1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/kernel/setup.c 4 * 5 * Copyright (C) 1995-2001 Russell King 6 * Copyright (C) 2012 ARM Ltd. 7 */ 8 9 #include <linux/acpi.h> 10 #include <linux/export.h> 11 #include <linux/kernel.h> 12 #include <linux/stddef.h> 13 #include <linux/ioport.h> 14 #include <linux/delay.h> 15 #include <linux/initrd.h> 16 #include <linux/console.h> 17 #include <linux/cache.h> 18 #include <linux/screen_info.h> 19 #include <linux/init.h> 20 #include <linux/kexec.h> 21 #include <linux/root_dev.h> 22 #include <linux/cpu.h> 23 #include <linux/interrupt.h> 24 #include <linux/smp.h> 25 #include <linux/fs.h> 26 #include <linux/proc_fs.h> 27 #include <linux/memblock.h> 28 #include <linux/of_fdt.h> 29 #include <linux/efi.h> 30 #include <linux/psci.h> 31 #include <linux/sched/task.h> 32 #include <linux/mm.h> 33 34 #include <asm/acpi.h> 35 #include <asm/fixmap.h> 36 #include <asm/cpu.h> 37 #include <asm/cputype.h> 38 #include <asm/daifflags.h> 39 #include <asm/elf.h> 40 #include <asm/cpufeature.h> 41 #include <asm/cpu_ops.h> 42 #include <asm/kasan.h> 43 #include <asm/numa.h> 44 #include <asm/sections.h> 45 #include <asm/setup.h> 46 #include <asm/smp_plat.h> 47 #include <asm/cacheflush.h> 48 #include <asm/tlbflush.h> 49 #include <asm/traps.h> 50 #include <asm/efi.h> 51 #include <asm/xen/hypervisor.h> 52 #include <asm/mmu_context.h> 53 54 static int num_standard_resources; 55 static struct resource *standard_resources; 56 57 phys_addr_t __fdt_pointer __initdata; 58 59 /* 60 * Standard memory resources 61 */ 62 static struct resource mem_res[] = { 63 { 64 .name = "Kernel code", 65 .start = 0, 66 .end = 0, 67 .flags = IORESOURCE_SYSTEM_RAM 68 }, 69 { 70 .name = "Kernel data", 71 .start = 0, 72 .end = 0, 73 .flags = IORESOURCE_SYSTEM_RAM 74 } 75 }; 76 77 #define kernel_code mem_res[0] 78 #define kernel_data mem_res[1] 79 80 /* 81 * The recorded values of x0 .. x3 upon kernel entry. 82 */ 83 u64 __cacheline_aligned boot_args[4]; 84 85 void __init smp_setup_processor_id(void) 86 { 87 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; 88 cpu_logical_map(0) = mpidr; 89 90 /* 91 * clear __my_cpu_offset on boot CPU to avoid hang caused by 92 * using percpu variable early, for example, lockdep will 93 * access percpu variable inside lock_release 94 */ 95 set_my_cpu_offset(0); 96 pr_info("Booting Linux on physical CPU 0x%010lx [0x%08x]\n", 97 (unsigned long)mpidr, read_cpuid_id()); 98 } 99 100 bool arch_match_cpu_phys_id(int cpu, u64 phys_id) 101 { 102 return phys_id == cpu_logical_map(cpu); 103 } 104 105 struct mpidr_hash mpidr_hash; 106 /** 107 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity 108 * level in order to build a linear index from an 109 * MPIDR value. Resulting algorithm is a collision 110 * free hash carried out through shifting and ORing 111 */ 112 static void __init smp_build_mpidr_hash(void) 113 { 114 u32 i, affinity, fs[4], bits[4], ls; 115 u64 mask = 0; 116 /* 117 * Pre-scan the list of MPIDRS and filter out bits that do 118 * not contribute to affinity levels, ie they never toggle. 119 */ 120 for_each_possible_cpu(i) 121 mask |= (cpu_logical_map(i) ^ cpu_logical_map(0)); 122 pr_debug("mask of set bits %#llx\n", mask); 123 /* 124 * Find and stash the last and first bit set at all affinity levels to 125 * check how many bits are required to represent them. 126 */ 127 for (i = 0; i < 4; i++) { 128 affinity = MPIDR_AFFINITY_LEVEL(mask, i); 129 /* 130 * Find the MSB bit and LSB bits position 131 * to determine how many bits are required 132 * to express the affinity level. 