xref: /linux/arch/arm64/kernel/setup.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/setup.c
4  *
5  * Copyright (C) 1995-2001 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/stddef.h>
13 #include <linux/ioport.h>
14 #include <linux/delay.h>
15 #include <linux/initrd.h>
16 #include <linux/console.h>
17 #include <linux/cache.h>
18 #include <linux/screen_info.h>
19 #include <linux/init.h>
20 #include <linux/kexec.h>
21 #include <linux/root_dev.h>
22 #include <linux/cpu.h>
23 #include <linux/interrupt.h>
24 #include <linux/smp.h>
25 #include <linux/fs.h>
26 #include <linux/panic_notifier.h>
27 #include <linux/proc_fs.h>
28 #include <linux/memblock.h>
29 #include <linux/of_fdt.h>
30 #include <linux/efi.h>
31 #include <linux/psci.h>
32 #include <linux/sched/task.h>
33 #include <linux/scs.h>
34 #include <linux/mm.h>
35 
36 #include <asm/acpi.h>
37 #include <asm/fixmap.h>
38 #include <asm/cpu.h>
39 #include <asm/cputype.h>
40 #include <asm/daifflags.h>
41 #include <asm/elf.h>
42 #include <asm/cpufeature.h>
43 #include <asm/cpu_ops.h>
44 #include <asm/kasan.h>
45 #include <asm/numa.h>
46 #include <asm/rsi.h>
47 #include <asm/scs.h>
48 #include <asm/sections.h>
49 #include <asm/setup.h>
50 #include <asm/smp_plat.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlbflush.h>
53 #include <asm/traps.h>
54 #include <asm/efi.h>
55 #include <asm/xen/hypervisor.h>
56 #include <asm/mmu_context.h>
57 
58 static int num_standard_resources;
59 static struct resource *standard_resources;
60 
61 phys_addr_t __fdt_pointer __initdata;
62 u64 mmu_enabled_at_boot __initdata;
63 
64 /*
65  * Standard memory resources
66  */
67 static struct resource mem_res[] = {
68 	{
69 		.name = "Kernel code",
70 		.start = 0,
71 		.end = 0,
72 		.flags = IORESOURCE_SYSTEM_RAM
73 	},
74 	{
75 		.name = "Kernel data",
76 		.start = 0,
77 		.end = 0,
78 		.flags = IORESOURCE_SYSTEM_RAM
79 	}
80 };
81 
82 #define kernel_code mem_res[0]
83 #define kernel_data mem_res[1]
84 
85 /*
86  * The recorded values of x0 .. x3 upon kernel entry.
87  */
88 u64 __cacheline_aligned boot_args[4];
89 
90 void __init smp_setup_processor_id(void)
91 {
92 	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
93 	set_cpu_logical_map(0, mpidr);
94 
95 	pr_info("Booting Linux on physical CPU 0x%010lx [0x%08x]\n",
96 		(unsigned long)mpidr, read_cpuid_id());
97 }
98 
99 bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
100 {
101 	return phys_id == cpu_logical_map(cpu);
102 }
103 
104 struct mpidr_hash mpidr_hash;
105 /**
106  * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
107  *			  level in order to build a linear index from an
108  *			  MPIDR value. Resulting algorithm is a collision
109  *			  free hash carried out through shifting and ORing
110  */
111 static void __init smp_build_mpidr_hash(void)
112 {
113 	u32 i, affinity, fs[4], bits[4], ls;
114 	u64 mask = 0;
115 	/*
116 	 * Pre-scan the list of MPIDRS and filter out bits that do
117 	 * not contribute to affinity levels, ie they never toggle.
118 	 */
119 	for_each_possible_cpu(i)
120 		mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
121 	pr_debug("mask of set bits %#llx\n", mask);
122 	/*
123 	 * Find and stash the last and first bit set at all affinity levels to
124 	 * check how many bits are required to represent them.
