1 /* 2 * Based on arch/arm/kernel/setup.c 3 * 4 * Copyright (C) 1995-2001 Russell King 5 * Copyright (C) 2012 ARM Ltd. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/export.h> 21 #include <linux/kernel.h> 22 #include <linux/stddef.h> 23 #include <linux/ioport.h> 24 #include <linux/delay.h> 25 #include <linux/utsname.h> 26 #include <linux/initrd.h> 27 #include <linux/console.h> 28 #include <linux/cache.h> 29 #include <linux/bootmem.h> 30 #include <linux/seq_file.h> 31 #include <linux/screen_info.h> 32 #include <linux/init.h> 33 #include <linux/kexec.h> 34 #include <linux/crash_dump.h> 35 #include <linux/root_dev.h> 36 #include <linux/clk-provider.h> 37 #include <linux/cpu.h> 38 #include <linux/interrupt.h> 39 #include <linux/smp.h> 40 #include <linux/fs.h> 41 #include <linux/proc_fs.h> 42 #include <linux/memblock.h> 43 #include <linux/of_iommu.h> 44 #include <linux/of_fdt.h> 45 #include <linux/of_platform.h> 46 #include <linux/efi.h> 47 #include <linux/personality.h> 48 49 #include <asm/fixmap.h> 50 #include <asm/cpu.h> 51 #include <asm/cputype.h> 52 #include <asm/elf.h> 53 #include <asm/cputable.h> 54 #include <asm/cpufeature.h> 55 #include <asm/cpu_ops.h> 56 #include <asm/sections.h> 57 #include <asm/setup.h> 58 #include <asm/smp_plat.h> 59 #include <asm/cacheflush.h> 60 #include <asm/tlbflush.h> 61 #include <asm/traps.h> 62 #include <asm/memblock.h> 63 #include <asm/psci.h> 64 #include <asm/efi.h> 65 66 unsigned int processor_id; 67 EXPORT_SYMBOL(processor_id); 68 69 unsigned long elf_hwcap __read_mostly; 70 EXPORT_SYMBOL_GPL(elf_hwcap); 71 72 #ifdef CONFIG_COMPAT 73 #define COMPAT_ELF_HWCAP_DEFAULT \ 74 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\ 75 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\ 76 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\ 77 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\ 78 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\ 79 COMPAT_HWCAP_LPAE) 80 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT; 81 unsigned int compat_elf_hwcap2 __read_mostly; 82 #endif 83 84 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS); 85 86 static const char *cpu_name; 87 phys_addr_t __fdt_pointer __initdata; 88 89 /* 90 * Standard memory resources 91 */ 92 static struct resource mem_res[] = { 93 { 94 .name = "Kernel code", 95 .start = 0, 96 .end = 0, 97 .flags = IORESOURCE_MEM 98 }, 99 { 100 .name = "Kernel data", 101 .start = 0, 102 .end = 0, 103 .flags = IORESOURCE_MEM 104 } 105 }; 106 107 #define kernel_code mem_res[0] 108 #define kernel_data mem_res[1] 109 110 void __init early_print(const char *str, ...) 111 { 112 char buf[256]; 113 va_list ap; 114 115 va_start(ap, str); 116 vsnprintf(buf, sizeof(buf), str, ap); 117 va_end(ap); 118 119 printk("%s", buf); 120 } 121 122 void __init smp_setup_processor_id(void) 123 { 124 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; 125 cpu_logical_map(0) = mpidr; 126 127 /* 128 * clear __my_cpu_offset on boot CPU to avoid hang caused by 129 * using percpu variable early, for example, lockdep will 130 * access percpu variable inside lock_release 131 */ 132 set_my_cpu_offset(0); 133 pr_info("Booting Linux on physical CPU 0x%lx\n", (unsigned long)mpidr); 134 } 135 136 bool arch_match_cpu_phys_id(int cpu, u64 phys_id) 137 { 138 return phys_id == cpu_logical_map(cpu); 139 } 140 141 struct mpidr_hash mpidr_hash; 142 #ifdef CONFIG_SMP 143 /** 144 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity 145 * level in order to build a linear index from an 146 * MPIDR value. Resulting algorithm is a collision 147 * free hash carried out through shifting and ORing 148 */ 149 static void __init smp_build_mpidr_hash(void) 150 { 151 u32 i, affinity, fs[4], bits[4], ls; 152 u64 mask = 0; 153 /* 154 * Pre-scan the list of MPIDRS and filter out bits that do 155 * not contribute to affinity levels, ie they never toggle. 