->tpidr2))
520 		return -EINVAL;
521 
522 	__get_user_error(tpidr2_el0, &user->tpidr2->tpidr2, err);
523 	if (!err)
524 		write_sysreg_s(tpidr2_el0, SYS_TPIDR2_EL0);
525 
526 	return err;
527 }
528 
529 static int preserve_za_context(struct za_context __user *ctx)
530 {
531 	int err = 0;
532 	u16 reserved[ARRAY_SIZE(ctx->__reserved)];
533 	unsigned int vl = task_get_sme_vl(current);
534 	unsigned int vq;
535 
536 	if (thread_za_enabled(&current->thread))
537 		vq = sve_vq_from_vl(vl);
538 	else
539 		vq = 0;
540 
541 	memset(reserved, 0, sizeof(reserved));
542 
543 	__put_user_error(ZA_MAGIC, &ctx->head.magic, err);
544 	__put_user_error(round_up(ZA_SIG_CONTEXT_SIZE(vq), 16),
545 			 &ctx->head.size, err);
546 	__put_user_error(vl, &ctx->vl, err);
547 	BUILD_BUG_ON(sizeof(ctx->__reserved) != sizeof(reserved));
548 	err |= __copy_to_user(&ctx->__reserved, reserved, sizeof(reserved));
549 
550 	if (vq) {
551 		/*
552 		 * This assumes that the ZA state has already been saved to
553 		 * the task struct by calling the function
554 		 * fpsimd_signal_preserve_current_state().
555 		 */
556 		err |= __copy_to_user((char __user *)ctx + ZA_SIG_REGS_OFFSET,
557 				      current->thread.sme_state,
558 				      ZA_SIG_REGS_SIZE(vq));
559 	}
560 
561 	return err ? -EFAULT : 0;
562 }
563 
564 static int restore_za_context(struct user_ctxs *user)
565 {
566 	int err = 0;
567 	unsigned int vq;
568 	u16 user_vl;
569 
570 	if (user->za_size < sizeof(*user->za))
571 		return -EINVAL;
572 
573 	__get_user_error(user_vl, &(user->za->vl), err);
574 	if (err)
575 		return err;
576 
577 	if (user_vl != task_get_sme_vl(current))
578 		return -EINVAL;
579 
580 	if (user->za_size == sizeof(*user->za)) {
581 		current->thread.svcr &= ~SVCR_ZA_MASK;
582 		return 0;
583 	}
584 
585 	vq = sve_vq_from_vl(user_vl);
586 
587 	if (user->za_size < ZA_SIG_CONTEXT_SIZE(vq))
588 		return -EINVAL;
589 
590 	/*
591 	 * Careful: we are about __copy_from_user() directly into
592 	 * thread.sme_state with preemption enabled, so protection is
593 	 * needed to prevent a racing context switch from writing stale
594 	 * registers back over the new data.
595 	 */
596 
597 	fpsimd_flush_task_state(current);
598 	/* From now, fpsimd_thread_switch() won't touch thread.sve_state */
599 
600 	sme_alloc(current, true);
601 	if (!current->thread.sme_state) {
602 		current->thread.svcr &= ~SVCR_ZA_MASK;
603 		clear_thread_flag(TIF_SME);
604 		return -ENOMEM;
605 	}
606 
607 	err = __copy_from_user(current->thread.sme_state,
608 			       (char __user const *)user->za +
609 					ZA_SIG_REGS_OFFSET,
610 			       ZA_SIG_REGS_SIZE(vq));
611 	if (err)
612 		return -EFAULT;
613 
614 	set_thread_flag(TIF_SME);
615 	current->thread.svcr |= SVCR_ZA_MASK;
616 
617 	return 0;
618 }
619 
620 static int preserve_zt_context(struct zt_context __user *ctx)
621 {
622 	int err = 0;
623 	u16 reserved[ARRAY_SIZE(ctx->__reserved)];
624 
625 	if (WARN_ON(!thread_za_enabled(&current->thread)))
626 		return -EINVAL;
627 
628 	memset(reserved, 0, sizeof(reserved));
629 
630 	__put_user_error(ZT_MAGIC, &ctx->head.magic, err);
631 	__put_user_error(round_up(ZT_SIG_CONTEXT_SIZE(1), 16),
632 			 &ctx->head.size, err);
633 	__put_user_error(1, &ctx->nregs, err);
634 	BUILD_BUG_ON(sizeof(ctx->__reserved) != sizeof(reserved));
635 	err |= __copy_to_user(&ctx->__reserved, reserved, sizeof(reserved));
636 
637 	/*
638 	 * This assumes that the ZT state has already been saved to
639 	 * the task struct by calling the function
640 	 * fpsimd_signal_preserve_current_state().
641 	 */
642 	err |= __copy_to_user((char __user *)ctx + ZT_SIG_REGS_OFFSET,
643 			      thread_zt_state(&current->thread),
644 			      ZT_SIG_REGS_SIZE(1));
645 
646 	return err ? -EFAULT : 0;
647 }
648 
649 static int restore_zt_context(struct user_ctxs *user)
650 {
651 	int err;
652 	u16 nregs;
653 
654 	/* ZA must be restored first for this check to be valid */
655 	if (!thread_za_enabled(&current->thread))
656 		return -EINVAL;
657 
658 	if (user->zt_size != ZT_SIG_CONTEXT_SIZE(1))
659 		return -EINVAL;
660 
661 	if (__copy_from_user(&nregs, &(user->zt->nregs), sizeof(nregs)))
662 		return -EFAULT;
663 
664 	if (nregs != 1)
665 		return -EINVAL;
666 
667 	/*
668 	 * Careful: we are about __copy_from_user() directly into
669 	 * thread.zt_state with preemption enabled, so protection is
670 	 * needed to prevent a racing context switch from writing stale
671 	 * registers back over the new data.