125 	 */
126 	for (i = 0; i < 4; i++) {
127 		affinity = MPIDR_AFFINITY_LEVEL(mask, i);
128 		/*
129 		 * Find the MSB bit and LSB bits position
130 		 * to determine how many bits are required
131 		 * to express the affinity level.
132 		 */
133 		ls = fls(affinity);
134 		fs[i] = affinity ? ffs(affinity) - 1 : 0;
135 		bits[i] = ls - fs[i];
136 	}
137 	/*
138 	 * An index can be created from the MPIDR_EL1 by isolating the
139 	 * significant bits at each affinity level and by shifting
140 	 * them in order to compress the 32 bits values space to a
141 	 * compressed set of values. This is equivalent to hashing
142 	 * the MPIDR_EL1 through shifting and ORing. It is a collision free
143 	 * hash though not minimal since some levels might contain a number
144 	 * of CPUs that is not an exact power of 2 and their bit
145 	 * representation might contain holes, eg MPIDR_EL1[7:0] = {0x2, 0x80}.
146 	 */
147 	mpidr_hash.shift_aff[0] = MPIDR_LEVEL_SHIFT(0) + fs[0];
148 	mpidr_hash.shift_aff[1] = MPIDR_LEVEL_SHIFT(1) + fs[1] - bits[0];
149 	mpidr_hash.shift_aff[2] = MPIDR_LEVEL_SHIFT(2) + fs[2] -
150 						(bits[1] + bits[0]);
151 	mpidr_hash.shift_aff[3] = MPIDR_LEVEL_SHIFT(3) +
152 				  fs[3] - (bits[2] + bits[1] + bits[0]);
153 	mpidr_hash.mask = mask;
154 	mpidr_hash.bits = bits[3] + bits[2] + bits[1] + bits[0];
155 	pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] aff3[%u] mask[%#llx] bits[%u]\n",
156 		mpidr_hash.shift_aff[0],
157 		mpidr_hash.shift_aff[1],
158 		mpidr_hash.shift_aff[2],
159 		mpidr_hash.shift_aff[3],
160 		mpidr_hash.mask,
161 		mpidr_hash.bits);
162 	/*
163 	 * 4x is an arbitrary value used to warn on a hash table much bigger
164 	 * than expected on most systems.
165 	 */
166 	if (mpidr_hash_size() > 4 * num_possible_cpus())
167 		pr_warn("Large number of MPIDR hash buckets detected\n");
168 }
169 
170 static void __init setup_machine_fdt(phys_addr_t dt_phys)
171 {
172 	int size;
173 	void *dt_virt = fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL);
174 	const char *name;
175 
176 	if (dt_virt)
177 		memblock_reserve(dt_phys, size);
178 
179 	/*
180 	 * dt_virt is a fixmap address, hence __pa(dt_virt) can't be used.
181 	 * Pass dt_phys directly.
182 	 */
183 	if (!early_init_dt_scan(dt_virt, dt_phys)) {
184 		pr_crit("\n"
185 			"Error: invalid device tree blob at physical address %pa (virtual address 0x%px)\n"
186 			"The dtb must be 8-byte aligned and must not exceed 2 MB in size\n"
187 			"\nPlease check your bootloader.",
188 			&dt_phys, dt_virt);
189 
190 		/*
191 		 * Note that in this _really_ early stage we cannot even BUG()
192 		 * or oops, so the least terrible thing to do is cpu_relax(),
193 		 * or else we could end-up printing non-initialized data, etc.
