1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/kernel/setup.c 4 * 5 * Copyright (C) 1995-2001 Russell King 6 * Copyright (C) 2012 ARM Ltd. 7 */ 8 9 #include <linux/acpi.h> 10 #include <linux/export.h> 11 #include <linux/kernel.h> 12 #include <linux/stddef.h> 13 #include <linux/ioport.h> 14 #include <linux/delay.h> 15 #include <linux/initrd.h> 16 #include <linux/console.h> 17 #include <linux/cache.h> 18 #include <linux/screen_info.h> 19 #include <linux/init.h> 20 #include <linux/kexec.h> 21 #include <linux/root_dev.h> 22 #include <linux/cpu.h> 23 #include <linux/interrupt.h> 24 #include <linux/smp.h> 25 #include <linux/fs.h> 26 #include <linux/panic_notifier.h> 27 #include <linux/proc_fs.h> 28 #include <linux/memblock.h> 29 #include <linux/of_fdt.h> 30 #include <linux/efi.h> 31 #include <linux/psci.h> 32 #include <linux/sched/task.h> 33 #include <linux/scs.h> 34 #include <linux/mm.h> 35 36 #include <asm/acpi.h> 37 #include <asm/fixmap.h> 38 #include <asm/cpu.h> 39 #include <asm/cputype.h> 40 #include <asm/daifflags.h> 41 #include <asm/elf.h> 42 #include <asm/cpufeature.h> 43 #include <asm/cpu_ops.h> 44 #include <asm/kasan.h> 45 #include <asm/numa.h> 46 #include <asm/rsi.h> 47 #include <asm/scs.h> 48 #include <asm/sections.h> 49 #include <asm/setup.h> 50 #include <asm/smp_plat.h> 51 #include <asm/cacheflush.h> 52 #include <asm/tlbflush.h> 53 #include <asm/traps.h> 54 #include <asm/efi.h> 55 #include <asm/xen/hypervisor.h> 56 #include <asm/mmu_context.h> 57 58 static int num_standard_resources; 59 static struct resource *standard_resources; 60 61 phys_addr_t __fdt_pointer __initdata; 62 u64 mmu_enabled_at_boot __initdata; 63 64 /* 65 * Standard memory resources 66 */ 67 static struct resource mem_res[] = { 68 { 69 .name = "Kernel code", 70 .start = 0, 71 .end = 0, 72 .flags = IORESOURCE_SYSTEM_RAM 73 }, 74 { 75 .name = "Kernel data", 76 .start = 0, 77 .end = 0, 78 .flags = IORESOURCE_SYSTEM_RAM 79 } 80 }; 81 82 #define kernel_code mem_res[0] 83 #define kernel_data mem_res[1] 84 85 /* 86 * The recorded values of x0 .. x3 upon kernel entry. 87 */ 88 u64 __cacheline_aligned boot_args[4]; 89 90 void __init smp_setup_processor_id(void) 91 { 92 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; 93 set_cpu_logical_map(0, mpidr); 94 95 pr_info("Booting Linux on physical CPU 0x%010lx [0x%08x]\n", 96 (unsigned long)mpidr, read_cpuid_id()); 97 } 98 99 bool arch_match_cpu_phys_id(int cpu, u64 phys_id) 100 { 101 return phys_id == cpu_logical_map(cpu); 102 } 103 104 struct mpidr_hash mpidr_hash; 105 /** 106 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity 107 * level in order to build a linear index from an 108 * MPIDR value. Resulting algorithm is a collision 109 * free hash carried out through shifting and ORing 110 */ 111 static void __init smp_build_mpidr_hash(void) 112 { 113 u32 i, affinity, fs[4], bits[4], ls; 114 u64 mask = 0; 115 /* 116 * Pre-scan the list of MPIDRS and filter out bits that do 117 * not contribute to affinity levels, ie they never toggle. 