672 	 */
673 
674 	fpsimd_flush_task_state(current);
675 	/* From now, fpsimd_thread_switch() won't touch ZT in thread state */
676 
677 	err = __copy_from_user(thread_zt_state(&current->thread),
678 			       (char __user const *)user->zt +
679 					ZT_SIG_REGS_OFFSET,
680 			       ZT_SIG_REGS_SIZE(1));
681 	if (err)
682 		return -EFAULT;
683 
684 	return 0;
685 }
686 
687 #else /* ! CONFIG_ARM64_SME */
688 
689 /* Turn any non-optimised out attempts to use these into a link error: */
690 extern int preserve_tpidr2_context(void __user *ctx);
691 extern int restore_tpidr2_context(struct user_ctxs *user);
692 extern int preserve_za_context(void __user *ctx);
693 extern int restore_za_context(struct user_ctxs *user);
694 extern int preserve_zt_context(void __user *ctx);
695 extern int restore_zt_context(struct user_ctxs *user);
696 
697 #endif /* ! CONFIG_ARM64_SME */
698 
699 #ifdef CONFIG_ARM64_GCS
700 
701 static int preserve_gcs_context(struct gcs_context __user *ctx)
702 {
703 	int err = 0;
704 	u64 gcspr = read_sysreg_s(SYS_GCSPR_EL0);
705 
706 	/*
707 	 * If GCS is enabled we will add a cap token to the frame,
708 	 * include it in the GCSPR_EL0 we report to support stack
709 	 * switching via sigreturn if GCS is enabled.  We do not allow
710 	 * enabling via sigreturn so the token is only relevant for
711 	 * threads with GCS enabled.
712 	 */
713 	if (task_gcs_el0_enabled(current))
714 		gcspr -= 8;
715 
716 	__put_user_error(GCS_MAGIC, &ctx->head.magic, err);
717 	__put_user_error(sizeof(*ctx), &ctx->head.size, err);
718 	__put_user_error(gcspr, &ctx->gcspr, err);
719 	__put_user_error(0, &ctx->reserved, err);
720 	__put_user_error(current->thread.gcs_el0_mode,
721 			 &ctx->features_enabled, err);
722 
723 	return err;
724 }
725 
726 static int restore_gcs_context(struct user_ctxs *user)
727 {
728 	u64 gcspr, enabled;
729 	int err = 0;
730 
731 	if (user->gcs_size != sizeof(*user->gcs))
732 		return -EINVAL;
733 
734 	__get_user_error(gcspr, &user->gcs->gcspr, err);
735 	__get_user_error(enabled, &user->gcs->features_enabled, err);
736 	if (err)
737 		return err;
738 
739 	/* Don't allow unknown modes */
740 	if (enabled & ~PR_SHADOW_STACK_SUPPORTED_STATUS_MASK)
741 		return -EINVAL;
742 
743 	err = gcs_check_locked(current, enabled);
744 	if (err != 0)
745 		return err;
746 
747 	/* Don't allow enabling */
748 	if (!task_gcs_el0_enabled(current) &&
749 	    (enabled & PR_SHADOW_STACK_ENABLE))
750 		return -EINVAL;
751 
752 	/* If we are disabling disable everything */
753 	if (!(enabled & PR_SHADOW_STACK_ENABLE))
754 		enabled = 0;
755 
756 	current->thread.gcs_el0_mode = enabled;
757 
758 	/*
759 	 * We let userspace set GCSPR_EL0 to anything here, we will
760 	 * validate later in gcs_restore_signal().
761 	 */
762 	write_sysreg_s(gcspr, SYS_GCSPR_EL0);
763 
764 	return 0;
765 }
766 
767 #else /* ! CONFIG_ARM64_GCS */
768 
769 /* Turn any non-optimised out attempts to use these into a link error: */
770 extern int preserve_gcs_context(void __user *ctx);
771 extern int restore_gcs_context(struct user_ctxs *user);
772 
773 #endif /* ! CONFIG_ARM64_GCS */
774 
775 static int parse_user_sigframe(struct user_ctxs *user,
776 			       struct rt_sigframe __user *sf)
777 {
778 	struct sigcontext __user *const sc = &sf->uc.uc_mcontext;
779 	struct _aarch64_ctx __user *head;
780 	char __user *base = (char __user *)&sc->__reserved;
781 	size_t offset = 0;
782 	size_t limit = sizeof(sc->__reserved);
783 	bool have_extra_context = false;
784 	char const __user *const sfp = (char const __user *)sf;
785 
786 	user->fpsimd = NULL;
787 	user->sve = NULL;
788 	user->tpidr2 = NULL;
789 	user->za = NULL;
790 	user->zt = NULL;
791 	user->fpmr = NULL;
792 	user->poe = NULL;
793 	user->gcs = NULL;
794 
795 	if (!IS_ALIGNED((unsigned long)base, 16))
796 		goto invalid;
797 
798 	while (1) {
799 		int err = 0;
800 		u32 magic, size;
801 		char const __user *userp;
802 		struct extra_context const __user *extra;
803 		u64 extra_datap;
804 		u32 extra_size;
805 		struct _aarch64_ctx const __user *end;
806 		u32 end_magic, end_size;
807 
808 		if (limit - offset < sizeof(*head))
809 			goto invalid;
810 
811 		if (!IS_ALIGNED(offset, 16))
812 			goto invalid;
813 
814 		head = (struct _aarch64_ctx __user *)(base + offset);
815 		__get_user_error(magic, &head->magic, err);
816 		__get_user_error(size, &head->size, err);
817 		if (err)
818 			return err;
819 
820 		if (limit - offset < size)
821 			goto invalid;
822 
823 		switch (magic) {
824 		case 0:
825 			if (size)
826 				goto invalid;
827 
828 			goto done;
829 
830 		case FPSIMD_MAGIC:
