xref: /linux/arch/arm64/kernel/setup.c (revision 364eeb79a213fcf9164208b53764223ad522d6b3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/setup.c
4  *
5  * Copyright (C) 1995-2001 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/stddef.h>
13 #include <linux/ioport.h>
14 #include <linux/delay.h>
15 #include <linux/initrd.h>
16 #include <linux/console.h>
17 #include <linux/cache.h>
18 #include <linux/screen_info.h>
19 #include <linux/init.h>
20 #include <linux/kexec.h>
21 #include <linux/root_dev.h>
22 #include <linux/cpu.h>
23 #include <linux/interrupt.h>
24 #include <linux/smp.h>
25 #include <linux/fs.h>
26 #include <linux/panic_notifier.h>
27 #include <linux/proc_fs.h>
28 #include <linux/memblock.h>
29 #include <linux/of_fdt.h>
30 #include <linux/efi.h>
31 #include <linux/psci.h>
32 #include <linux/sched/task.h>
33 #include <linux/scs.h>
34 #include <linux/mm.h>
35 
36 #include <asm/acpi.h>
37 #include <asm/fixmap.h>
38 #include <asm/cpu.h>
39 #include <asm/cputype.h>
40 #include <asm/daifflags.h>
41 #include <asm/elf.h>
42 #include <asm/cpufeature.h>
43 #include <asm/cpu_ops.h>
44 #include <asm/kasan.h>
45 #include <asm/numa.h>
46 #include <asm/rsi.h>
47 #include <asm/scs.h>
48 #include <asm/sections.h>
49 #include <asm/setup.h>
50 #include <asm/smp_plat.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlbflush.h>
53 #include <asm/traps.h>
54 #include <asm/efi.h>
55 #include <asm/xen/hypervisor.h>
56 #include <asm/mmu_context.h>
57 
58 static int num_standard_resources;
59 static struct resource *standard_resources;
60 
61 phys_addr_t __fdt_pointer __initdata;
62 u64 mmu_enabled_at_boot __initdata;
63 
64 /*
65  * Standard memory resources
66  */
67 static struct resource mem_res[] = {
68 	{
69 		.name = "Kernel code",
70 		.start = 0,
71 		.end = 0,
72 		.flags = IORESOURCE_SYSTEM_RAM
73 	},
74 	{
75 		.name = "Kernel data",
76 		.start = 0,
77 		.end = 0,
78 		.flags = IORESOURCE_SYSTEM_RAM
79 	}
80 };
81 
82 #define kernel_code mem_res[0]
83 #define kernel_data mem_res[1]
84 
85 /*
86  * The recorded values of x0 .. x3 upon kernel entry.
87  */
88 u64 __cacheline_aligned boot_args[4];
89 
90 void __init smp_setup_processor_id(void)
91 {
92 	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
93 	set_cpu_logical_map(0, mpidr);
94 
95 	pr_info("Booting Linux on physical CPU 0x%010lx [0x%08x]\n",
96 		(unsigned long)mpidr, read_cpuid_id());
97 }
98 
99 bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
100 {
101 	return phys_id == cpu_logical_map(cpu);
102 }
103 
104 struct mpidr_hash mpidr_hash;
105 /**
106  * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
107  *			  level in order to build a linear index from an
108  *			  MPIDR value. Resulting algorithm is a collision
109  *			  free hash carried out through shifting and ORing
110  */
111 static void __init smp_build_mpidr_hash(void)
112 {
113 	u32 i, affinity, fs[4], bits[4], ls;
114 	u64 mask = 0;
115 	/*
116 	 * Pre-scan the list of MPIDRS and filter out bits that do
117 	 * not contribute to affinity levels, ie they never toggle.
118 	 */
119 	for_each_possible_cpu(i)
120 		mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
121 	pr_debug("mask of set bits %#llx\n", mask);
122 	/*
123 	 * Find and stash the last and first bit set at all affinity levels to
124 	 * check how many bits are required to represent them.