133 */ 134 ls = fls(affinity); 135 fs[i] = affinity ? ffs(affinity) - 1 : 0; 136 bits[i] = ls - fs[i]; 137 } 138 /* 139 * An index can be created from the MPIDR_EL1 by isolating the 140 * significant bits at each affinity level and by shifting 141 * them in order to compress the 32 bits values space to a 142 * compressed set of values. This is equivalent to hashing 143 * the MPIDR_EL1 through shifting and ORing. It is a collision free 144 * hash though not minimal since some levels might contain a number 145 * of CPUs that is not an exact power of 2 and their bit 146 * representation might contain holes, eg MPIDR_EL1[7:0] = {0x2, 0x80}. 147 */ 148 mpidr_hash.shift_aff[0] = MPIDR_LEVEL_SHIFT(0) + fs[0]; 149 mpidr_hash.shift_aff[1] = MPIDR_LEVEL_SHIFT(1) + fs[1] - bits[0]; 150 mpidr_hash.shift_aff[2] = MPIDR_LEVEL_SHIFT(2) + fs[2] - 151 (bits[1] + bits[0]); 152 mpidr_hash.shift_aff[3] = MPIDR_LEVEL_SHIFT(3) + 153 fs[3] - (bits[2] + bits[1] + bits[0]); 154 mpidr_hash.mask = mask; 155 mpidr_hash.bits = bits[3] + bits[2] + bits[1] + bits[0]; 156 pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] aff3[%u] mask[%#llx] bits[%u]\n", 157 mpidr_hash.shift_aff[0], 158 mpidr_hash.shift_aff[1], 159 mpidr_hash.shift_aff[2], 160 mpidr_hash.shift_aff[3], 161 mpidr_hash.mask, 162 mpidr_hash.bits); 163 /* 164 * 4x is an arbitrary value used to warn on a hash table much bigger 165 * than expected on most systems. 166 */ 167 if (mpidr_hash_size() > 4 * num_possible_cpus()) 168 pr_warn("Large number of MPIDR hash buckets detected\n"); 169 } 170 171 static void __init setup_machine_fdt(phys_addr_t dt_phys) 172 { 173 void *dt_virt = fixmap_remap_fdt(dt_phys); 174 const char *name; 175 176 if (!dt_virt || !early_init_dt_scan(dt_virt)) { 177 pr_crit("\n" 178 "Error: invalid device tree blob at physical address %pa (virtual address 0x%p)\n" 179 "The dtb must be 8-byte aligned and must not exceed 2 MB in size\n" 180 "\nPlease check your bootloader.", 181 &dt_phys, dt_virt); 182 183 while (true) 184 cpu_relax(); 185 } 186 187 name = of_flat_dt_get_machine_name(); 188 if (!name) 189 return; 190 191 pr_info("Machine model: %s\n", name); 192 dump_stack_set_arch_desc("%s (DT)", name); 193 } 194 195 static void __init request_standard_resources(void) 196 { 197 struct memblock_region *region; 198 struct resource *res; 199 unsigned long i = 0; 200 size_t res_size; 201 202 kernel_code.start = __pa_symbol(_text); 203 kernel_code.end = __pa_symbol(__init_begin - 1); 204 kernel_data.start = __pa_symbol(_sdata); 205 kernel_data.end = __pa_symbol(_end - 1); 206 207 num_standard_resources = memblock.memory.cnt; 208 res_size = num_standard_resources * sizeof(*standard_resources); 209 standard_resources = memblock_alloc(res_size, SMP_CACHE_BYTES); 210 if (!standard_resources) 211 panic("%s: Failed to allocate %zu bytes\n", __func__, res_size); 212 213 for_each_memblock(memory, region) { 214 res = &standard_resources[i++]; 215 if (memblock_is_nomap(region)) { 216 res->name = "reserved"; 217 res->flags = IORESOURCE_MEM; 218 } else { 219 res->name = "System RAM"; 220 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 221 } 222 res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region)); 223 res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1; 224 225 request_resource(&iomem_resource, res); 226 227 if (kernel_code.start >= res->start && 228 kernel_code.end <= res->end) 229 request_resource(res, &kernel_code); 230 if (kernel_data.start >= res->start && 231 kernel_data.end <= res->end) 232 request_resource(res, &kernel_data); 233 #ifdef CONFIG_KEXEC_CORE 234 /* Userspace will find "Crash kernel" region in /proc/iomem. */ 235 if (crashk_res.end && crashk_res.start >= res->start && 236 crashk_res.end <= res->end) 237 request_resource(res, &crashk_res); 238 #endif 239 } 240 } 241 242 static int __init reserve_memblock_reserved_regions(void) 243 { 244 u64 i, j; 245 246 for (i = 0; i < num_standard_resources; ++i) { 247 struct resource *mem = &standard_resources[i]; 248 phys_addr_t r_start, r_end, mem_size = resource_size(mem); 249 250 if (!memblock_is_region_reserved(mem->start, mem_size)) 251 continue; 252 253 for_each_reserved_mem_region(j, &r_start, &r_end) { 