831 			if (!system_supports_fpsimd())
832 				goto invalid;
833 			if (user->fpsimd)
834 				goto invalid;
835 
836 			user->fpsimd = (struct fpsimd_context __user *)head;
837 			user->fpsimd_size = size;
838 			break;
839 
840 		case ESR_MAGIC:
841 			/* ignore */
842 			break;
843 
844 		case POE_MAGIC:
845 			if (!system_supports_poe())
846 				goto invalid;
847 
848 			if (user->poe)
849 				goto invalid;
850 
851 			user->poe = (struct poe_context __user *)head;
852 			user->poe_size = size;
853 			break;
854 
855 		case SVE_MAGIC:
856 			if (!system_supports_sve() && !system_supports_sme())
857 				goto invalid;
858 
859 			if (user->sve)
860 				goto invalid;
861 
862 			user->sve = (struct sve_context __user *)head;
863 			user->sve_size = size;
864 			break;
865 
866 		case TPIDR2_MAGIC:
867 			if (!system_supports_tpidr2())
868 				goto invalid;
869 
870 			if (user->tpidr2)
871 				goto invalid;
872 
873 			user->tpidr2 = (struct tpidr2_context __user *)head;
874 			user->tpidr2_size = size;
875 			break;
876 
877 		case ZA_MAGIC:
878 			if (!system_supports_sme())
879 				goto invalid;
880 
881 			if (user->za)
882 				goto invalid;
883 
884 			user->za = (struct za_context __user *)head;
885 			user->za_size = size;
886 			break;
887 
888 		case ZT_MAGIC:
889 			if (!system_supports_sme2())
890 				goto invalid;
891 
892 			if (user->zt)
893 				goto invalid;
894 
895 			user->zt = (struct zt_context __user *)head;
896 			user->zt_size = size;
897 			break;
898 
899 		case FPMR_MAGIC:
900 			if (!system_supports_fpmr())
901 				goto invalid;
902 
903 			if (user->fpmr)
904 				goto invalid;
905 
906 			user->fpmr = (struct fpmr_context __user *)head;
907 			user->fpmr_size = size;
908 			break;
909 
910 		case GCS_MAGIC:
911 			if (!system_supports_gcs())
912 				goto invalid;
913 
914 			if (user->gcs)
915 				goto invalid;
916 
917 			user->gcs = (struct gcs_context __user *)head;
918 			user->gcs_size = size;
919 			break;
920 
921 		case EXTRA_MAGIC:
922 			if (have_extra_context)
923 				goto invalid;
924 
925 			if (size < sizeof(*extra))
926 				goto invalid;
927 
928 			userp = (char const __user *)head;
929 
930 			extra = (struct extra_context const __user *)userp;
931 			userp += size;
932 
933 			__get_user_error(extra_datap, &extra->datap, err);
934 			__get_user_error(extra_size, &extra->size, err);
935 			if (err)
936 				return err;
937 
938 			/* Check for the dummy terminator in __reserved[]: */
939 
940 			if (limit - offset - size < TERMINATOR_SIZE)
941 				goto invalid;
942 
943 			end = (struct _aarch64_ctx const __user *)userp;
944 			userp += TERMINATOR_SIZE;
945 
946 			__get_user_error(end_magic, &end->magic, err);
947 			__get_user_error(end_size, &end->size, err);
948 			if (err)
949 				return err;
950 
951 			if (end_magic || end_size)
952 				goto invalid;
953 
954 			/* Prevent looping/repeated parsing of extra_context */
955 			have_extra_context = true;
956 
957 			base = (__force void __user *)extra_datap;
958 			if (!IS_ALIGNED((unsigned long)base, 16))
959 				goto invalid;
960 
961 			if (!IS_ALIGNED(extra_size, 16))
962 				goto invalid;
963 
964 			if (base != userp)
965 				goto invalid;
966 
967 			/* Reject "unreasonably large" frames: */
968 			if (extra_size > sfp + SIGFRAME_MAXSZ - userp)
969 				goto invalid;
970 
971 			/*
972 			 * Ignore trailing terminator in __reserved[]
973 			 * and start parsing extra data:
974 			 */
975 			offset = 0;
976 			limit = extra_size;
977 
978 			if (!access_ok(base, limit))
979 				goto invalid;
980 
981 			continue;
982 
983 		default:
984 			goto invalid;
985 		}
986 
987 		if (size < sizeof(*head))
988 			goto invalid;
989 
990 		if (limit - offset < size)
991 			goto invalid;
992 
993 		offset += size;
994 	}
995 
996 done:
997 	return 0;
998 
999 invalid:
1000 	return -EINVAL;
1001 }
1002 
1003 static int restore_sigframe(struct pt_regs *regs,
1004 			    struct rt_sigframe __user *sf,
1005 			    struct user_access_state *ua_state)
1006 {
1007 	sigset_t set;
1008 	int i, err;
1009 	struct user_ctxs user;
1010 
1011 	err = __copy_from_user(&set, &sf->uc.uc_sigmask, sizeof(set));
1012 	if (err == 0)
1013 		set_current_blocked(&set);
1014 
1015 	for (i = 0; i < 31; i++)
1016 		__get_user_error(regs->regs[i], &sf->uc.uc_mcontext.regs[i],
1017 				 err);
1018 	__get_user_error(regs->sp, &sf->uc.uc_mcontext.sp, err);
1019 	__get_user_error(regs->pc, &sf->uc.uc_mcontext.pc, err);
1020 	__get_user_error(regs->pstate, &sf->uc.uc_mcontext.pstate, err);
1021 
1022 	/*
1023 	 * Avoid sys_rt_sigreturn() restarting.
