xref: /linux/arch/arm64/kernel/signal.c (revision 1623bc27a85a93e82194c8d077eccc464efa67db)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/signal.c
4  *
5  * Copyright (C) 1995-2009 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/cache.h>
10 #include <linux/compat.h>
11 #include <linux/errno.h>
12 #include <linux/kernel.h>
13 #include <linux/signal.h>
14 #include <linux/freezer.h>
15 #include <linux/stddef.h>
16 #include <linux/uaccess.h>
17 #include <linux/sizes.h>
18 #include <linux/string.h>
19 #include <linux/ratelimit.h>
20 #include <linux/rseq.h>
21 #include <linux/syscalls.h>
22 #include <linux/pkeys.h>
23 
24 #include <asm/daifflags.h>
25 #include <asm/debug-monitors.h>
26 #include <asm/elf.h>
27 #include <asm/exception.h>
28 #include <asm/cacheflush.h>
29 #include <asm/gcs.h>
30 #include <asm/ucontext.h>
31 #include <asm/unistd.h>
32 #include <asm/fpsimd.h>
33 #include <asm/ptrace.h>
34 #include <asm/syscall.h>
35 #include <asm/signal32.h>
36 #include <asm/traps.h>
37 #include <asm/vdso.h>
38 
39 #define GCS_SIGNAL_CAP(addr) (((unsigned long)addr) & GCS_CAP_ADDR_MASK)
40 
41 /*
42  * Do a signal return; undo the signal stack. These are aligned to 128-bit.
43  */
44 struct rt_sigframe {
45 	struct siginfo info;
46 	struct ucontext uc;
47 };
48 
49 struct rt_sigframe_user_layout {
50 	struct rt_sigframe __user *sigframe;
51 	struct frame_record __user *next_frame;
52 
53 	unsigned long size;	/* size of allocated sigframe data */
54 	unsigned long limit;	/* largest allowed size */
55 
56 	unsigned long fpsimd_offset;
57 	unsigned long esr_offset;
58 	unsigned long gcs_offset;
59 	unsigned long sve_offset;
60 	unsigned long tpidr2_offset;
61 	unsigned long za_offset;
62 	unsigned long zt_offset;
63 	unsigned long fpmr_offset;
64 	unsigned long poe_offset;
65 	unsigned long extra_offset;
66 	unsigned long end_offset;
67 };
68 
69 /*
70  * Holds any EL0-controlled state that influences unprivileged memory accesses.
71  * This includes both accesses done in userspace and uaccess done in the kernel.
72  *
73  * This state needs to be carefully managed to ensure that it doesn't cause
74  * uaccess to fail when setting up the signal frame, and the signal handler
75  * itself also expects a well-defined state when entered.
76  */
77 struct user_access_state {
78 	u64 por_el0;
79 };
80 
81 #define TERMINATOR_SIZE round_up(sizeof(struct _aarch64_ctx), 16)
82 #define EXTRA_CONTEXT_SIZE round_up(sizeof(struct extra_context), 16)
83 
84 /*
85  * Save the user access state into ua_state and reset it to disable any
86  * restrictions.
87  */
88 static void save_reset_user_access_state(struct user_access_state *ua_state)
89 {
90 	if (system_supports_poe()) {
91 		u64 por_enable_all = 0;
92 
93 		for (int pkey = 0; pkey < arch_max_pkey(); pkey++)
94 			por_enable_all |= POE_RXW << (pkey * POR_BITS_PER_PKEY);
95 
96 		ua_state->por_el0 = read_sysreg_s(SYS_POR_EL0);
97 		write_sysreg_s(por_enable_all, SYS_POR_EL0);
98 		/* Ensure that any subsequent uaccess observes the updated value */
99 		isb();
100 	}
101 }
102 
103 /*
104  * Set the user access state for invoking the signal handler.
105  *
106  * No uaccess should be done after that function is called.
107  */
108 static void set_handler_user_access_state(void)
109 {
110 	if (system_supports_poe())
111 		write_sysreg_s(POR_EL0_INIT, SYS_POR_EL0);
112 }
113 
114 /*
115  * Restore the user access state to the values saved in ua_state.
116  *
117  * No uaccess should be done after that function is called.
118  */
119 static void restore_user_access_state(const struct user_access_state *ua_state)
120 {
121 	if (system_supports_poe())
122 		write_sysreg_s(ua_state->por_el0, SYS_POR_EL0);
123 }
124 
125 static void init_user_layout(struct rt_sigframe_user_layout *user)
126 {
127 	const size_t reserved_size =
128 		sizeof(user->sigframe->uc.uc_mcontext.__reserved);
129 
130 	memset(user, 0, sizeof(*user));
131 	user->size = offsetof(struct rt_sigframe, uc.uc_mcontext.__reserved);
132 
133 	user->limit = user->size + reserved_size;
134 
135 	user->limit -= TERMINATOR_SIZE;
136 	user->limit -= EXTRA_CONTEXT_SIZE;
137 	/* Reserve space for extension and terminator ^ */
138 }
139 
140 static size_t sigframe_size(struct rt_sigframe_user_layout const *user)
141 {
142 	return round_up(max(user->size, sizeof(struct rt_sigframe)), 16);
143 }
144 
145 /*
146  * Sanity limit on the approximate maximum size of signal frame we'll
147  * try to generate.  Stack alignment padding and the frame record are
148  * not taken into account.  This limit is not a guarantee and is
149  * NOT ABI.
150  */
151 #define SIGFRAME_MAXSZ SZ_256K
152 
153 static int __sigframe_alloc(struct rt_sigframe_user_layout *user,
154 			    unsigned long *offset, size_t size, bool extend)
155 {
156 	size_t padded_size = round_up(size, 16);
157 
158 	if (padded_size > user->limit - user->size &&
159 	    !user->extra_offset &&
160 	    extend) {
161 		int ret;
162 
163 		user->limit += EXTRA_CONTEXT_SIZE;
164 		ret = __sigframe_alloc(user, &user->extra_offset,
165 				       sizeof(struct extra_context), false);
166 		if (ret) {
167 			user->limit -= EXTRA_CONTEXT_SIZE;
168 			return ret;
169 		}
170 
171 		/* Reserve space for the __reserved[] terminator */
172 		user->size += TERMINATOR_SIZE;
173 
174 		/*
175 		 * Allow expansion up to SIGFRAME_MAXSZ, ensuring space for
176 		 * the terminator:
177 		 */
178 		user->limit = SIGFRAME_MAXSZ - TERMINATOR_SIZE;
179 	}
180 
181 	/* Still not enough space?  Bad luck! */
182 	if (padded_size > user->limit - user->size)
183 		return -ENOMEM;
184 
185 	*offset = user->size;
186 	user->size += padded_size;
187 
188 	return 0;
189 }
190 
191 /*
192  * Allocate space for an optional record of <size> bytes in the user
193  * signal frame.  The offset from the signal frame base address to the
194  * allocated block is assigned to *offset.