118 */ 119 for_each_possible_cpu(i) 120 mask |= (cpu_logical_map(i) ^ cpu_logical_map(0)); 121 pr_debug("mask of set bits %#llx\n", mask); 122 /* 123 * Find and stash the last and first bit set at all affinity levels to 124 * check how many bits are required to represent them. 125 */ 126 for (i = 0; i < 4; i++) { 127 affinity = MPIDR_AFFINITY_LEVEL(mask, i); 128 /* 129 * Find the MSB bit and LSB bits position 130 * to determine how many bits are required 131 * to express the affinity level. 132 */ 133 ls = fls(affinity); 134 fs[i] = affinity ? ffs(affinity) - 1 : 0; 135 bits[i] = ls - fs[i]; 136 } 137 /* 138 * An index can be created from the MPIDR_EL1 by isolating the 139 * significant bits at each affinity level and by shifting 140 * them in order to compress the 32 bits values space to a 141 * compressed set of values. This is equivalent to hashing 142 * the MPIDR_EL1 through shifting and ORing. It is a collision free 143 * hash though not minimal since some levels might contain a number 144 * of CPUs that is not an exact power of 2 and their bit 145 * representation might contain holes, eg MPIDR_EL1[7:0] = {0x2, 0x80}. 146 */ 147 mpidr_hash.shift_aff[0] = MPIDR_LEVEL_SHIFT(0) + fs[0]; 148 mpidr_hash.shift_aff[1] = MPIDR_LEVEL_SHIFT(1) + fs[1] - bits[0]; 149 mpidr_hash.shift_aff[2] = MPIDR_LEVEL_SHIFT(2) + fs[2] - 150 (bits[1] + bits[0]); 151 mpidr_hash.shift_aff[3] = MPIDR_LEVEL_SHIFT(3) + 152 fs[3] - (bits[2] + bits[1] + bits[0]); 153 mpidr_hash.mask = mask; 154 mpidr_hash.bits = bits[3] + bits[2] + bits[1] + bits[0]; 155 pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] aff3[%u] mask[%#llx] bits[%u]\n", 156 mpidr_hash.shift_aff[0], 157 mpidr_hash.shift_aff[1], 158 mpidr_hash.shift_aff[2], 159 mpidr_hash.shift_aff[3], 160 mpidr_hash.mask, 161 mpidr_hash.bits); 162 /* 163 * 4x is an arbitrary value used to warn on a hash table much bigger 164 * than expected on most systems. 165 */ 166 if (mpidr_hash_size() > 4 * num_possible_cpus()) 167 pr_warn("Large number of MPIDR hash buckets detected\n"); 168 } 169 170 static void __init setup_machine_fdt(phys_addr_t dt_phys) 171 { 172 int size; 173 void *dt_virt = fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL); 174 const char *name; 175 176 if (dt_virt) 177 memblock_reserve(dt_phys, size); 178 179 /* 180 * dt_virt is a fixmap address, hence __pa(dt_virt) can't be used. 181 * Pass dt_phys directly. 182 */ 183 if (!early_init_dt_scan(dt_virt, dt_phys)) { 184 pr_crit("\n" 185 "Error: invalid device tree blob at physical address %pa (virtual address 0x%px)\n" 186 "The dtb must be 8-byte aligned and must not exceed 2 MB in size\n" 187 "\nPlease check your bootloader.", 188 &dt_phys, dt_virt); 189 190 /* 191 * Note that in this _really_ early stage we cannot even BUG() 192 * or oops, so the least terrible thing to do is cpu_relax(), 193 * or else we could end-up printing non-initialized data, etc. 194 */ 195 while (true) 196 cpu_relax(); 197 } 198 199 /* Early fixups are done, map the FDT as read-only now */ 200 fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL_RO); 201 202 name = of_flat_dt_get_machine_name(); 203 if (!name) 204 return; 205 206 pr_info("Machine model: %s\n", name); 207 dump_stack_set_arch_desc("%s (DT)", name); 208 } 209 210 static void __init request_standard_resources(void) 211 { 212 struct memblock_region *region; 213 struct