1024 	 */
1025 	forget_syscall(regs);
1026 
1027 	err |= !valid_user_regs(&regs->user_regs, current);
1028 	if (err == 0)
1029 		err = parse_user_sigframe(&user, sf);
1030 
1031 	if (err == 0 && system_supports_fpsimd()) {
1032 		if (!user.fpsimd)
1033 			return -EINVAL;
1034 
1035 		if (user.sve)
1036 			err = restore_sve_fpsimd_context(&user);
1037 		else
1038 			err = restore_fpsimd_context(&user);
1039 	}
1040 
1041 	if (err == 0 && system_supports_gcs() && user.gcs)
1042 		err = restore_gcs_context(&user);
1043 
1044 	if (err == 0 && system_supports_tpidr2() && user.tpidr2)
1045 		err = restore_tpidr2_context(&user);
1046 
1047 	if (err == 0 && system_supports_fpmr() && user.fpmr)
1048 		err = restore_fpmr_context(&user);
1049 
1050 	if (err == 0 && system_supports_sme() && user.za)
1051 		err = restore_za_context(&user);
1052 
1053 	if (err == 0 && system_supports_sme2() && user.zt)
1054 		err = restore_zt_context(&user);
1055 
1056 	if (err == 0 && system_supports_poe() && user.poe)
1057 		err = restore_poe_context(&user, ua_state);
1058 
1059 	return err;
1060 }
1061 
1062 #ifdef CONFIG_ARM64_GCS
1063 static int gcs_restore_signal(void)
1064 {
1065 	unsigned long __user *gcspr_el0;
1066 	u64 cap;
1067 	int ret;
1068 
1069 	if (!system_supports_gcs())
1070 		return 0;
1071 
1072 	if (!(current->thread.gcs_el0_mode & PR_SHADOW_STACK_ENABLE))
1073 		return 0;
1074 
1075 	gcspr_el0 = (unsigned long __user *)read_sysreg_s(SYS_GCSPR_EL0);
1076 
1077 	/*
1078 	 * Ensure that any changes to the GCS done via GCS operations
1079 	 * are visible to the normal reads we do to validate the
1080 	 * token.
1081 	 */
1082 	gcsb_dsync();
1083 
1084 	/*
1085 	 * GCSPR_EL0 should be pointing at a capped GCS, read the cap.
1086 	 * We don't enforce that this is in a GCS page, if it is not
1087 	 * then faults will be generated on GCS operations - the main
1088 	 * concern is to protect GCS pages.
1089 	 */
1090 	ret = copy_from_user(&cap, gcspr_el0, sizeof(cap));
1091 	if (ret)
1092 		return -EFAULT;
1093 
1094 	/*
1095 	 * Check that the cap is the actual GCS before replacing it.
1096 	 */
1097 	if (!gcs_signal_cap_valid((u64)gcspr_el0, cap))
1098 		return -EINVAL;
1099 
1100 	/* Invalidate the token to prevent reuse */
1101 	put_user_gcs(0, (__user void*)gcspr_el0, &ret);
1102 	if (ret != 0)
1103 		return -EFAULT;
1104 
1105 	write_sysreg_s(gcspr_el0 + 1, SYS_GCSPR_EL0);
1106 
1107 	return 0;
1108 }
1109 
1110 #else
1111 static int gcs_restore_signal(void) { return 0; }
1112 #endif
1113 
1114 SYSCALL_DEFINE0(rt_sigreturn)
1115 {
1116 	struct pt_regs *regs = current_pt_regs();
1117 	struct rt_sigframe __user *frame;
1118 	struct user_access_state ua_state;
1119 
1120 	/* Always make any pending restarted system calls return -EINTR */
1121 	current->restart_block.fn = do_no_restart_syscall;
1122 
1123 	/*
1124 	 * Since we stacked the signal on a 128-bit boundary, then 'sp' should
1125 	 * be word aligned here.
1126 	 */
1127 	if (regs->sp & 15)
1128 		goto badframe;
1129 
1130 	frame = (struct rt_sigframe __user *)regs->sp;
1131 
1132 	if (!access_ok(frame, sizeof (*frame)))
1133 		goto badframe;
1134 
1135 	if (restore_sigframe(regs, frame, &ua_state))
1136 		goto badframe;
1137 
1138 	if (gcs_restore_signal())
1139 		goto badframe;
1140 
1141 	if (restore_altstack(&frame->uc.uc_stack))
1142 		goto badframe;
1143 
1144 	restore_user_access_state(&ua_state);
1145 
1146 	return regs->regs[0];
1147 
1148 badframe:
1149 	arm64_notify_segfault(regs->sp);
1150 	return 0;
1151 }
1152 
1153 /*
1154  * Determine the layout of optional records in the signal frame
1155  *
1156  * add_all: if true, lays out the biggest possible signal frame for
1157  *	this task; otherwise, generates a layout for the current state
1158  *	of the task.