195  */
196 static int sigframe_alloc(struct rt_sigframe_user_layout *user,
197 			  unsigned long *offset, size_t size)
198 {
199 	return __sigframe_alloc(user, offset, size, true);
200 }
201 
202 /* Allocate the null terminator record and prevent further allocations */
203 static int sigframe_alloc_end(struct rt_sigframe_user_layout *user)
204 {
205 	int ret;
206 
207 	/* Un-reserve the space reserved for the terminator: */
208 	user->limit += TERMINATOR_SIZE;
209 
210 	ret = sigframe_alloc(user, &user->end_offset,
211 			     sizeof(struct _aarch64_ctx));
212 	if (ret)
213 		return ret;
214 
215 	/* Prevent further allocation: */
216 	user->limit = user->size;
217 	return 0;
218 }
219 
220 static void __user *apply_user_offset(
221 	struct rt_sigframe_user_layout const *user, unsigned long offset)
222 {
223 	char __user *base = (char __user *)user->sigframe;
224 
225 	return base + offset;
226 }
227 
228 struct user_ctxs {
229 	struct fpsimd_context __user *fpsimd;
230 	u32 fpsimd_size;
231 	struct sve_context __user *sve;
232 	u32 sve_size;
233 	struct tpidr2_context __user *tpidr2;
234 	u32 tpidr2_size;
235 	struct za_context __user *za;
236 	u32 za_size;
237 	struct zt_context __user *zt;
238 	u32 zt_size;
239 	struct fpmr_context __user *fpmr;
240 	u32 fpmr_size;
241 	struct poe_context __user *poe;
242 	u32 poe_size;
243 	struct gcs_context __user *gcs;
244 	u32 gcs_size;
245 };
246 
247 static int preserve_fpsimd_context(struct fpsimd_context __user *ctx)
248 {
249 	struct user_fpsimd_state const *fpsimd =
250 		&current->thread.uw.fpsimd_state;
251 	int err;
252 
253 	/* copy the FP and status/control registers */
254 	err = __copy_to_user(ctx->vregs, fpsimd->vregs, sizeof(fpsimd->vregs));
255 	__put_user_error(fpsimd->fpsr, &ctx->fpsr, err);
256 	__put_user_error(fpsimd->fpcr, &ctx->fpcr, err);
257 
258 	/* copy the magic/size information */
259 	__put_user_error(FPSIMD_MAGIC, &ctx->head.magic, err);
260 	__put_user_error(sizeof(struct fpsimd_context), &ctx->head.size, err);
261 
262 	return err ? -EFAULT : 0;
263 }
264 
265 static int restore_fpsimd_context(struct user_ctxs *user)
266 {
267 	struct user_fpsimd_state fpsimd;
268 	int err = 0;
269 
270 	/* check the size information */
271 	if (user->fpsimd_size != sizeof(struct fpsimd_context))
272 		return -EINVAL;
273 
274 	/* copy the FP and status/control registers */
275 	err = __copy_from_user(fpsimd.vregs, &(user->fpsimd->vregs),
276 			       sizeof(fpsimd.vregs));
277 	__get_user_error(fpsimd.fpsr, &(user->fpsimd->fpsr), err);
278 	__get_user_error(fpsimd.fpcr, &(user->fpsimd->fpcr), err);
279 
280 	clear_thread_flag(TIF_SVE);
281 	current->thread.fp_type = FP_STATE_FPSIMD;
282 
283 	/* load the hardware registers from the fpsimd_state structure */
284 	if (!err)
285 		fpsimd_update_current_state(&fpsimd);
286 
287 	return err ? -EFAULT : 0;
288 }
289 
290 static int preserve_fpmr_context(struct fpmr_context __user *ctx)
291 {
292 	int err = 0;
293 
294 	current->thread.uw.fpmr = read_sysreg_s(SYS_FPMR);
295 
296 	__put_user_error(FPMR_MAGIC, &ctx->head.magic, err);
297 	__put_user_error(sizeof(*ctx), &ctx->head.size, err);
298 	__put_user_error(current->thread.uw.fpmr, &ctx->fpmr, err);
299 
300 	return err;
301 }
302 
303 static int restore_fpmr_context(struct user_ctxs *user)
304 {
305 	u64 fpmr;
306 	int err = 0;
307 
308 	if (user->fpmr_size != sizeof(*user->fpmr))
309 		return -EINVAL;
310 
311 	__get_user_error(fpmr, &user->fpmr->fpmr, err);
312 	if (!err)
313 		write_sysreg_s(fpmr, SYS_FPMR);
314 
315 	return err;
316 }
317 
318 static int preserve_poe_context(struct poe_context __user *ctx,
319 				const struct user_access_state *ua_state)
320 {
321 	int err = 0;
322 
323 	__put_user_error(POE_MAGIC, &ctx->head.magic, err);
324 	__put_user_error(sizeof(*ctx), &ctx->head.size, err);
325 	__put_user_error(ua_state->por_el0, &ctx->por_el0, err);
326 
327 	return err;
328 }
329 
330 static int restore_poe_context(struct user_ctxs *user,
331 			       struct user_access_state *ua_state)
332 {
333 	u64 por_el0;
334 	int err = 0;
335 
336 	if (user->poe_size != sizeof(*user->poe))
337 		return -EINVAL;
338 
339 	__get_user_error(por_el0, &(user->poe->por_el0), err);
340 	if (!err)
341 		ua_state->por_el0 = por_el0;
342 
343 	return err;
344 }
345 
346 #ifdef CONFIG_ARM64_SVE
347 
348 static int preserve_sve_context(struct sve_context __user *ctx)
349 {
350 	int err = 0;
351 	u16 reserved[ARRAY_SIZE(ctx->__reserved)];
352 	u16 flags = 0;
353 	unsigned int vl = task_get_sve_vl(current);
354 	unsigned int vq = 0;
355 
356 	if (thread_sm_enabled(&current->thread)) {
357 		vl = task_get_sme_vl(current);
358 		vq = sve_vq_from_vl(vl);
359 		flags |= SVE_SIG_FLAG_SM;
360 	} else if (current->thread.fp_type == FP_STATE_SVE) {
361 		vq = sve_vq_from_vl(vl);
362 	}
363 
364 	memset(reserved, 0, sizeof(reserved));
365 
366 	__put_user_error(SVE_MAGIC, &ctx->head.magic, err);
367 	__put_user_error(round_up(SVE_SIG_CONTEXT_SIZE(vq), 16),
368 			 &ctx->head.size, err);
369 	__put_user_error(vl, &ctx->vl, err);
370 	__put_user_error(flags, &ctx->flags, err);
371 	BUILD_BUG_ON(sizeof(ctx->__reserved) != sizeof(reserved));
372 	err |= __copy_to_user(&ctx->__reserved, reserved, sizeof(reserved));
373 
374 	if (vq) {
375 		/*
376 		 * This assumes that the SVE state has already been saved to
377 		 * the task struct by calling the function
378 		 * fpsimd_signal_preserve_current_state().
379 		 */
380 		err |= __copy_to_user((char __user *)ctx + SVE_SIG_REGS_OFFSET,
381 				      current->thread.sve_state,
382 				      SVE_SIG_REGS_SIZE(vq));
383 	}
384 
385 	return err ? -EFAULT : 0;
386 }
387 
388 static int restore_sve_fpsimd_context(struct user_ctxs *user)
389 {
390 	int err = 0;
391 	unsigned int vl, vq;
392 	struct user_fpsimd_state fpsimd;
393 	u16 user_vl, flags;
394 
395 	if (user->sve_size < sizeof(*user->sve))
396 		return -EINVAL;
397 
398 	__get_user_error(user_vl, &(user->sve->vl), err);
399 	__get_user_error(flags, &(user->sve->flags), err);
400 	if (err)
401 		return err;
402 
403 	if (flags & SVE_SIG_FLAG_SM) {
404 		if (!system_supports_sme())
405 			return -EINVAL;
406 
407 		vl = task_get_sme_vl(current);
408 	} else {
409 		/*
410 		 * A SME only system use SVE for streaming mode so can
411 		 * have a SVE formatted context with a zero VL and no
412 		 * payload data.
413 		 */
414 		if (!system_supports_sve() && !system_supports_sme())
415 			return -EINVAL;
416 
417 		vl = task_get_sve_vl(current);
418 	}
419 
420 	if (user_vl != vl)
421 		return -EINVAL;
422 
423 	if (user->sve_size == sizeof(*user->sve)) {
424 		clear_thread_flag(TIF_SVE);
425 		current->thread.svcr &= ~SVCR_SM_MASK;
426 		current->thread.fp_type = FP_STATE_FPSIMD;
427 		goto fpsimd_only;
428 	}
429 
430 	vq = sve_vq_from_vl(vl);
431 
432 	if (user->sve_size < SVE_SIG_CONTEXT_SIZE(vq))
433 		return -EINVAL;
434 
435 	/*
436 	 * Careful: we are about __copy_from_user() directly into
437 	 * thread.sve_state with preemption enabled, so protection is
438 	 * needed to prevent a racing context switch from writing stale
439 	 * registers back over the new data.