194 		 */
195 		while (true)
196 			cpu_relax();
197 	}
198 
199 	/* Early fixups are done, map the FDT as read-only now */
200 	fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL_RO);
201 
202 	name = of_flat_dt_get_machine_name();
203 	if (!name)
204 		return;
205 
206 	pr_info("Machine model: %s\n", name);
207 	dump_stack_set_arch_desc("%s (DT)", name);
208 }
209 
210 static void __init request_standard_resources(void)
211 {
212 	struct memblock_region *region;
213 	struct resource *res;
214 	unsigned long i = 0;
215 	size_t res_size;
216 
217 	kernel_code.start   = __pa_symbol(_stext);
218 	kernel_code.end     = __pa_symbol(__init_begin - 1);
219 	kernel_data.start   = __pa_symbol(_sdata);
220 	kernel_data.end     = __pa_symbol(_end - 1);
221 	insert_resource(&iomem_resource, &kernel_code);
222 	insert_resource(&iomem_resource, &kernel_data);
223 
224 	num_standard_resources = memblock.memory.cnt;
225 	res_size = num_standard_resources * sizeof(*standard_resources);
226 	standard_resources = memblock_alloc(res_size, SMP_CACHE_BYTES);
227 	if (!standard_resources)
228 		panic("%s: Failed to allocate %zu bytes\n", __func__, res_size);
229 
230 	for_each_mem_region(region) {
231 		res = &standard_resources[i++];
232 		if (memblock_is_nomap(region)) {
233 			res->name  = "reserved";
234 			res->flags = IORESOURCE_MEM;
235 			res->start = __pfn_to_phys(memblock_region_reserved_base_pfn(region));
236 			res->end = __pfn_to_phys(memblock_region_reserved_end_pfn(region)) - 1;
237 		} else {
238 			res->name  = "System RAM";
239 			res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
240 			res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
241 			res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
242 		}
243 
244 		insert_resource(&iomem_resource, res);
245 	}
246 }
247 
248 static int __init reserve_memblock_reserved_regions(void)
249 {
250 	u64 i, j;
251 
252 	for (i = 0; i < num_standard_resources; ++i) {
253 		struct resource *mem = &standard_resources[i];
254 		phys_addr_t r_start, r_end, mem_size = resource_size(mem);
255 
256 		if (!memblock_is_region_reserved(mem->start, mem_size))
257 			continue;
258 
259 		for_each_reserved_mem_range(j, &r_start, &r_end) {
260 			resource_size_t start, end;
261 
262 			start = max(PFN_PHYS(PFN_DOWN(r_start)), mem->start);
263 			end = min(PFN_PHYS(PFN_UP(r_end)) - 1, mem->end);
264 
265 			if (start > mem->end || end < mem->start)
266 				continue;
267 
268 			reserve_region_with_split(mem, start, end, "reserved");
269 		}
270 	}
271 
272 	return 0;
273 }
274 arch_initcall(reserve_memblock_reserved_regions);
275 
276 u64 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = INVALID_HWID };
277 
278 u64 cpu_logical_map(unsigned int cpu)
279 {
280 	return __cpu_logical_map[cpu];
281 }
282 
283 void __init __no_sanitize_address setup_arch(char **cmdline_p)
284 {
285 	setup_initial_init_mm(_stext, _etext, _edata, _end);
286 
287 	*cmdline_p = boot_command_line;
288 
289 	kaslr_init();
290 
291 	early_fixmap_init();
292 	early_ioremap_init();
293 
294 	setup_machine_fdt(__fdt_pointer);
295 
296 	/*
297 	 * Initialise the static keys early as they may be enabled by the
298 	 * cpufeature code and early parameters.
299 	 */
300 	jump_label_init();
301 	parse_early_param();
302 
303 	dynamic_scs_init();
304 
305 	/*
306 	 * The primary CPU enters the kernel with all DAIF exceptions masked.
307 	 *
308 	 * We must unmask Debug and SError before preemption or scheduling is
309 	 * possible to ensure that these are consistently unmasked across
310 	 * threads, and we want to unmask SError as soon as possible after
311 	 * initializing earlycon so that we can report any SErrors immediately.
312 	 *
313 	 * IRQ and FIQ will be unmasked after the root irqchip has been
314 	 * detected and initialized.
315 	 */
316 	local_daif_restore(DAIF_PROCCTX_NOIRQ);
317 
318 	/*
319 	 * TTBR0 is only used for the identity mapping at this stage. Make it
320 	 * point to zero page to avoid speculatively fetching new entries.