156 */ 157 for_each_possible_cpu(i) 158 mask |= (cpu_logical_map(i) ^ cpu_logical_map(0)); 159 pr_debug("mask of set bits %#llx\n", mask); 160 /* 161 * Find and stash the last and first bit set at all affinity levels to 162 * check how many bits are required to represent them. 163 */ 164 for (i = 0; i < 4; i++) { 165 affinity = MPIDR_AFFINITY_LEVEL(mask, i); 166 /* 167 * Find the MSB bit and LSB bits position 168 * to determine how many bits are required 169 * to express the affinity level. 170 */ 171 ls = fls(affinity); 172 fs[i] = affinity ? ffs(affinity) - 1 : 0; 173 bits[i] = ls - fs[i]; 174 } 175 /* 176 * An index can be created from the MPIDR_EL1 by isolating the 177 * significant bits at each affinity level and by shifting 178 * them in order to compress the 32 bits values space to a 179 * compressed set of values. This is equivalent to hashing 180 * the MPIDR_EL1 through shifting and ORing. It is a collision free 181 * hash though not minimal since some levels might contain a number 182 * of CPUs that is not an exact power of 2 and their bit 183 * representation might contain holes, eg MPIDR_EL1[7:0] = {0x2, 0x80}. 184 */ 185 mpidr_hash.shift_aff[0] = MPIDR_LEVEL_SHIFT(0) + fs[0]; 186 mpidr_hash.shift_aff[1] = MPIDR_LEVEL_SHIFT(1) + fs[1] - bits[0]; 187 mpidr_hash.shift_aff[2] = MPIDR_LEVEL_SHIFT(2) + fs[2] - 188 (bits[1] + bits[0]); 189 mpidr_hash.shift_aff[3] = MPIDR_LEVEL_SHIFT(3) + 190 fs[3] - (bits[2] + bits[1] + bits[0]); 191 mpidr_hash.mask = mask; 192 mpidr_hash.bits = bits[3] + bits[2] + bits[1] + bits[0]; 193 pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] aff3[%u] mask[%#llx] bits[%u]\n", 194 mpidr_hash.shift_aff[0], 195 mpidr_hash.shift_aff[1], 196 mpidr_hash.shift_aff[2], 197 mpidr_hash.shift_aff[3], 198 mpidr_hash.mask, 199 mpidr_hash.bits); 200 /* 201 * 4x is an arbitrary value used to warn on a hash table much bigger 202 * than expected on most systems. 203 */ 204 if (mpidr_hash_size() > 4 * num_possible_cpus()) 205 pr_warn("Large number of MPIDR hash buckets detected\n"); 206 __flush_dcache_area(&mpidr_hash, sizeof(struct mpidr_hash)); 207 } 208 #endif 209 210 static void __init setup_processor(void) 211 { 212 struct cpu_info *cpu_info; 213 u64 features, block; 214 u32 cwg; 215 int cls; 216 217 cpu_info = lookup_processor_type(read_cpuid_id()); 218 if (!cpu_info) { 219 printk("CPU configuration botched (ID %08x), unable to continue.\n", 220 read_cpuid_id()); 221 while (1); 222 } 223 224 cpu_name = cpu_info->cpu_name; 225 226 printk("CPU: %s [%08x] revision %d\n", 227 cpu_name, read_cpuid_id(), read_cpuid_id() & 15); 228 229 sprintf(init_utsname()->machine, ELF_PLATFORM); 230 elf_hwcap = 0; 231 232 cpuinfo_store_boot_cpu(); 233 234 /* 235 * Check for sane CTR_EL0.CWG value. 236 */ 237 cwg = cache_type_cwg(); 238 cls = cache_line_size(); 239 if (!cwg) 240 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n", 241 cls); 242 if (L1_CACHE_BYTES < cls) 243 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n", 244 L1_CACHE_BYTES, cls); 245 246 /* 247 * ID_AA64ISAR0_EL1 contains 4-bit wide signed feature blocks. 248 * The blocks we test below represent incremental functionality 249 * for non-negative values. Negative values are reserved. 250 */ 251 features = read_cpuid(ID_AA64ISAR0_EL1); 252 block = (features >> 4) & 0xf; 253 if (!