440 	 */
441 
442 	fpsimd_flush_task_state(current);
443 	/* From now, fpsimd_thread_switch() won't touch thread.sve_state */
444 
445 	sve_alloc(current, true);
446 	if (!current->thread.sve_state) {
447 		clear_thread_flag(TIF_SVE);
448 		return -ENOMEM;
449 	}
450 
451 	err = __copy_from_user(current->thread.sve_state,
452 			       (char __user const *)user->sve +
453 					SVE_SIG_REGS_OFFSET,
454 			       SVE_SIG_REGS_SIZE(vq));
455 	if (err)
456 		return -EFAULT;
457 
458 	if (flags & SVE_SIG_FLAG_SM)
459 		current->thread.svcr |= SVCR_SM_MASK;
460 	else
461 		set_thread_flag(TIF_SVE);
462 	current->thread.fp_type = FP_STATE_SVE;
463 
464 fpsimd_only:
465 	/* copy the FP and status/control registers */
466 	/* restore_sigframe() already checked that user->fpsimd != NULL. */
467 	err = __copy_from_user(fpsimd.vregs, user->fpsimd->vregs,
468 			       sizeof(fpsimd.vregs));
469 	__get_user_error(fpsimd.fpsr, &user->fpsimd->fpsr, err);
470 	__get_user_error(fpsimd.fpcr, &user->fpsimd->fpcr, err);
471 
472 	/* load the hardware registers from the fpsimd_state structure */
473 	if (!err)
474 		fpsimd_update_current_state(&fpsimd);
475 
476 	return err ? -EFAULT : 0;
477 }
478 
479 #else /* ! CONFIG_ARM64_SVE */
480 
481 static int restore_sve_fpsimd_context(struct user_ctxs *user)
482 {
483 	WARN_ON_ONCE(1);
484 	return -EINVAL;
485 }
486 
487 /* Turn any non-optimised out attempts to use this into a link error: */
488 extern int preserve_sve_context(void __user *ctx);
489 
490 #endif /* ! CONFIG_ARM64_SVE */
491 
492 #ifdef CONFIG_ARM64_SME
493 
494 static int preserve_tpidr2_context(struct tpidr2_context __user *ctx)
495 {
496 	int err = 0;
497 
498 	current->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
499 
500 	__put_user_error(TPIDR2_MAGIC, &ctx->head.magic, err);
501 	__put_user_error(sizeof(*ctx), &ctx->head.size, err);
502 	__put_user_error(current->thread.tpidr2_el0, &ctx->tpidr2, err);
503 
504 	return err;
505 }
506 
507 static int restore_tpidr2_context(struct user_ctxs *user)
508 {
509 	u64 tpidr2_el0;
510 	int err = 0;
511 
512 	if (user->tpidr2_size != sizeof(*user->tpidr2))
513 		return -EINVAL;
514 
515 	__get_user_error(tpidr2_el0, &user->tpidr2->tpidr2, err);
516 	if (!err)
517 		write_sysreg_s(tpidr2_el0, SYS_TPIDR2_EL0);
518 
519 	return err;
520 }
521 
522 static int preserve_za_context(struct za_context __user *ctx)
523 {
524 	int err = 0;
525 	u16 reserved[ARRAY_SIZE(ctx->__reserved)];
526 	unsigned int vl = task_get_sme_vl(current);
527 	unsigned int vq;
528 
529 	if (thread_za_enabled(&current->thread))
530 		vq = sve_vq_from_vl(vl);
531 	else
532 		vq = 0;
533 
534 	memset(reserved, 0, sizeof(reserved));
535 
536 	__put_user_error(ZA_MAGIC, &ctx->head.magic, err);
537 	__put_user_error(round_up(ZA_SIG_CONTEXT_SIZE(vq), 16),
538 			 &ctx->head.size, err);
539 	__put_user_error(vl, &ctx->vl, err);
540 	BUILD_BUG_ON(sizeof(ctx->__reserved) != sizeof(reserved));
541 	err |= __copy_to_user(&ctx->__reserved, reserved, sizeof(reserved));
542 
543 	if (vq) {
544 		/*
545 		 * This assumes that the ZA state has already been saved to
546 		 * the task struct by calling the function
547 		 * fpsimd_signal_preserve_current_state().
548 		 */
549 		err |= __copy_to_user((char __user *)ctx + ZA_SIG_REGS_OFFSET,
550 				      current->thread.sme_state,
551 				      ZA_SIG_REGS_SIZE(vq));
552 	}
553 
554 	return err ? -EFAULT : 0;
555 }
556 
557 static int restore_za_context(struct user_ctxs *user)
558 {
559 	int err = 0;
560 	unsigned int vq;
561 	u16 user_vl;
562 
563 	if (user->za_size < sizeof(*user->za))
564 		return -EINVAL;
565 
566 	__get_user_error(user_vl, &(user->za->vl), err);
567 	if (err)
568 		return err;
569 
570 	if (user_vl != task_get_sme_vl(current))
571 		return -EINVAL;
572 
573 	if (user->za_size == sizeof(*user->za)) {
574 		current->thread.svcr &= ~SVCR_ZA_MASK;
575 		return 0;
576 	}
577 
578 	vq = sve_vq_from_vl(user_vl);
579 
580 	if (user->za_size < ZA_SIG_CONTEXT_SIZE(vq))
581 		return -EINVAL;
582 
583 	/*
584 	 * Careful: we are about __copy_from_user() directly into
585 	 * thread.sme_state with preemption enabled, so protection is
586 	 * needed to prevent a racing context switch from writing stale
587 	 * registers back over the new data.
588 	 */
589 
590 	fpsimd_flush_task_state(current);
591 	/* From now, fpsimd_thread_switch() won't touch thread.sve_state */
592 
593 	sme_alloc(current, true);
594 	if (!current->thread.sme_state) {
595 		current->thread.svcr &= ~SVCR_ZA_MASK;
596 		clear_thread_flag(TIF_SME);
597 		return -ENOMEM;
598 	}
599 
600 	err = __copy_from_user(current->thread.sme_state,
601 			       (char __user const *)user->za +
602 					ZA_SIG_REGS_OFFSET,
603 			       ZA_SIG_REGS_SIZE(vq));
604 	if (err)
605 		return -EFAULT;
606 
607 	set_thread_flag(TIF_SME);
608 	current->thread.svcr |= SVCR_ZA_MASK;
609 
610 	return 0;
611 }
612 
613 static int preserve_zt_context(struct zt_context __user *ctx)
614 {
615 	int err = 0;
616 	u16 reserved[ARRAY_SIZE(ctx->__reserved)];
617 
618 	if (WARN_ON(!thread_za_enabled(&current->thread)))
619 		return -EINVAL;
620 
621 	memset(reserved, 0, sizeof(reserved));
622 
623 	__put_user_error(ZT_MAGIC, &ctx->head.magic, err);
624 	__put_user_error(round_up(ZT_SIG_CONTEXT_SIZE(1), 16),
625 			 &ctx->head.size, err);
626 	__put_user_error(1, &ctx->nregs, err);
627 	BUILD_BUG_ON(sizeof(ctx->__reserved) != sizeof(reserved));
628 	err |= __copy_to_user(&ctx->__reserved, reserved, sizeof(reserved));
629 
630 	/*
631 	 * This assumes that the ZT state has already been saved to
632 	 * the task struct by calling the function
633 	 * fpsimd_signal_preserve_current_state().
634 	 */
635 	err |= __copy_to_user((char __user *)ctx + ZT_SIG_REGS_OFFSET,
636 			      thread_zt_state(&current->thread),
637 			      ZT_SIG_REGS_SIZE(1));
638 
639 	return err ? -EFAULT : 0;
640 }
641 
642 static int restore_zt_context(struct user_ctxs *user)
643 {
644 	int err;
645 	u16 nregs;
646 
647 	/* ZA must be restored first for this check to be valid */
648 	if (!thread_za_enabled(&current->thread))
649 		return -EINVAL;
650 
651 	if (user->zt_size != ZT_SIG_CONTEXT_SIZE(1))
652 		return -EINVAL;
653 
654 	if (__copy_from_user(&nregs, &(user->zt->nregs), sizeof(nregs)))
655 		return -EFAULT;
656 
657 	if (nregs != 1)
658 		return -EINVAL;
659 
660 	/*
661 	 * Careful: we are about __copy_from_user() directly into
662 	 * thread.zt_state with preemption enabled, so protection is
663 	 * needed to prevent a racing context switch from writing stale
664 	 * registers back over the new data.