125 	 */
126 	for (i = 0; i < 4; i++) {
127 		affinity = MPIDR_AFFINITY_LEVEL(mask, i);
128 		/*
129 		 * Find the MSB bit and LSB bits position
130 		 * to determine how many bits are required
131 		 * to express the affinity level.
132 		 */
133 		ls = fls(affinity);
134 		fs[i] = affinity ? ffs(affinity) - 1 : 0;
135 		bits[i] = ls - fs[i];
136 	}
137 	/*
138 	 * An index can be created from the MPIDR_EL1 by isolating the
139 	 * significant bits at each affinity level and by shifting
140 	 * them in order to compress the 32 bits values space to a
141 	 * compressed set of values. This is equivalent to hashing
142 	 * the MPIDR_EL1 through shifting and ORing. It is a collision free
143 	 * hash though not minimal since some levels might contain a number
144 	 * of CPUs that is not an exact power of 2 and their bit
145 	 * representation might contain holes, eg MPIDR_EL1[7:0] = {0x2, 0x80}.
146 	 */
147 	mpidr_hash.shift_aff[0] = MPIDR_LEVEL_SHIFT(0) + fs[0];
148 	mpidr_hash.shift_aff[1] = MPIDR_LEVEL_SHIFT(1) + fs[1] - bits[0];
149 	mpidr_hash.shift_aff[2] = MPIDR_LEVEL_SHIFT(2) + fs[2] -
150 						(bits[1] + bits[0]);
151 	mpidr_hash.shift_aff[3] = MPIDR_LEVEL_SHIFT(3) +
152 				  fs[3] - (bits[2] + bits[1] + bits[0]);
153 	mpidr_hash.mask = mask;
154 	mpidr_hash.bits = bits[3] + bits[2] + bits[1] + bits[0];
155 	pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] aff3[%u] mask[%#llx] bits[%u]\n",
156 		mpidr_hash.shift_aff[0],
157 		mpidr_hash.shift_aff[1],
158 		mpidr_hash.shift_aff[2],
159 		mpidr_hash.shift_aff[3],
160 		mpidr_hash.mask,
161 		mpidr_hash.bits);
162 	/*
163 	 * 4x is an arbitrary value used to warn on a hash table much bigger
164 	 * than expected on most systems.
165 	 */
166 	if (mpidr_hash_size() > 4 * num_possible_cpus())
167 		pr_warn("Large number of MPIDR hash buckets detected\n");
168 }
169 
170 static void __init setup_machine_fdt(phys_addr_t dt_phys)
171 {
172 	int size;
173 	void *dt_virt = fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL);
174 	const char *name;
175 
176 	if (dt_virt)
177 		memblock_reserve(dt_phys, size);
178 
179 	if (!dt_virt || !early_init_dt_scan(dt_virt)) {
180 		pr_crit("\n"
181 			"Error: invalid device tree blob at physical address %pa (virtual address 0x%px)\n"
182 			"The dtb must be 8-byte aligned and must not exceed 2 MB in size\n"
183 			"\nPlease check your bootloader.",
184 			&dt_phys, dt_virt);
185 
186 		/*
187 		 * Note that in this _really_ early stage we cannot even BUG()
188 		 * or oops, so the least terrible thing to do is cpu_relax(),
189 		 * or else we could end-up printing non-initialized data, etc.