(block & 0x8)) { 254 switch (block) { 255 default: 256 case 2: 257 elf_hwcap |= HWCAP_PMULL; 258 case 1: 259 elf_hwcap |= HWCAP_AES; 260 case 0: 261 break; 262 } 263 } 264 265 block = (features >> 8) & 0xf; 266 if (block && !(block & 0x8)) 267 elf_hwcap |= HWCAP_SHA1; 268 269 block = (features >> 12) & 0xf; 270 if (block && !(block & 0x8)) 271 elf_hwcap |= HWCAP_SHA2; 272 273 block = (features >> 16) & 0xf; 274 if (block && !(block & 0x8)) 275 elf_hwcap |= HWCAP_CRC32; 276 277 #ifdef CONFIG_COMPAT 278 /* 279 * ID_ISAR5_EL1 carries similar information as above, but pertaining to 280 * the Aarch32 32-bit execution state. 281 */ 282 features = read_cpuid(ID_ISAR5_EL1); 283 block = (features >> 4) & 0xf; 284 if (!(block & 0x8)) { 285 switch (block) { 286 default: 287 case 2: 288 compat_elf_hwcap2 |= COMPAT_HWCAP2_PMULL; 289 case 1: 290 compat_elf_hwcap2 |= COMPAT_HWCAP2_AES; 291 case 0: 292 break; 293 } 294 } 295 296 block = (features >> 8) & 0xf; 297 if (block && !(block & 0x8)) 298 compat_elf_hwcap2 |= COMPAT_HWCAP2_SHA1; 299 300 block = (features >> 12) & 0xf; 301 if (block && !(block & 0x8)) 302 compat_elf_hwcap2 |= COMPAT_HWCAP2_SHA2; 303 304 block = (features >> 16) & 0xf; 305 if (block && !(block & 0x8)) 306 compat_elf_hwcap2 |= COMPAT_HWCAP2_CRC32; 307 #endif 308 } 309 310 static void __init setup_machine_fdt(phys_addr_t dt_phys) 311 { 312 if (!dt_phys || !early_init_dt_scan(phys_to_virt(dt_phys))) { 313 early_print("\n" 314 "Error: invalid device tree blob at physical address 0x%p (virtual address 0x%p)\n" 315 "The dtb must be 8-byte aligned and passed in the first 512MB of memory\n" 316 "\nPlease check your bootloader.\n", 317 dt_phys, phys_to_virt(dt_phys)); 318 319 while (true) 320 cpu_relax(); 321 } 322 323 dump_stack_set_arch_desc("%s (DT)", of_flat_dt_get_machine_name()); 324 } 325 326 static void __init request_standard_resources(void) 327 { 328 struct memblock_region *region; 329 struct resource *res; 330 331 kernel_code.start = virt_to_phys(_text); 332 kernel_code.end = virt_to_phys(_etext - 1); 333 kernel_data.start = virt_to_phys(_sdata); 334 kernel_data.end = virt_to_phys(_end - 1); 335 336 for_each_memblock(memory, region) { 337 res = alloc_bootmem_low(sizeof(*res)); 338 res->name = "System RAM"; 339 res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region)); 340 res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1; 341 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 342 343 request_resource(&iomem_resource, res); 344 345 if (kernel_code.start >= res->start && 346 kernel_code.end <= res->end) 347 request_resource(res, &kernel_code); 348 if (kernel_data.start >= res->start && 349 kernel_data.end <= res->end) 350 request_resource(res, &kernel_data); 351 } 352 } 353 354 u64 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = INVALID_HWID }; 355 356 void __init setup_arch(char **cmdline_p) 357 { 358 setup_processor(); 359 360 setup_machine_fdt(__fdt_pointer); 361 362 init_mm.start_code = (unsigned long) _text; 363 init_mm.end_code = (unsigned long) _etext; 364 init_mm.end_data = (unsigned long) _edata; 365 init_mm.brk = (unsigned long) _end; 366 367 *cmdline_p = boot_command_line; 368 369 early_fixmap_init(); 370 early_ioremap_init(); 371 372 parse_early_param(); 373 374 /* 375 * Unmask asynchronous aborts after bringing up possible earlycon. 