665 	 */
666 
667 	fpsimd_flush_task_state(current);
668 	/* From now, fpsimd_thread_switch() won't touch ZT in thread state */
669 
670 	err = __copy_from_user(thread_zt_state(&current->thread),
671 			       (char __user const *)user->zt +
672 					ZT_SIG_REGS_OFFSET,
673 			       ZT_SIG_REGS_SIZE(1));
674 	if (err)
675 		return -EFAULT;
676 
677 	return 0;
678 }
679 
680 #else /* ! CONFIG_ARM64_SME */
681 
682 /* Turn any non-optimised out attempts to use these into a link error: */
683 extern int preserve_tpidr2_context(void __user *ctx);
684 extern int restore_tpidr2_context(struct user_ctxs *user);
685 extern int preserve_za_context(void __user *ctx);
686 extern int restore_za_context(struct user_ctxs *user);
687 extern int preserve_zt_context(void __user *ctx);
688 extern int restore_zt_context(struct user_ctxs *user);
689 
690 #endif /* ! CONFIG_ARM64_SME */
691 
692 #ifdef CONFIG_ARM64_GCS
693 
694 static int preserve_gcs_context(struct gcs_context __user *ctx)
695 {
696 	int err = 0;
697 	u64 gcspr = read_sysreg_s(SYS_GCSPR_EL0);
698 
699 	/*
700 	 * If GCS is enabled we will add a cap token to the frame,
701 	 * include it in the GCSPR_EL0 we report to support stack
702 	 * switching via sigreturn if GCS is enabled.  We do not allow
703 	 * enabling via sigreturn so the token is only relevant for
704 	 * threads with GCS enabled.
705 	 */
706 	if (task_gcs_el0_enabled(current))
707 		gcspr -= 8;
708 
709 	__put_user_error(GCS_MAGIC, &ctx->head.magic, err);
710 	__put_user_error(sizeof(*ctx), &ctx->head.size, err);
711 	__put_user_error(gcspr, &ctx->gcspr, err);
712 	__put_user_error(0, &ctx->reserved, err);
713 	__put_user_error(current->thread.gcs_el0_mode,
714 			 &ctx->features_enabled, err);
715 
716 	return err;
717 }
718 
719 static int restore_gcs_context(struct user_ctxs *user)
720 {
721 	u64 gcspr, enabled;
722 	int err = 0;
723 
724 	if (user->gcs_size != sizeof(*user->gcs))
725 		return -EINVAL;
726 
727 	__get_user_error(gcspr, &user->gcs->gcspr, err);
728 	__get_user_error(enabled, &user->gcs->features_enabled, err);
729 	if (err)
730 		return err;
731 
732 	/* Don't allow unknown modes */
733 	if (enabled & ~PR_SHADOW_STACK_SUPPORTED_STATUS_MASK)
734 		return -EINVAL;
735 
736 	err = gcs_check_locked(current, enabled);
737 	if (err != 0)
738 		return err;
739 
740 	/* Don't allow enabling */
741 	if (!task_gcs_el0_enabled(current) &&
742 	    (enabled & PR_SHADOW_STACK_ENABLE))
743 		return -EINVAL;
744 
745 	/* If we are disabling disable everything */
746 	if (!(enabled & PR_SHADOW_STACK_ENABLE))
747 		enabled = 0;
748 
749 	current->thread.gcs_el0_mode = enabled;
750 
751 	/*
752 	 * We let userspace set GCSPR_EL0 to anything here, we will
753 	 * validate later in gcs_restore_signal().
754 	 */
755 	write_sysreg_s(gcspr, SYS_GCSPR_EL0);
756 
757 	return 0;
758 }
759 
760 #else /* ! CONFIG_ARM64_GCS */
761 
762 /* Turn any non-optimised out attempts to use these into a link error: */
763 extern int preserve_gcs_context(void __user *ctx);
764 extern int restore_gcs_context(struct user_ctxs *user);
765 
766 #endif /* ! CONFIG_ARM64_GCS */
767 
768 static int parse_user_sigframe(struct user_ctxs *user,
769 			       struct rt_sigframe __user *sf)
770 {
771 	struct sigcontext __user *const sc = &sf->uc.uc_mcontext;
772 	struct _aarch64_ctx __user *head;
773 	char __user *base = (char __user *)&sc->__reserved;
774 	size_t offset = 0;
775 	size_t limit = sizeof(sc->__reserved);
776 	bool have_extra_context = false;
777 	char const __user *const sfp = (char const __user *)sf;
778 
779 	user->fpsimd = NULL;
780 	user->sve = NULL;
781 	user->tpidr2 = NULL;
782 	user->za = NULL;
783 	user->zt = NULL;
784 	user->fpmr = NULL;
785 	user->poe = NULL;
786 	user->gcs = NULL;
787 
788 	if (!IS_ALIGNED((unsigned long)base, 16))
789 		goto invalid;
790 
791 	while (1) {
792 		int err = 0;
793 		u32 magic, size;
794 		char const __user *userp;
795 		struct extra_context const __user *extra;
796 		u64 extra_datap;
797 		u32 extra_size;
798 		struct _aarch64_ctx const __user *end;
799 		u32 end_magic, end_size;
800 
801 		if (limit - offset < sizeof(*head))
802 			goto invalid;
803 
804 		if (!IS_ALIGNED(offset, 16))
805 			goto invalid;
806 
807 		head = (struct _aarch64_ctx __user *)(base + offset);
808 		__get_user_error(magic, &head->magic, err);
809 		__get_user_error(size, &head->size, err);
810 		if (err)
811 			return err;
812 
813 		if (limit - offset < size)
814 			goto invalid;
815 
816 		switch (magic) {
817 		case 0:
818 			if (size)
819 				goto invalid;
820 
821 			goto done;
822 
823 		case FPSIMD_MAGIC:
824 			if (!system_supports_fpsimd())
825 				goto invalid;
826 			if (user->fpsimd)
827 				goto invalid;
828 
829 			user->fpsimd = (struct fpsimd_context __user *)head;
830 			user->fpsimd_size = size;
831 			break;
832 
833 		case ESR_MAGIC:
834 			/* ignore */
835 			break;
836 
837 		case POE_MAGIC:
838 			if (!system_supports_poe())
839 				goto invalid;
840 
841 			if (user->poe)
842 				goto invalid;
843 
844 			user->poe = (struct poe_context __user *)head;
845 			user->poe_size = size;
846 			break;
847 
848 		case SVE_MAGIC:
849 			if (!system_supports_sve() && !system_supports_sme())
850 				goto invalid;
851 
852 			if (user->sve)
853 				goto invalid;
854 
855 			user->sve = (struct sve_context __user *)head;
856 			user->sve_size = size;
857 			break;
858 
859 		case TPIDR2_MAGIC:
860 			if (!system_supports_tpidr2())
861 				goto invalid;
862 
863 			if (user->tpidr2)
864 				goto invalid;
865 
866 			user->tpidr2 = (struct tpidr2_context __user *)head;
867 			user->tpidr2_size = size;
868 			break;
869 
870 		case ZA_MAGIC:
871 			if (!system_supports_sme())
872 				goto invalid;
873 
874 			if (user->za)
875 				goto invalid;
876 
877 			user->za = (struct za_context __user *)head;
878 			user->za_size = size;
879 			break;
880 
881 		case ZT_MAGIC:
882 			if (!system_supports_sme2())
883 				goto invalid;
884 
885 			if (user->zt)
886 				goto invalid;
887 
888 			user->zt = (struct zt_context __user *)head;
889 			user->zt_size = size;
890 			break;
891 
892 		case FPMR_MAGIC:
893 			if (!system_supports_fpmr())
894 				goto invalid;
895 
896 			if (user->fpmr)
897 				goto invalid;
898 
899 			user->fpmr = (struct fpmr_context __user *)head;
900 			user->fpmr_size = size;
901 			break;
902 
903 		case GCS_MAGIC:
904 			if (!system_supports_gcs())
905 				goto invalid;
906 
907 			if (user->gcs)
908 				goto invalid;