1159  */
1160 static int setup_sigframe_layout(struct rt_sigframe_user_layout *user,
1161 				 bool add_all)
1162 {
1163 	int err;
1164 
1165 	if (system_supports_fpsimd()) {
1166 		err = sigframe_alloc(user, &user->fpsimd_offset,
1167 				     sizeof(struct fpsimd_context));
1168 		if (err)
1169 			return err;
1170 	}
1171 
1172 	/* fault information, if valid */
1173 	if (add_all || current->thread.fault_code) {
1174 		err = sigframe_alloc(user, &user->esr_offset,
1175 				     sizeof(struct esr_context));
1176 		if (err)
1177 			return err;
1178 	}
1179 
1180 #ifdef CONFIG_ARM64_GCS
1181 	if (system_supports_gcs() && (add_all || current->thread.gcspr_el0)) {
1182 		err = sigframe_alloc(user, &user->gcs_offset,
1183 				     sizeof(struct gcs_context));
1184 		if (err)
1185 			return err;
1186 	}
1187 #endif
1188 
1189 	if (system_supports_sve() || system_supports_sme()) {
1190 		unsigned int vq = 0;
1191 
1192 		if (add_all || current->thread.fp_type == FP_STATE_SVE ||
1193 		    thread_sm_enabled(&current->thread)) {
1194 			int vl = max(sve_max_vl(), sme_max_vl());
1195 
1196 			if (!add_all)
1197 				vl = thread_get_cur_vl(&current->thread);
1198 
1199 			vq = sve_vq_from_vl(vl);
1200 		}
1201 
1202 		err = sigframe_alloc(user, &user->sve_offset,
1203 				     SVE_SIG_CONTEXT_SIZE(vq));
1204 		if (err)
1205 			return err;
1206 	}
1207 
1208 	if (system_supports_tpidr2()) {
1209 		err = sigframe_alloc(user, &user->tpidr2_offset,
1210 				     sizeof(struct tpidr2_context));
1211 		if (err)
1212 			return err;
1213 	}
1214 
1215 	if (system_supports_sme()) {
1216 		unsigned int vl;
1217 		unsigned int vq = 0;
1218 
1219 		if (add_all)
1220 			vl = sme_max_vl();
1221 		else
1222 			vl = task_get_sme_vl(current);
1223 
1224 		if (thread_za_enabled(&current->thread))
1225 			vq = sve_vq_from_vl(vl);
1226 
1227 		err = sigframe_alloc(user, &user->za_offset,
1228 				     ZA_SIG_CONTEXT_SIZE(vq));
1229 		if (err)
1230 			return err;
1231 	}
1232 
1233 	if (system_supports_sme2()) {
1234 		if (add_all || thread_za_enabled(&current->thread)) {
1235 			err = sigframe_alloc(user, &user->zt_offset,
1236 					     ZT_SIG_CONTEXT_SIZE(1));
1237 			if (err)
1238 				return err;
1239 		}
1240 	}
1241 
1242 	if (system_supports_fpmr()) {
1243 		err = sigframe_alloc(user, &user->fpmr_offset,
1244 				     sizeof(struct fpmr_context));
1245 		if (err)
1246 			return err;
1247 	}
1248 
1249 	if (system_supports_poe()) {
1250 		err = sigframe_alloc(user, &user->poe_offset,
1251 				     sizeof(struct poe_context));
1252 		if (err)
1253 			return err;
1254 	}
1255 
1256 	return sigframe_alloc_end(user);
1257 }
1258 
1259 static int setup_sigframe(struct rt_sigframe_user_layout *user,
1260 			  struct pt_regs *regs, sigset_t *set,
1261 			  const struct user_access_state *ua_state)
1262 {
1263 	int i, err = 0;
1264 	struct rt_sigframe __user *sf = user->sigframe;
1265 
1266 	/* set up the stack frame for unwinding */
1267 	__put_user_error(regs->regs[29], &user->next_frame->fp, err);
1268 	__put_user_error(regs->regs[30], &user->next_frame->lr, err);
1269 
1270 	for (i = 0; i < 31; i++)
1271 		__put_user_error(regs->regs[i], &sf->uc.uc_mcontext.regs[i],
1272 				 err);
1273 	__put_user_error(regs->sp, &sf->uc.uc_mcontext.sp, err);
1274 	__put_user_error(regs->pc, &sf->uc.uc_mcontext.pc, err);
1275 	__put_user_error(regs->pstate, &sf->uc.uc_mcontext.pstate, err);
1276 
1277 	__put_user_error(current->thread.fault_address, &sf->uc.uc_mcontext.fault_address, err);
1278 
1279 	err |= __copy_to_user(&sf->uc.uc_sigmask, set, sizeof(*set));
1280 
1281 	if (err == 0 && system_supports_fpsimd()) {
1282 		struct fpsimd_context __user *fpsimd_ctx =
1283 			apply_user_offset(user, user->fpsimd_offset);
1284 		err |= preserve_fpsimd_context(fpsimd_ctx);
1285 	}
1286 
1287 	/* fault information, if valid */
1288 	if (err == 0 && user->esr_offset) {
1289 		struct esr_context __user *esr_ctx =
1290 			apply_user_offset(user, user->esr_offset);
1291 
1292 		__put_user_error(ESR_MAGIC, &esr_ctx->head.magic, err);
1293 		__put_user_error(sizeof(*esr_ctx), &esr_ctx->head.size, err);
1294 		__put_user_error(current->thread.fault_code, &esr_ctx->esr, err);
1295 	}
1296 
1297 	if (system_supports_gcs() && err == 0 && user->gcs_offset) {
1298 		struct gcs_context __user *gcs_ctx =
1299 			apply_user_offset(user, user->gcs_offset);
1300 		err |= preserve_gcs_context(gcs_ctx);
1301 	}
1302 
1303 	/* Scalable Vector Extension state (including streaming), if present */
1304 	if ((system_supports_sve() || system_supports_sme()) &&
1305 	    err == 0 && user->sve_offset) {
1306 		struct sve_context __user *sve_ctx =
1307 			apply_user_offset(user, user->sve_offset);
1308 		err |= preserve_sve_context(sve_ctx);
1309 	}
1310 
1311 	/* TPIDR2 if supported */
1312 	if (system_supports_tpidr2() && err == 0) {
1313 		struct tpidr2_context __user *tpidr2_ctx =
1314 			apply_user_offset(user, user->tpidr2_offset);
1315 		err |= preserve_tpidr2_context(tpidr2_ctx);
1316 	}
1317 
1318 	/* FPMR if supported */
1319 	if (system_supports_fpmr() && err == 0) {
1320 		struct fpmr_context __user *fpmr_ctx =
1321 			apply_user_offset(user, user->fpmr_offset);
1322 		err |= preserve_fpmr_context(fpmr_ctx);
1323 	}
1324 
1325 	if (system_supports_poe() && err == 0) {
1326 		struct poe_context __user *poe_ctx =
1327 			apply_user_offset(user, user->poe_offset);
1328 
1329 		err |= preserve_poe_context(poe_ctx, ua_state);
1330 	}
1331 
1332 	/* ZA state if present */
1333 	if (system_supports_sme() && err == 0 && user->za_offset) {
1334 		struct za_context __user *za_ctx =
1335 			apply_user_offset(user, user->za_offset);
1336 		err |= preserve_za_context(za_ctx);
1337 	}
1338 
1339 	/* ZT state if present */
1340 	if (system_supports_sme2() && err == 0 && user->zt_offset) {
1341 		struct zt_context __user *zt_ctx =
1342 			apply_user_offset(user, user->zt_offset);
1343 		err |= preserve_zt_context(zt_ctx);
1344 	}
1345 
1346 	if (err == 0 && user->extra_offset) {
1347 		char __user *sfp = (char __user *)user->sigframe;
1348 		char __user *userp =
1349 			apply_user_offset(user, user->extra_offset);
1350 
1351 		struct extra_context __user *extra;
1352 		struct _aarch64_ctx __user *end;
1353 		u64 extra_datap;
1354 		u32 extra_size;
1355 
1356 		extra = (struct extra_context __user *)userp;
1357 		userp += EXTRA_CONTEXT_SIZE;
1358 
1359 		end = (struct _aarch64_ctx __user *)userp;
1360 		userp += TERMINATOR_SIZE;
1361 
1362 		/*
1363 		 * extra_datap is just written to the signal frame.