resource *res; 214 unsigned long i = 0; 215 size_t res_size; 216 217 kernel_code.start = __pa_symbol(_stext); 218 kernel_code.end = __pa_symbol(__init_begin - 1); 219 kernel_data.start = __pa_symbol(_sdata); 220 kernel_data.end = __pa_symbol(_end - 1); 221 insert_resource(&iomem_resource, &kernel_code); 222 insert_resource(&iomem_resource, &kernel_data); 223 224 num_standard_resources = memblock.memory.cnt; 225 res_size = num_standard_resources * sizeof(*standard_resources); 226 standard_resources = memblock_alloc(res_size, SMP_CACHE_BYTES); 227 if (!standard_resources) 228 panic("%s: Failed to allocate %zu bytes\n", __func__, res_size); 229 230 for_each_mem_region(region) { 231 res = &standard_resources[i++]; 232 if (memblock_is_nomap(region)) { 233 res->name = "reserved"; 234 res->flags = IORESOURCE_MEM; 235 res->start = __pfn_to_phys(memblock_region_reserved_base_pfn(region)); 236 res->end = __pfn_to_phys(memblock_region_reserved_end_pfn(region)) - 1; 237 } else { 238 res->name = "System RAM"; 239 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 240 res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region)); 241 res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1; 242 } 243 244 insert_resource(&iomem_resource, res); 245 } 246 } 247 248 static int __init reserve_memblock_reserved_regions(void) 249 { 250 u64 i, j; 251 252 for (i = 0; i < num_standard_resources; ++i) { 253 struct resource *mem = &standard_resources[i]; 254 phys_addr_t r_start, r_end, mem_size = resource_size(mem); 255 256 if (!memblock_is_region_reserved(mem->start, mem_size)) 257 continue; 258 259 for_each_reserved_mem_range(j, &r_start, &r_end) { 260 resource_size_t start, end; 261 262 start = max(PFN_PHYS(PFN_DOWN(r_start)), mem->start); 263 end = min(PFN_PHYS(PFN_UP(r_end)) - 1, mem->end); 264 265 if (start > mem->end || end < mem->start) 266 continue; 267 268 reserve_region_with_split(mem, start, end, "reserved"); 269 } 270 } 271 272 return 0; 273 } 274 arch_initcall(reserve_memblock_reserved_regions); 275 276 u64 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = INVALID_HWID }; 277 278 u64 cpu_logical_map(unsigned int cpu) 279 { 280 return __cpu_logical_map[cpu]; 281 } 282 283 void __init __no_sanitize_address setup_arch(char **cmdline_p) 284 { 285 setup_initial_init_mm(_stext, _etext, _edata, _end); 286 287 *cmdline_p = boot_command_line; 288 289 kaslr_init(); 290 291 early_fixmap_init(); 292 early_ioremap_init(); 293 294 setup_machine_fdt(__fdt_pointer); 295 296 /* 297 * Initialise the static keys early as they may be enabled by the 298 * cpufeature code and early parameters. 299 */ 300 jump_label_init(); 301 parse_early_param(); 302 303 dynamic_scs_init(); 304 305 /* 306 * The primary CPU enters the kernel with all DAIF exceptions masked. 307 * 308 * We must unmask Debug and SError before preemption or scheduling is 309 * possible to ensure that these are consistently unmasked across 310 * threads, and we want to unmask SError as soon as possible after 311 * initializing earlycon so that we can report any SErrors immediately. 312 * 313 * IRQ and FIQ will be unmasked after the root irqchip has been 314 * detected and initialized. 