909 
910 			user->gcs = (struct gcs_context __user *)head;
911 			user->gcs_size = size;
912 			break;
913 
914 		case EXTRA_MAGIC:
915 			if (have_extra_context)
916 				goto invalid;
917 
918 			if (size < sizeof(*extra))
919 				goto invalid;
920 
921 			userp = (char const __user *)head;
922 
923 			extra = (struct extra_context const __user *)userp;
924 			userp += size;
925 
926 			__get_user_error(extra_datap, &extra->datap, err);
927 			__get_user_error(extra_size, &extra->size, err);
928 			if (err)
929 				return err;
930 
931 			/* Check for the dummy terminator in __reserved[]: */
932 
933 			if (limit - offset - size < TERMINATOR_SIZE)
934 				goto invalid;
935 
936 			end = (struct _aarch64_ctx const __user *)userp;
937 			userp += TERMINATOR_SIZE;
938 
939 			__get_user_error(end_magic, &end->magic, err);
940 			__get_user_error(end_size, &end->size, err);
941 			if (err)
942 				return err;
943 
944 			if (end_magic || end_size)
945 				goto invalid;
946 
947 			/* Prevent looping/repeated parsing of extra_context */
948 			have_extra_context = true;
949 
950 			base = (__force void __user *)extra_datap;
951 			if (!IS_ALIGNED((unsigned long)base, 16))
952 				goto invalid;
953 
954 			if (!IS_ALIGNED(extra_size, 16))
955 				goto invalid;
956 
957 			if (base != userp)
958 				goto invalid;
959 
960 			/* Reject "unreasonably large" frames: */
961 			if (extra_size > sfp + SIGFRAME_MAXSZ - userp)
962 				goto invalid;
963 
964 			/*
965 			 * Ignore trailing terminator in __reserved[]
966 			 * and start parsing extra data:
967 			 */
968 			offset = 0;
969 			limit = extra_size;
970 
971 			if (!access_ok(base, limit))
972 				goto invalid;
973 
974 			continue;
975 
976 		default:
977 			goto invalid;
978 		}
979 
980 		if (size < sizeof(*head))
981 			goto invalid;
982 
983 		if (limit - offset < size)
984 			goto invalid;
985 
986 		offset += size;
987 	}
988 
989 done:
990 	return 0;
991 
992 invalid:
993 	return -EINVAL;
994 }
995 
996 static int restore_sigframe(struct pt_regs *regs,
997 			    struct rt_sigframe __user *sf,
998 			    struct user_access_state *ua_state)
999 {
1000 	sigset_t set;
1001 	int i, err;
1002 	struct user_ctxs user;
1003 
1004 	err = __copy_from_user(&set, &sf->uc.uc_sigmask, sizeof(set));
1005 	if (err == 0)
1006 		set_current_blocked(&set);
1007 
1008 	for (i = 0; i < 31; i++)
1009 		__get_user_error(regs->regs[i], &sf->uc.uc_mcontext.regs[i],
1010 				 err);
1011 	__get_user_error(regs->sp, &sf->uc.uc_mcontext.sp, err);
1012 	__get_user_error(regs->pc, &sf->uc.uc_mcontext.pc, err);
1013 	__get_user_error(regs->pstate, &sf->uc.uc_mcontext.pstate, err);
1014 
1015 	/*
1016 	 * Avoid sys_rt_sigreturn() restarting.
1017 	 */
1018 	forget_syscall(regs);
1019 
1020 	err |= !valid_user_regs(&regs->user_regs, current);
1021 	if (err == 0)
1022 		err = parse_user_sigframe(&user, sf);
1023 
1024 	if (err == 0 && system_supports_fpsimd()) {
1025 		if (!user.fpsimd)
1026 			return -EINVAL;
1027 
1028 		if (user.sve)
1029 			err = restore_sve_fpsimd_context(&user);
1030 		else
1031 			err = restore_fpsimd_context(&user);
1032 	}
1033 
1034 	if (err == 0 && system_supports_gcs() && user.gcs)
1035 		err = restore_gcs_context(&user);
1036 
1037 	if (err == 0 && system_supports_tpidr2() && user.tpidr2)
1038 		err = restore_tpidr2_context(&user);
1039 
1040 	if (err == 0 && system_supports_fpmr() && user.fpmr)
1041 		err = restore_fpmr_context(&user);
1042 
1043 	if (err == 0 && system_supports_sme() && user.za)
1044 		err = restore_za_context(&user);
1045 
1046 	if (err == 0 && system_supports_sme2() && user.zt)
1047 		err = restore_zt_context(&user);
1048 
1049 	if (err == 0 && system_supports_poe() && user.poe)
1050 		err = restore_poe_context(&user, ua_state);
1051 
1052 	return err;
1053 }
1054 
1055 #ifdef CONFIG_ARM64_GCS
1056 static int gcs_restore_signal(void)
1057 {
1058 	u64 gcspr_el0, cap;
1059 	int ret;
1060 
1061 	if (!system_supports_gcs())
1062 		return 0;
1063 
1064 	if (!(current->thread.gcs_el0_mode & PR_SHADOW_STACK_ENABLE))
1065 		return 0;
1066 
1067 	gcspr_el0 = read_sysreg_s(SYS_GCSPR_EL0);
1068 
1069 	/*
1070 	 * Ensure that any changes to the GCS done via GCS operations
1071 	 * are visible to the normal reads we do to validate the
1072 	 * token.
1073 	 */
1074 	gcsb_dsync();
1075 
1076 	/*
1077 	 * GCSPR_EL0 should be pointing at a capped GCS, read the cap.
1078 	 * We don't enforce that this is in a GCS page, if it is not
1079 	 * then faults will be generated on GCS operations - the main
1080 	 * concern is to protect GCS pages.
1081 	 */
1082 	ret = copy_from_user(&cap, (unsigned long __user *)gcspr_el0,
1083 			     sizeof(cap));
1084 	if (ret)
1085 		return -EFAULT;
1086 
1087 	/*
1088 	 * Check that the cap is the actual GCS before replacing it.
1089 	 */
1090 	if (cap != GCS_SIGNAL_CAP(gcspr_el0))
1091 		return -EINVAL;
1092 
1093 	/* Invalidate the token to prevent reuse */
1094 	put_user_gcs(0, (unsigned long __user *)gcspr_el0, &ret);
1095 	if (ret != 0)
1096 		return -EFAULT;
1097 
1098 	write_sysreg_s(gcspr_el0 + 8, SYS_GCSPR_EL0);
1099 
1100 	return 0;
1101 }
1102 
1103 #else
1104 static int gcs_restore_signal(void) { return 0; }
1105 #endif
1106 
1107 SYSCALL_DEFINE0(rt_sigreturn)
1108 {
1109 	struct pt_regs *regs = current_pt_regs();
1110 	struct rt_sigframe __user *frame;
1111 	struct user_access_state ua_state;
1112 
1113 	/* Always make any pending restarted system calls return -EINTR */
1114 	current->restart_block.fn = do_no_restart_syscall;
1115 
1116 	/*
1117 	 * Since we stacked the signal on a 128-bit boundary, then 'sp' should
1118 	 * be word aligned here.
1119 	 */
1120 	if (regs->sp & 15)
1121 		goto badframe;
1122 
1123 	frame = (struct rt_sigframe __user *)regs->sp;
1124 
1125 	if (!access_ok(frame, sizeof (*frame)))
1126 		goto badframe;
1127 
1128 	if (restore_sigframe(regs, frame, &ua_state))
1129 		goto badframe;
1130 
1131 	if (gcs_restore_signal())
1132 		goto badframe;
1133 
1134 	if (restore_altstack(&frame->uc.uc_stack))
1135 		goto badframe;
1136 
1137 	restore_user_access_state(&ua_state);
1138 
1139 	return regs->regs[0];
1140 
1141 badframe:
1142 	arm64_notify_segfault(regs->sp);
1143 	return 0;
1144 }
1145 
1146 /*
1147  * Determine the layout of optional records in the signal frame
1148  *
1149  * add_all: if true, lays out the biggest possible signal frame for
1150  *	this task; otherwise, generates a layout for the current state
1151  *	of the task.