1364 		 * The value gets cast back to a void __user *
1365 		 * during sigreturn.
1366 		 */
1367 		extra_datap = (__force u64)userp;
1368 		extra_size = sfp + round_up(user->size, 16) - userp;
1369 
1370 		__put_user_error(EXTRA_MAGIC, &extra->head.magic, err);
1371 		__put_user_error(EXTRA_CONTEXT_SIZE, &extra->head.size, err);
1372 		__put_user_error(extra_datap, &extra->datap, err);
1373 		__put_user_error(extra_size, &extra->size, err);
1374 
1375 		/* Add the terminator */
1376 		__put_user_error(0, &end->magic, err);
1377 		__put_user_error(0, &end->size, err);
1378 	}
1379 
1380 	/* set the "end" magic */
1381 	if (err == 0) {
1382 		struct _aarch64_ctx __user *end =
1383 			apply_user_offset(user, user->end_offset);
1384 
1385 		__put_user_error(0, &end->magic, err);
1386 		__put_user_error(0, &end->size, err);
1387 	}
1388 
1389 	return err;
1390 }
1391 
1392 static int get_sigframe(struct rt_sigframe_user_layout *user,
1393 			 struct ksignal *ksig, struct pt_regs *regs)
1394 {
1395 	unsigned long sp, sp_top;
1396 	int err;
1397 
1398 	init_user_layout(user);
1399 	err = setup_sigframe_layout(user, false);
1400 	if (err)
1401 		return err;
1402 
1403 	sp = sp_top = sigsp(regs->sp, ksig);
1404 
1405 	sp = round_down(sp - sizeof(struct frame_record), 16);
1406 	user->next_frame = (struct frame_record __user *)sp;
1407 
1408 	sp = round_down(sp, 16) - sigframe_size(user);
1409 	user->sigframe = (struct rt_sigframe __user *)sp;
1410 
1411 	/*
1412 	 * Check that we can actually write to the signal frame.
1413 	 */
1414 	if (!access_ok(user->sigframe, sp_top - sp))
1415 		return -EFAULT;
1416 
1417 	return 0;
1418 }
1419 
1420 #ifdef CONFIG_ARM64_GCS
1421 
1422 static int gcs_signal_entry(__sigrestore_t sigtramp, struct ksignal *ksig)
1423 {
1424 	unsigned long __user *gcspr_el0;
1425 	int ret = 0;
1426 
1427 	if (!system_supports_gcs())
1428 		return 0;
1429 
1430 	if (!task_gcs_el0_enabled(current))
1431 		return 0;
1432 
1433 	/*
1434 	 * We are entering a signal handler, current register state is
1435 	 * active.
1436 	 */
1437 	gcspr_el0 = (unsigned long __user *)read_sysreg_s(SYS_GCSPR_EL0);
1438 
1439 	/*
1440 	 * Push a cap and the GCS entry for the trampoline onto the GCS.
1441 	 */
1442 	put_user_gcs((unsigned long)sigtramp, gcspr_el0 - 2, &ret);
1443 	put_user_gcs(GCS_SIGNAL_CAP(gcspr_el0 - 1), gcspr_el0 - 1, &ret);
1444 	if (ret != 0)
1445 		return ret;
1446 
1447 	gcspr_el0 -= 2;
1448 	write_sysreg_s((unsigned long)gcspr_el0, SYS_GCSPR_EL0);
1449 
1450 	return 0;
1451 }
1452 #else
1453 
1454 static int gcs_signal_entry(__sigrestore_t sigtramp, struct ksignal *ksig)
1455 {
1456 	return 0;
1457 }
1458 
1459 #endif
1460 
1461 static int setup_return(struct pt_regs *regs, struct ksignal *ksig,
1462 			 struct rt_sigframe_user_layout *user, int usig)
1463 {
1464 	__sigrestore_t sigtramp;
1465 	int err;
1466 
1467 	if (ksig->ka.sa.sa_flags & SA_RESTORER)
1468 		sigtramp = ksig->ka.sa.sa_restorer;
1469 	else
1470 		sigtramp = VDSO_SYMBOL(current->mm->context.vdso, sigtramp);
1471 
1472 	err = gcs_signal_entry(sigtramp, ksig);
1473 	if (err)
1474 		return err;
1475 
1476 	/*
1477 	 * We must not fail from this point onwards. We are going to update
1478 	 * registers, including SP, in order to invoke the signal handler. If
1479 	 * we failed and attempted to deliver a nested SIGSEGV to a handler
1480 	 * after that point, the subsequent sigreturn would end up restoring
1481 	 * the (partial) state for the original signal handler.