315 */ 316 local_daif_restore(DAIF_PROCCTX_NOIRQ); 317 318 /* 319 * TTBR0 is only used for the identity mapping at this stage. Make it 320 * point to zero page to avoid speculatively fetching new entries. 321 */ 322 cpu_uninstall_idmap(); 323 324 xen_early_init(); 325 efi_init(); 326 327 if (!efi_enabled(EFI_BOOT)) { 328 if ((u64)_text % MIN_KIMG_ALIGN) 329 pr_warn(FW_BUG "Kernel image misaligned at boot, please fix your bootloader!"); 330 WARN_TAINT(mmu_enabled_at_boot, TAINT_FIRMWARE_WORKAROUND, 331 FW_BUG "Booted with MMU enabled!"); 332 } 333 334 arm64_memblock_init(); 335 336 paging_init(); 337 338 acpi_table_upgrade(); 339 340 /* Parse the ACPI tables for possible boot-time configuration */ 341 acpi_boot_table_init(); 342 343 if (acpi_disabled) 344 unflatten_device_tree(); 345 346 bootmem_init(); 347 348 kasan_init(); 349 350 request_standard_resources(); 351 352 early_ioremap_reset(); 353 354 if (acpi_disabled) 355 psci_dt_init(); 356 else 357 psci_acpi_init(); 358 359 arm64_rsi_init(); 360 361 init_bootcpu_ops(); 362 smp_init_cpus(); 363 smp_build_mpidr_hash(); 364 365 #ifdef CONFIG_ARM64_SW_TTBR0_PAN 366 /* 367 * Make sure init_thread_info.ttbr0 always generates translation 368 * faults in case uaccess_enable() is inadvertently called by the init 369 * thread. 370 */ 371 init_task.thread_info.ttbr0 = phys_to_ttbr(__pa_symbol(reserved_pg_dir)); 372 #endif 373 374 if (boot_args[1] || boot_args[2] || boot_args[3]) { 375 pr_err("WARNING: x1-x3 nonzero in violation of boot protocol:\n" 376 "\tx1: %016llx\n\tx2: %016llx\n\tx3: %016llx\n" 377 "This indicates a broken bootloader or old kernel\n", 378 boot_args[1], boot_args[2], boot_args[3]); 379 } 380 } 381 382 static inline bool cpu_can_disable(unsigned int cpu) 383 { 384 #ifdef CONFIG_HOTPLUG_CPU 385 const struct cpu_operations *ops = get_cpu_ops(cpu); 386 387 if (ops && ops->cpu_can_disable) 388 return ops->cpu_can_disable(cpu); 389 #endif 390 return false; 391 } 392 393 bool arch_cpu_is_hotpluggable(int num) 394 { 395 return cpu_can_disable(num); 396 } 397 398 static void dump_kernel_offset(void) 399 { 400 const unsigned long offset = kaslr_offset(); 401 402 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && offset > 0) { 403 pr_emerg("Kernel Offset: 0x%lx from 0x%lx\n", 404 offset, KIMAGE_VADDR); 405 pr_emerg("PHYS_OFFSET: 0x%llx\n", PHYS_OFFSET); 406 } else { 407 pr_emerg("Kernel Offset: disabled\n"); 408 } 409 } 410 411 static int arm64_panic_block_dump(struct notifier_block *self, 412 unsigned long v, void *p) 413 { 414 dump_kernel_offset(); 415 dump_cpu_features(); 416 dump_mem_limit(); 417 return 0; 418 } 419 420 static struct notifier_block arm64_panic_block = { 421 .notifier_call = arm64_panic_block_dump 422 }; 423 424 static int __init register_arm64_panic_block(void) 425 { 426 atomic_notifier_chain_register(&panic_notifier_list, 427 &arm64_panic_block); 428 return 0; 429 } 430 device_initcall(register_arm64_panic_block); 431 432 static int __init check_mmu_enabled_at_boot(void) 433 { 434 if (!efi_enabled(EFI_BOOT) && mmu_enabled_at_boot) 435 panic("Non-EFI boot detected with MMU and caches enabled"); 436 return 0; 437 } 438 device_initcall_sync(check_mmu_enabled_at_boot); 439