376 * (Report possible System Errors once we can report this occurred) 377 */ 378 local_async_enable(); 379 380 efi_init(); 381 arm64_memblock_init(); 382 383 paging_init(); 384 request_standard_resources(); 385 386 early_ioremap_reset(); 387 388 unflatten_device_tree(); 389 390 psci_init(); 391 392 cpu_read_bootcpu_ops(); 393 #ifdef CONFIG_SMP 394 smp_init_cpus(); 395 smp_build_mpidr_hash(); 396 #endif 397 398 #ifdef CONFIG_VT 399 #if defined(CONFIG_VGA_CONSOLE) 400 conswitchp = &vga_con; 401 #elif defined(CONFIG_DUMMY_CONSOLE) 402 conswitchp = &dummy_con; 403 #endif 404 #endif 405 } 406 407 static int __init arm64_device_init(void) 408 { 409 of_iommu_init(); 410 of_platform_populate(NULL, of_default_bus_match_table, NULL, NULL); 411 return 0; 412 } 413 arch_initcall_sync(arm64_device_init); 414 415 static int __init topology_init(void) 416 { 417 int i; 418 419 for_each_possible_cpu(i) { 420 struct cpu *cpu = &per_cpu(cpu_data.cpu, i); 421 cpu->hotpluggable = 1; 422 register_cpu(cpu, i); 423 } 424 425 return 0; 426 } 427 subsys_initcall(topology_init); 428 429 static const char *hwcap_str[] = { 430 "fp", 431 "asimd", 432 "evtstrm", 433 "aes", 434 "pmull", 435 "sha1", 436 "sha2", 437 "crc32", 438 NULL 439 }; 440 441 #ifdef CONFIG_COMPAT 442 static const char *compat_hwcap_str[] = { 443 "swp", 444 "half", 445 "thumb", 446 "26bit", 447 "fastmult", 448 "fpa", 449 "vfp", 450 "edsp", 451 "java", 452 "iwmmxt", 453 "crunch", 454 "thumbee", 455 "neon", 456 "vfpv3", 457 "vfpv3d16", 458 "tls", 459 "vfpv4", 460 "idiva", 461 "idivt", 462 "vfpd32", 463 "lpae", 464 "evtstrm" 465 }; 466 467 static const char *compat_hwcap2_str[] = { 468 "aes", 469 "pmull", 470 "sha1", 471 "sha2", 472 "crc32", 473 NULL 474 }; 475 #endif /* CONFIG_COMPAT */ 476 477 static int c_show(struct seq_file *m, void *v) 478 { 479 int i, j; 480 481 for_each_online_cpu(i) { 482 struct cpuinfo_arm64 *cpuinfo = &per_cpu(cpu_data, i); 483 u32 midr = cpuinfo->reg_midr; 484 485 /* 486 * glibc reads /proc/cpuinfo to determine the number of 487 * online processors, looking for lines beginning with 488 * "processor". Give glibc what it expects. 489 */ 490 #ifdef CONFIG_SMP 491 seq_printf(m, "processor\t: %d\n", i); 492 #endif 493 494 /* 495 * Dump out the common processor features in a single line. 496 * Userspace should read the hwcaps with getauxval(AT_HWCAP) 497 * rather than attempting to parse this, but there's a body of 498 * software which does already (at least for 32-bit). 499 */ 500 seq_puts(m, "Features\t:"); 501 if (personality(current->personality) == PER_LINUX32) { 502 #ifdef CONFIG_COMPAT 503 for (j = 0; compat_hwcap_str[j]; j++) 504 if (compat_elf_hwcap & (1 << j)) 505 seq_printf(m, " %s", compat_hwcap_str[j]); 506 507 for (j = 0; compat_hwcap2_str[j]; j++) 508 if (compat_elf_hwcap2 & (1 << j)) 509 seq_printf(m, " %s", compat_hwcap2_str[j]); 510 #endif /* CONFIG_COMPAT */ 511 } else { 512 for (j = 0; hwcap_str[j]; j++) 513 if (elf_hwcap & (1 << j)) 514 seq_printf(m, " %s", hwcap_str[j]); 515 } 516 seq_puts(m, "\n"); 517 518 seq_printf(m, "CPU implementer\t: 0x%02x\n", 519 MIDR_IMPLEMENTOR(midr)); 520 seq_printf(m, "CPU architecture: 8\n"); 521 seq_printf(m, "CPU variant\t: 0x%x\n", MIDR_VARIANT(midr)); 522 seq_printf(m, "CPU part\t: 0x%03x\n", MIDR_PARTNUM(midr)); 523 seq_printf(m, "CPU revision\t: %d\n\n", MIDR_REVISION(midr)); 524 } 525 526 return 0; 527 } 528 529 static void *c_start(struct seq_file *m, loff_t *pos) 530 { 531 return *pos < 1 ? (void *)1 : NULL; 532 } 533 534 static void *c_next(struct seq_file *m, void *v, loff_t *pos) 535 { 536 ++*pos; 537 return NULL; 538 } 539 540 static void c_stop(struct seq_file *m, void *v) 541 { 542 } 543 544 const struct seq_operations cpuinfo_op = { 545 .start = c_start, 546 .next = c_next, 547 .stop = c_stop, 548 .show = c_show 549 }; 550