1482 	 */
1483 
1484 	regs->regs[0] = usig;
1485 	if (ksig->ka.sa.sa_flags & SA_SIGINFO) {
1486 		regs->regs[1] = (unsigned long)&user->sigframe->info;
1487 		regs->regs[2] = (unsigned long)&user->sigframe->uc;
1488 	}
1489 	regs->sp = (unsigned long)user->sigframe;
1490 	regs->regs[29] = (unsigned long)&user->next_frame->fp;
1491 	regs->regs[30] = (unsigned long)sigtramp;
1492 	regs->pc = (unsigned long)ksig->ka.sa.sa_handler;
1493 
1494 	/*
1495 	 * Signal delivery is a (wacky) indirect function call in
1496 	 * userspace, so simulate the same setting of BTYPE as a BLR
1497 	 * <register containing the signal handler entry point>.
1498 	 * Signal delivery to a location in a PROT_BTI guarded page
1499 	 * that is not a function entry point will now trigger a
1500 	 * SIGILL in userspace.
1501 	 *
1502 	 * If the signal handler entry point is not in a PROT_BTI
1503 	 * guarded page, this is harmless.
1504 	 */
1505 	if (system_supports_bti()) {
1506 		regs->pstate &= ~PSR_BTYPE_MASK;
1507 		regs->pstate |= PSR_BTYPE_C;
1508 	}
1509 
1510 	/* TCO (Tag Check Override) always cleared for signal handlers */
1511 	regs->pstate &= ~PSR_TCO_BIT;
1512 
1513 	/* Signal handlers are invoked with ZA and streaming mode disabled */
1514 	if (system_supports_sme()) {
1515 		/*
1516 		 * If we were in streaming mode the saved register
1517 		 * state was SVE but we will exit SM and use the
1518 		 * FPSIMD register state - flush the saved FPSIMD
1519 		 * register state in case it gets loaded.
1520 		 */
1521 		if (current->thread.svcr & SVCR_SM_MASK) {
1522 			memset(&current->thread.uw.fpsimd_state, 0,
1523 			       sizeof(current->thread.uw.fpsimd_state));
1524 			current->thread.fp_type = FP_STATE_FPSIMD;
1525 		}
1526 
1527 		current->thread.svcr &= ~(SVCR_ZA_MASK |
1528 					  SVCR_SM_MASK);
1529 		sme_smstop();
1530 	}
1531 
1532 	return 0;
1533 }
1534 
1535 static int setup_rt_frame(int usig, struct ksignal *ksig, sigset_t *set,
1536 			  struct pt_regs *regs)
1537 {
1538 	struct rt_sigframe_user_layout user;
1539 	struct rt_sigframe __user *frame;
1540 	struct user_access_state ua_state;
1541 	int err = 0;
1542 
1543 	fpsimd_signal_preserve_current_state();
1544 
1545 	if (get_sigframe(&user, ksig, regs))
1546 		return 1;
1547 
1548 	save_reset_user_access_state(&ua_state);
1549 	frame = user.sigframe;
1550 
1551 	__put_user_error(0, &frame->uc.uc_flags, err);
1552 	__put_user_error(NULL, &frame->uc.uc_link, err);
1553 
1554 	err |= __save_altstack(&frame->uc.uc_stack, regs->sp);
1555 	err |= setup_sigframe(&user, regs, set, &ua_state);
1556 	if (ksig->ka.sa.sa_flags & SA_SIGINFO)
1557 		err |= copy_siginfo_to_user(&frame->info, &ksig->info);
1558 
1559 	if (err == 0)
1560 		err = setup_return(regs, ksig, &user, usig);
1561 
1562 	/*
1563 	 * We must not fail if setup_return() succeeded - see comment at the
1564 	 * beginning of setup_return().
1565 	 */
1566 
1567 	if (err == 0)
1568 		set_handler_user_access_state();
1569 	else
1570 		restore_user_access_state(&ua_state);
1571 
1572 	return err;
1573 }
1574 
1575 static void setup_restart_syscall(struct pt_regs *regs)
1576 {
1577 	if (is_compat_task())
1578 		compat_setup_restart_syscall(regs);
1579 	else
1580 		regs->regs[8] = __NR_restart_syscall;
1581 }
1582 
1583 /*
1584  * OK, we're invoking a handler
1585  */
1586 static void handle_signal(struct ksignal *ksig, struct pt_regs *regs)
1587 {
1588 	sigset_t *oldset = sigmask_to_save();
1589 	int usig = ksig->sig;
1590 	int ret;
1591 
1592 	rseq_signal_deliver(ksig, regs);
1593 
1594 	/*
1595 	 * Set up the stack frame
1596 	 */
1597 	if (is_compat_task()) {
1598 		if (ksig->ka.sa.sa_flags & SA_SIGINFO)
1599 			ret = compat_setup_rt_frame(usig, ksig, oldset, regs);
1600 		else
1601 			ret = compat_setup_frame(usig, ksig, oldset, regs);
1602 	} else {
1603 		ret = setup_rt_frame(usig, ksig, oldset, regs);
1604 	}
1605 
1606 	/*
1607 	 * Check that the resulting registers are actually sane.
1608 	 */
1609 	ret |= !valid_user_regs(&regs->user_regs, current);
1610 
1611 	/* Step into the signal handler if we are stepping */
1612 	signal_setup_done(ret, ksig, test_thread_flag(TIF_SINGLESTEP));
1613 }
1614 
1615 /*
1616  * Note that 'init' is a special process: it doesn't get signals it doesn't
1617  * want to handle. Thus you cannot kill init even with a SIGKILL even by
1618  * mistake.
1619  *
1620  * Note that we go through the signals twice: once to check the signals that
1621  * the kernel can handle, and then we build all the user-level signal handling
1622  * stack-frames in one go after that.
1623  */
1624 void do_signal(struct pt_regs *regs)
1625 {
1626 	unsigned long continue_addr = 0, restart_addr = 0;
1627 	int retval = 0;
1628 	struct ksignal ksig;
1629 	bool syscall = in_syscall(regs);
1630 
1631 	/*
1632 	 * If we were from a system call, check for system call restarting...
1633 	 */
1634 	if (syscall) {
1635 		continue_addr = regs->pc;
1636 		restart_addr = continue_addr - (compat_thumb_mode(regs) ? 2 : 4);
1637 		retval = regs->regs[0];
1638 
1639 		/*
1640 		 * Avoid additional syscall restarting via ret_to_user.