254 resource_size_t start, end; 255 256 start = max(PFN_PHYS(PFN_DOWN(r_start)), mem->start); 257 end = min(PFN_PHYS(PFN_UP(r_end)) - 1, mem->end); 258 259 if (start > mem->end || end < mem->start) 260 continue; 261 262 reserve_region_with_split(mem, start, end, "reserved"); 263 } 264 } 265 266 return 0; 267 } 268 arch_initcall(reserve_memblock_reserved_regions); 269 270 u64 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = INVALID_HWID }; 271 272 void __init setup_arch(char **cmdline_p) 273 { 274 init_mm.start_code = (unsigned long) _text; 275 init_mm.end_code = (unsigned long) _etext; 276 init_mm.end_data = (unsigned long) _edata; 277 init_mm.brk = (unsigned long) _end; 278 279 *cmdline_p = boot_command_line; 280 281 early_fixmap_init(); 282 early_ioremap_init(); 283 284 setup_machine_fdt(__fdt_pointer); 285 286 /* 287 * Initialise the static keys early as they may be enabled by the 288 * cpufeature code and early parameters. 289 */ 290 jump_label_init(); 291 parse_early_param(); 292 293 /* 294 * Unmask asynchronous aborts and fiq after bringing up possible 295 * earlycon. (Report possible System Errors once we can report this 296 * occurred). 297 */ 298 local_daif_restore(DAIF_PROCCTX_NOIRQ); 299 300 /* 301 * TTBR0 is only used for the identity mapping at this stage. Make it 302 * point to zero page to avoid speculatively fetching new entries. 303 */ 304 cpu_uninstall_idmap(); 305 306 xen_early_init(); 307 efi_init(); 308 arm64_memblock_init(); 309 310 paging_init(); 311 312 acpi_table_upgrade(); 313 314 /* Parse the ACPI tables for possible boot-time configuration */ 315 acpi_boot_table_init(); 316 317 if (acpi_disabled) 318 unflatten_device_tree(); 319 320 bootmem_init(); 321 322 kasan_init(); 323 324 request_standard_resources(); 325 326 early_ioremap_reset(); 327 328 if (acpi_disabled) 329 psci_dt_init(); 330 else 331 psci_acpi_init(); 332 333 cpu_read_bootcpu_ops(); 334 smp_init_cpus(); 335 smp_build_mpidr_hash(); 336 337 /* Init percpu seeds for random tags after cpus are set up. */ 338 kasan_init_tags(); 339 340 #ifdef CONFIG_ARM64_SW_TTBR0_PAN 341 /* 342 * Make sure init_thread_info.ttbr0 always generates translation 343 * faults in case uaccess_enable() is inadvertently called by the init 344 * thread. 345 */ 346 init_task.thread_info.ttbr0 = __pa_symbol(empty_zero_page); 347 #endif 348 349 #ifdef CONFIG_VT 350 conswitchp = &dummy_con; 351 #endif 352 if (boot_args[1] || boot_args[2] || boot_args[3]) { 353 pr_err("WARNING: x1-x3 nonzero in violation of boot protocol:\n" 354 "\tx1: %016llx\n\tx2: %016llx\n\tx3: %016llx\n" 355 "This indicates a broken bootloader or old kernel\n", 356 boot_args[1], boot_args[2], boot_args[3]); 357 } 358 } 359 360 static int __init topology_init(void) 361 { 362 int i; 363 364 for_each_online_node(i) 365 register_one_node(i); 366 367 for_each_possible_cpu(i) { 368 struct cpu *cpu = &per_cpu(cpu_data.cpu, i); 369 cpu->hotpluggable = 1; 370 register_cpu(cpu, i); 371 } 372 373 return 0; 374 } 375 subsys_initcall(topology_init); 376 377 /* 378 * Dump out kernel offset information on panic. 379 */ 380 static int dump_kernel_offset(struct notifier_block *self, unsigned long v, 381 void *p) 382 { 383 const unsigned long offset = kaslr_offset(); 384 385 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && offset > 0) { 386 pr_emerg("Kernel Offset: 0x%lx from 0x%lx\n", 387 offset, KIMAGE_VADDR); 388 pr_emerg("PHYS_OFFSET: 0x%llx\n", PHYS_OFFSET); 389 } else { 390 pr_emerg("Kernel Offset: disabled\n"); 391 } 392 return 0; 393 } 394 395 static struct notifier_block kernel_offset_notifier = { 396 .notifier_call = dump_kernel_offset 397 }; 398 399 static int __init register_kernel_offset_dumper(void) 400 { 401 atomic_notifier_chain_register(&panic_notifier_list, 402 &kernel_offset_notifier); 403 return 0; 404 } 405 __initcall(register_kernel_offset_dumper); 406