1152  */
1153 static int setup_sigframe_layout(struct rt_sigframe_user_layout *user,
1154 				 bool add_all)
1155 {
1156 	int err;
1157 
1158 	if (system_supports_fpsimd()) {
1159 		err = sigframe_alloc(user, &user->fpsimd_offset,
1160 				     sizeof(struct fpsimd_context));
1161 		if (err)
1162 			return err;
1163 	}
1164 
1165 	/* fault information, if valid */
1166 	if (add_all || current->thread.fault_code) {
1167 		err = sigframe_alloc(user, &user->esr_offset,
1168 				     sizeof(struct esr_context));
1169 		if (err)
1170 			return err;
1171 	}
1172 
1173 #ifdef CONFIG_ARM64_GCS
1174 	if (system_supports_gcs() && (add_all || current->thread.gcspr_el0)) {
1175 		err = sigframe_alloc(user, &user->gcs_offset,
1176 				     sizeof(struct gcs_context));
1177 		if (err)
1178 			return err;
1179 	}
1180 #endif
1181 
1182 	if (system_supports_sve() || system_supports_sme()) {
1183 		unsigned int vq = 0;
1184 
1185 		if (add_all || current->thread.fp_type == FP_STATE_SVE ||
1186 		    thread_sm_enabled(&current->thread)) {
1187 			int vl = max(sve_max_vl(), sme_max_vl());
1188 
1189 			if (!add_all)
1190 				vl = thread_get_cur_vl(&current->thread);
1191 
1192 			vq = sve_vq_from_vl(vl);
1193 		}
1194 
1195 		err = sigframe_alloc(user, &user->sve_offset,
1196 				     SVE_SIG_CONTEXT_SIZE(vq));
1197 		if (err)
1198 			return err;
1199 	}
1200 
1201 	if (system_supports_tpidr2()) {
1202 		err = sigframe_alloc(user, &user->tpidr2_offset,
1203 				     sizeof(struct tpidr2_context));
1204 		if (err)
1205 			return err;
1206 	}
1207 
1208 	if (system_supports_sme()) {
1209 		unsigned int vl;
1210 		unsigned int vq = 0;
1211 
1212 		if (add_all)
1213 			vl = sme_max_vl();
1214 		else
1215 			vl = task_get_sme_vl(current);
1216 
1217 		if (thread_za_enabled(&current->thread))
1218 			vq = sve_vq_from_vl(vl);
1219 
1220 		err = sigframe_alloc(user, &user->za_offset,
1221 				     ZA_SIG_CONTEXT_SIZE(vq));
1222 		if (err)
1223 			return err;
1224 	}
1225 
1226 	if (system_supports_sme2()) {
1227 		if (add_all || thread_za_enabled(&current->thread)) {
1228 			err = sigframe_alloc(user, &user->zt_offset,
1229 					     ZT_SIG_CONTEXT_SIZE(1));
1230 			if (err)
1231 				return err;
1232 		}
1233 	}
1234 
1235 	if (system_supports_fpmr()) {
1236 		err = sigframe_alloc(user, &user->fpmr_offset,
1237 				     sizeof(struct fpmr_context));
1238 		if (err)
1239 			return err;
1240 	}
1241 
1242 	if (system_supports_poe()) {
1243 		err = sigframe_alloc(user, &user->poe_offset,
1244 				     sizeof(struct poe_context));
1245 		if (err)
1246 			return err;
1247 	}
1248 
1249 	return sigframe_alloc_end(user);
1250 }
1251 
1252 static int setup_sigframe(struct rt_sigframe_user_layout *user,
1253 			  struct pt_regs *regs, sigset_t *set,
1254 			  const struct user_access_state *ua_state)
1255 {
1256 	int i, err = 0;
1257 	struct rt_sigframe __user *sf = user->sigframe;
1258 
1259 	/* set up the stack frame for unwinding */
1260 	__put_user_error(regs->regs[29], &user->next_frame->fp, err);
1261 	__put_user_error(regs->regs[30], &user->next_frame->lr, err);
1262 
1263 	for (i = 0; i < 31; i++)
1264 		__put_user_error(regs->regs[i], &sf->uc.uc_mcontext.regs[i],
1265 				 err);
1266 	__put_user_error(regs->sp, &sf->uc.uc_mcontext.sp, err);
1267 	__put_user_error(regs->pc, &sf->uc.uc_mcontext.pc, err);
1268 	__put_user_error(regs->pstate, &sf->uc.uc_mcontext.pstate, err);
1269 
1270 	__put_user_error(current->thread.fault_address, &sf->uc.uc_mcontext.fault_address, err);
1271 
1272 	err |= __copy_to_user(&sf->uc.uc_sigmask, set, sizeof(*set));
1273 
1274 	if (err == 0 && system_supports_fpsimd()) {
1275 		struct fpsimd_context __user *fpsimd_ctx =
1276 			apply_user_offset(user, user->fpsimd_offset);
1277 		err |= preserve_fpsimd_context(fpsimd_ctx);
1278 	}
1279 
1280 	/* fault information, if valid */
1281 	if (err == 0 && user->esr_offset) {
1282 		struct esr_context __user *esr_ctx =
1283 			apply_user_offset(user, user->esr_offset);
1284 
1285 		__put_user_error(ESR_MAGIC, &esr_ctx->head.magic, err);
1286 		__put_user_error(sizeof(*esr_ctx), &esr_ctx->head.size, err);
1287 		__put_user_error(current->thread.fault_code, &esr_ctx->esr, err);
1288 	}
1289 
1290 	if (system_supports_gcs() && err == 0 && user->gcs_offset) {
1291 		struct gcs_context __user *gcs_ctx =
1292 			apply_user_offset(user, user->gcs_offset);
1293 		err |= preserve_gcs_context(gcs_ctx);
1294 	}
1295 
1296 	/* Scalable Vector Extension state (including streaming), if present */
1297 	if ((system_supports_sve() || system_supports_sme()) &&
1298 	    err == 0 && user->sve_offset) {
1299 		struct sve_context __user *sve_ctx =
1300 			apply_user_offset(user, user->sve_offset);
1301 		err |= preserve_sve_context(sve_ctx);
1302 	}
1303 
1304 	/* TPIDR2 if supported */
1305 	if (system_supports_tpidr2() && err == 0) {
1306 		struct tpidr2_context __user *tpidr2_ctx =
1307 			apply_user_offset(user, user->tpidr2_offset);
1308 		err |= preserve_tpidr2_context(tpidr2_ctx);
1309 	}
1310 
1311 	/* FPMR if supported */
1312 	if (system_supports_fpmr() && err == 0) {
1313 		struct fpmr_context __user *fpmr_ctx =
1314 			apply_user_offset(user, user->fpmr_offset);
1315 		err |= preserve_fpmr_context(fpmr_ctx);
1316 	}
1317 
1318 	if (system_supports_poe() && err == 0) {
1319 		struct poe_context __user *poe_ctx =
1320 			apply_user_offset(user, user->poe_offset);
1321 
1322 		err |= preserve_poe_context(poe_ctx, ua_state);
1323 	}
1324 
1325 	/* ZA state if present */
1326 	if (system_supports_sme() && err == 0 && user->za_offset) {
1327 		struct za_context __user *za_ctx =
1328 			apply_user_offset(user, user->za_offset);
1329 		err |= preserve_za_context(za_ctx);
1330 	}
1331 
1332 	/* ZT state if present */
1333 	if (system_supports_sme2() && err == 0 && user->zt_offset) {
1334 		struct zt_context __user *zt_ctx =
1335 			apply_user_offset(user, user->zt_offset);
1336 		err |= preserve_zt_context(zt_ctx);
1337 	}
1338 
1339 	if (err == 0 && user->extra_offset) {
1340 		char __user *sfp = (char __user *)user->sigframe;
1341 		char __user *userp =
1342 			apply_user_offset(user, user->extra_offset);
1343 
1344 		struct extra_context __user *extra;
1345 		struct _aarch64_ctx __user *end;
1346 		u64 extra_datap;
1347 		u32 extra_size;
1348 
1349 		extra = (struct extra_context __user *)userp;
1350 		userp += EXTRA_CONTEXT_SIZE;
1351 
1352 		end = (struct _aarch64_ctx __user *)userp;
1353 		userp += TERMINATOR_SIZE;
1354 
1355 		/*
1356 		 * extra_datap is just written to the signal frame.
1357 		 * The value gets cast back to a void __user *
1358 		 * during sigreturn.