1641 		 */
1642 		forget_syscall(regs);
1643 
1644 		/*
1645 		 * Prepare for system call restart. We do this here so that a
1646 		 * debugger will see the already changed PC.
1647 		 */
1648 		switch (retval) {
1649 		case -ERESTARTNOHAND:
1650 		case -ERESTARTSYS:
1651 		case -ERESTARTNOINTR:
1652 		case -ERESTART_RESTARTBLOCK:
1653 			regs->regs[0] = regs->orig_x0;
1654 			regs->pc = restart_addr;
1655 			break;
1656 		}
1657 	}
1658 
1659 	/*
1660 	 * Get the signal to deliver. When running under ptrace, at this point
1661 	 * the debugger may change all of our registers.
1662 	 */
1663 	if (get_signal(&ksig)) {
1664 		/*
1665 		 * Depending on the signal settings, we may need to revert the
1666 		 * decision to restart the system call, but skip this if a
1667 		 * debugger has chosen to restart at a different PC.
1668 		 */
1669 		if (regs->pc == restart_addr &&
1670 		    (retval == -ERESTARTNOHAND ||
1671 		     retval == -ERESTART_RESTARTBLOCK ||
1672 		     (retval == -ERESTARTSYS &&
1673 		      !(ksig.ka.sa.sa_flags & SA_RESTART)))) {
1674 			syscall_set_return_value(current, regs, -EINTR, 0);
1675 			regs->pc = continue_addr;
1676 		}
1677 
1678 		handle_signal(&ksig, regs);
1679 		return;
1680 	}
1681 
1682 	/*
1683 	 * Handle restarting a different system call. As above, if a debugger
1684 	 * has chosen to restart at a different PC, ignore the restart.
1685 	 */
1686 	if (syscall && regs->pc == restart_addr) {
1687 		if (retval == -ERESTART_RESTARTBLOCK)
1688 			setup_restart_syscall(regs);
1689 		user_rewind_single_step(current);
1690 	}
1691 
1692 	restore_saved_sigmask();
1693 }
1694 
1695 unsigned long __ro_after_init signal_minsigstksz;
1696 
1697 /*
1698  * Determine the stack space required for guaranteed signal devliery.
1699  * This function is used to populate AT_MINSIGSTKSZ at process startup.
1700  * cpufeatures setup is assumed to be complete.
1701  */
1702 void __init minsigstksz_setup(void)
1703 {
1704 	struct rt_sigframe_user_layout user;
1705 
1706 	init_user_layout(&user);
1707 
1708 	/*
1709 	 * If this fails, SIGFRAME_MAXSZ needs to be enlarged.  It won't
1710 	 * be big enough, but it's our best guess:
1711 	 */
1712 	if (WARN_ON(setup_sigframe_layout(&user, true)))
1713 		return;
1714 
1715 	signal_minsigstksz = sigframe_size(&user) +
1716 		round_up(sizeof(struct frame_record), 16) +
1717 		16; /* max alignment padding */
1718 }
1719 
1720 /*
1721  * Compile-time assertions for siginfo_t offsets. Check NSIG* as well, as
1722  * changes likely come with new fields that should be added below.
1723  */
1724 static_assert(NSIGILL	== 11);
1725 static_assert(NSIGFPE	== 15);
1726 static_assert(NSIGSEGV	== 10);
1727 static_assert(NSIGBUS	== 5);
1728 static_assert(NSIGTRAP	== 6);
1729 static_assert(NSIGCHLD	== 6);
1730 static_assert(NSIGSYS	== 2);
1731 static_assert(sizeof(siginfo_t) == 128);
1732 static_assert(__alignof__(siginfo_t) == 8);
1733 static_assert(offsetof(siginfo_t, si_signo)	== 0x00);
1734 static_assert(offsetof(siginfo_t, si_errno)	== 0x04);
1735 static_assert(offsetof(siginfo_t, si_code)	== 0x08);
1736 static_assert(offsetof(siginfo_t, si_pid)	== 0x10);
1737 static_assert(offsetof(siginfo_t, si_uid)	== 0x14);
1738 static_assert(offsetof(siginfo_t, si_tid)	== 0x10);
1739 static_assert(offsetof(siginfo_t, si_overrun)	== 0x14);
1740 static_assert(offsetof(siginfo_t, si_status)	== 0x18);
1741 static_assert(offsetof(siginfo_t, si_utime)	== 0x20);
1742 static_assert(offsetof(siginfo_t, si_stime)	== 0x28);
1743 static_assert(offsetof(siginfo_t, si_value)	== 0x18);
1744 static_assert(offsetof(siginfo_t, si_int)	== 0x18);
1745 static_assert(offsetof(siginfo_t, si_ptr)	== 0x18);
1746 static_assert(offsetof(siginfo_t, si_addr)	== 0x10);
1747 static_assert(offsetof(siginfo_t, si_addr_lsb)	== 0x18);
1748 static_assert(offsetof(siginfo_t, si_lower)	== 0x20);
1749 static_assert(offsetof(siginfo_t, si_upper)	== 0x28);
1750 static_assert(offsetof(siginfo_t, si_pkey)	== 0x20);
1751 static_assert(offsetof(siginfo_t, si_perf_data)	== 0x18);
1752 static_assert(offsetof(siginfo_t, si_perf_type)	== 0x20);
1753 static_assert(offsetof(siginfo_t, si_perf_flags) == 0x24);
1754 static_assert(offsetof(siginfo_t, si_band)	== 0x10);
1755 static_assert(offsetof(siginfo_t, si_fd)	== 0x18);
1756 static_assert(offsetof(siginfo_t, si_call_addr)	== 0x10);
1757 static_assert(offsetof(siginfo_t, si_syscall)	== 0x18);
1758 static_assert(offsetof(siginfo_t, si_arch)	== 0x1c);
1759