190 		 */
191 		while (true)
192 			cpu_relax();
193 	}
194 
195 	/* Early fixups are done, map the FDT as read-only now */
196 	fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL_RO);
197 
198 	name = of_flat_dt_get_machine_name();
199 	if (!name)
200 		return;
201 
202 	pr_info("Machine model: %s\n", name);
203 	dump_stack_set_arch_desc("%s (DT)", name);
204 }
205 
206 static void __init request_standard_resources(void)
207 {
208 	struct memblock_region *region;
209 	struct resource *res;
210 	unsigned long i = 0;
211 	size_t res_size;
212 
213 	kernel_code.start   = __pa_symbol(_stext);
214 	kernel_code.end     = __pa_symbol(__init_begin - 1);
215 	kernel_data.start   = __pa_symbol(_sdata);
216 	kernel_data.end     = __pa_symbol(_end - 1);
217 	insert_resource(&iomem_resource, &kernel_code);
218 	insert_resource(&iomem_resource, &kernel_data);
219 
220 	num_standard_resources = memblock.memory.cnt;
221 	res_size = num_standard_resources * sizeof(*standard_resources);
222 	standard_resources = memblock_alloc(res_size, SMP_CACHE_BYTES);
223 	if (!standard_resources)
224 		panic("%s: Failed to allocate %zu bytes\n", __func__, res_size);
225 
226 	for_each_mem_region(region) {
227 		res = &standard_resources[i++];
228 		if (memblock_is_nomap(region)) {
229 			res->name  = "reserved";
230 			res->flags = IORESOURCE_MEM;
231 			res->start = __pfn_to_phys(memblock_region_reserved_base_pfn(region));
232 			res->end = __pfn_to_phys(memblock_region_reserved_end_pfn(region)) - 1;
233 		} else {
234 			res->name  = "System RAM";
235 			res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
236 			res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
237 			res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
238 		}
239 
240 		insert_resource(&iomem_resource, res);
241 	}
242 }
243 
244 static int __init reserve_memblock_reserved_regions(void)
245 {
246 	u64 i, j;
247 
248 	for (i = 0; i < num_standard_resources; ++i) {
249 		struct resource *mem = &standard_resources[i];
250 		phys_addr_t r_start, r_end, mem_size = resource_size(mem);
251 
252 		if (!memblock_is_region_reserved(mem->start, mem_size))
253 			continue;
254 
255 		for_each_reserved_mem_range(j, &r_start, &r_end) {
256 			resource_size_t start, end;
257 
258 			start = max(PFN_PHYS(PFN_DOWN(r_start)), mem->start);
259 			end = min(PFN_PHYS(PFN_UP(r_end)) - 1, mem->end);
260 
261 			if (start > mem->end || end < mem->start)
262 				continue;
263 
264 			reserve_region_with_split(mem, start, end, "reserved");
265 		}
266 	}
267 
268 	return 0;
269 }
270 arch_initcall(reserve_memblock_reserved_regions);
271 
272 u64 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = INVALID_HWID };
273 
274 u64 cpu_logical_map(unsigned int cpu)
275 {
276 	return __cpu_logical_map[cpu];
277 }
278 
279 void __init __no_sanitize_address setup_arch(char **cmdline_p)
280 {
281 	setup_initial_init_mm(_stext, _etext, _edata, _end);
282 
283 	*cmdline_p = boot_command_line;
284 
285 	kaslr_init();
286 
287 	early_fixmap_init();
288 	early_ioremap_init();
289 
290 	setup_machine_fdt(__fdt_pointer);
291 
292 	/*
293 	 * Initialise the static keys early as they may be enabled by the
294 	 * cpufeature code and early parameters.
295 	 */
296 	jump_label_init();
297 	parse_early_param();
298 
299 	dynamic_scs_init();
300 
301 	/*
302 	 * The primary CPU enters the kernel with all DAIF exceptions masked.
303 	 *
304 	 * We must unmask Debug and SError before preemption or scheduling is
305 	 * possible to ensure that these are consistently unmasked across
306 	 * threads, and we want to unmask SError as soon as possible after
307 	 * initializing earlycon so that we can report any SErrors immediately.
308 	 *
309 	 * IRQ and FIQ will be unmasked after the root irqchip has been
310 	 * detected and initialized.
311 	 */
312 	local_daif_restore(DAIF_PROCCTX_NOIRQ);
313 
314 	/*
315 	 * TTBR0 is only used for the identity mapping at this stage. Make it
316 	 * point to zero page to avoid speculatively fetching new entries.