321 	 */
322 	cpu_uninstall_idmap();
323 
324 	xen_early_init();
325 	efi_init();
326 
327 	if (!efi_enabled(EFI_BOOT)) {
328 		if ((u64)_text % MIN_KIMG_ALIGN)
329 			pr_warn(FW_BUG "Kernel image misaligned at boot, please fix your bootloader!");
330 		WARN_TAINT(mmu_enabled_at_boot, TAINT_FIRMWARE_WORKAROUND,
331 			   FW_BUG "Booted with MMU enabled!");
332 	}
333 
334 	arm64_memblock_init();
335 
336 	paging_init();
337 
338 	acpi_table_upgrade();
339 
340 	/* Parse the ACPI tables for possible boot-time configuration */
341 	acpi_boot_table_init();
342 
343 	if (acpi_disabled)
344 		unflatten_device_tree();
345 
346 	bootmem_init();
347 
348 	kasan_init();
349 
350 	request_standard_resources();
351 
352 	early_ioremap_reset();
353 
354 	if (acpi_disabled)
355 		psci_dt_init();
356 	else
357 		psci_acpi_init();
358 
359 	arm64_rsi_init();
360 
361 	init_bootcpu_ops();
362 	smp_init_cpus();
363 	smp_build_mpidr_hash();
364 
365 #ifdef CONFIG_ARM64_SW_TTBR0_PAN
366 	/*
367 	 * Make sure init_thread_info.ttbr0 always generates translation
368 	 * faults in case uaccess_enable() is inadvertently called by the init
369 	 * thread.
370 	 */
371 	init_task.thread_info.ttbr0 = phys_to_ttbr(__pa_symbol(reserved_pg_dir));
372 #endif
373 
374 	if (boot_args[1] || boot_args[2] || boot_args[3]) {
375 		pr_err("WARNING: x1-x3 nonzero in violation of boot protocol:\n"
376 			"\tx1: %016llx\n\tx2: %016llx\n\tx3: %016llx\n"
377 			"This indicates a broken bootloader or old kernel\n",
378 			boot_args[1], boot_args[2], boot_args[3]);
379 	}
380 }
381 
382 static inline bool cpu_can_disable(unsigned int cpu)
383 {
384 #ifdef CONFIG_HOTPLUG_CPU
385 	const struct cpu_operations *ops = get_cpu_ops(cpu);
386 
387 	if (ops && ops->cpu_can_disable)
388 		return ops->cpu_can_disable(cpu);
389 #endif
390 	return false;
391 }
392 
393 bool arch_cpu_is_hotpluggable(int num)
394 {
395 	return cpu_can_disable(num);
396 }
397 
398 static void dump_kernel_offset(void)
399 {
400 	const unsigned long offset = kaslr_offset();
401 
402 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && offset > 0) {
403 		pr_emerg("Kernel Offset: 0x%lx from 0x%lx\n",
404 			 offset, KIMAGE_VADDR);
405 		pr_emerg("PHYS_OFFSET: 0x%llx\n", PHYS_OFFSET);
406 	} else {
407 		pr_emerg("Kernel Offset: disabled\n");
408 	}
409 }
410 
411 static int arm64_panic_block_dump(struct notifier_block *self,
412 				  unsigned long v, void *p)
413 {
414 	dump_kernel_offset();
415 	dump_cpu_features();
416 	dump_mem_limit();
417 	return 0;
418 }
419 
420 static struct notifier_block arm64_panic_block = {
421 	.notifier_call = arm64_panic_block_dump
422 };
423 
424 static int __init register_arm64_panic_block(void)
425 {
426 	atomic_notifier_chain_register(&panic_notifier_list,
427 				       &arm64_panic_block);
428 	return 0;
429 }
430 device_initcall(register_arm64_panic_block);
431 
432 static int __init check_mmu_enabled_at_boot(void)
433 {
434 	if (!efi_enabled(EFI_BOOT) && mmu_enabled_at_boot)
435 		panic("Non-EFI boot detected with MMU and caches enabled");
436 	return 0;
437 }
438 device_initcall_sync(check_mmu_enabled_at_boot);
439