1359 		 */
1360 		extra_datap = (__force u64)userp;
1361 		extra_size = sfp + round_up(user->size, 16) - userp;
1362 
1363 		__put_user_error(EXTRA_MAGIC, &extra->head.magic, err);
1364 		__put_user_error(EXTRA_CONTEXT_SIZE, &extra->head.size, err);
1365 		__put_user_error(extra_datap, &extra->datap, err);
1366 		__put_user_error(extra_size, &extra->size, err);
1367 
1368 		/* Add the terminator */
1369 		__put_user_error(0, &end->magic, err);
1370 		__put_user_error(0, &end->size, err);
1371 	}
1372 
1373 	/* set the "end" magic */
1374 	if (err == 0) {
1375 		struct _aarch64_ctx __user *end =
1376 			apply_user_offset(user, user->end_offset);
1377 
1378 		__put_user_error(0, &end->magic, err);
1379 		__put_user_error(0, &end->size, err);
1380 	}
1381 
1382 	return err;
1383 }
1384 
1385 static int get_sigframe(struct rt_sigframe_user_layout *user,
1386 			 struct ksignal *ksig, struct pt_regs *regs)
1387 {
1388 	unsigned long sp, sp_top;
1389 	int err;
1390 
1391 	init_user_layout(user);
1392 	err = setup_sigframe_layout(user, false);
1393 	if (err)
1394 		return err;
1395 
1396 	sp = sp_top = sigsp(regs->sp, ksig);
1397 
1398 	sp = round_down(sp - sizeof(struct frame_record), 16);
1399 	user->next_frame = (struct frame_record __user *)sp;
1400 
1401 	sp = round_down(sp, 16) - sigframe_size(user);
1402 	user->sigframe = (struct rt_sigframe __user *)sp;
1403 
1404 	/*
1405 	 * Check that we can actually write to the signal frame.
1406 	 */
1407 	if (!access_ok(user->sigframe, sp_top - sp))
1408 		return -EFAULT;
1409 
1410 	return 0;
1411 }
1412 
1413 #ifdef CONFIG_ARM64_GCS
1414 
1415 static int gcs_signal_entry(__sigrestore_t sigtramp, struct ksignal *ksig)
1416 {
1417 	u64 gcspr_el0;
1418 	int ret = 0;
1419 
1420 	if (!system_supports_gcs())
1421 		return 0;
1422 
1423 	if (!task_gcs_el0_enabled(current))
1424 		return 0;
1425 
1426 	/*
1427 	 * We are entering a signal handler, current register state is
1428 	 * active.
1429 	 */
1430 	gcspr_el0 = read_sysreg_s(SYS_GCSPR_EL0);
1431 
1432 	/*
1433 	 * Push a cap and the GCS entry for the trampoline onto the GCS.
1434 	 */
1435 	put_user_gcs((unsigned long)sigtramp,
1436 		     (unsigned long __user *)(gcspr_el0 - 16), &ret);
1437 	put_user_gcs(GCS_SIGNAL_CAP(gcspr_el0 - 8),
1438 		     (unsigned long __user *)(gcspr_el0 - 8), &ret);
1439 	if (ret != 0)
1440 		return ret;
1441 
1442 	gcspr_el0 -= 16;
1443 	write_sysreg_s(gcspr_el0, SYS_GCSPR_EL0);
1444 
1445 	return 0;
1446 }
1447 #else
1448 
1449 static int gcs_signal_entry(__sigrestore_t sigtramp, struct ksignal *ksig)
1450 {
1451 	return 0;
1452 }
1453 
1454 #endif
1455 
1456 static int setup_return(struct pt_regs *regs, struct ksignal *ksig,
1457 			 struct rt_sigframe_user_layout *user, int usig)
1458 {
1459 	__sigrestore_t sigtramp;
1460 	int err;
1461 
1462 	if (ksig->ka.sa.sa_flags & SA_RESTORER)
1463 		sigtramp = ksig->ka.sa.sa_restorer;
1464 	else
1465 		sigtramp = VDSO_SYMBOL(current->mm->context.vdso, sigtramp);
1466 
1467 	err = gcs_signal_entry(sigtramp, ksig);
1468 	if (err)
1469 		return err;
1470 
1471 	/*
1472 	 * We must not fail from this point onwards. We are going to update
1473 	 * registers, including SP, in order to invoke the signal handler. If
1474 	 * we failed and attempted to deliver a nested SIGSEGV to a handler
1475 	 * after that point, the subsequent sigreturn would end up restoring
1476 	 * the (partial) state for the original signal handler.
1477 	 */
1478 
1479 	regs->regs[0] = usig;
1480 	if (ksig->ka.sa.sa_flags & SA_SIGINFO) {
1481 		regs->regs[1] = (unsigned long)&user->sigframe->info;
1482 		regs->regs[2] = (unsigned long)&user->sigframe->uc;
1483 	}
1484 	regs->sp = (unsigned long)user->sigframe;
1485 	regs->regs[29] = (unsigned long)&user->next_frame->fp;
1486 	regs->regs[30] = (unsigned long)sigtramp;
1487 	regs->pc = (unsigned long)ksig->ka.sa.sa_handler;
1488 
1489 	/*
1490 	 * Signal delivery is a (wacky) indirect function call in
1491 	 * userspace, so simulate the same setting of BTYPE as a BLR
1492 	 * <register containing the signal handler entry point>.
1493 	 * Signal delivery to a location in a PROT_BTI guarded page
1494 	 * that is not a function entry point will now trigger a
1495 	 * SIGILL in userspace.
1496 	 *
1497 	 * If the signal handler entry point is not in a PROT_BTI
1498 	 * guarded page, this is harmless.
1499 	 */
1500 	if (system_supports_bti()) {
1501 		regs->pstate &= ~PSR_BTYPE_MASK;
1502 		regs->pstate |= PSR_BTYPE_C;
1503 	}
1504 
1505 	/* TCO (Tag Check Override) always cleared for signal handlers */
1506 	regs->pstate &= ~PSR_TCO_BIT;
1507 
1508 	/* Signal handlers are invoked with ZA and streaming mode disabled */
1509 	if (system_supports_sme()) {
1510 		/*
1511 		 * If we were in streaming mode the saved register
1512 		 * state was SVE but we will exit SM and use the
1513 		 * FPSIMD register state - flush the saved FPSIMD
1514 		 * register state in case it gets loaded.
1515 		 */
1516 		if (current->thread.svcr & SVCR_SM_MASK) {
1517 			memset(&current->thread.uw.fpsimd_state, 0,
1518 			       sizeof(current->thread.uw.fpsimd_state));
1519 			current->thread.fp_type = FP_STATE_FPSIMD;
1520 		}
1521 
1522 		current->thread.svcr &= ~(SVCR_ZA_MASK |
1523 					  SVCR_SM_MASK);
1524 		sme_smstop();
1525 	}
1526 
1527 	return 0;
1528 }
1529 
1530 static int setup_rt_frame(int usig, struct ksignal *ksig, sigset_t *set,
1531 			  struct pt_regs *regs)
1532 {
1533 	struct rt_sigframe_user_layout user;
1534 	struct rt_sigframe __user *frame;
1535 	struct user_access_state ua_state;
1536 	int err = 0;
1537 
1538 	fpsimd_signal_preserve_current_state();
1539 
1540 	if (get_sigframe(&user, ksig, regs))
1541 		return 1;
1542 
1543 	save_reset_user_access_state(&ua_state);
1544 	frame = user.sigframe;
1545 
1546 	__put_user_error(0, &frame->uc.uc_flags, err);
1547 	__put_user_error(NULL, &frame->uc.uc_link, err);
1548 
1549 	err |= __save_altstack(&frame->uc.uc_stack, regs->sp);
1550 	err |= setup_sigframe(&user, regs, set, &ua_state);
1551 	if (ksig->ka.sa.sa_flags & SA_SIGINFO)
1552 		err |= copy_siginfo_to_user(&frame->info, &ksig->info);
1553 
1554 	if (err == 0)
1555 		err = setup_return(regs, ksig, &user, usig);
1556 
1557 	/*
1558 	 * We must not fail if setup_return() succeeded - see comment at the
1559 	 * beginning of setup_return().