317 	 */
318 	cpu_uninstall_idmap();
319 
320 	xen_early_init();
321 	efi_init();
322 
323 	if (!efi_enabled(EFI_BOOT)) {
324 		if ((u64)_text % MIN_KIMG_ALIGN)
325 			pr_warn(FW_BUG "Kernel image misaligned at boot, please fix your bootloader!");
326 		WARN_TAINT(mmu_enabled_at_boot, TAINT_FIRMWARE_WORKAROUND,
327 			   FW_BUG "Booted with MMU enabled!");
328 	}
329 
330 	arm64_memblock_init();
331 
332 	paging_init();
333 
334 	acpi_table_upgrade();
335 
336 	/* Parse the ACPI tables for possible boot-time configuration */
337 	acpi_boot_table_init();
338 
339 	if (acpi_disabled)
340 		unflatten_device_tree();
341 
342 	bootmem_init();
343 
344 	kasan_init();
345 
346 	request_standard_resources();
347 
348 	early_ioremap_reset();
349 
350 	if (acpi_disabled)
351 		psci_dt_init();
352 	else
353 		psci_acpi_init();
354 
355 	arm64_rsi_init();
356 
357 	init_bootcpu_ops();
358 	smp_init_cpus();
359 	smp_build_mpidr_hash();
360 
361 #ifdef CONFIG_ARM64_SW_TTBR0_PAN
362 	/*
363 	 * Make sure init_thread_info.ttbr0 always generates translation
364 	 * faults in case uaccess_enable() is inadvertently called by the init
365 	 * thread.
366 	 */
367 	init_task.thread_info.ttbr0 = phys_to_ttbr(__pa_symbol(reserved_pg_dir));
368 #endif
369 
370 	if (boot_args[1] || boot_args[2] || boot_args[3]) {
371 		pr_err("WARNING: x1-x3 nonzero in violation of boot protocol:\n"
372 			"\tx1: %016llx\n\tx2: %016llx\n\tx3: %016llx\n"
373 			"This indicates a broken bootloader or old kernel\n",
374 			boot_args[1], boot_args[2], boot_args[3]);
375 	}
376 }
377 
378 static inline bool cpu_can_disable(unsigned int cpu)
379 {
380 #ifdef CONFIG_HOTPLUG_CPU
381 	const struct cpu_operations *ops = get_cpu_ops(cpu);
382 
383 	if (ops && ops->cpu_can_disable)
384 		return ops->cpu_can_disable(cpu);
385 #endif
386 	return false;
387 }
388 
389 bool arch_cpu_is_hotpluggable(int num)
390 {
391 	return cpu_can_disable(num);
392 }
393 
394 static void dump_kernel_offset(void)
395 {
396 	const unsigned long offset = kaslr_offset();
397 
398 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && offset > 0) {
399 		pr_emerg("Kernel Offset: 0x%lx from 0x%lx\n",
400 			 offset, KIMAGE_VADDR);
401 		pr_emerg("PHYS_OFFSET: 0x%llx\n", PHYS_OFFSET);
402 	} else {
403 		pr_emerg("Kernel Offset: disabled\n");
404 	}
405 }
406 
407 static int arm64_panic_block_dump(struct notifier_block *self,
408 				  unsigned long v, void *p)
409 {
410 	dump_kernel_offset();
411 	dump_cpu_features();
412 	dump_mem_limit();
413 	return 0;
414 }
415 
416 static struct notifier_block arm64_panic_block = {
417 	.notifier_call = arm64_panic_block_dump
418 };
419 
420 static int __init register_arm64_panic_block(void)
421 {
422 	atomic_notifier_chain_register(&panic_notifier_list,
423 				       &arm64_panic_block);
424 	return 0;
425 }
426 device_initcall(register_arm64_panic_block);
427 
428 static int __init check_mmu_enabled_at_boot(void)
429 {
430 	if (!efi_enabled(EFI_BOOT) && mmu_enabled_at_boot)
431 		panic("Non-EFI boot detected with MMU and caches enabled");
432 	return 0;
433 }
434 device_initcall_sync(check_mmu_enabled_at_boot);
435