1560 	 */
1561 
1562 	if (err == 0)
1563 		set_handler_user_access_state();
1564 	else
1565 		restore_user_access_state(&ua_state);
1566 
1567 	return err;
1568 }
1569 
1570 static void setup_restart_syscall(struct pt_regs *regs)
1571 {
1572 	if (is_compat_task())
1573 		compat_setup_restart_syscall(regs);
1574 	else
1575 		regs->regs[8] = __NR_restart_syscall;
1576 }
1577 
1578 /*
1579  * OK, we're invoking a handler
1580  */
1581 static void handle_signal(struct ksignal *ksig, struct pt_regs *regs)
1582 {
1583 	sigset_t *oldset = sigmask_to_save();
1584 	int usig = ksig->sig;
1585 	int ret;
1586 
1587 	rseq_signal_deliver(ksig, regs);
1588 
1589 	/*
1590 	 * Set up the stack frame
1591 	 */
1592 	if (is_compat_task()) {
1593 		if (ksig->ka.sa.sa_flags & SA_SIGINFO)
1594 			ret = compat_setup_rt_frame(usig, ksig, oldset, regs);
1595 		else
1596 			ret = compat_setup_frame(usig, ksig, oldset, regs);
1597 	} else {
1598 		ret = setup_rt_frame(usig, ksig, oldset, regs);
1599 	}
1600 
1601 	/*
1602 	 * Check that the resulting registers are actually sane.
1603 	 */
1604 	ret |= !valid_user_regs(&regs->user_regs, current);
1605 
1606 	/* Step into the signal handler if we are stepping */
1607 	signal_setup_done(ret, ksig, test_thread_flag(TIF_SINGLESTEP));
1608 }
1609 
1610 /*
1611  * Note that 'init' is a special process: it doesn't get signals it doesn't
1612  * want to handle. Thus you cannot kill init even with a SIGKILL even by
1613  * mistake.
1614  *
1615  * Note that we go through the signals twice: once to check the signals that
1616  * the kernel can handle, and then we build all the user-level signal handling
1617  * stack-frames in one go after that.
1618  */
1619 void do_signal(struct pt_regs *regs)
1620 {
1621 	unsigned long continue_addr = 0, restart_addr = 0;
1622 	int retval = 0;
1623 	struct ksignal ksig;
1624 	bool syscall = in_syscall(regs);
1625 
1626 	/*
1627 	 * If we were from a system call, check for system call restarting...
1628 	 */
1629 	if (syscall) {
1630 		continue_addr = regs->pc;
1631 		restart_addr = continue_addr - (compat_thumb_mode(regs) ? 2 : 4);
1632 		retval = regs->regs[0];
1633 
1634 		/*
1635 		 * Avoid additional syscall restarting via ret_to_user.
1636 		 */
1637 		forget_syscall(regs);
1638 
1639 		/*
1640 		 * Prepare for system call restart. We do this here so that a
1641 		 * debugger will see the already changed PC.
1642 		 */
1643 		switch (retval) {
1644 		case -ERESTARTNOHAND:
1645 		case -ERESTARTSYS:
1646 		case -ERESTARTNOINTR:
1647 		case -ERESTART_RESTARTBLOCK:
1648 			regs->regs[0] = regs->orig_x0;
1649 			regs->pc = restart_addr;
1650 			break;
1651 		}
1652 	}
1653 
1654 	/*
1655 	 * Get the signal to deliver. When running under ptrace, at this point
1656 	 * the debugger may change all of our registers.
1657 	 */
1658 	if (get_signal(&ksig)) {
1659 		/*
1660 		 * Depending on the signal settings, we may need to revert the
1661 		 * decision to restart the system call, but skip this if a
1662 		 * debugger has chosen to restart at a different PC.
1663 		 */
1664 		if (regs->pc == restart_addr &&
1665 		    (retval == -ERESTARTNOHAND ||
1666 		     retval == -ERESTART_RESTARTBLOCK ||
1667 		     (retval == -ERESTARTSYS &&
1668 		      !(ksig.ka.sa.sa_flags & SA_RESTART)))) {
1669 			syscall_set_return_value(current, regs, -EINTR, 0);
1670 			regs->pc = continue_addr;
1671 		}
1672 
1673 		handle_signal(&ksig, regs);
1674 		return;
1675 	}
1676 
1677 	/*
1678 	 * Handle restarting a different system call. As above, if a debugger
1679 	 * has chosen to restart at a different PC, ignore the restart.
1680 	 */
1681 	if (syscall && regs->pc == restart_addr) {
1682 		if (retval == -ERESTART_RESTARTBLOCK)
1683 			setup_restart_syscall(regs);
1684 		user_rewind_single_step(current);
1685 	}
1686 
1687 	restore_saved_sigmask();
1688 }
1689 
1690 unsigned long __ro_after_init signal_minsigstksz;
1691 
1692 /*
1693  * Determine the stack space required for guaranteed signal devliery.
1694  * This function is used to populate AT_MINSIGSTKSZ at process startup.
1695  * cpufeatures setup is assumed to be complete.
1696  */
1697 void __init minsigstksz_setup(void)
1698 {
1699 	struct rt_sigframe_user_layout user;
1700 
1701 	init_user_layout(&user);
1702 
1703 	/*
1704 	 * If this fails, SIGFRAME_MAXSZ needs to be enlarged.  It won't
1705 	 * be big enough, but it's our best guess:
1706 	 */
1707 	if (WARN_ON(setup_sigframe_layout(&user, true)))
1708 		return;
1709 
1710 	signal_minsigstksz = sigframe_size(&user) +
1711 		round_up(sizeof(struct frame_record), 16) +
1712 		16; /* max alignment padding */
1713 }
1714 
1715 /*
1716  * Compile-time assertions for siginfo_t offsets. Check NSIG* as well, as
1717  * changes likely come with new fields that should be added below.
1718  */
1719 static_assert(NSIGILL	== 11);
1720 static_assert(NSIGFPE	== 15);
1721 static_assert(NSIGSEGV	== 10);
1722 static_assert(NSIGBUS	== 5);
1723 static_assert(NSIGTRAP	== 6);
1724 static_assert(NSIGCHLD	== 6);
1725 static_assert(NSIGSYS	== 2);
1726 static_assert(sizeof(siginfo_t) == 128);
1727 static_assert(__alignof__(siginfo_t) == 8);
1728 static_assert(offsetof(siginfo_t, si_signo)	== 0x00);
1729 static_assert(offsetof(siginfo_t, si_errno)	== 0x04);
1730 static_assert(offsetof(siginfo_t, si_code)	== 0x08);
1731 static_assert(offsetof(siginfo_t, si_pid)	== 0x10);
1732 static_assert(offsetof(siginfo_t, si_uid)	== 0x14);
1733 static_assert(offsetof(siginfo_t, si_tid)	== 0x10);
1734 static_assert(offsetof(siginfo_t, si_overrun)	== 0x14);
1735 static_assert(offsetof(siginfo_t, si_status)	== 0x18);
1736 static_assert(offsetof(siginfo_t, si_utime)	== 0x20);
1737 static_assert(offsetof(siginfo_t, si_stime)	== 0x28);
1738 static_assert(offsetof(siginfo_t, si_value)	== 0x18);
1739 static_assert(offsetof(siginfo_t, si_int)	== 0x18);
1740 static_assert(offsetof(siginfo_t, si_ptr)	== 0x18);
1741 static_assert(offsetof(siginfo_t, si_addr)	== 0x10);
1742 static_assert(offsetof(siginfo_t, si_addr_lsb)	== 0x18);
1743 static_assert(offsetof(siginfo_t, si_lower)	== 0x20);
1744 static_assert(offsetof(siginfo_t, si_upper)	== 0x28);
1745 static_assert(offsetof(siginfo_t, si_pkey)	== 0x20);
1746 static_assert(offsetof(siginfo_t, si_perf_data)	== 0x18);
1747 static_assert(offsetof(siginfo_t, si_perf_type)	== 0x20);
1748 static_assert(offsetof(siginfo_t, si_perf_flags) == 0x24);
1749 static_assert(offsetof(siginfo_t, si_band)	== 0x10);
1750 static_assert(offsetof(siginfo_t, si_fd)	== 0x18);
1751 static_assert(offsetof(siginfo_t, si_call_addr)	== 0x10);
1752 static_assert(offsetof(siginfo_t, si_syscall)	== 0x18);
1753 static_assert(offsetof(siginfo_t, si_arch)	== 0x1c);
1754